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a b s t r a c t

We study a generalization of genus-zero r-spin theory in which exactly one insertion has a
negative-one twist, whichwe refer to as the ‘‘closed extended" theory, andwhich is closely
related to the open r-spin theory of Riemann surfaces with boundary. We prove that the
generating function of genus-zero closed extended intersection numbers coincides with
the genus-zero part of a special solution to the systemof differential equations for thewave
function of the rthGelfand–Dickeyhierarchy. This parallels an analogous result for the open
r-spin generating function in the companion paper Buryak et al. (2018) to this work.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Witten’s conjecture [26], which was proposed in 1991 and soon proven by Kontsevich [18], states that the generating
function for the integrals of the cotangent line classes ψ1, . . . , ψn ∈ H2(Mg,n) on the moduli space of curves is governed
by the Korteweg–de Vries (KdV) hierarchy. At around the same time, Witten also proposed a generalization of his
conjecture [27], in which the moduli space of curves is enhanced to the moduli space M

1/r
g,{α1,...,αn} of r-spin structures.

The latter is a natural compactification of the space of smooth marked curves (C; z1, . . . , zn) with a line bundle S and an
isomorphism

S⊗r ∼= ωC

(
−

n∑

i=1
αi[zi]

)
,

where αi ∈ {0, 1, . . . , r − 1}. This space admits a virtual fundamental class cW , which is referred to as Witten’s class and is
defined in genus zero by

cW := e((R1π∗S)
∨),
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with π : C → M
1/r
0,{α1,...,αn} the universal curve and S the universal r-spin structure; constructions of cW in higher genus

have now been given by a number of authors [7,8,15,19,22]. Let tαd and ε be formal variables, for 0 ≤ α ≤ r − 1 and d ≥ 0.
The r-spin Witten conjecture states that if

F
1
r ,c(t∗∗ , ε) :=

∑

g≥0, n≥1
2g−2+n>0

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

ε2g−2

n!

(
r1−g

∫

M
1/r
g,{α1,...,αn}

cW ∩ ψd1
1 · · ·ψdn

n

)
t
α1
d1
· · · tαndn

is the generating function ofψ-intersection numbers againstWitten’s class, then exp(F
1
r ,c) becomes, after a certain rescaling

of the variables tαd , a tau-function of the rth Gelfand–Dickey (r-GD) hierarchy in the standard normalization of flows [13].
The superscript ‘‘c ’’, which stands for ‘‘closed’’, is to distinguish this theory from the open theory discussed below. This result
was proven by Faber–Shadrin–Zvonkine [14].

If one allows that exactly one of the indices αi is equal to−1 and the rest lie in the range {0, 1, . . . , r − 1}, then the space
M

1/r
0,{α1,...,αn} is still defined and R1π∗S is still a vector bundle in genus zero, so genus-zero r-spin intersection numbers can

be defined exactly as above. This kind of intersection number was first considered in the paper [16]. We refer to this theory
as closed extended r-spin theory, and we define a genus-zero generating function by

F
1
r ,ext
0 (t∗∗ ) :=

∑

n≥2

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

1

n!

(
r

∫

M
1/r
0,{α1,...,αn,−1}

cW ∩ ψd1
1 · · ·ψdn

n

)
t
α1
d1
· · · tαndn

.

In the current paper, we prove that F
1
r ,ext
0 coincides with the genus-zero part of a special solution of the system of

differential equations for the wave function of the r-GD hierarchy. The proof of this result proceeds by verifying that the
closed extended r-spin correlators satisfy certain topological recursion relations that allow the entire theory to be recovered
from just two initial conditions that can be explicitly calculated. We then verify that the genus-zero part of the special
solution satisfies the same recursions and the same initial conditions.

The reason for our interest in the closed extended generating function arises from an intriguing connection to open r-spin
theory, which is the generalization of r-spin theory to Riemann surfaces with boundary. In [5], we construct a moduli space
M

1/r
0,k,l of ‘‘graded r-spin disks’’ that generalizes M

1/r
0,n to genus-zero curves C equipped with an involution that realizes C

as two copies of a Riemann surface with boundary Σ , glued along their common boundary. The moduli space M
1/r
0,k,l itself

has boundary and is not necessarily canonically oriented, so onemust prescribe boundary conditions for sections of bundles
and specify relative orientations in order to ensure that integration of their relative top Chern class is well-defined. After
carrying out this technicalwork,we obtain in [5] a definition of open r-spin correlators.When calculating recursions for open
genus-zero correlators, the closed extended correlators appear naturally, and in fact, there is an intimate relation between
the genus-zero sectors of the two theories that we call the open-closed correspondence; see Section 5. The origin of this
correspondence is at present mysterious.

1.1. Plan of the paper

In Section 2, we recall the relevant background information on closed (non-extended) r-spin theory. Section 3 then
generalizes the definitions to closed extended r-spin theory, proves the topological recursion relations, and calculates the

two correlators that form the initial conditions for the potential F
1
r ,ext
0 . We turn to a detailed treatment of the integrable

hierarchy in Section 4, which allows us to state themain result of the paper, Theorem4.6, and to prove it. Finally, in Section 5,
we explain the correspondence between closed extended and open r-spin theory.

2. Background on r-spin theory

We begin by reviewing the relevant background on the moduli space of r-spin structures and its intersection theory,
referring the reader to [9,17], among many other references, for more details.

Throughout what follows, fix an integer r ≥ 2. An r-spin structure on a smooth marked curve (C; z1, . . . , zn) of genus g is
a line bundle L on C together with an isomorphism

L⊗r ∼= ωC,log := ωC

(
n∑

i=1
[zi]
)
. (2.1)

There is a smooth Deligne–Mumford stack M
1/r
g,n parameterizing such objects, equipped with a finite étale morphism to

(indeed, a torsor structure over) themoduli spaceMg,n of smooth curves. Some caremust be taken in the compactification in
order to preserve these properties of themoduli space of r-spin structures, and there are severalways to do so, as summarized
in [12, Section 2.2]. In our case, we compactify by allowing orbifold structure.
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More precisely, following [1], we define an orbifold curve as a one-dimensional Deligne–Mumford stack with a finite
ordered collection of marked points and at worst nodal singularities such that

(a) the only points with nontrivial isotropy are marked points and nodes;
(b) all nodes are balanced—i.e., in the local picture {xy = 0} at a node, the action of the distinguished generator of the

isotropy group Zk is given by

(x, y) ↦→ (ζk, ζ
−1
k y),

where ζk is a primitive kth root of unity.

An orbifold curve is said to be r-stable, following [9], if the coarse underlying marked curve is stable and the isotropy group
is Zr at every special point.

Let (C; z1, . . . , zn) be an r-stable curve. An r-spin structure on C is an orbifold line bundle L together with an isomorphism
as in (2.1). If z0 ∈ C is either a marked point or a branch of a node, then the multiplicity of L at z0 is defined as the integer
m ∈ {0, 1, . . . , r − 1} such that, in local coordinates (z, v) on the total space of L near z0, the action of the distinguished
generator of the isotropy group Zr at z0 is given by

(z, v) ↦→ (ζrz, ζ
m
r v).

A standard but crucial fact about the multiplicities is that they determine the relationship between L and its pushforward
|L| to the coarse underlying curve. Specifically, suppose that C ′ ⊂ C is an irreducible component with special points {zk} at
which the multiplicities of L are {mk}. Then, if ρ : C ′ → |C ′| is the natural map to the coarse underlying curve, we have

L|C ′= ρ∗
(
|L|
⏐⏐
|C ′|

)
⊗ OC ′

(∑

k

mk

r
[zk]

)
.

Given that ωC ′,log = ρ∗ω|C ′|,log, we find that |L|
⏐⏐
|C ′| satisfies the equation

(
|L|
⏐⏐
|C ′|

)⊗r ∼= ω|C ′|,log
(
−
∑

k

mk[zk]
)
. (2.2)

Using (2.2), one can prove (see, for example, the appendix of [11]) that there is an equivalence of categories between r-spin
structures as above and orbifold line bundles L with an isomorphism

L⊗r ∼= ωC

(
−

n∑

i=1
µi[zi]

)

for which µi ∈ {−1, 0, 1, . . . , r − 2} and the isotropy groups at all markings act trivially on the fiber of L. Finally, replacing
L by S := L(−∑µi=−1[zi]), we find that there is a further equivalence with the category of orbifold line bundles satisfying

S⊗r ∼= ωC

(
−

n∑

i=1
αi[zi]

)
(2.3)

with

αi ∈ {0, 1, . . . , r − 1},
where again, the isotropy groups at all markings act trivially on the fiber of S. We view r-spin structures as in (2.3) in what
follows, and we refer to the integers αi as twists. When αi = r − 1, we say that zi is a Ramond marked point, and otherwise,
it is said to be Neveu–Schwarz.

There is a proper, smooth Deligne–Mumford stackM
1/r
g,n of dimension 3g−3+n parameterizing r-stable curves together

with an orbifold line bundle S satisfying (2.3). It is equipped with a decomposition into open and closed substacks

M
1/r
g,{α1,...,αn} ⊂M

1/r
g,n

on which S has twist αi at zi for each i ∈ {1, . . . , n}. Furthermore, it is equipped with a virtual fundamental class cW from
which a beautiful intersection theory can be defined. The construction of cW , which we refer to as Witten’s class, was first
suggested by Witten in genus zero. Specifically, it is straightforward to check that in genus zero, if π : C → M

1/r
g,n denotes

the universal curve and S the universal line bundle, then R0π∗S = 0 and hence R1π∗S is a vector bundle. We define the
Witten bundle as

W := (R1π∗S)
∨ = R0π∗(S

∨ ⊗ ωπ )
and set cW to be its top Chern class:

cW := e(W).
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Via the Riemann–Roch formula, one can check that the restriction of cW to M
1/r
0,{α1,...,αn} has complex codimension

−(r − 2)+∑n

i=1 αi

r
,

which is a non-negative integer if and only if M
1/r
0,{α1,...,αn} is nonempty.

It is interesting and highly non-trivial to find the appropriate generalization of this definition to higher genus. Various
constructions have now been given, by Polishchuk–Vaintrob [22], Chiodo [8], Mochizuki [19], Fan–Jarvis–Ruan [15], and
Chang–Li–Li [7]. The result, in any of these cases, is a class on M

1/r
g,{α1,...,αn} of complex codimension

e := (g − 1)(r − 2)+∑n

i=1 αi

r
. (2.4)

All of these constructions have been shown to agree after pushforward toMg,n [20, Theorem 3], at least when all insertions
are Neveu–Schwarz (which, by the Ramond vanishing explained below, is all that is needed).

One obtains correlators by integrating Witten’s class against ψ-classes on the moduli space. Namely, for each i ∈
{1, . . . , n}, let Li be the cotangent line bundle to the coarse curve |C | at the ith marked point. Then, in genus zero, we define
closed r-spin correlators by

⟨
n∏

i=1
τ
αi
di

⟩ 1
r

0

:= r

∫

M
1/r
0,{α1,...,αn}

e

(
W ⊕

l⨁

i=1
L
⊕di
i

)
,

which is nonzero only if the equation

e+
n∑

i=1
di = 3g − 3+ n (2.5)

is satisfied with g = 0.

Remark 2.1. Putting the coefficient r in front of the integral in the definition of the correlators
⟨∏n

i=1 τ
αi
di

⟩ 1
r

0
and, more

generally, putting the rescaling coefficient r1−g in the definition of the generating function F
1
r ,c(t∗∗ , ε) is amatter of tradition.

This allows to present some results in a slightly more compact form.

A crucial fact that we require about these correlators is that they satisfy Ramond vanishing: if αi = r − 1 for some i, then
the correlator is zero. To prove this, suppose that S satisfies (2.3) and that α1 = r−1. Let S be the universal line bundle on the
universal curve π : C→M

1/r
0,{α1,...αn}, let∆1 ⊂ C be the divisor corresponding to the first marked point, and let S̃ := S (∆1).

Then there is an exact sequence

0→ R0π∗S → R0π∗S̃ → σ ∗1 S̃ → R1π∗S → R1π∗S̃ → 0, (2.6)

where σ1 is the section corresponding to the first marked point. We have R0π∗S̃ = 0 and

(σ ∗1 S̃)
⊗r ∼= σ ∗1ωπ,log ∼= O

M
1/r
0,{α1,...,αn}

,

which implies that e(σ ∗1 S̃1) = 0. By multiplicativity of the Euler class in (2.6), this implies that cW = 0.

3. Closed extended theory: Geometry

Although we have thus far only defined the Witten class cW under the assumption that all twists lie in the range
{0, 1, . . . , r − 1}, there exists a smooth Deligne–Mumford moduli stack M

1/r
g,{α1,...,αn} parameterizing r-stable curves with

a line bundle S satisfying (2.3) for any tuple of integers {α1, . . . , αn}. This observation was made by Jarvis–Kimura–
Vaintrob [16], who studied precisely how the virtual class should vary when αi is replaced by αi + r .

3.1. Definition of extended r-spin correlators

Suppose that g = 0,

αi ∈ {−1, 0, . . . , r − 1} (3.1)

for each i, and there is at most one i such that αi = −1. In this case, one still has R0π∗S = 0, so we can defineW := (R1π∗S)∨

and set

cextW := e((R1π∗S)
∨) = e(R0π∗(S

∨ ⊗ ωπ )).
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When there is no i for which αi = −1, this simply recovers the definition of cW given above. The same formula (2.4) (with
g = 0) gives the complex codimension of cextW , and there are correlators

⟨
l∏

i=1
τ
αi
di

⟩ 1
r ,ext

0

:= r

∫

M
1/r
0,{α1,...,αn}

e

(
W ⊕

l⨁

i=1
L
⊕di
i

)

that vanish unless the dimension condition (2.5) is satisfied. We refer to these as extended r-spin correlators.

Remark 3.1. We caution the reader that the Ramond vanishing property does not hold for the extended r-spin correlators.
For example, a nonvanishing extended correlator with an insertion of twist r − 1 is calculated in Lemma 3.8.

3.2. Properties of the extended Witten class

Our goal for this section is to prove that the genus-zero extended r-spin correlators satisfy certain equations analogous to
the string equation and topological recursion relations in Gromov–Witten theory. To do so, wemust study how cextW behaves
under the inclusion of boundary divisors and forgetful morphisms.

Let us fix some notation. In general, boundary strata in M
1/r
g,{α1,...,αn} are indexed by certain decorated graphs, in which

each vertex v represents an irreducible component and is labeled with its genus g(v), each half-edge h represents a half-
node and is labeled with its twist α(h), and there are n numbered legs labeled with the twists α1, . . . , αn. We denote by
α⃗(v) the tuple recording the twists at all half-edges incident to v, including the legs. Note that the elements of α⃗(v) lie in
{−1, 0, 1, . . . , r − 1} and that the twist is−1 at each half-node on which the isotropy group acts trivially on the fiber of S.

GivenΓ as above, letM
1/r
Γ ⊂M

1/r
g,{α1,...,αn} be the boundary stratum consisting of r-spin curveswith decorated dual graph

Γ . Let Γ̃ be the disconnected graph obtained by cutting all of the edges of Γ , and let

M
1/r

Γ̃
:=

∏

v∈V (Γ )

M
1/r
g(v),α⃗(v)

be the associatedmoduli space, where V (Γ ) is the vertex set ofΓ . Unlike themoduli space of curves, the r-spinmoduli space
does not in general have a gluing map M

1/r

Γ̃
→M

1/r
Γ , because there is no canonical way to glue the fibers of S at the nodes.

Nevertheless, lettingMΓ andMΓ̃ denote the moduli spaces of marked curves with dual graphs Γ and Γ̃ , respectively, one
has morphisms

M
1/r

Γ̃

p←−MΓ̃ ×MΓ
M

1/r
Γ

µ̃−→M
1/r
Γ

ĩΓ−→M
1/r
g,{α1,...,αn}. (3.2)

Let g = 0. Then for any decorated graph Γ of genus 0 we have MΓ̃ = MΓ and, therefore, MΓ̃ ×MΓ
M

1/r
Γ = M

1/r
Γ .

Then the map µ̃ in (3.2) is the identity. Suppose now that the twists α1, . . . , αn at the legs of Γ satisfy (3.1) with at most one
i such that αi = −1, then we refer to Γ as a genus-zero extended r-spin dual graph. Note that even in this case, the vertex
moduli spacesM

1/r
0,α⃗(v) may not themselves fit into the extended framework, since there may be more than one half-edge of

twist−1 incident to a given vertex. Nevertheless, there is a consistent way to rectify the situation. Indeed, there is a unique
function

α′ : H(Γ )→ {−1, 0, 1, . . . , r − 1}
on the half-edge set H(Γ ) such that

(a) α′(h) ≡ α(h) mod r , for all h,
(b) α′(h) = α(h), if h is a leg,
(c) for each edge e = (h1, h2), such that α(h1) = α(h2) = −1, we have

(i) α′(h1) = α′(h2) = r − 1, if α1, . . . , αn ∈ {0, . . . , r − 1},
(ii) exactly one i ∈ {1, 2}with α′(hi) = r − 1, if there exists 1 ≤ j ≤ n, such that αj = −1,

(d) for any edge e, each of the two connected components of the graph, obtained by cutting e, has at most one leg h for
which α′(h) = −1.

Let

M
ext
Γ̃ :=

∏

v∈V (Γ )

M
1/r
0,α⃗′(v), (3.3)

where α⃗′(v) is the tuple recording the values of α′(h) at all of the half-edges incident to v. For each v, let T (v) ⊂ H(v) denote
the subset of the incident half-edges for which α′(h) ̸= α(h). Then there is a morphism τv :M1/r

0,α⃗(v) →M
1/r
0,α⃗′(v) defined by



A. Buryak, E. Clader and R.J. Tessler / Journal of Geometry and Physics 137 (2019) 132–153 137

sending an r-spin structure S with twists α⃗(v) to

S ′ := S ⊗ O

⎛
⎝ ∑

h∈T (v)

−[zh]

⎞
⎠ ,

where zh is the marked point corresponding to h; it is straightforward to see that S ′ is an r-spin structure with twists α⃗′(v).
The product of the morphisms τv defines

τ :M1/r

Γ̃
→M

ext
Γ̃ ,

so we now have

M
ext
Γ̃

q←−M
1/r
Γ

ĩΓ−→M
1/r
0,{α1,...,αn},

where q := τ ◦ p.
We can now state the decomposition property of the extended Witten class along nodes.

Lemma 3.2. Let Γ be a genus-zero extended r-spin dual graph with two vertices v1 and v2 connected by a single edge e. LetM1

and M2 be the factors of M
ext
Γ̃ corresponding to the two vertices, and let cextW1

and cextW2
be the Witten classes on these two moduli

spaces. Then

q∗̃i
∗
Γ c

ext
W = cextW1

⊠ cextW2
. (3.4)

Before proving the lemma, let us present an alternative way to construct the extended Witten class. Note that for each
1 ≤ i ≤ n there is a canonical identification M

1/r
0,{α1,...,αn} =M

1/r
0,{α1,...,αi+r,...,αn} defined by sending an r-spin structure S with

twists α1, . . . , αn to

S ′ := S ⊗ O (−[zi]) .
Moreover, this allows to identify the moduli spaces M

1/r
0,{α1,...,αn} and M

1/r
0,{β1,...,βn}, if all the differences αi − βi are divisible

by r . Denote by Sα1,...,αn → C the universal line bundle over the universal curve C
π−→M

1/r
0,{α1,...,αn}.

Lemma 3.3. For any n ≥ 2 and an n-tuple 0 ≤ β1, . . . , βn ≤ r − 1, the extended Witten class cextW on M
1/r
0,{−1,β1,...,βn} is

equal to

cextW = crk−1
(
(R1π∗Sr−1,β1,...,βn )

∨) ∈ H∗
(
M

1/r
0,{r−1,β1,...,βn}

)
= H∗

(
M

1/r
0,{−1,β1,...,βn}

)
,

where rk = rk
(
(R1π∗Sr−1,β1,...,βn )

∨) = 1+∑βi
r

.

Proof. Let us consider the exact sequence (2.6) over the moduli space M
1/r
0,{r−1,β1,...,βn}. Note that S = Sr−1,β1,...,βn and

S̃ = S−1,β1,...,βn . Therefore, by multiplicativity of the total Chern class in (2.6),

cextW = e
(
(R1π∗S−1,β1,...,βn )

∨) = crk−1
(
(R1π∗Sr−1,β1,...,βn )

∨) ,
which proves the lemma. □

This lemma implies the following symmetry property of the extended Witten class.

Corollary 3.4. Suppose n ≥ 1 and 0 ≤ β1, . . . , βn ≤ r − 1. Then, under the identification M
1/r
0,{−1,r−1,β1,...,βn} =

M
1/r
0,{r−1,−1,β1,...,βn}, the extended Witten classes on these moduli spaces become equal. In other words,

e
(
(R1π∗S−1,r−1,β1,...,βn )

∨) = e
(
(R1π∗Sr−1,−1,β1,...,βn )

∨) . (3.5)

Proof. By Lemma 3.3, both sides of (3.5) are equal to crk−1
(
(R1π∗Sr−1,r−1,β1,...,βn )

∨). □

Proof of Lemma 3.2. Over M
1/r
Γ , there are two universal curves: namely, we define CΓ by the fiber diagram

CΓ
→→

π

↓↓

C

π

↓↓

M
1/r
Γ

ĩΓ →→ M
1/r
0,{α1,...,αn},
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and we define CΓ̃ by the fiber diagram

C̃

↓↓

CΓ̃
←←

π̃

↓↓

M
ext
Γ̃ M

1/r
Γ ,

q
←←

in which C̃ is the universal curve overM
ext
Γ̃ , induced by the product description (3.3). One can decompose CΓ̃ = C1 ⊔ C2, and

we let πi = π̃ |Ci
, for i = 1,2. Let

n : CΓ̃ → CΓ

be the universal normalization morphism.
Denote (by a slight abuse of notation) the pullback to CΓ of the universal line bundle on C by S , and let Si = n∗S|Ci

for
i = 1,2. There is a normalization exact sequence

0→ S → n∗n
∗
S → S|∆e→ 0,

where∆e ⊂ CΓ picks out the node that corresponds to the edge e of Γ . The associated long exact sequence reads

0→ R0π1∗S1 ⊕ R0π2∗S2 → R0π∗(S|∆e )→ R1π∗S → R1π1∗S1 ⊕ R1π2∗S2 → 0. (3.6)

From here, we break the argument into three cases.
First, suppose that one (hence both) of the half-edges of e is Neveu–Schwarz. Then R0π∗(S|∆e ) = 0, since sections of an

orbifold line bundle necessarily vanish at points where the isotropy group acts nontrivially on the fiber. Thus, we have

R1π∗S ∼= R1π1∗S1 ⊕ R1π2∗S2

on M
1/r
Γ . This implies that ĩ∗Γ c

ext
W = q∗(cextW1

⊠ cextW2
), and the claim follows from the fact that deg q = 1 [12, page 1348].

Next, suppose that one (hence both) of the half-edges of e is Ramond. Assume, without loss of generality, that the
vertices v1 and v2 ofΓ are incident to the legsmarked by {1, . . . , n1} and {n1+1, . . . , n}, respectively. Consider the universal
line bundlesSα1,...,αn1 ,−1 andS−1,αn1+1,...,αn over C̃, corresponding to the componentsM1 andM2, respectively. The pullbacks,
via the map CΓ̃ → C̃, of these line bundles to C1 and C2, respectively, will be denoted by the same letters. Clearly,

S1 = Sα1,...,αn1 ,−1, S2 = S−1,αn1+1,...,αn .

Note that R0π∗(S|∆e ) = σ ∗e S , where σe is the section of CΓ with image∆e. Since

(σ ∗e S)
⊗r ∼= σ ∗e ωπ,log ∼= O

M
1/r
Γ

,

we have c1(σ ∗e S) = 0.
Suppose, additionally, that α1, . . . , αn ∈ {0, . . . , r − 1}. Then we have R0π1∗S1 = R0π2∗S2 = 0 and, by multiplicativity

of the total Chern classes in (3.6), we find that

ci
(
(R1π∗S)

∨) = ci

(
(R1π1∗Sα1,...,αn1 ,−1)

∨ ⊕ (R1π2∗S−1,αn1+1,...,αn )
∨
)
, i ≥ 0. (3.7)

By the Ramond vanishing, the right-hand side of (3.4) is equal to zero. Note that rk(R1π∗S) = rk(R1π1∗S1 ⊕ R1π2∗S2) + 1,
therefore, by (3.7),̃ i∗Γ c

ext
W = e((R1π∗S)∨) = 0.

Finally, suppose again that one (hence both) of the half-edges of e is Ramond, but there is a marked point of twist −1.
Without loss of generality, we can assume that α1 = −1. Let us write equation (3.7) for the n-tuple r − 1, α2, . . . , αn and for
i = rk

(
R1π∗Sr−1,α2,...,αn

)
− 1. Then, by Lemma 3.3, the left-hand side is equal to ĩ∗Γ c

ext
W . The right-hand side of (3.7) is equal

to

e

(
(R1π1∗Sr−1,α2,...,αn1 ,−1)

∨
)
e

(
(R1π2∗S−1,αn1+1,...,αn )

∨
)

by Corollary 3.4=

= e

(
(R1π1∗S−1,α2,...,αn1 ,r−1)

∨
)
· e
(
(R1π2∗S−1,αn1+1,...,αn )

∨
)

= q∗(cextW1
⊠ cextW2

).

Hence,̃ i∗Γ c
ext
W = q∗(cextW1

⊠ cextW2
) and using again that deg q = 1 [12, page 1348] we see that the lemma is proved. □

The other property of the extended Witten class that we require is its behavior under pullback via the forgetful
map. There is only a forgetful map on the r-spin moduli space forgetting marked points whose twist equals zero.
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Let

Forn+1:M
1/r
0,{α1,...,αn,0} →M

1/r
0,{α1,...,αn}

be the map that forgets zn+1 and its orbifold structure and stabilizes the curve C as necessary.

Lemma 3.5. Let cextW be the Witten class for M
1/r
0,{α1,...,αn}, and let c̃extW be the Witten class for M

1/r
0,{α1,...,αn,0}. Then

c̃extW = For∗n+1c
ext
W .

Proof. This follows immediately from the fact that the universal line bundle pulls back under the induced morphism
F̃orn+1 : C′ → C on the universal curves. □

3.3. TRRs and string equation in extended r-spin theory

We are now prepared to state and prove the topological recursion relations satisfied by the extended r-spin correlators
in genus zero. These follow from Lemmas 3.2 and 3.5, by essentially the same argument as given by Jarvis–Kimura–Vaintrob
in [17]. We denote by [n] the set {1, 2, . . . , n}.

Lemma 3.6. For any i with di > 0 and any j ̸= k ∈ [n] \ {i}, we have

⟨∏

l∈[n]
τ
αl
dl

⟩ 1
r ,ext

0

=
∑

I
∐

J=[n]\{i}
j,k∈J

r−1∑

α=−1

⟨
τ α0 τ

αi
di−1

∏

l∈I
τ
αl
dl

⟩ 1
r ,ext

0

⟨
τ r−2−α0

∏

l∈J
τ
αl
dl

⟩ 1
r ,ext

0

. (3.8)

In particular, we have the following equations, where K ⊂ [n] is the set of marked points whose twist is r − 1 and without loss

of generality we can assume that α1 = −1:
(a) (Neveu–Schwarz TRR) For any i ∈ [n]\(K ∪ {1}) with di > 0 and any j ∈ [n] \ {i, 1} we have

⟨∏

l∈[n]
τ
αl
dl

⟩ 1
r ,ext

0

=
∑

I
∐

J=[n]\{i}
{1,j}∪K⊆J

r−2∑

α=0

⟨
τ α0 τ

αi
di−1

∏

l∈I
τ
αl
dl

⟩ 1
r

0

⟨
τ r−2−α0

∏

l∈J
τ
αl
dl

⟩ 1
r ,ext

0

+ (3.9)

+
∑

I
∐

J=[n]\{i}
1,j∈J

⟨
τ−10 τ

αi
di−1

∏

l∈I
τ
αl
dl

⟩ 1
r ,ext

0

⟨
τ r−10

∏

l∈J
τ
αl
dl

⟩ 1
r ,ext

0

.

(b) (Ramond TRR) For any i ∈ K with di > 0 and any j ∈ [n] \ {1, i} we have

⟨∏

l∈[n]
τ
αl
dl

⟩ 1
r ,ext

0

=
∑

I
∐

J=[n]\{i}
1,j∈J

⟨
τ−10 τ

αi
di−1

∏

l∈I
τ
αl
dl

⟩ 1
r ,ext

0

⟨
τ r−10

∏

l∈J
τ
αl
dl

⟩ 1
r ,ext

0

. (3.10)

(c) (−1 TRR) Suppose that d1 > 0. Then for any j ̸= k ∈ [n] \ {1} we have

⟨∏

l∈[n]
τ
αl
dl

⟩ 1
r ,ext

0

=
∑

I
∐

J=[n]\{1}
j,k∈J, K⊂I

r−2∑

α=0

⟨
τ α0 τ

−1
d1−1

∏

l∈I
τ
αl
dl

⟩ 1
r ,ext

0

⟨
τ r−2−α0

∏

l∈J
τ
αl
dl

⟩ 1
r

0

+ (3.11)

+
∑

I
∐

J=[n]\{1}
j,k∈J

⟨
τ r−10 τ−1d1−1

∏

l∈I
τ
αl
dl

⟩ 1
r ,ext

0

⟨
τ−10

∏

l∈J
τ
αl
dl

⟩ 1
r ,ext

0

.

Proof. Observe that the right-hand side of (3.8) is always defined. Indeed, while it could be the case that one of the two
correlators in a summand has two insertions of twist −1, it is always multiplied by a correlator with at least one insertion
of twist r − 1 and no insertions of twist −1; thus, by Ramond vanishing in the usual closed theory, that summand of (3.8)
vanishes.

The proof of (3.8) follows [17, Section 4.2]. Namely, on M0,n, we apply the relation

ψi =
∑

Γ

iΓ ∗(1),
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where the sum is over all single-edged graphs onwhich tail i is separated by the edge from tails j and k (see, for example, [28]).
From here, we use the commutative diagram

M
1/r
Γ

ĩΓ →→

ρ̃

↓↓

q

↙↙

M
1/r
0,{α1,...,αn}

ρ

↓↓

M
ext
Γ̃

ρ′
↘↘

MΓ

iΓ →→ M0,n

(3.12)

for each single-edged graph Γ . First of all, note that i∗Γ ρ∗ = r · ρ̃∗̃i∗Γ , which follows from the fact that deg ρ = 1
r
and

deg ρ̃ = 1
r2
. Combining this property with Lemma 3.2 shows that

r · ρ∗(ψi ∩ cextW ) = r
∑

Γ

ρ∗
(
ρ∗iΓ ∗(1) ∩ cextW

)

= r
∑

Γ

iΓ ∗(1) ∩ ρ∗(cextW )

= r
∑

Γ

iΓ ∗
(
i∗Γ ρ∗(c

ext
W )
)

= r2
∑

Γ

iΓ ∗ρ̃∗̃i
∗
Γ (c

ext
W )

= r2
∑

Γ

iΓ ∗ρ
′
∗q∗̃i

∗
Γ (c

ext
W )

= r2
∑

Γ

iΓ ∗ρ
′
∗
(
cextW1

⊠ cextW2

)
.

Finally, multiplying this equation by the remaining ψ-classes and integrating proves the claim. The other items are
specializations of the general case, using that the extended theory agrees with the usual closed theory in the absence of
an insertion of twist−1, and that in the usual closed theory Ramond vanishing holds. □

The string equation in the closed extended r-spin theory is exactly as usual:

Lemma 3.7. We have
⟨
τ 00

∏

i∈[n]
τ
αi
di

⟩ 1
r ,ext

0

=

⎧
⎨
⎩

∑
i∈[n]
di>0

⟨
τ
αi
di−1

∏
j̸=i τ

αj
dj

⟩ 1
r ,ext

0
, if n ≥ 3,

δd1,0δd2,0δα1+α2,r−2, if n = 2.

Proof. The string equation can either be deduced algebraically from the topological recursions above, or geometrically, by
mimicking the proof of the ordinary string equation on M0,n and applying Lemma 3.5. □

3.4. Base cases

In addition to the above relations, the proof that the extended r-spin correlators satisfy the equations for the wave
function of the Gelfand–Dickey hierarchy requires two base cases. We collect these simple correlators in the following
lemma.

Lemma 3.8. We have
⟨
τ−10 τ 10 τ

r−2
0

⟩1/r,ext
0

= 1

and

⟨
τ−10 τ 10 τ

r−1
0 τ r−10

⟩1/r,ext
0

= −1

r
.

Proof. In the first case, the moduli space is isomorphic to BZr and Witten’s class has rank zero, so the claim is immediate.
In the second case, Witten’s bundle has rank one, so

cextW = c1((R
1π∗S)

∨) = −c1(R1π∗S) = −ch1(R
1π∗S) = ch1(Rπ∗S).
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The latter can be calculated via Chiodo’s Grothendieck–Riemann–Roch formula [10]. In our situation, Chiodo’s formula reads:

cextW =
B2

(
1
r

)

2
κ1 −

B2(0)

2
ψ1 −

B2

(
2
r

)

2
ψ2 −

B2(1)

2
ψ3 −

B2(1)

2
ψ4 + 3

rB2

(
1
r

)

2
ĩΓ ∗(1),

where

B2(x) = x2 − x+ 1

6

is the second Bernoulli polynomial and Γ is any of the three one-edged graphs on M
1/r
0,{−1,1,r−1,r−1}, all of which yield the

same divisor ĩΓ ∗(1). From here, the claim is immediate from the fact that
∫

M
1/r
0,{−1,1,r−1,r−1}

κ1 =
∫

M
1/r
0,{−1,1,r−1,r−1}

ψi =
1

r
,

for each i, and
∫

M
1/r
0,{−1,1,r−1,r−1}

ĩΓ ∗(1) =
1

r2
,

in which the last integral is a consequence of the Zr scaling and the additional Zr ghost automorphisms on a nodal r-spin
curve. □

4. Closed extended theory: Algebra

In this section we prove the main result of the paper, Theorem 4.6, which describes the function F
1
r ,ext
0 in terms of the rth

Gelfand–Dickey hierarchy.
Sections 4.1 and 4.2 contain the necessary background information on the KP hierarchy, its Gelfand–Dickey reduction,

and their relation to the closed r-spin partition function. Then, in Section 4.3, we consider a special solution of the system of
differential equations for the wave function of the r-GD hierarchy and discuss its main properties. In Section 4.4, we prove

Theorem 4.6: the function F
1
r ,ext
0 coincides with the genus-zero part of the special solution. As a consequence of this result, in

Section 4.5 we obtain a simple interpretation of the genus-zero part of the Lax operator of the r-GD hierarchy in terms of the

potential F
1
r ,ext
0 . Finally, in Section 4.6, we propose a conjecture about the structure of the closed extended r-spin correlators

in all genera.

4.1. Brief review of the KP hierarchy

The material of this section is borrowed from the book [13].
Consider formal variables Ti for i ≥ 1. A pseudo-differential operator A is a Laurent series

A =
m∑

n=−∞
an(T∗, ε)∂

n
x ,

wherem ∈ Z, ∂x is considered as a formal variable, and an(T∗, ε) are formal power series in the variables Ti with coefficients
that are complex Laurent polynomials in ε:

an(T∗, ε) ∈ C[ε, ε−1][[T1, T2, . . .]].
The non-negative and negative degree parts of the pseudo-differential operator A are defined by

A+ :=
m∑

n=0
an∂

n
x and A− := A− A+,

and residue of the operator A is defined by

res A := a−1.

The Laurent series

Â(T∗, ε, z) :=
m∑

n=−∞
an(T∗, ε)z

n,

in which z is a formal variable, is called the symbol of the operator A.
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The space of pseudo-differential operators is endowed with a structure of a non-commutative associative algebra, in
which the multiplication is defined by the formula

∂kx ◦ f :=
∞∑

l=0

k(k− 1) . . . (k− l+ 1)

l!
∂ lf

∂xl
∂k−lx ,

where k ∈ Z, f ∈ C[ε, ε−1][[T1, T2, . . .]], and the variable x is identified with T1. For any r ≥ 2 and any pseudo-differential
operator A of the form

A = ∂ rx +
∞∑

n=1
an∂

r−n
x ,

there exists a unique pseudo-differential operator A
1
r of the form

A
1
r = ∂x +

∞∑

n=0
ãn∂
−n
x ,

such that
(
A

1
r

)r
= A.

Consider the pseudo-differential operator

L = ∂x +
∑

i≥1
ui∂
−i
x , ui ∈ C[ε, ε−1][[T1, T2, . . .]].

The KP hierarchy is the following system of partial differential equations for the power series ui:

∂L

∂Tn
= εn−1

[(
L

n
)
+ ,L

]
, n ≥ 1. (4.1)

For n = 1, the equation is equivalent to

∂ui

∂T1
= ∂ui

∂x
, i ≥ 1,

compatible with our identification of xwith T1.

Remark 4.1. The factor εn−1 is not included usually in the definition of the KP hierarchy (4.1). This rescaling is necessary, if

we want to describe the function exp
(
F

1
r ,c(T∗, ε)

)
as a tau-function of the KP hierarchy.

Suppose an operator L satisfies the system (4.1). Then there exists a pseudo-differential operator P of the form

P = 1+
∑

n≥1
pn(T∗, ε)∂

−n
x , (4.2)

satisfying L = P ◦ ∂x ◦ P−1 and

∂P

∂Tn
= −εn−1

(
L

n
)
− ◦ P, n ≥ 1. (4.3)

The operator P is called the dressing operator.
We can now introduce the notion of a tau-function. Denote by Gz the shift operator, which acts on a power series

f ∈ C[ε, ε−1][[T1, T2, . . .]] as follows:

Gz(f )(T1, T2, T3, . . .) := f

(
T1 −

1

z
, T2 −

1

2εz2
, T3 −

1

3ε2z3
, . . .

)
.

Let P = 1 +∑n≥1 pn(T∗, ε)∂
−n
x be the dressing operator of some operator L satisfying the KP hierarchy (4.1). Then there

exists a series τ ∈ C[ε, ε−1][[T1, T2, T3, . . .]]with constant term τ |Ti=0 = 1 for which

P̂ = Gz(τ )

τ
.

The series τ is called a tau-function of the KP hierarchy. The operator L can be reconstructed from the tau-function τ by the
following formula:

resLn = ε1−n ∂
2 log τ

∂T1∂Tn
, n ≥ 1.

Another important object associated to a solution of the KP hierarchy is thewave function (also called the Baker–Akhiezer
function). Let P be the dressing operator of some operator L satisfying the KP hierarchy (4.1) and let τ be the tau-function.
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Let

ξ (T∗, ε, z) :=
∑

k≥1
Tkε

k−1zk.

The wave function is defined by

w(T∗, ε, z) := P̂ · eξ = Gz(τ )

τ
eξ ∈ C[ε, ε−1][[T1, T2, . . .]][[z, z−1]].

It satisfies the equations

∂w

∂Tn
= εn−1(Ln)+w, n ≥ 1. (4.4)

4.2. Gelfand–Dickey reduction and the closed r-spin partition function

Let r ≥ 2. It is easy to see that the equation

(Lr )− = 0 (4.5)

is invariant with respect to the flows of the KP hierarchy (4.1). Therefore, it defines a reduction of the KP hierarchy that is
called the rth Gelfand–Dickey hierarchy. Let

L := L
r = ∂ rx +

r−2∑

i=0
fi∂

i
x.

Then all the coefficients ui of the operator L can be expressed in terms of the functions f0, f1, . . . , fr−2, and the Gelfand–Dickey
hierarchy can be written as the following system of equations:

∂L

∂Tn
= εn−1[(Ln/r )+, L], n ≥ 1. (4.6)

Clearly, ∂L
∂Tdr
= 0 for any d ≥ 1.

SupposeL is a solution of the KP hierarchy satisfying the property (4.5). Then the dressing operator P and the tau-function
τ can be chosen in such a way that ∂P

∂Tdr
= 0 and ∂τ

∂Tdr
= 0 for any d ≥ 1. In this case, the function τ is called a tau-function of

the Gelfand–Dickey hierarchy.
Consider the generating series F

1
r ,c(t∗∗ , ε) of the closed r-spin intersection numbers,

F
1
r ,c(t∗∗ , ε) =

∑

g≥0, n≥1
2g−2+n>0

ε2g−2

n!
∑

0≤α1,...,αn≤r−2
d1,...,dn≥0

⟨
τ
α1
d1
· · · τ αndn

⟩ 1
r

g
t
α1
d1
· · · tαndn

.

In [14], it is proven that the exponent τ
1
r ,c := eF

1
r ,c becomes a tau-function of the Gelfand–Dickey hierarchy after the change

of variables

Tk =
1

(−r)
3k

2(r+1)−
1
2−dk!r

tαd , 0 ≤ α ≤ r − 2, d ≥ 0, (4.7)

where k = α + 1+ rd and

k!r :=
d∏

i=0
(α + 1+ ri).

The corresponding solution L of the Gelfand–Dickey system (4.6) satisfies the initial condition

L|T≥2=0= ∂ rx + ε−r rx. (4.8)

Let us prove a simple lemma describing the lowest-degree term in ε of the operator L.

Lemma 4.2. Define a Poisson bracket {·, ·} in the ring C[[T∗]][z] by
{z, f } := ∂xf , f ∈ C[[T∗]],
{f1, f2} = {z, z} := 0, f1, f2 ∈ C[[T∗]].
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Then:

(a) The functions fi for 0 ≤ i ≤ r − 2 have the form

fi =
∑

g≥0
f
[g]
i εi−r+g , f

[g]
i ∈ C[[T∗]].

(b) Denote

L0 := ∂ rx +
r−2∑

i=0
f
[0]
i ∂ ix.

Then the operator L0 is uniquely determined by the equations

res L̂n/r0 =
∂2F

1/r,c
0

∂T1∂Tn
, 1 ≤ n ≤ r − 1.

(c) We have

∂̂L0

∂Ta
=
{(

L̂
a
r
0

)
+
, L̂0

}
.

Proof. Introduce the notation

w
(j)
i := ε1−i∂ jx

∂2F
1
r ,c

∂T1∂Ti
, 1 ≤ i ≤ r − 1, j ≥ 0,

f
(j)
i := ∂ jxfi, 0 ≤ i ≤ r − 2, j ≥ 0.

Then it is easy to see that

wi =
i

r
fr−i−1 + Pi(f

(∗)
r−i, . . . , f

(∗)
r−2), (4.9)

where Pi is a polynomial in f
(∗)
r−i, . . . , f

(∗)
r−2. Moreover, if we assign to f

(j)
k degree r−k+j, then the polynomial Pi is homogeneous

of degree i+ 1. The transformation (4.9) is clearly invertible, so we have

fi =
r

i
wr−i−1 + Qi(w

(∗)
1 , . . . , w

(∗)
r−i−2), (4.10)

where Qi is a homogeneous polynomial of degree r − i if we assign to w(k)
j degree j+ 1+ k. It remains to note that

wi = ε−i−1
∂2F

1/r,c
0

∂T1∂Ti
+ O(ε−i)

and parts (a) and (b) of the lemma become clear.
Let us prove part (c), again using the homogeneity argument. We have

[(
L

a
r

)
+
, L

]
=

r−2∑

i=0
Ri(f

(∗)
∗ )∂ ix,

where a polynomial Ri has degree a+ r − i. Let us assign to f
(j)
i differential degree j and express a polynomial Ri as

Ri(f
(∗)
∗ ) =

∑

j≥0
Ri,j(f

(∗)
∗ ),

where a polynomial Ri,j has differential degree j. Clearly, Ri,0 = 0 and for Ri,1 we have the formula

r−2∑

i=0
Ri,1z

i =
{(

L̂
a
r

)
+
, L̂

}
.

We have Ri,j = O(εi−r−a+2), for j ≥ 2, and

Ri,1 = εi−r−a+1̃Ri(T∗)+ O(εi−r−a+2),

where
r−2∑

i=0
R̃i(T∗)z

i =
{(

L̂
a
r
0

)
+
, L̂0

}
.

Part (c) of the lemma is proved. □
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4.3. Special solution of the equations for the wave function

Let L be the solution of the Gelfand–Dickey hierarchy (4.6) associated to the tau-function τ
1
r ,c . LetΦ(T∗, ε) be the unique

solution of the system of equations

∂Φ

∂Tn
= εn−1(Ln/r )+Φ (4.11)

that satisfies the initial condition

Φ|T≥2=0 = 1.

Remark 4.3. In the case r = 2, the function Φ was first considered in [4], and the first author proved there that the
logarithm of Φ coincides with the generating series of the intersection numbers on the moduli space of Riemann surfaces
with boundary. Properties of the function Φ for general r were first studied in [2]. Note that the system of equations (4.11)
for the functionΦ coincideswith the systemof equations (4.4) for thewave functionw of the KP hierarchy. In [2], the authors
found an explicit formula forΦ in terms of the wave function w.

Denote φ := logΦ and consider the expansion

φ =
∑

g∈Z
εg−1φg , φg ∈ C[[T∗]].

Let

Tmr =
1

(−r)
m(r−2)
2(r+1) m!rm

t r−1m−1, m ≥ 1. (4.12)

Define correlators
⟨
τ
α1
d1
· · · τ αndn

⟩φ
g
by

⟨
τ
α1
d1
· · · ταndn

⟩φ
g
:= ∂nφg

∂t
α1
d1
· · · ∂tαndn

⏐⏐⏐⏐⏐
t∗∗=0

, 0 ≤ α1, . . . , αn ≤ r − 1, d1, . . . , dn ≥ 0.

Lemma 4.4. The correlator

⟨
τ
α1
d1
· · · τ αndn

⟩φ
g
can be non-zero only if

g ≥ 0, (4.13)
n∑

i=1

(αi

r
+ di − 1

)
= (r + 1)(g − 1)

r
. (4.14)

Proof. Let us prove property (4.13). The function φ satisfies the following equations:

∂φ

∂Tn
= εn−1 (L

n
r )+eφ

eφ
.

Therefore, it is sufficient to prove that for any function θ ∈ C[ε, ε−1][[T∗]] such that θ = O(ε−1), we have εn−1 (L
n
r )+eθ
eθ
=

O(ε−1). FromLemma4.2 it follows that the operator L
n
r has the form L

n
r =∑i≤n Ri∂

i
x,Ri ∈ C[ε, ε−1][[T∗]], whereRi = O(εi−n).

By induction, it is easy to prove that

∂ ixe
θ

eθ
= i!

∑

m1,m2,...≥0∑
jmj=i

∏

j≥1

(∂ jxθ )
mj

(j!)mjmj!
, i ≥ 0. (4.15)

Since θ = O(ε−1), we have
∏

j≥1(∂
j
xθ )

mj = O(ε−i). Therefore, Ri
∂ ixe

θ

eθ
= O(ε−n) and

εn−1
n∑

i=0
Ri

∂ ixe
θ

eθ
= O(ε−1).

Property (4.13) is proved.
Let us prove property (4.14). Consider the linear differential operator

O :=
∑

0≤α≤r−1
d≥0

(α
r
+ d− 1

)
tαd

∂

∂tαd
− r + 1

r
ε
∂

∂ε
.
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We have to prove that Oφ = 0 or, equivalently, OΦ = 0. Using the Gelfand–Dickey equations (4.6), it is easy to show that
(
z
∂

∂z
+ O

)
L̂ = r̂L.

Then, similarly, using Eq. (4.11) one can show that OΦ = 0. The lemma is proved. □

Lemma 4.5. The function φ satisfies the string equation
(
∂

∂T1
−
∑

i≥1
(i+ r)Ti+r

∂

∂Ti

)
φ = rε−1Tr . (4.16)

Proof. Eq. (4.16) was proved in [2], but in order to make the paper more self-contained let us give a proof here. Denote by O

the operator in the brackets on the left-hand side of (4.16). Using the Gelfand–Dickey equations (4.6), it is easy to show that
OL = ε−r r . Then, similarly, using Eq. (4.11) one can show that OΦ = (rε−1Tr )Φ . □

4.4. Closed extended potential and the special solution

Consider the generating series F
1
r ,ext
0 (t∗∗ ) of the closed extended r-spin intersection numbers in genus zero,

F
1
r ,ext
0 (t∗∗ ) =

∑

n≥2

1

n!
∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

⟨
τ
α1
d1
· · · τ αndn

τ−10

⟩ 1
r ,ext

0
t
α1
d1
· · · tαndn

.

The main result of our paper is the following theorem.

Theorem 4.6. We have

F
1
r ,ext
0 (t≤r−2∗ , t r−1∗ ) =

√
−rφ0

(
t≤r−2∗ ,

1√−r t
r−1
∗

)
.

Before proving the theorem, let us formulate several auxiliary statements.

Lemma 4.7. The function φ0 satisfies the equations

∂φ0

∂Tn
= (̂L

n
r
0 )+

⏐⏐⏐
z=(φ0)x

, n ≥ 1. (4.17)

Proof. From Lemma 4.2 it follows that the operator L
n
r has the form L

n
r = ∑

i≤n Ri∂
i
x, where Ri =

∑
j≥0 Ri,jε

i−n+j,

Ri,j ∈ C[[T∗]]. It is also clear that
∑

i≤n Ri,0z
i = L̂

n
r
0 . We have

∂φ

∂Tn
= εn−1

n∑

i=0
Ri

∂ ixe
φ

eφ
.

Since φ = ε−1φ0 + O(ε0), for any numbersm1,m2, . . . ≥ 0, satisfying
∑

jmj = i, we have

∏

j≥1
(∂ jxφ)

mj =
{
ε−i(φ0)ix + O(ε−i+1), if m1 = i and m2 = m3 = · · · = 0,

O(ε−i+1), otherwise.

Using formula (4.15) we then get Ri
∂ ixe

φ

eφ
= Ri,0ε

−n(φ0)ix + O(ε−n+1) and

εn−1
n∑

i=0
Ri

∂ ixe
φ

eφ
= ε−1

n∑

i=0
Ri,0(φ0)

i
x + O(ε0) = ε−1 (̂L

n
r
0 )+

⏐⏐⏐
z=(φ0)x

+ O(ε0).

The lemma is proved. □

Proposition 4.8. The function φ0 satisfies the equations

∂2φ0

∂tαp+1∂t
β
q

=
∑

µ+ν=r−2

∂2F
1
r ,c

0

∂tαp ∂t
µ

0

∂2φ0

∂tν0 ∂t
β
q

+ ∂φ0

∂tαp

∂2φ0

∂t r−10 ∂t
β
q

, 0 ≤ α, β ≤ r − 1, p, q ≥ 0. (4.18)
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Proof. In the variables Ti equations (4.18) look as follows:

d

(
∂φ0

∂Ta+r

)
=

r−1∑

b=1

a+ r

b(r − b)

∂2F
1
r ,c

0

∂Ta∂Tb
d

(
∂φ0

∂Tr−b

)
+ a+ r

r

∂φ0

∂Ta
d

(
∂φ0

∂Tr

)
, a ≥ 1.

By Lemma 4.7, this equation follows from

d

(
L̂

a+r
r

0

)
+
=

r−1∑

b=1

a+ r

b(r − b)

∂2F
1
r ,c

0

∂Ta∂Tb
d

(
L̂

r−b
r

0

)

+
+ a+ r

r

(
L̂

a
r
0

)
+
d̂L0, a ≥ 1. (4.19)

Let

vi := res

(
L̂

i
r
0

)
, 1 ≤ i ≤ r − 1.

Clearly, the functions f [0]0 , . . . , f
[0]
r−2 and v1, . . . , vr−1 are related by an invertible polynomial transformation. Therefore, for

any i ∈ Z, the coefficients of the Laurent series L̂i0 can be considered as polynomials in v1, . . . , vr−1. For a ≥ 1 and
1 ≤ b ≤ r − 1 we have the following identity (see, for example, [13, Sections 3.5 and 3.6]):

∂2F
1
r ,c

0

∂Ta∂Tb
= b(r − b)

a+ r

∂

∂vr−b
res L̂

a+r
r

0 .

We see that Eq. (4.19) is equivalent to

d

(
L̂

a+r
r

0

)
+
=

r−1∑

b=1

∂

∂vb
res
(
L̂

a+r
r

0

)
d

(
L̂

b
r
0

)

+
+ a+ r

r

(
L̂

a
r
0

)
+
d̂L0. (4.20)

Let us express the left-hand side in the following way:

d

(
L̂

a+r
r

0

)
+
= a+ r

r

(
L̂

a
r
0

)
+
d̂L0 +

a+ r

r

((
L̂

a
r
0

)
−
d̂L0

)
+
.

Notice that the underlined term here cancels the underlined term on the right-hand side of (4.20). Therefore, Eq. (4.20) is
equivalent to

a+ r

r

((
L̂

a
r
0

)
−
d̂L0

)
+
=

r−1∑

b=1

∂

∂vb
res
(
L̂

a+r
r

0

)
d

(
L̂

b
r
0

)

+
. (4.21)

We compute

r−1∑

b=1

∂

∂vb
res
(
L̂

a+r
r

0

)
d

(
L̂

b
r
0

)

+
=

r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)(
L̂

b−r
r

0 d̂L0

)

+
.

We see that Eq. (4.21) follows from the property

a+ r

r

(
L̂

a
r
0

)
−
−

r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)
L̂

b−r
r

0 ∈ z−r−1C[f [0]0 , . . . , f
[0]
r−2][[z−1]]. (4.22)

Recall that (see, for example, [13, Section 3.5])

a+ r

r

(
L̂

a
r
0

)
−
−

r−2∑

i=0

∂

∂ f
[0]
i

res
(
L̂

a+r
r

0

)
z−i−1 ∈ z−r−1C[f [0]0 , . . . , f

[0]
r−2][[z−1]]. (4.23)

For any two elements f , g ∈ C[f [0]0 , . . . , f
[0]
r−2][[z−1]] let us write f ≡ g if the difference f − g lies in z−r−1C[f [0]0 , . . . , f

[0]
r−2]

[[z−1]]. Then, using identity (4.23), we can compute

a+ r

r

(
L̂

a
r
0

)
−
≡

r−2∑

i=0

∂

∂ f
[0]
i

res
(
L̂

a+r
r

0

)
z−i−1 ≡

r−1∑

b=1

r−2∑

i=0

∂

∂vb
res
(
L̂

a+r
r

0

) ∂vb

∂ f
[0]
i

z−i−1 ≡

≡
r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)(
L̂

b−r
r

0

)

−
≡

r−1∑

b=1

b

r

∂

∂vb
res
(
L̂

a+r
r

0

)
L̂

b−r
r

0 .

Formula (4.22) is proved. This completes the proof of the proposition. □
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Lemma 4.9. We have

⟨
τ 10 τ

r−2
0

⟩φ
0
=
{
1, if r = 2,

1√−r , if r ≥ 3,

⟨
τ 10 (τ

r−1
0 )2

⟩φ
0
=
{
1, if r = 2,

1√−r , if r ≥ 3.
(4.24)

Proof. Let us prove the first equation in (4.24). We compute

∂2φ0

∂T2∂Tr−1

⏐⏐⏐⏐
T∗=0
= ∂

∂Tr−1

(
(φ0)

2
x +

2

r
f
[0]
r−2

)⏐⏐⏐⏐
T∗=0
= 2

r

∂ f
[0]
r−2

∂Tr−1

⏐⏐⏐⏐⏐
T∗=0

.

We proceed as follows:

∂̂L0

∂Tr−1

⏐⏐⏐⏐
T∗=0
=
{(

L̂
r−1
r

0

)

+
, L̂0

}⏐⏐⏐⏐
T∗=0
=
{(

(zr + rx)
r−1
r

)
+
, zr + rx

}⏐⏐⏐
x=0

=
{
zr−1, zr + rx

}⏐⏐
x=0 = r(r − 1)zr−2.

Therefore, ∂2φ0
∂T2∂Tr−1

⏐⏐⏐
T∗=0
= 2(r − 1). Applying changes of variables (4.7) and (4.12), we see that the first equation in (4.24) is

true.
Now, let us prove the second equation in (4.24). First of all, we compute

∂2φ0

∂T1∂Tr

⏐⏐⏐⏐
T∗=0
= ∂x((φ0)

r
x + rx)

⏐⏐
T∗=0 = r.

Therefore, we have

∂3φ0

∂T2∂T 2
r

⏐⏐⏐⏐
T∗=0
= ∂2

∂T 2
r

(
(φ0)

2
x +

2

r
f
[0]
r−2

)⏐⏐⏐⏐
T∗=0
= 2

(
∂2φ0

∂T1∂Tr

)2
⏐⏐⏐⏐⏐
T∗=0
= 2r2.

Using Eqs. (4.7) and (4.12), we can see that the second equation in (4.24) is also true. □

Proof of Theorem 4.6. We have seen (see Section 3.1 and Lemmas 3.6, 3.8) that the function F
1
r ,ext
0 and the correlators⟨

τ−10 τ
α1
d1
· · · τ αndn

⟩ 1
r ,ext

0
satisfy the following properties:

⟨
τ−10 τ

α1
d1
· · · τ αndn

⟩ 1
r ,ext

0
= 0 unless

∑
αi − (r − 1)

r
+
∑

di = n− 2, (4.25)

∂2F
1
r ,ext
0

∂tαp+1∂t
β
q

=
∑

µ+ν=r−2

∂2F
1
r ,c

0

∂tαp ∂t
µ

0

∂2F
1
r ,ext
0

∂tν0 ∂t
β
q

+ ∂F
1
r ,ext
0

∂tαp

∂2F
1
r ,ext
0

∂t r−10 ∂t
β
q

, 0 ≤ α, β ≤ r − 1, p, q ≥ 0, (4.26)

⟨
τ−10 τ 10 τ

r−2
0

⟩ 1
r ,ext

0
= 1,

⟨
τ−10 τ 10 (τ

r−1
0 )2

⟩ 1
r ,ext

0
= −1

r
. (4.27)

It is easy to see that for any non-zero complex constant C , the function φ̃0 defined by

φ̃0(t
≤r−2
∗ , t r−1∗ ) := Cφ0(t

≤r−2
∗ , C−1t r−1∗ )

also satisfies equations (4.18). Let C = √−r and
⟨
τ
α1
d1
· · · τ αndn

⟩φ̃
0
:= ∂nφ̃0

∂t
α1
d1
· · · ∂tαndn

⏐⏐⏐⏐⏐
t∗∗=0

.

Lemmas 4.4, 4.9 and Proposition 4.8 imply that the function φ̃0 and the correlators
⟨
τ
α1
d1
· · · τ αndn

⟩φ̃
0
also satisfy proper-

ties (4.25)–(4.27). Therefore, it is sufficient to check that these properties are enough to reconstruct the function F
1
r ,ext
0 .

Note that the dimension constraint in property (4.25) implies that n ≥ 2. Therefore, by (4.26), it suffices to determine the
primary correlators

⟨
τ−10 τ

α1
0 · · · τ

αl
0 (τ r−10 )k

⟩ 1
r ,ext

0
, 0 ≤ α1, . . . , αl ≤ r − 2. (4.28)

By (4.25), such a correlator can be non-zero only if

l∑

i=1
(r − αi)+ k = r + 1. (4.29)
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First of all, suppose that l ≤ 1, so we consider the correlators

Xα :=
⟨
τ−10 τ α0 (τ

r−1
0 )α+1

⟩ 1
r ,ext

0
, 0 ≤ α ≤ r − 1.

Suppose 0 ≤ γ ≤ r − 2 and consider the correlator

Yγ :=
⟨
τ−10 τ 11 τ

γ

0 (τ r−10 )γ+2
⟩ 1
r ,ext

0
.

Let us compute it using the topological recursion relation (4.26) in two differentways. Applying (4.26)withα = 1, p = q = 0
and β = γ , we obtain

Yγ =
(
γ + 2

2

)
X1Xγ . (4.30)

On the other hand, applying (4.26) with α = 1, p = q = 0 and β = r − 1, we get

Yγ =
(
γ + 1

2

)
X1Xγ +

⟨
τ 10 τ

γ

0 τ
r−3−γ
0

⟩ 1
r ,ext

0
Xγ+1. (4.31)

For γ ≤ r − 3, we have
⟨
τ 10 τ

γ

0 τ
r−3−γ
0

⟩ 1
r

0
= 1 (see e.g. [20, Section 0.6]), and, by (4.27),

⟨
τ 10 τ

r−2
0 τ−10

⟩ 1
r ,ext

0
= 1. Therefore,

equating the right-hand sides of (4.30) and (4.31), we obtain

Xγ+1 = (γ + 1)X1Xγ , 0 ≤ γ ≤ r − 2.

Since X1 = − 1
r
, this immediately implies that Xα = (−1)α α!

rα
, for any 0 ≤ α ≤ r − 1.

Consider now the correlator (4.28) with l ≥ 2. Suppose that condition (4.29) is satisfied. Recall that by [l]we denote the
set {1, 2, . . . , l}. For a subset I ⊂ [l], let

mI := r + 1−
∑

i∈I
(r − αi), AI :=

⟨
τ−10

(∏

i∈I
τ
αi
0

)
(τ r−10 )mI

⟩ 1
r ,ext

0

.

Consider the correlator

Z :=
⟨
τ−10 τ

α1
1

(
l∏

i=2
τ
αi
0

)
(τ r−10 )k+r

⟩ 1
r ,ext

0

. (4.32)

Applying (4.26) with α = α1, p = q = 0 and β = αl, we get

Z =
∑

I⊔J=[l]
1∈I, l∈J

∑

µ+ν=r−2

⟨(∏

i∈I
τ
αi
0

)
τ
µ

0

⟩ 1
r

0

⟨
τ−10 τ ν0

⎛
⎝∏

j∈J
τ
αj
0

⎞
⎠ (τ r−10 )k+r

⟩ 1
r ,ext

0

+
∑

I⊔J=[l]
1∈I, l∈J

(
r + k

mI

)
AIAJ . (4.33)

Note that the underlined term on the right-hand side of this equation vanishes, because otherwise we should have

r − ν +
∑

j∈J
(r − αj)+ k+ r = r + 1⇒

∑

i∈I
(r − αi) = r + (r − ν)⇒

⇒
∑

i∈I
(r − αi) ≥ r + 2⇒

l∑

i=1
(r − αi) ≥ r + 2,

which contradicts (4.29). On the other hand, applying to the correlator (4.32) relation (4.26) with α = α1, p = q = 0, and
β = r − 1, we obtain

Z =
∑

I⊔J=[l]
1∈I

(
r + k− 1

mI

)
AIAJ

=
∑

I⊔J=[l]
1∈I, l∈J

(
r + k− 1

mI

)
AIAJ +

∑

I⊔J=[l]
1,l∈I, J ̸=∅

(
r + k− 1

mI

)
AIAJ +

(
r + k− 1

k

)
A[l]
⟨
τ−10 (τ r−10 )r+1

⟩ 1
r ,ext

0
. (4.34)

Note that here, by the same argument as above, we also do not have terms with closed r-spin correlators. Equating the

right-hand side of (4.33) and expression (4.34) and using that
⟨
τ−10 (τ r−10 )r+1

⟩ 1
r ,ext

0
= (−1)r−1 (r−1)!

rr−1 , we get

(−1)r−1 (r + k− 1)!
k!r r−1 A[l] =

∑

I⊔J=[l]
1∈I, l∈J

(
r + k− 1

mI − 1

)
AIAJ −

∑

I⊔J=[l]
1,l∈I, J ̸=∅

(
r + k− 1

mI

)
AIAJ . (4.35)
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We see that for l ≥ 2, this equation allows one to compute the primary correlator (4.28) in terms of primary correlators with
smaller l. The theorem is proved. □

4.5. Lax operator and the closed extended potential

Let us show that the operator L0|t∗≥1=0 has a simple interpretation in terms of the function F
1
r ,ext
0 . Define the primary closed

extended potential in genus 0 by

F

1
r ,ext
0 (t00 , . . . , t

r−1
0 ) := F

1
r ,ext
0

⏐⏐⏐⏐
t∗≥1=0

.

Proposition 4.10. We have

∂F
1
r ,ext
0

∂t r−10

= 1

(−r)
r−2

2(r+1) r
L̂0
⏐⏐
z=(−r)

1−2r
2(r+1) tr−10
t∗≥1=0

. (4.36)

Proof. Using Theorem 4.6 we see that Eq. (4.36) is equivalent to the equation

∂φ0

∂Tr

⏐⏐⏐⏐
T≥r+1=0

= L̂0
⏐⏐

z=rTr
T≥r+1=0

,

that follows from Lemma 4.7 and the fact that, by the string equation (4.16), (φ0)x|T≥r+1=0 = rTr . □

4.6. Main conjecture

We conjecture that for any b ≥ 1, g, n ≥ 0, 0 ≤ α1, . . . , αn ≤ r−1, and d1, . . . , dn ≥ 0, there is a geometric construction
of correlators

⟨
τ
α1
d1
· · · τ αndn

(τ−10 )b
⟩ 1
r ,ext

g
,

generalizing the construction for b = 1 and g = 0. Given such correlators, define a generating series F
1
r ,ext
g (t∗∗ ) for any g ≥ 0

by

F
1
r ,ext
g (t∗∗ ) :=

∑

h≥0, b≥1
2h+b−1=g

∑

n≥0

1

b!n!
∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

⟨
τ
α1
d1
· · · τ αndn

(τ−10 )b
⟩ 1
r ,ext

h
t
α1
d1
· · · tαndn

.

Conjecture 4.11. For any g ≥ 0,

F
1
r ,ext
g = (−r) 1−g

2 φg

(
t≤r−2∗ ,

1√−r t
r−1
∗

)
.

5. Open–closed correspondence

In the forthcoming work [5], the authors generalize the definition of the moduli space of r-spin structures and its Witten
class to the setting of genus-zero surfaces with boundary, or disks. We summarize the construction of [5] in this section and
explain the connection between open and closed extended theory.

5.1. Open r-spin theory

A Riemann surface with boundary is a tuple (C, φ,Σ, {zi}, {xj}), where C is an orbifold curve equipped with an involution
φ : C → C that realizes |C | as a union of two copies of the Riemann surface with boundary Σ , glued along their common
boundary; we write

|C | = Σ ∪∂Σ Σ .
Here, z1, . . . , zn ∈ C are the internal marked points (whose images in |C | lie in Σ \ ∂Σ , and each of which has a partner
z i := φ(zi) whose image lies inΣ) and x1, . . . , xm ∈ ∂Σ are the boundary marked points. We define a graded r-spin structure
on a Riemann surface with boundary as an orbifold line bundle S on C together with an isomorphism

S⊗r ∼= ωC ⊗ O

⎛
⎝−

n∑

i=1
αi[zi] −

n∑

i=1
αi[z i] −

m∑

j=1
(r − 2)[xj]

⎞
⎠ ,
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an involution φ̃ : S → S lifting φ, and an additional structure that we refer to as a grading. (Roughly, a grading is an
involution-invariant section of S on the complement of the special points in ∂Σ that changes sign at each boundary marked
point, this notion was first defined for r = 2 in [23].) Here, we assume that the internal twists α1, . . . , αn lie in the range
{0, 1, . . . , r − 1}. Note that we can re-express the genus in terms of the number b of boundary components of Σ and the
genus gc of the closed surface obtained fromΣ by gluing a disk to each boundary component:

g = b+ gc − 1.

For example, a disk has g = gc = 0 and b = 1.
In [5] we construct the moduli space M

1/r
0,m,{α1,...,αn} parameterizing graded r-spin disks, and prove that it is nonempty

exactly when a certain congruence condition on the twists αi is satisfied. There should be no difficulty with constructing the
all-genus generalization M

1/r
g,m,{α1,...,αn} and this space is nonempty if and only if

eo :=
(g +m− 1)(r − 2)+ 2

∑n

i=1 αi

r
∈ N and eo ≡ 1+m+ g mod 2. (5.1)

There are line bundles Li for each i = 1, . . . , n, defined by the cotangent line to the orbifold curve C at the ith internal
marked point. Furthermore, in genus zero, there is a real analogue of Witten’s bundle,

W := (R0π∗(S
∨ ⊗ ωπ ))+,

a real-rank-eo bundle overM
1/r
0,m,{α1,...,αn}whose fiber over (C, φ,Σ, {zi}, {xj}, S, φ̃) consists of φ̃-invariant sections of S∨⊗ωC .

Because M
1/r
0,m,{α1,...,αn} has boundary, one must work with a relative version of the Chern classes of the cotangent

line bundles and the Witten bundles. In [5] the requisite canonical boundary conditions are defined over the space
PM

1/r
0,m,{α1,...,αn}, which is some canonical perturbation of the space M

1/r
0,m,{α1,...,αn}. From here, we define open r-spin

correlators by

⟨
n∏

i=1
τ
αi
di
σm

⟩ 1
r ,o

0

:=
∫

PM
1/r
0,m,{α1,...,αn}

e

(
W ⊕

n⨁

i=1
L
⊕di
i , scanonical

)
, (5.2)

where e(E, s) is the Euler class relative to the canonical boundary conditions s. Alternatively, the number in (5.2) can be
defined as a weighted, signed count of the number of zeroes of a generic extension of scanonical, defining this count to be zero
unless eo + 2

∑n

i=1 di = m+ 2n− 3+ 3g , or in other words, unless

eo + 2
n∑

i=1
di = m+ 2n− 6+ 3gc + 3b. (5.3)

One of the key results of [5] is that these intersection numbers are independent of the specific choice of scanonical.
We define a generating function for genus-zero open r-spin theory by

F
1
r ,o

0 (t∗∗ , s) :=
∑

n,m≥0
2n+m−2>0

∑

0≤α1,...,αn≤r−1
d1,...,dn≥0

1

n!m!

⟨
n∏

i=1
τ
αi
di
σm

⟩ 1
r ,o

0

t
α1
d1
· · · tαndn

sm.

Remark 5.1. We caution the reader, that, similarly to the closed extended theory, the Ramond vanishing property does not
hold for the open r-spin correlators.

Remark 5.2. In the case where r = 2 and all of the insertions are Neveu–Schwarz, open r-spin theory is equivalent to the
intersection theory of disks constructed by Pandharipande, Solomon, and the third author in [21]. This is currently the only
case in which we can extend the theory to higher genus [24], calculate all numbers [25], and prove the relationship to the
wave function in all genus [4,6].

5.2. Connection to closed extended theory

In [5, Theorem 1.3], we prove that the genus-zero open r-spin potential is related to the closed extended potential in the
following way:

F
1
r ,o

0 (t0∗ , t
1
∗ , . . . , t

r−1
∗ , s) = −1

r
F

1
r ,ext
0

⏐⏐⏐⏐
tr−1
d
↦→tr−1

d
−rδd,0s

+ 1

r
F

1
r ,ext
0 .

We currently do not know of a geometric explanation for the intimate relation between these two theories. Nevertheless,
let us explore more explicitly what is known.
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Heuristically, the dictionary between closed extended and open r-spin theory is given by

(a) replacing a marked point with twist−1 by a boundary component, and
(b) replacing a marked point with twist r − 1 by a boundary marked point.

To make this more precise, we first observe that these exchanges are compatible with the rank-dimension constraints for
the two theories. That is, replacing every boundary component in the open theory with a marked point of twist−1 converts
Eq. (5.3) into Eq. (2.5), and replacing an internal marked point of twist r − 1 by a boundary marked point leaves (5.3)
invariant.1 Moreover, at the level of intersection numbers, we have the relation

⟨
n∏

i=1
τ
αi
di
σm

⟩ 1
r ,o

0

=

⎧
⎪⎪⎨
⎪⎪⎩

0, ifm = 0,

(−r)m−1
⟨
τ−10

n∏

i=1
τ
αi
di
(τ r−10 )m

⟩ 1
r ,ext

0

ifm ≥ 1,

which realizes the above dictionary when there is a single boundary component.
Moreover, this dictionary matches the topological recursion relations in genus zero. In [5], we prove two topological

recursion relations for open r-spin theory. First, for any i ∈ [n]with di > 0 and any j ∈ ([n] \ {i}), we have

⟨∏

l∈[n]
τ
αl
dl
σm

⟩ 1
r ,o

0

=
∑

I
∐

J=[n]\{i}
j∈J

r−2∑

α=−1

⟨
τ α0 τ

αi
di−1

∏

l∈I
τ
αl
dl

⟩ 1
r ,ext

0

⟨
τ r−2−α0

∏

l∈J
τ
αl
dl
σm

⟩ 1
r ,o

0

+ (5.4)

+
∑

I
∐

J=[n]\{i}
m1+m2=m

j∈J

m!
m1!m2!

⟨
τ
αi
di−1

∏

l∈I
τ
αl
dl
σm1

⟩ 1
r ,o

0

⟨
σ
∏

l∈J
τ
αl
dl
σm2

⟩ 1
r ,o

0

.

Second, ifm ≥ 1, then for any i ∈ [n]with di > 0, we have

⟨∏

l∈[n]
τ
αl
dl
σm

⟩ 1
r ,o

0

=
∑

I
∐

J=[n]\{i}

r−2∑

α=−1

⟨
τ α0 τ

αi
di−1

∏

l∈I
τ
αl
dl

⟩ 1
r ,ext

0

⟨
τ r−2−α0

∏

l∈J
τ
αl
dl
σm

⟩ 1
r ,o

0

+ (5.5)

+
∑

I
∐

J=[n]\{i}
m1+m2=m−1

(m− 1)!
m1!m2!

⟨
τ
αi
di−1

∏

l∈I
τ
αl
dl
σm1

⟩ 1
r ,o

0

⟨
σ
∏

l∈J
τ
αl
dl
σm2+1

⟩ 1
r ,o

0

.

Under the above dictionary, every term on the right-hand side of (5.4) or (5.5) corresponds to a single term on the right-hand
side of (3.9) or (3.10) withm Ramond marked points.

Since marked points of twist r − 1 in closed extended theory may have descendents, one would expect the open-closed
correspondence to generalize to that setting. In [3], the first author conjectured the precise equations that the open theory
for r = 2 should satisfy if it incorporates boundary descendents. The construction of boundary descendents when r = 2
and all insertions are Neveu–Schwarz, was carried by Solomon and the third author, and will appear in the near future. It
is also known how to construct these descendents for any r in genus zero, and that will also appear in a forthcoming work.
The resulting topological recursion relations in genus zero are as follows. First, if i ∈ [m], bi > 0, and j ∈ [n], then

⟨∏

h∈[m]
σbh

∏

l∈[n]
τ
αl
dl

⟩ 1
r ,o

0

=
∑

KI
∐

KJ=[m]\{i}
I
∐

J=[n]
j∈J

⟨
σbi−1

∏

h∈KI
σbh

∏

l∈I
τ
αl
dl

⟩ 1
r ,o

0

⟨
σ
∏

h∈KJ
σbh

∏

l∈J
τ
αl
dl

⟩ 1
r ,o

0

, (5.6)

where σb corresponds to b descendents at a boundary marked point; and second, if i ∈ [m], bi > 0, and j ∈ [m]\{i}, then
⟨∏

h∈[m]
σbh

∏

l∈[n]
τ
αl
dl

⟩ 1
r ,o

0

=
∑

KI
∐

KJ=[m]\{i}
I
∐

J=[n]
j∈KJ

⟨
σbi−1

∏

h∈KI
σbh

∏

l∈I
τ
αl
dl

⟩ 1
r ,o

0

⟨
σ
∏

h∈KJ
σbh

∏

l∈J
τ
αl
dl

⟩ 1
r ,o

0

. (5.7)

These two equations indeed transform to (3.10) under the open-closed dictionary.

1 These observations are mostly numerological at this point, since the open theory is currently only defined for disks and the closed extended theory in
genus zero with a single−1 twist.
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Perhaps the most surprising effect of the open-closed correspondence is the −1 TRR (equation (3.11)). If we believe the
dictionary, then this equation suggests, on the open side, the existence of ‘‘cotangent line classes’’ corresponding to a bundle
Lboun associated to a boundary component. These classes should satisfy the following equation for h > 0 and i, j ∈ [n]:

⟨
σ boun
h

∏

p∈[n]
τ
αp
dp

∏

q∈[m]
σbq

⟩ 1
r ,o

0

=
∑

I
∐

J=[n]
i,j∈J

r−1∑

α=0

⟨
σ boun
h−1 τ

α
0

∏

p∈I
τ
αq
dp

∏

q∈[m]
σbq

⟩ 1
r ,o

0

⟨
τ r−2−α0

∏

p∈J
τ
αp
dp

⟩ 1
r ,ext

0

(5.8)

+
∑

I
∐

J=[n]
KI
∐

KJ=[m]
i,j∈J

⟨
σ boun
h−1 σ

∏

p∈I
τ
αp
dp

∏

q∈KI
σbq

⟩ 1
r ,o

0

⟨∏

p∈J
τ
αp
dp

∏

q∈KJ
σbq

⟩ 1
r ,o

0

,

where σ boun
h corresponds to h copies of Lboun. (There are analogous equations, also, if one or both of i, j lies in [m].) Based on

this hint, the first and third authors have constructed a ‘‘class’’ that satisfies Eq. (5.8)—or, more precisely, a line bundle Lboun

and boundary conditions for which generic extensions give rise to (5.8). We leave the details of the construction, however,
to future work.
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