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ABSTRACT

We study the realization of acyclic cluster algebras as coordinate rings of Coxeter
double Bruhat cells in Kac-Moody groups. We prove that all cluster monomials with
g-vector lying in the doubled Cambrian fan are restrictions of principal generalized
minors. As a corollary, cluster algebras of finite and affine type admit a complete and
non-recursive description via (ind-)algebraic group representations, in a way similar in
spirit to the Caldero—Chapoton description via quiver representations. In type Agl),
we further show that elements of several canonical bases (generic, triangular, and
theta) which complete the partial basis of cluster monomials are composed entirely of
restrictions of minors. The discrepancy among these bases is accounted for by continuous
parameters appearing in the classification of irreducible level-zero representations of
affine Lie groups. We discuss how our results illuminate certain parallels between the
classification of representations of finite-dimensional algebras and of integrable weight
representations of Kac—-Moody algebras.
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1. Introduction

Let G be a symmetrizable Kac-Moody group over an algebraically closed field k of characteristic
zero. Coxeter elements of the Weyl group of G are in correspondence with acyclic orientations
of its Dynkin diagram, which in turn give rise to skew-symmetrizable matrices coinciding up to
signs with the associated Cartan matrix away from the diagonal. Thus we may associate to a
Coxeter element ¢ a cluster algebra, a recursively defined commutative ring which is equipped
with a canonical partial basis whose elements are called cluster monomials [FZ02] and which is
generated by a distinguished subset of these called cluster variables. The cluster algebras that
appear in this way are said to be acyclic.

Adjoining suitable frozen variables, which we call doubled principal coefficients, this acyclic
cluster algebra Aqp(c) can be realized concretely in terms of the group G: it is the coordinate
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ring of the Coxeter double Bruhat cell
G .= B,¢B,NB_¢ 'B_

in the derived subgroup G C G [BFZ05, Will3a]. A similar statement is true for the larger double

Bruhat cell G5 C G but with less natural frozen variables. The varieties G generalize the
spaces of tridiagonal matrices with unit determinant and non-zero sub- and superdiagonal entries,
which are recovered in the SL,, cases when c is the standard Coxeter element.

The partial basis of cluster monomials for any cluster algebra is labeled by g-vectors, a subset
of elements of an integer lattice. In the acyclic setting, this lattice can be naturally identified with
the weight lattice of the relevant group: we identify the g-vectors of the initial cluster variables
with the fundamental weights. When we realize the cluster algebra Agp(c) as ]k[GC’C_l], this
labeling of the initial cluster variables acquires a Lie-theoretic meaning: they are the restrictions
to G of the principal generalized minors of fundamental weights.

Recall that a principal generalized minor is a function on G or G of the following form (we
generalize slightly from [FZ99]). Fix a weight representation V' with an extremal weight A, and
choose an extremal vector vy € V) together with a projection 7y : V' — kv, factoring through
the weight projection onto V). Then the minor Ay is the function whose value at g is the
ratio my(gvy)/vx. When X is conjugate to dominant weight p under the Weyl group W (i.e. when
A is in the Tits cone) there is a canonical choice of V' given by the irreducible representation
with highest weight p. Since here, and in most cases of interest, Ay, is independent of vy and
Ty, we suppress them from the notation.

As indicated above, the initial cluster variables on Ge<™ coincide by definition with the
restrictions of the fundamental principal minors. More generally, the coordinate ring of any
double Bruhat cell possesses a cluster structure in which finitely many cluster variables will,
by construction, coincide with (possibly non-principal) minors [BFZ05, Will3a]. The purpose of
this paper is to show that the role of generalized minors in cluster theory is in fact much deeper.
Indeed, in finite and affine types we show that they provide a complete, non-recursive description
of cluster monomials in terms of the representation theory of (ind-)algebraic groups.

THEOREM 1.1. Let G be of finite or affine type, and let Ty € Agp(c) be the cluster monomial
of g-vector X\. Let V be any weight representation of G for which A is extremal, and
let Ay, be the principal generalized minor defined by some choice of vy, my. Then the
isomorphism Aqp(c) = k[GC’C_l} identifies the cluster monomial xy,. with the restriction of the
minor Ay .

In the special case where x).. is a cluster variable, some instances of the above result are

known: when G is a semisimple algebraic group it was shown in [YZ08], and when G is of
type AW or of finitely many other affine types it was shown in [RSW18]. It was stated as
a conjecture in [RSW18] that the claim holds for all cluster variables in Aqgp(c). However, the

proofs in [YZ08, RSW18] cannot be extended: they respectively use the fact that in finite type all
(1)

irreducible representations are highest weight, and that in type An1
of networks to perform explicit computations.

We further note that the statement for cluster monomials does not follow trivially from the
statement for cluster variables: deducing the former given the latter amounts to showing that the
relevant minors satisfy certain relations when restricted to G’C’CA, but these relations generally
do not hold globally on G. For example, consider G = SL3 with ¢ = s1s2. The two cluster

one can use the combinatorics

1302

Downloaded from https://www.cambridge.org/core. UC Davis, on 08 Jul 2019 at 07:47:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1112/S0010437X19007292


https://doi.org/10.1112/S0010437X19007292
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

AFFINE CLUSTER MONOMIALS ARE GENERALIZED MINORS

variables xy,.. and z_.,.c form a cluster in Aqp(c) and are the restrictions of the minors Ays
and Ays _,,, respectively. Theorem 1.1 asserts that the cluster monomial iy, —w,;c = Twy;eT—wsse

is the restriction of the minor A AZ K3 01— For a generic matrix g = (g;j) € SL3, the evaluations

A/\z 3 01— (9) = 911933 — 913931 and Ays , (9)Aks ., (9) = 911933 are not equal, but they do
coincide when g is tridiagonal.
Theorem 1.1 is a special case of the following more general result.

THEOREM 1.2. Let G be any symmetrizable Kac-Moody group, and let Txe € Agp(c) be a
cluster monomial whose g-vector A is contained in the doubled c-Cambrian fan. Let V be any
weight representation of G' for which X\ is extremal, and let Ay, ) be the principal generalized
minor defined by some choice of vy, my. Then the isomorphism Agp(c) = k[Ge< "] identifies the
cluster monomial x).. with the restriction of the minor Ay .

The doubled c-Cambrian fan [ReSpl8] is a generally proper subset of the g-vector lattice
of Agp(c) (hence also of the weight lattice of G) consisting of cones obtained by gluing regions in
the Coxeter arrangement of W in accordance with certain lattice congruences given by c. This
fan always covers the Tits cone and its opposite, but it is larger than the union of these except
in finite type. It contains the g-vectors of all cluster monomials in A4, (c) when G is of finite or
affine type. We will show that when it contains A we are able to control the restriction of Ay to
Gee ! inductively, both with respect to the distance \ is from being dominant or antidominant
and with respect to the rank of G.

When A is not in the Tits cone or its opposite, the classification of weight representations
for which A is extremal is not well understood in general. In affine type, these are the
representations of level zero, that is, those > in which the center of the Lie algebra acts trivially. The
irreducible level-zero representations of G with finite-dimensional weight spaces were classified
in [Cha86, CP86, CP88]. Unlike the highest-weight case, there is not a unique irreducible
level-zero representation with a fixed extremal weight, but rather a continuous family. In general
type, universal integrable extremal weight representations were constructed and studied by
Kashiwara [Kas94] in the quantum setting — in affine type, the irreducible representations
from [Cha86, CP86, CP88] are quotients of these (see, for example, [CMY13]). As a corollary
of Theorem 1.2, we see that when A lies in the doubled c-Cambrian fan, the minor Ay, is
independent of the choice of extremal weight representation V' and of the projection 7).

Canonical bases
Outside of finite type, a cluster algebra is not spanned by its cluster monomials. A major thread
in the development of cluster theory has been the construction of canonical bases which extend
the set of cluster monomials. Examples include the generic basis of [Dup12], the triangular basis
of [BZ14], and the theta basis of [GHKK18]. The first two of these bases are closely related,
respectively, to the dual semicanonical and dual canonical bases of the coordinate ring of the
positive unipotent subgroup Ny C G. In rank two, the third coincides with the greedy basis
of [SZ04, LLZ14] by [CGMM*17].

While all of these bases contain the set of cluster monomials, they generally do not coincide
outside this subset. However, the labeling of cluster monomials by g-vectors extends to a labeling
of any of these bases by the weight lattice.

mg be the affine Kac-Moody group of type Agl). Then the

THEOREM 1.3. Let G =
= k[GQC*l] identifies all elements of the generic, triangular, and theta

isomorphism Aqp(c)
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bases with restrictions of principal generalized minors Ay, ) for which V' is an irreducible weight

representation of ﬁg with finite-dimensional weight spaces. That is, for each basis and for any
weight \, we can choose such a representation V' so that the restriction of Ay, ) coincides with
the basis element labeled by A.

Implicit in the statement is that weights which are not g-vectors of cluster monomials and
to which known canonical basis constructions associate different basis elements are precisely the
weights for which the restriction of the principal generalized minor Ay \ depends non-trivially
on the choice of V. Necessarily, such weights lie in the complement of the Tits cone and its
opposite, and, as recalled above, representations with such extremal weights generally depend
on continuous parameters. By tuning these parameters one obtains the three bases above as well
as a family of other bases interpolating between them.

Perspective from quiver representations

From a broader point of view, part of the conceptual significance of our results is that they provide
a deeper insight into certain parallels between the representation theories of Kac—-Moody groups
and of finite-dimensional algebras. To explain this, we take G to be symmetric for simplicity,
although a similar discussion can be had in the symmetrizable case by considering species [DR76,
Gab73, Rupll, Hub, Rupl5].

Recall again that in the symmetric case the choice of a Coxeter element ¢ € W is equivalent
to the choice of an acyclic quiver () whose underlying graph is the Dynkin diagram of G.
Orthogonal to our discussion so far, the cluster monomials in Agp(c) have a complete and
non-recursive description in terms of the representation theory of @ [CC06, CKO06]. Namely,
there is a bijection between cluster monomials and rigid representations of (). This intertwines
the labeling of the former by g-vectors with the labeling of the latter by their minimal injective
copresentations [Pal08]. The Laurent expansion of the cluster monomial associated to a given
rigid representation gives a generating function for Euler characteristics of its Grassmannians of
subrepresentations. In this sense, the representation theory of ) entirely controls the structure
of Aqp(c).

Recall that representations of @) are classified by their behavior under the Auslander—Reiten
translation 7 : rep@ — rep@ [ASS06]. An indecomposable representation M is said to be
preprojective if 78(M) is projective for some k > 0, postinjective if it is of the form 7%(I)
for some injective I and some k > 0, and regular otherwise. The quiver () is of finite type if and
only if all indecomposable representations are both preprojective and postinjective. In general
these two classes are distinct, but they are dual in a suitable sense and their structure can be
completely understood in a uniform way. On the other hand, the tame—wild dichotomy implies
that regular representations are essentially unclassifiable unless @ is of affine type, in which case
they can be explicitly described.

Consider the parallel nature of this classification with that of the irreducible weight
representations of G with finite-dimensional weight spaces. The group G is of finite type if
and only if all irreducible representations are both highest-weight and lowest-weight. In general
these two classes are distinct, but they are dual and their structure can be completely understood
in a uniform way. On the other hand, the classification of irreducible representations which are
neither highest- nor lowest-weight is completely open unless G is of affine type, in which case
they can be explicitly described following [Cha86, CP86, CP88].

Theorem 1.1 explicitly links these two trichotomies: given the g-vector A of a cluster variable
in Agp(c), a weight representation V' for which A is extremal is highest-weight, lowest-weight, or
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AFFINE CLUSTER MONOMIALS ARE GENERALIZED MINORS

neither exactly when the representation of () associated to x).. is respectively preprojective,
postinjective, or regular [ReSt17, ReSpl8]. Thus our results demonstrate that the parallel
between these classifications is not a superficial one, but reflects an equivalence between
certain structural information about representations of ) and structural information about
representations of G. Or more concretely, the submodule structure of the rigid representations
of @Q is explicitly controlled by how the subvariety G C G probes the extremal weight
representations of G.

If Theorem 1.3 provides correct intuition for the general picture, this phenomenon is perhaps
not even specific to rigid representations, as the interpretation of cluster monomials in terms of
quivers may be extended to these bases by considering potentially non-rigid representations (see
Remark 4.3). Indeed, we will see that for the generic basis the description via minors extends to

type AS)

for all n (Proposition 4.13).

Organization

In § 2 we introduce and study certain regular maps among Coxeter double Bruhat cells of different
Coxeter elements. These maps allow us to geometrize the mutations at or the freezing of a sink or
a source. We show that cluster variables and generalized minors behave well and in a compatible
way under these maps. In §3 we use these results to prove Theorem 1.2. The argument is a
double induction on certain subwords of ¢> and on the rank of the group. In §4 we study the
principal level-zero minors of irreducible weight representations of Iﬁg with finite-dimensional
weight spaces. We fully compute their dependence on the continuous parameters appearing in
the classification of such representations, and prove they may be specialized to recover various
canonical bases.

2. Coxeter double Bruhat cells

In this section we study maps between different Coxeter double Bruhat cells of a fixed group, or
of a group and subgroup of corank one. The main results are that both cluster monomials and
generalized minors behave well and in a similar way under these maps.

2.1 Recollections on double Bruhat cells
We summarize our notation and conventions here, mostly following [RSW18]. Let k be an
algebraically closed field of characteristic zero and A = (a;j) an n x n symmetrizable Cartan
matrix with Weyl group W = (s;). We fix a Coxeter element ¢ € W and, in order to simplify our
notation, we assume that ¢ = s;---s,. Up to simultaneously permuting the rows and columns
of A, there is no loss of generality in doing so and we keep this assumption throughout the paper.

We write G for the minimal version of the associated Kac—Moody group as considered
in [KP83] and [Kum02, §7.4]. This is an ind-algebraic group of ind- finite type whose derived
subgroup G is generated by the simple coroot subgroups ¢; : SLy — Gforice [1, n] When A
is of untwisted affine type, G can be identified with the universal central extension LGe of the
algebraic loop group LG® of the associated semisimple algebraic group G°. The full group G is
then the semidirect product LG° := LG° x kX with the group of loop rotations.

Let By and B_ denote the standard d opposite Borel subgroups of G and H its maximal torus.
We denote their counterparts in G by B+, B_ , and H respectively. We have a decomposition of
G into double Bruhat cells

G"" = B,uBy N B_0B_,
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where u,v € W and 1, © are arbitrary lifts to G. Since we most often consider the case u = v~!,

we also introduce the notation

G = Gu

We use the following notation to discuss specific elements of G. For ¢ € k* and i € [1,n], we

set
1t @V t 0 10 _ 0 -1

For w € W, we set w :=5;, - --5;,_, where s;, - - - s;, is any reduced expression for w.

The weight lattice P of G is spanned by the fundamental weights {wi}ie[lm]. It embeds into

the weight lattice P of CAJ, but the two are not isomorphic except in finite type when H = .
In untwisted affine type, P is identified with the direct sum of the weight lattice P° of G° and
the group kx of characters of the k* appearing in the central extension, while P is the further
direct sum with the group ké of characters of the k* of loop rotations.

If V is a weight representation of G, a weight vector vy € V is said to be extremal if wvy is
either a highest- or lowest-weight vector of ¢;(SL2) for every i € [1,n] and every w € W [Kas94].
A weight A is extremal if each vy in the weight space V) is an extremal vector. Suppose A is
an extremal weight of V', and choose an extremal vector vy € V) together with a projection
my 1 V — ko) factoring through the weight projection onto V). Then the principal generalized
minor Ay is the function whose value at an element g € G is the ratio my(gvy)/vy. We omit vy
and 7y from the notation for efficiency, since for our purposes they will generally be irrelevant.

When A is dominant (respectively, antidominant), we let V(\) denote the irreducible
representation with highest (respectively, lowest) weight A. In this case, we abbreviate Ay (yx
to Ay. Given u,v € W, we also have the (non-principal, if u # v) generalized minor

Api(g) == Ay, (H_lgﬂ).

VW

Let B. = (bi;) denote the n x n skew-symmetrizable matrix given by

0 if i =7,
bij = Qjj if j <14, (2.1)
— Q4 if ¢ < j.

We write A(c) for the coefficient-free cluster algebra over k associated to B.. Recall
that it is generated by elements called cluster variables grouped into overlapping n-element
subsets called clusters [FZ02]. The cluster algebra Ag,(c) with doubled principal coefficients is
the cluster algebra of geometric type with initial exchange matrix

B.
Id,
1d,

We denote by .. its ith initial cluster variable and by z;.. (respectively, z;..) its ith (respectively,
(n + i)th) frozen variable. In this setting, frozen variables are invertible.

For any u,v € W, there is an upper cluster structure on the coordinate ring of G** [BFZ05,
Will3a]. In the case of G¢, a monomial transformation of frozen variables identifies this cluster
structure as having doubled principal coefficients.
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PROPOSITION 2.1 [YZ08, RSW18|. There is an isomorphism Aqgp(c) = k[G€] that identifies the
initial cluster variables and the frozen variables with the following restrictions of monomials in
generalized minors:

Twge = Duylge,  Zie = A, H(Azﬂj)“ﬁbc’ Zme = AL H(Agjj)a'ﬁbc'

J<t J<i

Implicit in this statement is that Agp(c) coincides with its upper cluster algebra [BFZ05].

The algebra Aqp(c) is Z"-graded and its cluster variables are homogeneous elements [FZ07].
In view of [NS14, Conjecture 2.3] and [NZ12, Theorem 1.2], we identify Z"™ with the weight
lattice P by sending unit vectors to fundamental weights. With this convention, the degree of
the initial cluster variable z,.. is w; while the degrees of z;.. and z;. are chosen in any way so
that the degree of the product zj,cz5. equals —> 7" | b;jw;.

The degree of a cluster variable and more generally of a cluster monomial — that is, a
product of cluster variables from a given cluster — is called its g-vector. These parameterize
cluster monomials [DWZ10, Dem10] and we denote by xy, the cluster monomial of Agpy(c)
whose g-vector is A € P.

The set of g-vectors can be organized to give a combinatorial shadow of Aqgp(c): its g-vector
fan. This is a simplicial fan in P whose rays are spanned by the g-vectors of cluster variables
and whose maximal cones correspond to clusters. Our main result applies to cluster monomials
whose g-vector is contained in a notable subset of the g-vector fan, the doubled c-Cambrian fan,
which we will recall in § 3.

We conclude this summary with the following result which facilitates the explicit evaluation
of functions on G*.

PROPOSITION 2.2 [FZ99, Will3b]. For any shuffling (i1,...,i2,) of the tuples (n,...,1) and
(1,...,m), there is an open embedding

H x (k¥)>  — G°
(h, tl, ce ,tgn) > ha:l-l (tl) c Ly, (tzn).

In particular, a generic element of G¢ admits a factorization of this form.

Since the one-parameter subgroups z;(t) and x;(t) are preserved by the adjoint action of
H, one can modify this generic factorization in various ways. That is, up to automorphisms of
H x (k*)?" we can place the term h wherever we like on the right-hand side or, more generally,
write it as a product and distribute its factors independently.

2.2 Sink and source mutation

Given a Coxeter element ¢ = s1---S,, we consider the conjugate Coxeter elements sijcs; and
SncSy. The n X n exchange matrices By, s, and By, s, are obtained from B. by sink and source
mutations in directions 1 and n, respectively. There are thus isomorphisms A(sjcs;) — A(c)
and A(spcsn) — A(c) of coefficient-free cluster algebras.

The first goal of this section is to show that these isomorphisms persist under the appension
of doubled principal coefficients and to describe the resulting isomorphisms of double Bruhat
cells explicitly in Lie-theoretic terms. We further show that the restrictions of certain minors to
G¢ are pulled back under these isomorphisms from restrictions of minors to G®1¢*1 and G*»¢.
As a consequence, to show that a cluster monomial in Agp(c) is the restriction of a minor it is
often sufficient to show the corresponding statement for Agp(s1¢s1) or Aqp(sncsn).
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Let 91, : G¢ --» G®1“*1 denote the rational map which sends a generic element
r1(ty)as(ts) - - an(tm)han(tn) - - - v2(t2)w1(t1)

of G¢ to the following generic element of G*1%1:

xl(tT)t?lv w3(ty) - wa(tm)han(t) - oa(t2) 8 23(t).

More generally, for an arbitrary Coxeter element ¢ = s;, ---s; the analogous formulas give a
rational map ;.. : G¢ --» G*1¢%1 . We have the following result, which in finite type is a more
detailed version of [YZ08, Corollary 5.10 and Remark 5.11].

PROPOSITION 2.3. The map 1. is a biregular isomorphism. The induced isomorphism

Vi o Adp(s1051) = Adgp(c)

sends cluster monomials to cluster monomials, up to multiplication by frozen variables.
Specifically,

(1) 1/11‘;6 sends any cluster variable xy.s,cs, With A\ # —w1 to the cluster variable xg, y..;
1.

(2) 91, sends the cluster variable ¥, s,cs, to the product xwuc'zf;clzic’
(3) Y1.. sends the frozen variable zjs,cs, (respectively, zys,cs,) to zi;czl_;g“ (respectively,
z@czi 3“)
Before proving Proposition 2.3 we establish the following useful property of the g-vectors of
cluster variables in Ag(c).

LEMMA 2.4. Let A = Y " | \iw; € P be the g-vector of a cluster variable x,. in Agp(c). Then
A1 > 0 if and only if A = wy and A, < 0 if and only if A = —w,,.

Proof. Let /3 be the denominator vector of xy,.. By [RuSt17, Proposition 5], if xy,. is an initial
cluster variable, then § is a negative simple root, otherwise [ is a positive root. Write [ : o]
for the coefficient of o in the expansion of 3 in the basis of simple roots. Our choice of Coxeter
element, together with [RuSt17, Proposition 9], immediately implies that A\; equals —[5 : aq]
and the first claim follows.

The same results also imply that A, is —[f : a;,] when z .. is an initial cluster variable, and
is [sp(5) : ] otherwise. In particular, the only case in which A, is negative is when 8 = .
This happens precisely when A = —w,,, again by [RuSt17, Proposition 9], and our second claim
is established. O

Proof of Proposition 2.3. The cluster variables and frozen variables are regular functions on G¢
and G*1“1 which generate their respective coordinate rings. Thus the biregularity of .. will
follow once we confirm that it pulls back these functions as in the claim.

We begin by studying the action of 9., on frozen variables. To compute this, we observe
that sjesiw; = w; — B; for the roots

i =

$983 -+ SpQ ifi=1.

{5253 e 8104 if ¢ 75 1,

Let g € G¢ and g € G*1°*1 denote generic elements factored as above. Considering the action
of coroot subgroups, it is easy to see that (cf. proof of [YZ08, Lemma 3.4])
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NPRY s
el [ o) g2,
w; ~ 2gg<i
Aslcslwi(g) - hwl_a1t§81C81w1|a¥> H tgﬁlzaj] le:L (22)
2<j<n

where o denotes the ith simple coroot and (:|-) is the pairing satisfying (wi|a) = d;.
By Proposition 2.1, under the isomorphism Agp(sicsi) = k[G**“*!] the frozen variables
of Agp(sics1) are given by

w; wj @i o
Asfcslwi H (Aswsle) 7e if 4 7& 1,

2 — 2¢g<t
i;81¢81 — w1 w;j an e
Aslcslwl H (Aslcswzj) J if 1 = 1.
2<j<n

Applying (2.2), we obtain

hwit§SICSIWi‘a1v>ti H <t£@ifaj]hajiwjtcllji<slcsle|a1v> H thi[fBjuk]) 1f27é17

N 2<j<i <k
Zi;slcs1(g) = ( laY) [B1:0;] i1( ilay) i1[Bj:ak]
per—enyistesinlad H t HOl pagiws a1 enesian H A ifi =1.
2<j<n 2<k<g

But observe that when 7 # 1 the exponent of ¢; is given by

v v
<31031wi + E ajisicsiw;lay > = <3233 cee 8w+ E @ji$283 -+ - Sjwj|oy >

2<<i 2<j<i

2 : \
—8983 -+ S;10¢; — aji8283-~sj_1aj]a1>

< 2<g<i

Vv
—8983 - 8;—1Q; + E 8283--'8]'71(8]‘&7; —Oéi)|041>
AN

= (—aj|ay) = —ay;.

Note that essentially the same calculation in the case i = 1 leads to the exponent (w; — aq|ay)
= 1.
By a similar calculation, the exponent of t; for 2 < k < n is given by

[Bi + ag] + Z aji[Bj : ag) = [s283 - Sp_10y 1 o] = g

k<j<t

Combining these observations, we see that

trthes T heoes i,

Zi;s1c8 (g) = T
is1C81 t1—1hw1—a1 H h%1%i  if =1,
2<j<n
tl—auh—aliwltihwi H h%i%i  if ¢ 7'5 1,
t;lh_wl ifi =1,
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where the lower equality uses the identity A% = hXi=1%'% for h € H (note the distinction
between H and H). Comparing the last expression with [RSW18, Equation (3.10)], it follows
that 2is,cs,(9) = 2ic(9)21.c(g) ™ for all i. The claim for zg,.s is obtained by the same
calculations with each t; replaced by ¢; throughout.

Turning to cluster variables, we immediately observe that s, cs;(§) = Zw;:c(g) for i # 1
while

Lwy;s1c81 (g) = tltfhwl + AT = xwlfoq;c(g)-

In particular, the map ¢7.. : Aap(sicsi) = Agp(c) takes initial cluster variables of Agp(sicsi)
to the cluster variables of Agp(c) obtained by mutating its initial seed in direction 1. As we
already observed, B, s, is obtained from B, by mutation in direction 1. Thus the map ¢7,. may
be realized as a coefficient specialization from the doubled principal coefficient cluster algebra
Adgp(sicsi) to the cluster algebra Aqgp(c) (viewed here as a cluster algebra with non-principal
coefficients since we have mutated the initial seed).

As in [YZ08, Proposition 4.5], this implies that each cluster variable of Aqp(s1¢s1) transforms
via ¢7.. into the corresponding cluster variable of Adp(c), possibly multiplied by a monomial in
the frozen variables. Upon mutating back to the standard initial cluster of Aqgp(c), Lemma 2.4
together with [NZ12, Equation (4.2)] shows that the g-vectors of cluster variables transform as
implied by our statement.

It remains to compute the monomial in frozen variables attached to each cluster variable.
According to [YZ08, Proposition 4.5], these are obtained by tropically evaluating the
respective F-polynomials at yj, = zkczEczf?’“z{g’” for k € [1,n]. By [RuSt17, Proposition 11],
the result of these evaluations is always equal to 1 except for the case A = —wy, when we get
zfgz{ i This completes the proof. O

Let 6 : G = G be the involutive automorphism characterized by

O(h) =h™", O(zit)) = 2;(t), O(z;(t) = zi(t),

)

for h € H,i € [1,n], and t € k*. Clearly, the map 6 restricts to an isomorphism G¢ = Ge .
The following proposition is a straightforward consequence of the definition of ...

PROPOSITION 2.5. The inverse of iy,c : G¢ — G*1%! is 0 0 9.4 15, © 0. Equivalently, 1/;177; is
characterized by sending the generic element

21 (1) (tn) - - w2(t2) hag(ty) - - - n(t)zy(ty)
of G®1¢%1 to the following generic element of G°:

Vv
—ay

2r(t)t; V2 (tn) - wa(to)harg(ty) - - w(ta)t ™ 1 (t)-

e now discuss the behavior of principal minors under the ma .c and its inverse, or ra

Lic verse, or r the
l 1 . SnCS C
he inverse of ’lpn;sncs : G nCSn __ G .

LEMMA 2.6. Let V be a weight representation of G for which A = Y 7" | \jw; Is extremal, and
let Ay, be the minor defined by some choice of vy, mx. If A; > 0 then

Ay a(z7(t)g) = Ava(g) = Ava(gzi(t))
for every g € G and t € k*. Similarly, if A; <0 then
Ay a(zi(t)g) = Ava(g) = Ava(gaa(t)).
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Proof. Consider the case A; > 0, the other being similar. The fact that vy is extremal then implies
that it is a highest-weight vector for ¢;(SLg). Thus z;(t)vy = vy and we have

Aya(gzi(t)) = ma(gzi(t)va)/va = ma(gua) /v = Ava(g).

On the other hand, since A is extremal and \; > 0, the component of x;(t)gvy of weight \ is the
same as the component of guvy of weight A. Since m) is assumed to factor through the weight
projection onto V), it follows that Ay y(z:(t)g) = Ay.a(g). O

PROPOSITION 2.7. Let V' be a weight representation of G for which A =Y | Aiw; is extremal,
and let Ay ) be the minor defined by some choice of vy, wy. Let Ay ¢\ and Ay, » be the minors
defined by conjugating this choice of vy, my by any lifts to G of s1 and s,, respectively. Then
if A1 < 0 we have

V1. (Avsialgsiest) = Ay

G,
and if A\, > 0 we have

(Vs esn) (Avisaalgomesn) = Avalge.

Proof. We prove the first assertion, the second being similar. It suffices to consider the evaluation
of both sides on the generic element

g = x1(ty)x3(ty) - - wnltm)han(tn) - - - z2(t2)z1 ().

For convenience, we set go = x5(t3) - - - Tr(tm)han(ts) - - - x2(t2) so that

2 Vv
g =ar(tpgori(t) and  Yie(g) = 21 (tp)t7" goty ! z7(t).

Since A1 < 0, the coefficient of wy in s;A is non-negative and we can apply Lemma 2.6 to
obtain

Vv vV
Avaa(¥1:e(9)) = Aviaa (21 ()15 goty ! 1(t1))
Vv Vv
= Avaa(ep(—t Dz ()87 goty etz (—t71)).
On the other hand, by an elementary computation in SLy we have

(1 N L af P N _—
z(—t; zi(tptyt =351 27(ty) and ' zp(t)zi(—t7 ) = 21 (t1)s1.

It then follows that

Avsin(zp(—t7 )z ()t goty ' a(ty)en(—71) = Avsa (51 2y (ty)gor(t1)51)
= Ava(r(t)gor (t)),

since by definition Ays,1(¢9") = Aya(s11¢'s1) for any ¢ € G (note that Ay (5177 1¢'s7) =
AV,)\(s'flg’s'l) for any other lift $; of s1 to G). O
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2.3 Restriction to corank one

Our next task is to lay the groundwork for proving our main result via induction on the rank
of the group G. The key point is that if we delete a sink or a source from the exchange matrix
B., the resulting cluster algebra of smaller rank embeds in a Lie-theoretically meaningful way
into Aqp(c). In particular, we can reduce certain questions about restrictions of minors to G¢ to

questions about minors of a proper subgroup. To this end, we will write @<k> for the subgroup of

G whose Dynkin diagram is obtained by deleting vertex k from that of G and we adopt similar
notation for all the other objects related to G y.
Write 71, : G --» G‘Zif for the rational map which sends a generic element
af ; af ay
wy(ty)aa(ty) - - wn(tm)hyt hy® - - hran(tn) - - - w2 (t2) 21 (f)

of G° to the following generic element of G‘zi)c :

13(t3)  wn(ta)hs? - hGR (b hS) wa(tahS).

Similarly, write 7. : G¢ --» G?ZSL for the rational map 6, o7, .1 o0 sending a generic element

V2 \2
n(tn)Tn1(tn1) - 21 (t)RTT - Ao hSmap(ty) - oy (tr=p) T (t)

of G¢ to the following generic element of G?ZSL:

aY Oéx,1 —an1 —Qn,n—1
Tn-1(tn-1) - 21(t)hy - By wg(tghy, ) - (i =gha ™).
PROPOSITION 2.8. The maps 11, and 1. are regular and dominant. The pullbacks
M. Adp(sic) = Agp(c) and  ny,..: Agp(esn) = Agp(c)

are maps of cluster algebras, that is, they send clusters to clusters and exchange relations to
exchange relations. In particular, ny.. takes cluster variables to cluster variables compatible with
Ty ;e while ny,.. takes cluster variables to cluster variables compatible with x_,;.

Proof. We begin by considering 7n;... By definition, this map is dominant and to establish
regularity it suffices to show that nj,. behaves as claimed. Since they are acyclic Agp(s1c) and
Aap(c) are lower bounds (cf. [BFZ05]), therefore it suffices to show that the map 7y, behaves
as desired on their generators. The algebra Aqp(c) is generated by {Zw,ic}icn ) {Zoetiepn):
{zisctiep n)> and {z5c}ic1 ) subject to the relations (for j € [1,7])

r —aij o —aij
Lwjielye = | | Twizé + Zjiedge | | Lwi;e -
1>] 1<j

The algebra Aqp(sic) is generated by {xwi;s1c}ie[2,n]7 {x;i;slc}iem], {Zi;slc}iep,np and
{zus1ctic,n Subject to the relations (for j € [2,n])

/ —aij —aij
Twjssiclwjssie = H Twisic T ZjisicZgsic H Twisie-
i>j 1<i<j
One way to embed Agp(s1c) inside Agp(c) is thus to choose the map given for j € [2,n] by

/ / . . - . —aiy
LTwjisic 7> Twiier  Lwjisie ™ Twjier Zhsic 7 Zjies Zgsic 7 Zjelwise -
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Using the formulas in [RSW18, Equation (3.10)], this is easily seen to be the pullback along the
map 7. : G¢ = G}y in the claim.

This shows that the map 7., is injective. To conclude that it sends cluster variables to cluster
variables it suffices to observe that it is a coefficient specialization. In particular, by [YZ08,
Proposition 4.5], it sends non-initial cluster variables of Aqp(s1¢) to cluster variables of Agp(c)
multiplied by a monomial in the frozen variables. This monomial is computed by tropically
evaluating the corresponding F-polynomials at y; = zj..25.cTw;:¢ for j € [2,n]. This time, though,
as opposed to the proof of Proposition 2.3, the specialized frozen variables have only positive
exponents so that the tropical evaluation always yields 1.

To get the result for 7n,.. one proceeds in a similar way. This time, though, one considers

Aqp(c) as the lower bound generated by {2 —w;ictien npy {2 wse e {Zictieq ngy and {zicticp n)
subject to the relations (for j € [1,n])
x—wj§Cwaj;c = Zj§Czj?C H x:ZIZj,C =+ H mifff,c O

(> i<j

Remark 2.9. Both maps 7y, and n;,.. arise from freezing cluster variables in Aqp(c); the former
corresponds to freezing z.,,. and the latter to freezing x_,,... The same argument in the proof
of Lemma 2.4 shows that both maps are well behaved with respect to g-vectors. In particular,
consider the weight lattice P;y of G(1y embedded into P as the set of weight whose w;-coordinate
is 0. Then the map 7y, sends the cluster variable with g-vector A € Py to the cluster variable
with the same g-vector A € P. A similar consideration holds for ;...

LEMMA 2.10. Let A = "1 | \iw; € P be the g-vector of a cluster monomial xy. in Aqgp(c).
Write )\<1> = Z?:2 Aiw; € P<1> and >‘<n> = Z?;ll Aiw; € P(n) If A1 > 0 then

Thie = (xqu))\l"ﬁ;c(x)\u);810)7
and if A\, <0 then

“An
fl?)\;c = (‘r—wmc) n;;c(‘r)\m);csn)-

Proof. Again we deal only with the first claim, the other being obtained in a similar way. In view
of Lemma 2.4, the cluster monomial x .. factors as (a;wl;c)’\la:,\,hwl;c. The fact that xx_x,u,:c is
the image of Txgpy,s1c Via 71, follows then from Proposition 2.11 below. O

PROPOSITION 2.11 [RuSt17, Proposition 12]. Given a cluster algebra having an acyclic seed, the
induced subgraph of its exchange graph consisting of all the seeds containing any fixed collection
of cluster variables is connected.

PROPOSITION 2.12. Let V' be a weight representation of G for which A = > | \iw; Is extremal,
and let Ay ) be the minor defined by some choice of vy, my. If Ay > 0 then

A
AV7>\|GC = (Awl |GC) 177f;c(AV<1>7>\<1> |G?%>C)’

where Vi) denotes V' as a G yy-representation, Ay = Yoo Aiw; is the restriction of X to Hyy,

and AV<1>7)‘<1> is defined by the same vy, 7y used to define Ay . Similarly, if A, < 0 then

-
Avalee = (B—walee) ™ e (AViy Ay lasen);

the notation being defined analogously.
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Proof. Assume at first that A\; > 0 and compute on the generic element

g = x7(ty) -+ zn(tm)hSt - RS (by) - - 21 (F).

By Lemma 2.6, we have

Ava(g) = Ava(ar(ty)zs(ts) - 'xﬂ(fﬁ)h?}/ bt () - (t2)a (1))
= A‘/,A(xf(tf) .- ';Uﬁ(tﬁ)h:c;l e h%xl‘n(tn) -+ wa(t2)).

Then using the commutation rules together with the observation that Ay (g’h) = h*Ayx(¢')
forany h € H, ¢’ € G, we get

Ava(g) = Avalzs(ty) - 2rlta)hy® - hOmn(tah ™) - - wa(t2h )T
= I Ay (ag(ts) - - anltn)hy? - hOna, (t,h17) - - 2o (t2h$12))
= (D ()M Ay (z5(ty) - arltn)hy? - - RO @y (tahS™) - - 2o (t2h12)).
s

Note that A, (g) = hy follows directly from the factorization of g. By construction AV WA
the restriction of Ay, along the canonical inclusion G(;y C G. Since the point on which the minor
Ay, is computed in the last expression lies in G(1y C G, it further follows from the definition of
;e that

AvA(9) = (Bun (91 Avy a, (@5(t) - Taltm)hs? - B (tahS7) - - 2a(£2012)
= (A (O Ay agy (11:e(9))
= (A (971 (Avy 2y (9)-

The claim for A\, < 0 is obtained in exactly the same way from the generic factorization
ay aV
g =an(tn) - z1(t)hy" - hyrag(ty) - 2altn). O

3. Cambrian cluster monomials

Informally, our main result relies on the fact that the seeds we consider, although not necessarily
acyclic themselves, can be made to intersect the acyclic initial seed by mutating the latter only
at sinks or sources. Moreover, the same property holds inductively when freezing the cluster
variables in this intersection. In general, not every seed in an acyclic cluster algebra will satisfy
this requirement, but all seeds do in finite and affine types.

Note that this condition is much weaker than asking for our seeds to be reachable from
the initial one using only source—sink moves: source—sink mutations in the smaller rank cluster
algebra can create cycles in the full algebra. This is the reason why we are also able to discuss
certain cyclic seeds by essentially understanding only source—sink moves.

These considerations are formalized by the (doubled) Cambrian fan of [ReSpl16, ReSpl8].
This is a simplicial fan obtained by gluing certain chambers in the Coxeter arrangement and
which turns out to be a subfan of the g-vector fan. We will not need the full construction here so
we briefly recall only the notions we will use; we refer the reader to the original papers starting
from [Rea07] for further details.

As before, fix a Coxeter element ¢ = s1---s, in the Weyl group W of G. We say that a
reflection s; is initial in w € W if there is a reduced expression for w starting with s; (in other
words, if the length of s;w is strictly less than the length of w). The c-sortable elements of W
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are the elements satisfying the following recursive condition. The identity e € W is c-sortable.
Any other element w € W is c-sortable if either
e sq is initial in w and syw is sycsi-sortable, or
e w lives in Wy, the parabolic subgroup of W not containing s1, where it is sjc-sortable.
Alternatively, one can give the following non-recursive definition. Write ¢ for the word
obtained by concatenating infinitely many copies of our fixed reduced expression of c:

€ =S+ Sp|S1Sn|S1 e S|
The c-sorting word for w € W is the lexicographically leftmost subword of ¢ that is a reduced
expression of w. An element w is c-sortable if and only if its c-sorting word is such that whenever
a reflection s; is skipped from a copy of ¢ in ¢, it is also skipped in all copies of ¢ to its right.
Note that, even though the c-sorting word of w depends on the fixed reduced expression of ¢, the
definition is well posed since any two such expressions differ only by transpositions of commuting
reflections.

To each c-sortable element w one can associate a collection cl.(w) of n roots as follows. For
each i € [1,n], denote by w® the prefix of the ¢-sorting word of w obtained by dropping every
simple reflection to the right of the rightmost occurrence of s;. If w € Wy;), the prefix w® is the
identity. The set cl.(w) is then

le(w) == {=wD (@)} (3.1)

where again the consistency of the definition is guaranteed by the fact that reduced expressions
for ¢ are connected by commutations.

Note that, since the c-sorting word of w is a reduced expression, for each i € [1,n] only two
cases are possible for the roots in cl.(w): either w is in W, so that —w®(q;) = —ay, or —w ()
is a positive root.

Recall that, given a vector § in the root lattice, we denote by [ : ] its ith coordinate when
written in the basis of simple roots. Let [5 : a;]+ be the maximum of [3 : «;] and 0. Write v, for
the piecewise linear map

ve(B) = _zn: ([5 o]+ Y a8 Oéj]+>wz‘ (3.2)

i=1 j<i

from the root lattice to the weight lattice; this map, introduced in [ReSt17], is the one used
to pass from d-vectors to g-vectors in the proof of Lemma 2.4 (cf. [RuSt17, Proposition 9]).
When S has only non-negative coordinates, the matrix representing v, in the bases of simple
roots and fundamental weights is lower triangular, whereas it is diagonal if 5 has only non-positive
coordinates.

For any c-sortable element w, denote by Cone.(w) the non-negative span of the vectors
ve(cle(w)). Write F. for the collection of cones of the form Cone.(w) for w a c-sortable
element, together with all faces of such cones. Finally, let DF, be the union of F, and —F.-1 :=
{=C|C e F1}.

THEOREM 3.1 [ReSpl8, Corollary 1.3, Theorem 2.3 and Remark 3.25]. The collection DF, is a
simplicial fan and is a subfan of the g-vector fan of Aqp(c). The subcollections F, and —F .1
are subfans which respectively cover the Tits cone and its opposite. In finite and affine types,
DF. coincides with the g-vector fan of Agp(c).
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Following [ReSp18] F. is referred to as the c- Cambrian fan, —F_.-1 as the opposite c- Cambrian
fan, and DF, as the doubled c-Cambrian fan.

Our strategy to prove Theorem 1.2 is to lift, using the doubled c-Cambrian fan DF,, the
recursions defining c-sortable and ¢~ !-sortable elements to the level of Aqp(c). Observe that,
since F, covers the Tits cone, it contains the cone corresponding to the initial seed of Agp(c);
this is the cone Cone.(e). Similarly, the cone —Cone,-1(e) in —F,-1 corresponds to the ‘opposite
initial seed’, that is, the seed whose cluster is {x_,,.c} s this is obtained from the initial one

i€[1,n
by mutating along the sequence (n,n —1,...,1).

Remark 3.2. Implicit in Theorem 3.1 is the fact that the vectors v.(cl.(w)) are g-vectors of
cluster variables, and that the set of cluster variables whose g-vectors lie in a fixed Cone.(w)
form a cluster. In particular, if w is in Wy; then the seed corresponding to w contains the initial
cluster variable x,,... Note that, contrary to one’s intuition, not every seed containing x,,,,. has
g-vector cone belonging to F. because, when W; is not finite, w; is on the boundary of the Tits
cone (cf. [AB08, Lemma 2.86 and Exercise 2.90]).

The same reasoning applies to —F.-1: the g-vectors of the cluster variables in the seed
corresponding to a ¢~ !-sortable element w are the vectors —v,-1(cl,-1(w)).

Combining the above observations with Lemma 2.4, we get the following corollary.

COROLLARY 3.3. Suppose ¥, Is a cluster monomial in Aqgp(c) whose g-vector A = > 1" | A\jw; Is
contained in a cone Cone.(w) of the c-Cambrian fan F.. Then either s; is initial in w and A\ < 0,
or w € Wiy and Ay > 0. Similarly, if A is contained in a cone —Cone.-1(w) of the opposite
c-Cambrian fan —F_-1, then either s, is initial in w and A\, > 0, or w € W<n> and A\, <0.

Proof. We show the claim for the c-Cambrian fan, the other being obtained in the same way.
The only case that is not obvious is when w € W(yy. Observe that, in this situation, any root 8 in
the set cl.(w) different from —aq has [3 : a1] = 0. Indeed, 8 = —w®q; is obtained from a simple
root a; # ay by the action of an element in W,y. In particular, all the weights in v.(clc(w)) have
first coordinate equal to 0 with the exception of v.(—a;) = wy. O

We conclude this section by describing how certain cones in the doubled c-Cambrian fan DF,
change when c is conjugated by s; or s,. By symmetry, we only need to understand the case F.

LEMMA 3.4. Suppose w is c-sortable and si is initial in w. Then
s1(Cone.(w)) = Coneg, cs, (S1W).

Proof. Tt suffices to show that s; maps the rays of Cone.(w) bijectively onto the rays of
Coneg, cs, (s1w); we will therefore consider all possible roots € cl.(w). Begin by observing
that —a; ¢ cl.(w), since s; is initial in w and in view of (3.1). We dispose first of two special
cases.

If 8 = —a; for some j # 1, then w € Wy;y. Therefore s;w € Wy;y and —a; € clg,cs, (510). We
get

s1(Ve(—0y)) = s1(wj) = wj = Vsyes, (—05).

If B = aq, the reflection s; can only appear once in the c-sorting word of w: it is the initial

letter and s;w € Wyyy so that —a; € clg,es, (s10). We get

n

n
81(1/@(&1)) =51 (—w1 - Zailwi> =—w1 +a — Zailwi = w1 = Vslcsl(_al)-
i=2

=2
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Now let 8 be any other (necessarily positive) root in cl.(w). Since 5 # a1, the root s1(f) is
positive and an element of cls, s, (sjw). Using expression (3.2), we then compute

s1(ve(B)) = ve(B) + [B : can]en

= —;:([5 o+ ) a8 Oéj])%‘ +[B: o] éail%

j<i

= —Z<[5 tog] —anlB o] + Zaij[ﬁ : Oéj]>w7;
=1 j<i

= [5 : al]wl - Z([ﬁ : ai] + Z aij[ﬂ : Ozﬂ)wi.
i=2 1£5<i

By adding and subtracting 2?21 a1;[B : ajlwr, we get

= —([ﬂ toan] + Y a8 aj]>w1 + zn:alj[ﬁ L ajlw

j#1 =1
- zn:([ﬁ L]+ ) aglB: aﬂ)wi
i=2 1#£5<i
= Vgjes; <B — Zn: a;[B : Oéj]m)
= l/slcsl(sl(ﬂ)j)-ﬂ -

We now have all the required tools to prove our main result.

THEOREM 3.5. Let \ = 2?21 Aiw; € DF. be a weight in the doubled c-Cambrian fan, and
let V' be a weight representation of G' for which \ is extremal. Then the cluster monomial x .
of Agqp(c) = k[G“] coincides with the restriction to G¢ of the principal generalized minor Ay,
for any choice of vy and .

Proof. There are two (possibly) overlapping cases to consider, that where A lies in F,. and that
where A lies in —F_—1. If X is in F, there exists a c-sortable element w such that A € Cone.(w). In
general, there could be many such elements (this happens precisely when A is not in the interior
of a maximal cone of F.), and for definiteness we choose w € W to be of minimal length in this
case. We proceed by a double induction on the rank of G and the length of w. The base case,
G = SLy and w = e, follows immediately from Lemma 2.10 and Proposition 2.12 by observing
that in both results the contribution coming from ny.. is just 1.

The definition of c-sortability gives us two cases: either s; is initial in w or w € Wyy. If s1 is
initial in w, then by Remark 3.2 the weight w; is not an element of v.(cl.(w)). By Proposition 2.3,
we have

Thie = H xg;pc = H Vle(@sipsiest) ™ = VTie(TsiAssies1)-
peve(cle(w)) peve(cle(w))
Lemma 3.4 says that s;A belongs to Coneg, ¢, (s1w). Since the length of sjw is strictly less than

the length of w, it follows from our inductive hypothesis that

Tsih;s1cs1 — AV,s1)\|Gslcsl .
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Finally, Corollary 3.3 says that A\; < 0, so we can apply Proposition 2.7 to get

Vlc(Avsialasies) = Ay age.

Putting these equalities together, we see that

Lre = wi‘;c($51x;s1c51) = wik;c(AV,SU\’GSlcsl) = Ay|ge

as desired.
Suppose now that w € Wyy. By Corollary 3.3, we have A; > 0 and thus Lemma 2.10 gives

Thie = (xwl;c))\l nf;c(xA<1> ;510)7

where Ay = Y oig Aiw; € Fs e On the other hand, by Proposition 2.12, we have
A1 %
Avalee = (Bunlee) ™ Mie(Bviy A lose)-

By induction on rank, we have Txgyisic = A\/<1>7,\<1>|G?11>c. Finally, since z,,.c = Ay |ge, we

conclude that
A A
Txie = (Twre) " Mie(@ryise) = (Bunlee) " Mie(Bvigy A lasie) = Avalee:

The other case, when A is in the opposite c-Cambrian fan, is established in exactly the same
way. |

Remark 3.6. Theorem 1.2 can be extended a little bit further as follows. In general, beyond
affine types, the seeds of Agy(c) obtained from the initial one by mutating along the sequence
(n,n —1,...,1) need not have g-vector cone belonging to DF.. Indeed, if this were the case,
any doubled Cambrian framework would be connected in the sense of [ReSp18]. Nonetheless, the
same argument we have used in the rank induction suffices to establish the result also for cluster
monomials supported on these seeds, since they contain only cluster variables of the form z,..
Or T_yy:c.

4. Canonical bases in the case Agl)

Theorem 3.5 shows that for affine types all elements of the partial canonical basis of cluster
monomials in Agp(c) are computable as generalized minors. There are several completions of the
set of cluster monomials to a full basis of a cluster algebra (or of a variant such as the upper
cluster algebra) that appear in the literature. Some of these include:
e the atomic basis [Cer12, DT13] for cluster algebras of finite and affine type;

the greedy basis [SZ04, LLZ14] for cluster algebras of rank two;

the generic basis [Dupl1, Dupl2, Plal3] for skew-symmetric cluster algebras;

the bracelets, bangles, and bands bases [MSW13, Thul4] for cluster algebras from surfaces;

the triangular basis [BZ14] for acyclic cluster algebras;

the theta basis [GHKK18] for arbitrary cluster algebras.
While these bases have been constructed in diverse settings, in specific cases subsets of them
can be shown to coincide (though not necessarily in a straightforward way; cf. [CGMM™*17]). For
the cluster algebra of type Agl), for example, only three distinct bases appear in the literature.
In this case, the atomic, greedy, bracelets, and theta bases all coincide, the generic basis coincides
with the bangles basis, and finally the bands basis and triangular basis coincide.
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In any of these three bases in type Agl), the elements which are not cluster monomials are
exactly those whose g-vector is of the form nw®, where w® = —wy +wsy and n is a positive integer.
Note that, for consistency with the preceding sections, we index the nodes of the associated
Dynkin diagram of type Agl) by {1, 2} rather than the standard {0, 1}; by convention, we identify
1 as the affine node. We have the following explicit formulas for these basis elements in the
presence of doubled principal coefficients.

Greedy basis [CZ06, Theorem 5.4]:

gr R n(m—1 n—m+k—1 m m m—k_m—k_ 2(m—k), 2(n—m)

Tpo.e = Tyl ieTipie — U A 1 S N

) ) ) k k _ 1 n—m ;¢ HET25¢ 3 1 23
0<k<m<n

2n n .n . n . n .2n
T Zl;czl;cz2;cz2;canc> :

Triangular basis [CZ06, Theorem 5.2]:

m\ (n—m+k
tr T R ) § : m _m m—k_m—k_2(m—k), 2(n—m)
xnwo;c T xwl;c‘rwg;c <kj> < )Zl;czl;czg;c 22;0 xwuc ‘TWQ;C .

n—m
0<k<m<n

Generic basis:

m n
ge R § : m m m—k_m—k_ 2(m—k), 2(n—m)
Trwese *= Twrelwgie (k) <m>zl;czl;022;c #2e Pune " Twye

o<ksm<n

The first two formulas are obtained from those in [CZ06] by inserting frozen variables
so that the elements become homogeneous of the appropriate degree and are invariant when
interchanging z;.. and z;..; the last is obtained directly by expanding the defining formula

ge  (9¢ \n _ -1 ,.—-1 _ _ 2 _ 2 n
xnwo;c T (xwo;c) - (xwl;Cxwg;c(zl;thCzQ;cZQ%Cxwl;c + 21;021;0 + xwz;c» .

In this section, we show that all elements in each of these bases of Agp(c) are restrictions

of principal generalized minors of irreducible level-zero representations of G = LSLy. Such
representations have continuous parameters and to obtain each of the different bases we need
only choose different parameters.

Remark 4.1. We note that in discussing bases of a cluster algebra with coefficients such as Aqp(c)
we mean a basis over the coefficient ring, that is, the ring of Laurent polynomials in the frozen
variables. A k-linear basis is obtained from any of these sets of elements by considering all
products with a Laurent monomial in the frozen variables.

Remark 4.2. Outside of finite type, it need not be the case that all weight representations of
G extend to representations of the larger group G. For example, in untwisted affine types,
the evaluation representations of the centrally extended loop group G = LG° do not admit
an intertwining action of the group of loop rotations, hence do not extend to representations
ﬂ; = LG°. Thus the statement that the above basis elements are restrictions of minors of
LS Ly-representations is stronger than the statement that they are restrictions minors of LS Ls-
representations. Conversely, the statement in Theorem 1.2 that a Cambrian cluster monomial
T ). is equal to the restriction of the minor Ay ) for any G-representation V' is stronger than the

corresponding statement with G in place of G.
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Remark 4.3. These three bases for Agl) have all been given quiver-theoretic interpretations: the
generic basis elements are defined inherently using generic regular quiver representations [Dup11],
the bands/triangular basis elements were computed in [CZ06] using indecomposable regular
quiver representations, and the greedy/bracelets/theta basis elements were computed in [CE11]
using only the smooth locus of quiver Grassmannians for indecomposable regular quiver
representations.

Let V =2 k? be the vector representation of SLy and let a = (ay,...,a,) be an n-tuple of

elements in k*. We denote by V' (a) the irreducible representation of G = LS Lo whose underlying
vector space is k[u®!] ® V®" with the action given by

1 0 1 0
m .— g
r1(t)(u" Qv ® - Quy) = u ® (alt 1) V1R ® <ant 1> v
m 1 a7 1 a't
() (U QUL ® - @ uy) 1= ®<o ! > ~--®<0 | )vn,
” o (1t 1t
() (" RUI ® - @vp) = U ® <0 1> 1®® (0 1> v

10 10
x2<t><um®v1®w®vn>r=um®<t 1)”1®'”®<t 1>”"

By [Cha86, CP86], any irreducible level-zero weight representation of ﬁg with finite-
dimensional weight spaces is of this form.

Let v € V be a highest weight vector for SLy and set vpe == 1®@v® - - ®@v € V(a). We
then let Ay (a) nwe be the minor defined by choosing mpwe s0 that T, (" @ v ® -+ ®@wv) =0 for

m # 0.
PROPOSITION 4.4. For any n-tuple a = (a1, ...,a,) € (k*)", the value of Ay (a) .0 0N
ay oy
g = y(ty)aa(tz)hy " hy® wa(t2)w1(t1)
is equal to
AV(a),nwo (g) = Z da(m7 k)t?tg@_kh%k_nhg_mﬁt;n_kﬂn7
0<ks<m<n
where .
n—2r . a;
mk:Z Sar and Sa,= Z h
-r) ’ Ijesaj
r= 1,JC[1n] ~ €
H]=r=|J]|
INJ=y
By the isomorphism of Proposition 2.1, this minor is identified with the following element
of Agp(c):
k k.2 k
$$Lw°;c =T wl,c wz, Z d m k Zl czlc ;n z72nc ww(lwé )ww(;}c m)

0<k<m<n
Proof. The first claim is a simple computation parsing the action of g on v,° using the definition.

The second claim then follows directly by applying the isomorphism of Proposition 2.1. ]

Remark 4.5. Independent of the chosen parameters a = (ay,...,a,), we have that da(0,0) =1
and da(n,0) = 1. The first equality is obvious. To see the other observe that (" 2:) is non-zero
only if n —2r > n —r, that is, if r = 0. More generally, by subsuming the summation over r into
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the subsets I, J C [1, n], the coefficient da(m, 0) is given by the ratio

[Licsai 1 em(a)en—m(a)

T S R e Sl 1 (0 PR T
rici Werai enmae | jo7 0icr 56 en(a)
[1|=m=|J]| [I|l=m=]|J|

where ey(a) is the elementary symmetric polynomial of degree ¢ evaluated on a. In what follows,
we will want to impose conditions on the coefficients da(m,0). Since the ring of symmetric
polynomials is generated by the independent elements ey, ¢ € [1,n], to see that the conditions
we want are satisfied it will be enough to give values to these rather than solving explicitly for
the parameters a.

THEOREM 4.6. Choose a point a € (k*)" for eachn > 1. Then the elements {z3 ..},,~, together
with all cluster monomials form a linear basis of Aqp(c).

Proof. First of all observe that, independent of the chosen points a, we have da(n,n) = 1. In
particular, each element in {x3 ...}, is pointed in the sense of [Rup13, Definition 2.8]. The set

nw;c
of cluster monomials, together with {xgwo;c}n>1, form a complete bounded collection of pointed

elements and we can apply [Rupl3, Proposition 2.9] to deduce the claim. O
The following result will feature prominently in the computations below.

LEMMA 4.7. For a,b,c € Zxo with 0 < b,c < a we have
in(b,
= rj\c—r c
Proof. This can be proven using a combinatorial inclusion—exclusion argument that we leave as

an exercise for the reader. O

Observe that, independent of the chosen point a € (k*)", we have Sao =1 and S, , = 0 for
any r > |n/2| and thus the only terms contributing to the definition of da(m, k) are those for
which r < min(m, |[n/2]).

LEMMA 4.8. For a = (ay,...,ay), assume that ey(a) = 0 whenever ¢ € [1,|n/2|]. Then, for

r € [, |n/2]], we have
Sy (1)

Proof. The assumptions imply that da(m,0) = 0 for m € [l,n — 1]. Since the given
formula satisfies Sao = 1, we may prove the result by induction on 7. Suppose Sa, =
(=1)"(n/(n—r))(",") for 0 <7 < m < |n/2]. Then the condition da(m,0) = 0 gives

m—1
—2r\ /n—r
am — _1r+1L " .
S’ 2)( ) n—r<m—r r

=

But we have
no (n—=2r\(n-r\ nin—r—1)! on (n-m\(n-r-1
n—r\m-—r r S m=r)!n—m-r)lr!  n—-m r m—r
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r+1 n—m\/n—r—1
m-—r )
Applying Lemma 4.7 with a =n — 1, b =n —m, and ¢ = m gives

S (L) ()

r=

so that

Mi

Sa7m =
n—m
7":

and thus
n (n—m
Sam = (1 ()
n—m\ m
as desired. O
LEMMA 4.9. Fora= (ay,...,ay), assume that e;(a) = 1 whenever ¢ € [1,n|. Then we have Sy, =

(=" (™" for r € [1, [n/2]].

Proof. The assumptions imply that da(m,0) =1 for m € [1,n — 1]. We again note that S =1
and work by induction on r. Suppose Sa, = (=1)"(".") for 0 < r < m < [n/2]. Now the
condition da(m,0) =1 gives

B () B ()

where we used the identity (“ b) (1) = (9 (4). Applying Lemma 4.7 with a = n, b = n —m,

and ¢ = m, we get
S (7)) or ()

Sam — 1= (—1)m<”_m> 1. 0

LEMMA 4.10. For a = (ay,...,a,), assume that ey(a) = 1/¢! whenever ¢ € [1,n]. Then we
have S, , =0 for r € [1, [n/2]].

and we conclude that

Proof. The assumptions imply that d(m,0) = (") for m € [1,n — 1]. From da(1,0) = (})
and Sao =1, we get

Sal

1= (1)~ ()=

and we can again work by induction. Suppose Sa, = 0, for 0 < r < m < |n/2]. Then

m—1
Z -2
Sa7m - <n> B <n T>Sa7r - <n> - (n>Sa’O B O‘ D
m —0 m—rT m m

THEOREM 4.11. Let a be a point in (k*)", and consider the element x}, 0., of Aqp(c).

(1) Ifes(a) = 0 whenever ¢ € [1,|n/2]], then 22

(2) Ifei(a) =1 whenever { € [1,n], then x5 ... is equal to the triangular basis element xnwo o

2 p0:c 15 equal to the greedy basis element xj) .. e

(3) Ifeg(a) =1/ whenever £ € [1,n], then 3 ,... is equal to the generic basis element x7; .. ..
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Proof. Under the hypotheses in (1), the coefficients da(m,0) equal 1 if m is 0 or n and vanish
otherwise; these account for the two terms outside the summation sign in the expression for
27" .. Assuming now that k > 0, Proposition 4.4 and Lemma 4.8 combine to give

=B () ()

r=0

But observe that we have the identity

no (m—r\(n—=2r\(n-r\ n(n —r)!

n—r< k ><m—r><n—2r>_(n—r)k!(m—r—k)!(n—m—r)!r!
nfm—=1\(m—k\(n-r—1
_k(k‘l)< r ><nmr>

i =5 () e (NG

r=0

and so

Thus we may apply Lemma 4.7 with a=n—1,b=m — k, and ¢c =n — m to get

nfm—1\/n—-m+£k-1
da(me):k:(k:—l)( n—m )

This is exactly the coefficient in the greedy basis element and we have established (1).
Similarly, assuming (2), we may combine Proposition 4.4 and Lemma 4.9 to get

= sfm—=—r\{n—=2r\(n—-r

da(m7k):2(_1)< k ><m—r>( r )
r=0

By the identity

o) w0 )

we may rewrite da(m, k) as
= S(m—k n—r
("6
=0

m

d k)=
im0 ()
Then Lemma 4.7 with a =n, b =m — k, and ¢ = n — m gives
m\(n—m-+k
da(m, k) = .
= () (")

This is exactly the coefficient in the triangular basis element and we have established (2).
Finally, combining Proposition 4.4 and Lemma 4.10 in case (3), we get

s~ ()(2)

This is exactly the coefficient in the generic basis element and (3) follows. O

r

Remark 4.12. For any weight X\ of @, a universal representation V' (\) for which A is extremal
was introduced in [Kas94]. For the weight A = nw®, this can be identified with the nth symmetric
power of V[u™!], where again V is the vector representation of SLo [CPO1]. Let Ay (nweynwe be
the minor defined by vpwe = v ® -+ ® v with v highest-weight vector in V' and suppose 7m0
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annihilates non-constant elementary symmetric elements of I//:Sig—weight nw®. Then one can
—=—c¢

show that :):,glio; . also coincides with the restriction of Ay ;0 e t0 LSLy. It seems natural to

wonder if the generic basis in more general types is also realized by the principal minors of the

representations V().

(1

n—1

~—

We close by observing that a partial extension of the results of this section to type A
follows from results of [RSW18].

PROPOSITION 4.13. Let ¢ be any Coxeter element in the Weyl group of mn Then the
—~—C
isomorphism Agp(c) = LSL,, identifies every element of the generic basis with the restriction of

a generalized minor of a weight representation of ﬁn

Proof. The generic basis in general affine types consists of cluster monomials together with the
powers of an element x5.. labeled by a specific level-zero weight 6. We have established that cluster
monomials are generalized minors in this paper, while the fact that xs.. is a generalized minor in

type Agzl is the content of [RSW18, Theorem 4.12]. Let V' denote the relevant representation
for which ¢ is an extremal weight, and let V), denote its nth tensor power. It is immediate
that, given the identity x5.. = Ay, we also have Ty, = Ay, ns- We note that V,, will not have
finite-dimensional weight spaces for n > 1, while in this section we have so far only considered

representations which do. O
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