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Abstract—Racial bias of predictive policing algorithms has
been the focus of recent research and, in the case of Hawkes
processes, feedback loops are possible where biased arrests are
amplified through self-excitation, leading to hotspot formation
and further arrests of minority populations. In this article
we develop a penalized likelihood approach for introducing
demographic parity into point process models of crime. In
particular, we add a penalty term to the likelihood function that
encourages the amount of police patrol received by each of several
demographic groups to be proportional to the representation
of that group in the total population. We apply our model
to historical crime incident data in Indianapolis and measure
the fairness and accuracy of the two approaches across several
crime categories. We show that fairness can be introduced into
point process models of crime so that patrol levels proportionally
match demographics, though at a cost of reduced accuracy of
the algorithms.

Index Terms—Predictive Policing, Fairness, Hawkes Process,
Maximum Penalized Likelihood Estimation, Demographic Parity

I. INTRODUCTION

Crime events cluster in space and time forming “hotspots”

where 25-50% of crime may be captured in only a few percent

of the land area of a city [1]–[3]. Spatial-temporal predictive

policing algorithms [4], [5] attempt to capture the space-

time dynamics associated with hotspot formation and direct

police patrols in response, which can then lead to crime rate

reductions [4]. The predictive policing data cycle is shown in

Figure 1, where input may be generated from victim reports

or police initiated arrests (for example). This data enters the

police database and is then used by a predictive algorithm

to inform police activity and patrol. That activity may then

influence future suspects and victims in the areas the algorithm

selects for patrol, as well as in those areas that do not receive

police attention.

Racial bias of predictive policing algorithms has been the

focus of several recent research articles [6]–[9]. Lum and Isaac

[10] conduct a simulation study of predictive policing focused

on drug arrests in Oakland, CA. They show that feedback loops

are possible where biased arrests are amplified by a predictive

algorithm leading to hotspot formation and further arrests of

minority populations (see Figure 1). A similar concern is

raised by Ferguson [11], who notes that arrests in a prediction

area ‘memorializes’ that location as ‘hot’, which guarantees

that it will show up again as a prediction area producing further

arrests.

In this article we develop a penalized likelihood approach

for introducing demographic parity into point process models

of crime. Our goal is similar to the one developed in [12]

where police patrols should match the “true” crime rate in an

area, rather than crime rates that result from biased arrests.

To achieve this goal, we add a penalty term to the likelihood

function that encourages the amount of police patrol received

by each of 1, ...,M demographic groups to be proportional to

the representation of that group in the total population.

We note upfront that the introduction of a fairness penalty

may lead to its own form of bias. Whereas biased arrests may

result from interactions between police and suspects, bias may

also adversely affect victims of crime [13]. Such bias may

arise, for example, if an officer taking a report downgrades a

burglary to a lesser crime as a result of the officer’s implicit

bias towards the victim’s race/ethnicity. Fairness algorithms

have the potential to operate in a similar manner. Consider

the scenario for the predictive policing flow chart in Figure 1

characterized by a fairness algorithm being applied to crime

reported by minority victims, leading to reduced hotspots in

minority areas and less patrols, which then might lead to

further crime rate increases in those areas.

In this paper we do not attempt, given a particular dataset

and crime type, to distinguish between these forms of bias that

may affect suspects or victims of crime differently. Instead, we

explore the accuracy-fairness tradeoff when applying a fairness

penalty to maximum likelihood estimation of point process

models of crime. We show that patrol rates can be matched to

population demographics, but at a cost to the accuracy of the

algorithm and a lowering of the maximum crime rate reduction

possible by predictive policing. In certain situations this result

may be more fair, in others it may be less fair, and subjective
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criteria (outside of the scope of this paper) may be needed to

make that determination.

The outline of the paper is as follows. In Section II we

review “self-exciting” or “Hawkes” point process models of

crime and introduce our penalized likelihood approach to

incorporating fairness. In Section III we apply our model,

along with a “neutral” model with no fairness penalty, to

Indianapolis crime incident data and measure the fairness

and accuracy of the two approaches across several crime

categories. In Section IV we discuss the implications of our

findings and directions for future research.

Fig. 1: Flow chart for predictive policing. Input may be

generated from police initiated arrests or from victim reports.

This data enters the police database and is then used by a

predictive algorithm to inform police activity and patrol. That

activity may then influence future suspects and victims in the

areas the algorithm selects (and indirectly those the algorithm

does not select).

II. METHODS

A. Hawkes process model of crime

Given a data set of historical crime locations �xi and times

ti, we consider a modulated Hawkes process [14] defined in

each grid cell g of a grid G with conditional intensity,

λg(t) = µg +
∑
t>ti
�xi∈g

θω exp(−ω(t− ti)). (1)

Here the intensity or rate of crime λg(t) is determined by a

background rate, µg , that is stationary in time and a dynamic

rate that increases after recent criminal activity, reflecting the

tendency of certain types of crime to cluster is space and time

[3], [15]. When viewed as a branching process, the parameter

θ determines the expected number of events triggered by a past

event and ω−1 is the expected waiting time between parent-

daughter events.

To model the background rate, we introduce spatial covari-

ates [14], [16], [17],

µg = exp(�a · �zg), (2)

so that the background intensity in grid cell g is log-linear with

coefficients �a and spatial covariates �zg in each grid cell g. For

the spatial covariates we use block group level demographic

variables provided by the American Community Survey (ACS)

along with the average historical number of events of the focus

crime type modeled by λg(t).

The demographic variables we use are the population es-

timates of each of m = 1, ...,M racial groups surveyed in

the ACS. The introduction of demographic spatial covariates

serves two purposes. On the one hand, the spatial variation

of �zg may help explain variations in the risk of crime. At

the same time, the introduction of the coefficient vector �a

will allow us to control the amount of predictive policing

across different racial groups and provide a mechanism for

incorporating fairness into the algorithm.

The Hawkes process intensity λg(t) is used in practice by

ranking all grid cells g at a given time t and then directing

police patrols to the top k grid cells, called hotspots [4]. We

will denote the set of grid cells comprising the top k hotspots

at time t as Kt.

B. Maximum likelihood estimation with a fairness-

encouraging penalty

The parameters �a, ω, and θ of the Hawkes process can be

estimated by maximizing the log-likelihood function,

L(�a, ω, θ) =
N∑
i=1

log(λgi(ti))−
∑
g∈G

∫ T

0

λg(t)dt, (3)

where gi is the grid cell of event i and the integral is taken

over the time window of observation [0, T ]. We will refer to

Hawkes processes as “neutral” if estimated by maximizing

Equation 3.

Next we will incorporate a fairness penalty into Equation 3.

As defined above, we will let Kt denote the top k grid cells at

time t, or the grid cells with the highest k values of λg(t). We

let zmg represent the population count of racial group m in grid

cell g. Assuming that each of the grid cells in Kt receives the

same amount of patrol, then the amount of patrol a particular

racial group receives, pm, per individual of that group per day

is,

pm =
T−1

∑T
t=1

∑
g∈Kt

zmg∑
g∈G zmg

. (4)

Here we are assuming that the hotspots are defined once per

day and we therefore use a discrete sum over days. In the

numerator, for each day t, we sum the number of individuals

of group m residing in the hotspots Kt and in the denominator

we count the total number of individuals in group m in the

city.

We then define a measure of fairness, F , by comparing the

patrol statistics pm between pairs of groups,

F (�a, ω, θ) =
∑

m>m′

(pm − pm′)2. (5)
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Fig. 2: Top 50 hotspot locations on a given day for the neutral (blue) and fair (red) Hawkes processes overlaid on a population

density map of combined Black and Hispanic populations. From top left clockwise the maps show aggravated assault, robbery,

motor vehicle theft and burglary hotspots.

When F = 0, then each group m receives the same amount of

patrol per individual. Finally, we add F to the log-likelihood

as a fairness penalty and maximize,

N∑
i=1

log(λgi(ti))−
∑
g∈G

∫ T

0

λg(t)dt− χF, (6)

with respect to �a, ω, and θ. We will refer to Hawkes processes

as “fair” if estimated by maximizing Equation 6. By increasing

the penalty parameter χ, one can control the balance between

accuracy and fairness in the point process model.

We remark that the loss function determined by Equation

6 is non-differentiable due to the sort and threshold required

for defining the top k hotspots Kt for each day t. However, a

Nelder-Mead simplex method [18] can be used to find a local

maximum and in the next section we show that such a method

works well in practice.

III. EXPERIMENTAL RESULTS

We estimate the neutral (χ = 0) and fair (χ = 108) Hawkes

process models from crime incident data from the city of

Indianapolis, Indiana for the years 2012 and 2013. The four

crime types we focus on include aggravated assault, robbery,

motor vehicle theft, and burglary. Each Hawkes process is

defined on a grid with cell size 300m x 300m and incidents

are each assigned to a grid cell. Crime incident locations are

also assigned to a block group polygon corresponding to the

American Community Survey for which we have white, Black,

and Hispanic population density estimates from the survey.

Every grid cell is then assigned population density estimates

according to the mode taken over all incidents in each cell (to

handle the edge cases of a grid cell overlapping two or more

block group polygons). The reason for the choice of using grid

cell based predictions rather than block group level predictions

is that block groups are larger than typical predictive policing

2456



B H B H

0

0.5

1

1.5

2
Aggravated Assault

B H B H

0

0.5

1

1.5

2

2.5
Robbery

B H B H

0

0.5

1

1.5

2

2.5

3
Burglary

B H B H

0

1

2

3

4
Motor Vehicle Theft

Fig. 3: Patrol levels per individual of Black and Hispanic populations relative to white populations (dashed line) for the neutral

(blue) and fair (red) Hawkes processes.

hotspots [4].

We train the models on 2012 data using the Matlab Nelder-

Mead simplex optimization function. For testing, we calculate

the intensity in each grid cell for each day in 2013. We rank

the grid cells according to the intensity each day and define

hotspots as the top 50 grid cells. To measure accuracy, we use

the Predictive Accuracy Index (PAI) [2], [19], which measures

the percentage of incidents captured in the top k grid cells

flagged for patrol. The PAI is area normalized (by the area

of the k cells) so that a PAI of 1 corresponds to random

predictions. We also measure the amount of patrol received per

day per individual of Black and Hispanic populations relative

to white populations in the top 50 hotspots.

In Figure 2, we plot the top 50 hotspot locations on

a given day for the neutral (blue) and fair (red) Hawkes

processes overlaid on a population density map of combined

Black and Hispanic populations. The hotspots generated by

the fair Hawkes process are shifted more towards the central

“downtown” region of Indianapolis, as well as to northern and

southern areas with predominantly white populations.

In Figure 3, we plot patrol levels per individual of Black

and Hispanic populations relative to white populations (dashed

line) for the neutral (blue) and fair (red) Hawkes processes. In

the case of the neutral model, for all four crime types Hispanic

populations in the hotspots receive from 200% to 400% the

amount of patrol as white populations and Black populations

receive 150% to 250% the amount of patrol compared to white

populations. In the case of the fair Hawkes process, patrol

levels per individual across all 3 groups are close to even,

with the exception of aggravated assault and burglary, where

Hispanic and Black population patrol levels are 20-35% higher

(due to the fixed value for χ chosen apriori).

In Figure 4, we plot PAI values for the neutral (blue) and fair

(red) Hawkes processes. Here we observe that PAI values are

30% to 250% higher in the case of the neutral model compared

to the fair Hawkes process. Thus there is a significant cost in

accuracy measured by PAI associated with the introduction

of the fairness penalty into the likelihood. It still should be

pointed out that the PAI values of the fair Hawkes process

range from 6 to over 15, which are significantly higher than

random and potentially more accurate than human analyst

accuracy (demonstrated to have PAI values below 3 in [4]).

IV. DISCUSSION

Research has demonstrated that racial bias exists in tra-

ditional enforcement strategies, from the racial profiling of

vehicles [20] or pedestrian stops [21], [22], traffic tickets

[23], drug enforcement and arrests [24], [25], and use of

force [26]. The common thread connecting all of these studies

is that racial bias is being observed in situations where

police are being proactive and exercising the most discretion.

Furthermore, when police engage in aggressive, zero-tolerance

policing practices they tend to be focused in particular areas

and are not widespread across a city.

On the other hand, impoverished urban areas with a high

proportion of Black and Hispanic residents may experience

under-policing [22], [25], [27]–[29]. Law enforcement may

be under-resourced in these areas, where officers must travel
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Fig. 4: Predictive accuracy index (PAI) for the neutral (blue) and fair (red) Hawkes processes.

from call to call and are rarely able to engage in proactive

enforcement strategies [25], [29], [30]. As such, residents

within these communities can become frustrated that police are

not present enough in their communities to respond quickly

to calls for service [27], [30]. Over time this perception that

law enforcement is ineffective contributes to greater levels of

cynicism among residents [31]–[33]. Because crime detection

is reactive and dependent upon local citizens to report crime

incidents [29], [34], these areas may then experience under-

reporting that leads to fairness issues for predictive policing

concerning victimization, separate from those predictive polic-

ing issues of bias existing around arrests.

The goal of this paper was to examine how utilizing a

Hawkes process that incorporates fairness into the algorithm,

where the amount of police patrols received in an area is

proportional to the size of a particular demographic group’s

share of the population, is able to accurately predict future

criminal incidents. This paper shows that through a penalized

likelihood approach we are able to include fairness into the

Hawkes process, but at a cost to the accuracy of the algorithm.

Referring back to the two scenarios in the introduction, in the

case when the elevated crime rate for minority populations

is due to biased arrests, then the accuracy of the neutral

Hawkes process may be viewed as an artificial consequence

of bias. In this case the fair Hawkes process may be used

to remove bias while still yielding a PAI value well above

that of random patrol. There may be other situations where

areas with minority populations have a higher rate of crime

victimization. In this scenario the fair Hawkes process would

divert police resources away from these areas, introducing

its own form of bias, and the neutral Hawkes process is the

preferred model. Distinguishing between these two scenarios

depends on the context surrounding the city where predictive

policing is deployed and the data that is input into the model.

Making such a distinction is outside of the scope of this paper

and should be the focus of future research.
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