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1. Introduction

Witten's conjecture [26], which was proposed in 1991 and soon proven by Kontsevich [ 18], states that the generating
function for the integrals of the cotangent line classes ¥, ..., ¥, € H2(Wg,,1) on the moduli space of curves is governed
by the Korteweg-de Vries (KdV) hierarchy. At around the same time, Witten also proposed a generalization of his
conjecture [27], in which the moduli space of curves is enhanced to the moduli space ﬂ;/ {ra . of r-spin structures.

The latter is a natural compactification of the space of smooth marked curves (C; zy, ..., z,) with a line bundle S and an
isomorphism
n
S¥ = | — Z%’[Zi] ,
i=1
where o; € {0, 1,...,r — 1}. This space admits a virtual fundamental class cy, which is referred to as Witten’s class and is

defined in genus zero by

cw = e((R'm.8)Y),
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withw : ¢ — ﬂé/ {ral,.“,an] the universal curve and S the universal r-spin structure; constructions of ¢y in higher genus
have now been given by a number of authors [7,8,15,19,22]. Let t; and ¢ be formal variables, for0 <« <r —1andd > 0.
The r-spin Witten conjecture states that if

2g-2
1 € - d dn
Fr,C(t:’S) = E E o (r1 gﬁw1/€wﬂw11... n )t:;‘ll [g:

£20,n>1 0<aqp,..., an<r—1 g lag,... an}
2g—2+n>0 dy,..., dn>0

is the generating function of y/-intersection numbers against Witten’s class, then exp(F Te ) becomes, after a certain rescaling
of the variables t7, a tau-function of the rth Gelfand-Dickey (r-GD) hierarchy in the standard normalization of flows [13].
The superscript “c”, which stands for “closed”, is to distinguish this theory from the open theory discussed below. This result
was proven by Faber-Shadrin-Zvonkine [ 14].

If one allows that exactly one of the indices «; is equal to —1 and the rest lie in the range {0, 1, ..., r — 1}, then the space
ﬂé{{ralwan] is still defined and R'x,S is still a vector bundle in genus zero, so genus-zero r-spin intersection numbers can
be defined exactly as above. This kind of intersection number was first considered in the paper [ 16]. We refer to this theory
as closed extended r-spin theory, and we define a genus-zero generating function by

%,ext 1 d dn o
Fy (t:)::Z Z m(rfM1/r aw Ny Yy tdll"'tgr?‘

n>2 0<ay,..,on=r—1 0,{aq,....an,—1}

1

In the current paper, we prove that FOF’eXt coincides with the genus-zero part of a special solution of the system of
differential equations for the wave function of the r-GD hierarchy. The proof of this result proceeds by verifying that the
closed extended r-spin correlators satisfy certain topological recursion relations that allow the entire theory to be recovered
from just two initial conditions that can be explicitly calculated. We then verify that the genus-zero part of the special
solution satisfies the same recursions and the same initial conditions.

The reason for our interest in the closed extended generating function arises from an intriguing connection to open r-spin
theory, which is the generalization of r-spin theory to Riemann surfaces with boundary. In [5], we construct a moduli space
ﬂé/ /:41 of “graded r-spin disks” that generalizes ﬂé/ ,: to genus-zero curves C equipped with an involution that realizes C

as two copies of a Riemann surface with boundary X, glued along their common boundary. The moduli space ﬂé/ ,:,, itself
has boundary and is not necessarily canonically oriented, so one must prescribe boundary conditions for sections of bundles
and specify relative orientations in order to ensure that integration of their relative top Chern class is well-defined. After
carrying out this technical work, we obtain in [5] a definition of open r-spin correlators. When calculating recursions for open
genus-zero correlators, the closed extended correlators appear naturally, and in fact, there is an intimate relation between
the genus-zero sectors of the two theories that we call the open-closed correspondence; see Section 5. The origin of this
correspondence is at present mysterious.

1.1. Plan of the paper

In Section 2, we recall the relevant background information on closed (non-extended) r-spin theory. Section 3 then
generalizes the definitions to closed extended r-spin theory, proves the topological recursion relations, and calculates the

1
two correlators that form the initial conditions for the potential F; ' We turn to a detailed treatment of the integrable
hierarchy in Section 4, which allows us to state the main result of the paper, Theorem 4.6, and to prove it. Finally, in Section 5,
we explain the correspondence between closed extended and open r-spin theory.

2. Background on r-spin theory

We begin by reviewing the relevant background on the moduli space of r-spin structures and its intersection theory,
referring the reader to [9,17], among many other references, for more details.

Throughout what follows, fix an integer r > 2. An r-spin structure on a smooth marked curve (C; zq, ..., z,) of genus g is
a line bundle L on C together with an isomorphism

1 x~ W log *= WC (Z[ZJ) . (21)
i=1

There is a smooth Deligne-Mumford stack M;,/ » parameterizing such objects, equipped with a finite étale morphism to
(indeed, a torsor structure over) the moduli space M, , of smooth curves. Some care must be taken in the compactification in
order to preserve these properties of the moduli space of r-spin structures, and there are several ways to do so, as summarized
in [12, Section 2.2]. In our case, we compactify by allowing orbifold structure.
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More precisely, following [1], we define an orbifold curve as a one-dimensional Deligne-Mumford stack with a finite
ordered collection of marked points and at worst nodal singularities such that

(a) the only points with nontrivial isotropy are marked points and nodes;
(b) all nodes are balanced—i.e., in the local picture {xy = 0} at a node, the action of the distinguished generator of the
isotropy group Z is given by

(X, .V) = (Cka ;k_ly)»
where ¢ is a primitive kth root of unity.

An orbifold curve is said to be r-stable, following [9], if the coarse underlying marked curve is stable and the isotropy group
is Z, at every special point.

Let(C; zy, ..., z,) be an r-stable curve. An r-spin structure on C is an orbifold line bundle L together with an isomorphism
asin (2.1). If zg € C is either a marked point or a branch of a node, then the multiplicity of L at z; is defined as the integer
m € {0,1,...,r — 1} such that, in local coordinates (z, v) on the total space of L near zq, the action of the distinguished

generator of the isotropy group Z, at zg is given by

(Z! U) = (;rL é-:ﬂv)

A standard but crucial fact about the multiplicities is that they determine the relationship between L and its pushforward
|L| to the coarse underlying curve. Specifically, suppose that C’ C C is an irreducible component with special points {z;} at
which the multiplicities of L are {m,}. Then, if p : C" — |C’| is the natural map to the coarse underlying curve, we have

o) ®oc (Z ":"[zk]> .
k

Given that w¢r 10g = p*@|c7,10g, We find that |L] g satisfies the equation

(|L| m)®r = o|0/) log (- ka[2k]> . (2.2)
k

Using (2.2), one can prove (see, for example, the appendix of [ 11]) that there is an equivalence of categories between r-spin
structures as above and orbifold line bundles L with an isomorphism

¥ = oc (— > m[a])
i=1

for which u; € {—1,0, 1, ..., r — 2} and the isotropy groups at all markings act trivially on the fiber of L. Finally, replacing
LbyS =1L(— ZM:_] [zi]), we find that there is a further equivalence with the category of orbifold line bundles satisfying

SO = e (— > oz,-[z,]) (2.3)
i=1

Le=o" (I

with
aef0,1,...,r—1},

where again, the isotropy groups at all markings act trivially on the fiber of S. We view r-spin structures as in (2.3) in what
follows, and we refer to the integers «; as twists. When «; = r — 1, we say that z; is a Ramond marked point, and otherwise,
it is said to be Neveu-Schwarz.

There is a proper, smooth Deligne-Mumford stack ﬂ;/ ,rl of dimension 3g — 3 4+ n parameterizing r-stable curves together
with an orbifold line bundle S satisfying (2.3). It is equipped with a decomposition into open and closed substacks

—1/r —1/r
g, {aq,....on} c Mg,n
on which S has twist ; at z; for each i € {1, ..., n}. Furthermore, it is equipped with a virtual fundamental class cy from

which a beautiful intersection theory can be defined. The construction of ¢y, which we refer to as Witten’s class, was first
suggested by Witten in genus zero. Specifically, it is straightforward to check that in genus zero, if 7 : ¢ — ﬂ;,/ ,: denotes
the universal curve and S the universal line bundle, then R°7,S = 0 and hence R'x,S is a vector bundle. We define the
Witten bundle as

W= (R'7.S) = Rom.(S" ® wy)
and set cy to be its top Chern class:

cw = e(W).
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Via the Riemann-Roch formula, one can check that the restriction of cw to ﬂé/ {ral «y) N1@s complex codimension

—2)+ Z?:] i
. ,

which is a non-negative integer if and only ifﬂé{(a qqqq ay) 1S DONEMPLy.

It is interesting and highly non-trivial to find the appropriate generalization of this definition to higher genus. Various
constructions have now been given, by Polishchuk-Vaintrob [22] Chiodo [8], Mochizuki [19], Fan-Jarvis-Ruan [15], and
Chang-Li-Li [7]. The result, in any of these cases, is a class on M, «y) Of complex codimension

(- =2)+>L o

e = . (2.4)
r

g, {Ot1 ~~~~~

All of these constructions have been shown to agree after pushforward to M , [20, Theorem 3], at least when all insertions
are Neveu-Schwarz (which, by the Ramond vanishing explained below, is all that is needed).

One obtains correlators by integrating Witten’s class against iy -classes on the moduli space. Namely, for each i €
{1, ..., n}, let L; be the cotangent line bundle to the coarse curve |C| at the ith marked point. Then, in genus zero, we define
closed r-spin correlators by

1
n T l
o o @d;
<ntdi> '_r/ﬂ‘“ (WGB@L )
i=1 0 i=1

0,{ay,..., an}

which is nonzero only if the equation

n
e+ di=3g—3+n (2.5)
i=1
is satisfied with g = 0.

1
Remark 2.1. Putting the coefficient r in front of the integral in the definition of the correlators <]_[;1:1 r;’: ">r and, more
0

generally, putting the rescaling coefficient r1=¢ in the definition of the generating function F7-(t, &) is a matter of tradition.
This allows to present some results in a slightly more compact form.

A crucial fact that we require about these correlators is that they satisfy Ramond vanishing: if o; = r — 1 for some i, then
the correlator is zero. To prove this, suppose that S satisfies (2.3) and that «; = r — 1. Let S be the universal line bundle on the
universal curve v : C — ﬂé{{ra] .y €0 A7 C C be the divisor corresponding to the first marked point, and let Si=5(A1).
Then there is an exact sequence

0 — R°7,8 - R'7,.8 — 0§ - R'n,8 — R'7,8 — 0, (2.6)
where o7 is the section corresponding to the first marked point. We have R%7,.S = 0 and

* N\ ~ _* ~
(U S) = 0 W: = O—ar
1 1 Wr log / s
MO,(O(] ..... an}

which implies that e(a]*gl) = 0. By multiplicativity of the Euler class in (2.6), this implies that ¢,y = 0.
3. Closed extended theory: Geometry

Although we have thus far only defined the Witten class ¢y under the assumption that all twists lie in the range
{0,1,.. — 1}, there exists a smooth Deligne-Mumford moduli stack M (o1t} parameterizing r-stable curves with
a line bundle S satisfying (2.3) for any tuple of integers {«q, ..., an}. ThlS observatlon was made by Jarvis-Kimura-
Vaintrob [16], who studied precisely how the virtual class should vary when ¢; is replaced by «; + 1.

3.1. Definition of extended r-spin correlators

Suppose thatg = 0,

aje{-1,0,...,r—1} (3.1)
for each i, and there is at most one i such that o;; = —1. In this case, one still has R°7,.S = 0, so we can define W := (R'x,.S)"
and set

& = e(R'7,S)") = e(ROm,(S" ® wy)).
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When there is no i for which «; = —1, this simply recovers the definition of ¢y, given above. The same formula (2.4) (with
g = 0) gives the complex codimension of ¢, and there are correlators

! Text |
o — @d;
<1‘[> ._r/W (wea@]Li )
i=1 0 i=1

0.{aq,....an}

that vanish unless the dimension condition (2.5) is satisfied. We refer to these as extended r-spin correlators.

Remark 3.1. We caution the reader that the Ramond vanishing property does not hold for the extended r-spin correlators.
For example, a nonvanishing extended correlator with an insertion of twist r — 1 is calculated in Lemma 3.8.

3.2. Properties of the extended Witten class

Our goal for this section is to prove that the genus-zero extended r-spin correlators satisfy certain equations analogous to
the string equation and topological recursion relations in Gromov-Witten theory. To do so, we must study how c{\* behaves
under the inclusion of boundary divisors and forgetful morphlsms

Let us fix some notation. In general, boundary strata in M, T ay,an) AT indexed by certain decorated graphs, in which
each vertex v represents an irreducible component and is labeled with its genus g(v), each half-edge h represents a half-
node and is labeled with its twist a(h), and there are n numbered legs labeled with the twists «, ..., «,. We denote by
a(v) the tuple recording the twists at all half-edges incident to v, including the legs. Note that the elements of @(v) lie in
{-1,0,1,...,r—1}and that the tw1st is —1 at each half-node on which the isotropy group acts trivially on the fiber of S.

Given F as above let M) r e Mg (o1, , be the boundary stratum consisting of r-spin curves with decorated dual graph
I'.Let " be the disconnected graph obtamed by cutting all of the edges of I'", and let

l/r ——1/r
= 1_[ M g(v),a(v)

veV(rI)
be the associated moduli space, where V( F) isthe vertex set of I". Unlike the moduli space of curves, the r-spin moduli space
does not in general have a gluing map M — ﬂr , because there is no canonical way to glue the fibers of S at the nodes.

Nevertheless, letting M and My denote the moduli spaces of marked curves with dual graphs I" and T, respectively, one
has morphisms

—1/r —1/r lt —1/r r —1/r
MY & My <, MET S M5 M- (3.2)
Let g = 0. Then for any decorated graph I" of genus 0 we have Mz = M and, therefore, My x5z, M]F/r = ﬂ}/ "
Then the map x in (3.2) is the identity. Suppose now that the twists 1, . . ., a,, at the legs of I satisfy (3.1) w1th at most one
i such that @; = —1, then we refer to I" as a genus-zero extended r-spin dual graph. Note that even in this case, the vertex

moduli spaces ﬂé/ ;(v) may not themselves fit into the extended framework, since there may be more than one half-edge of
twist —1 incident to a given vertex. Nevertheless, there is a consistent way to rectify the situation. Indeed, there is a unique
function

o :HI')— {-1,0,1,...,r—1}
on the half-edge set H(I") such that

(a) a’(h) = a(h) mod r, for all h,
(b) &/(h) = a(h),if his aleg,
(c) for each edge e = (hy, hy), such that «(hy) = a(hy) = —1, we have

(i) d/(h))=d'(h))=r—1,ifay,...,0, €{0,...,7T =1},
(ii) exactly onei € {1, 2} with o’(h;) = r — 1, if there exists 1 < j < n, such that o = —1,

(d) for any edge e, each of the two connected components of the graph, obtained by cutting e, has at most one leg h for
which o'(h) = —1.

Let
t 1
ME = ] Mol (3.3)
veV(I)

where &’(v) is the tuple recording the values of o’(h) at all of the half-edges incident to v. For each v, let T(v) C H(v) denote
the subset of the incident half-edges for which «’(h) # «a(h). Then there is a morphism z, : Még(v) — ﬁég/(u) defined by
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sending an r-spin structure S with twists a(v) to

S=S®0 Z:4m ,

heT (v)

where z;, is the marked point corresponding to h; it is straightforward to see that S’ is an r-spin structure with twists a’(v).
The product of the morphisms 7, defines

1/r —ext
v MY MR
so we now have
——ext q —1/r 11" —1/r

MF MF MO {aq,...,an}?
where q := t o p.
We can now state the decomposition property of the extended Witten class along nodes.

Lemma 3.2. Let " bea genus-zero extended r-spin dual graph with two vertices v, and v, connected by a single edge e. Let M
and M be the factors of M5 T correspondmg to the two vertices, and let c“j‘j‘t and c&’,‘t be the Witten classes on these two moduli
spaces. Then

quip et = e m g, (3.4)

Before proving the lemma, let us present an alternative way to construct the extended Witten class. Note that for each
1 <i < nthere is a canonical identification MO/ MO (a1, aitr,....an) defined by sending an r-spin structure S with
twists aq, ..., a, to

§=5®oemu

o) a0d ﬂo/rﬂ _pap if all the differences o; — B; are divisible

by r. Denote by S, ..o, — C the universal line bundle over the universal curve C 5 /\/l(])/{ra1 anl

Moreover, this allows to identify the moduli spaces ﬂé/ {ra

Lemma 3.3. Foranyn > 2 and an n-tuple 0 < Bq,..., By < r — 1, the extended Witten class c&’,‘t on mé,/[*l»ﬂlwwﬁnl is
equal to

' = Crk—1 ((Rln*srftfh ..... )’ ) € H" (Mo (r—1.B1.e.Pn ]) H* (Mo 1B ﬂ"})’

Proof. Let us consider the exact sequence (2.6) over the moduli space MO (=181, Bl Note that S = Sy_1,,..4, and
S=s,4 B1....p.- Therefore, by multiplicativity of the total Chern class in (2.6),

at=e ((Rlﬂ*‘im] ..... g)") = k-1 (R'meSr—18y.)”) s
which proves the lemma. 0O

This lemma implies the following symmetry property of the extended Witten class.

Corollary 34. Supposen > 1land 0 < fi,...,B, < r — 1. Then, under the identification MO =181}
ﬂé/ [r_l,_L p1.....pn)» the extended Witten classes on these moduli spaces become equal. In other words,

e (R'S-tr-1p1p)’) = € (R'TuSr—1.—1.51.)”) - (35)

~~~~~ ,on}?
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and we define Cj by the fiber diagram

5<—CT~

Lk

Wt q m}_‘/r’
in which C'is the universal curve over Hf:xt, induced by the product description (3.3). One can decompose Cj = C; LIC2, and
we let r; = 7T|¢,, fori = 1,2. Let

n:Cg — Cr

be the universal normalization morphism.
Denote (by a slight abuse of notation) the pullback to C- of the universal line bundle on C by S, and let S; = n*S|¢, for
i = 1,2. There is a normalization exact sequence

0—> S — nn*S — Slu,— 0,
where A, C Cr picks out the node that corresponds to the edge e of I". The associated long exact sequence reads
0 — R°m1,81 @ RO72,Sy — R°mu(Sa,) — R'7m.S — R'71,81 ® R' 2.8, — 0. (3.6)

From here, we break the argument into three cases.
First, suppose that one (hence both) of the half-edges of e is Neveu-Schwarz. Then R°7,(S|,,) = 0, since sections of an
orbifold line bundle necessarily vanish at points where the isotropy group acts nontrivially on the fiber. Thus, we have

R'7.8 = R'm1,51 ® R' 12,5,

ext ext ext

on ﬂ}-/r. This implies that?’} Gy = q*(cW] X Cyy, ), and the claim follows from the fact that degq = 1[12, page 1348].

Next, suppose that one (hence both) of the half-edges of e is Ramond. Assume, without loss of generality, that the
vertices vy and v, of I" are incident to the legs marked by {1, ..., n{} and {n;+1, ..., n}, respectively. Consider the universal
line bundles S, ang,—1 and S_L“n] +1enaty OVET C, corresponding to the components A, and M, respectively. The pullbacks,
via the map Cy — C, of these line bundles to C; and C», respectively, will be denoted by the same letters. Clearly,

Sl = Soq....,otnl,—l’ 82 = S—l,an1+1 ..... oan -
Note that R7,(S|,,) = 0*S, where o, is the section of Cr with image A,. Since
(08*8)@ = 0, Wr log = Om}!r,

we have ¢i(o;S) = 0.
Suppose, additionally, that 5, ..., a, € {0, ...,r — 1}. Then we have R°7,S; = R°7,,S, = 0 and, by multiplicativity
of the total Chern classes in (3.6), we find that

6 (R'7.8)) = 6 (R'T10Sr 1) ® R T2 1y 10)) o 2 0. (3.7)

By the Ramond vanishing, the right-hand side of (3.4) is equal to zero. Note that rk(R'7,S) = rk(R'71,S1 @ R'72,.82) + 1,
therefore, by (3.7), if-c55* = e((R'7,S)¥) = 0.

Finally, suppose again that one (hence both) of the half-edges of e is Ramond, but there is a marked point of twist —1.
Without loss of generality, we can assume that «; = —1. Let us write equation (3.7) for the n-tupler — 1, a3, . . ., @, and for

= q*(c‘j’,‘lt X c‘%‘z‘).

Hence,?}ca}“ = q*(ca}:t X c‘j’,‘zt) and using again that degq = 1[12, page 1348] we see that the lemma is proved. O

The other property of the extended Witten class that we require is its behavior under pullback via the forgetful
map. There is only a forgetful map on the r-spin moduli space forgetting marked points whose twist equals zero.
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Let
il
Forni1: Mo g, an0) = MO
be the map that forgets z,, and its orblfold structure and stabilizes the curve C as necessary.

—1/r

Lemma 3.5. Let cyif* be the Witten class for My, .., and let Cj* be the Witten class for ﬂé’/{ral an.0)- Then

~ext ext
cw = Forycy .

Proof. This follows immediately from the fact that the universal line bundle pulls back under the induced morphism
For, 1 : ¢ — C on the universal curves. 0O

3.3. TRRs and string equation in extended r-spin theory

We are now prepared to state and prove the topological recursion relations satisfied by the extended r-spin correlators
in genus zero. These follow from Lemmas 3.2 and 3.5, by essentially the same argument as given by Jarvis-Kimura-Vaintrob
in [17]. We denote by [n] the set {1, 2, ..., n}.
Lemma 3.6. For anyiwithd; > 0and anyj # k € [n] \ {i}, we have

Lext 1 ext Lext
Ma) - ¥ z<n> () 39
le[n] 0 1= [T}]\(I) a=-1 lel leJ 0

In particular, we have the following equations, where K C [n] is the set of marked points whose twist is r — 1 and without loss
of generality we can assume that ¢ = —1:

(a) (Neveu-Schwarz TRR) For any i € [n]\(K U {1}) withd; > 0 and any j € [n] \ {i, 1} we have

le[n] 0 I {_[]J)Lgn]éJ lel leJ 0
Text Text
r—1 o]
+ E <7:0 ‘cd 1 1_[ Ty, > <‘L’O 1_[ Ty, > .
TT1J=[n1\{i} lel leJ 0
1.je]

(b) (Ramond TRR) For any i € K withd; > 0 and any j € [n] \ {1, i} we have

% ,ext % ,ext %,ext
<l_[75:[> = > <To Td,—1l_[7> <T(;_1HTZ‘> : (3.10)

le[n] 0 l]_[]ﬁr}]\(f) lel 0 lej 0
WJE,

(c) (—1TRR) Suppose that d, > 0. Then for any j # k € [n] \ {1} we have

Text 2 Text
<l_[75;’> = Z Z<73Td_11—11_175;’> < 1=2- ”‘l_[ > (3.11)
= 0

le[n] 0 ITJ=\1} «=0 lel 0 leJ
Jj.keJ, Kl

Text Text
r—1_-1 o -1 o
+ Z <T0 Tay—1 1_[ Ty > <T0 ]_[ Ty, > :

TTJ=In1\{1} lel 0 leJ 0
J.keJ

Proof. Observe that the right-hand side of (3.8) is always defined. Indeed, while it could be the case that one of the two
correlators in a summand has two insertions of twist —1, it is always multiplied by a correlator with at least one insertion
of twist r — 1 and no insertions of twist —1; thus, by Ramond vanishing in the usual closed theory, that summand of (3.8)
vanishes.

The proof of (3.8) follows [ 17, Section 4.2]. Namely, on Mo ,, we apply the relation

= ir(1)
r
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where the sumis over all single-edged graphs on which tail i is separated by the edge from tailsjand k (see, for example, [28]).
From here, we use the commutative diagram

—1/r lF —1/r
MF MO {aq

e

——ext ~

Mg p p

RN

Mp ———— Mon

(3.12)

for each single-edged graph I'. First of all, note that i}.p, = 1 - ',5*7*;, which follows from the fact that degp = % and
degp = riz Combining this property with Lemma 3.2 shows that

oW Nelt) = er* prir(1) N et
= err* )N pulci)
—err* P N()
=r er*p* )

=12 Z s Pl Qi (c5)

2 ext ext
=r E ireo), (ch Bcgs) .
r

Finally, multiplying this equation by the remaining v-classes and integrating proves the claim. The other items are
specializations of the general case, using that the extended theory agrees with the usual closed theory in the absence of
an insertion of twist —1, and that in the usual closed theory Ramond vanishing holds. O

The string equation in the closed extended r-spin theory is exactly as usual:

Lemma 3.7. We have

Text » o 1ext
: i ! ifn>
<TSHTZ‘> N Ta), - =3

ie[n] 0 84,,00d5,000 +0p,7—25 ifn=2.

Proof. The string equation can either be deduced algebraically from the topological recursions above, or geometrically, by
mimicking the proof of the ordinary string equation on M, , and applying Lemma 3.5. O

3.4. Base cases

In addition to the above relations, the proof that the extended r-spin correlators satisfy the equations for the wave
function of the Gelfand-Dickey hierarchy requires two base cases. We collect these simple correlators in the following
lemma.

Lemma 3.8. We have

—1_1_r—2\1/rext
<‘L’0 Ty Ty )0 =1

and

—1_1_r—1_r—1\1/r.ext _1
< =]

Ty ToTo To

Proof. In the first case, the moduli space is isomorphic to BZ, and Witten's class has rank zero, so the claim is immediate.
In the second case, Witten’s bundle has rank one, so

Xt = ¢1((R'7.8)") = —c1(R'7,.S) = —chy(R'7,S) = chy(R7,.S).
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The latter can be calculated via Chiodo’s Grothendieck-Riemann-Roch formula [ 10]. In our situation, Chiodo’s formula reads:

B (1 B,(0 B, (2 By(1 B,(1 B, (1)~
(ot _ ng)m— Dy, - zz(f)wz— 20y, -2 )w4+3r22(f)ir*(1),

where

1
Bz(x)zxz—x—i-g

is the second Bernoulli polynomial and I" is any of the three one-edged graphs on W&{LLLPLPI}, all of which yield the
same divisor if(1). From here, the claim is immediate from the fact that

K1 = i= =

—1/r —1/r

MO,(—L],r—],r—]) MO,{—],],r—l,r—]) r

for each i, and
~ 1
f (1) =
ml/r r
0,{—-1,1,r—1,r—1}

in which the last integral is a consequence of the Z, scaling and the additional Z, ghost automorphisms on a nodal r-spin
curve. O

4. Closed extended theory: Algebra

1
In this section we prove the main result of the paper, Theorem 4.6, which describes the function FOF'eXt in terms of the rth
Gelfand-Dickey hierarchy.
Sections 4.1 and 4.2 contain the necessary background information on the KP hierarchy, its Gelfand-Dickey reduction,
and their relation to the closed r-spin partition function. Then, in Section 4.3, we consider a special solution of the system of
differential equations for the wave function of the r-GD hierarchy and discuss its main properties. In Section 4.4, we prove

1
Theorem 4.6: the function Fy " coincides with the genus-zero part of the special solution. As a consequence of this result, in
Section 4.5 we obtain a simple interpretation of the genus-zero part of the Lax operator of the r-GD hierarchy in terms of the

1

potential F,’ o Finally, in Section 4.6, we propose a conjecture about the structure of the closed extended r-spin correlators
0

in all genera.

4.1. Brief review of the KP hierarchy

The material of this section is borrowed from the book [13].
Consider formal variables T; for i > 1. A pseudo-differential operator A is a Laurent series

m

A= )" (T, )3,

n=—0o0
where m € Z, dy is considered as a formal variable, and a,(T,, ¢) are formal power series in the variables T; with coefficients
that are complex Laurent polynomials in &:
an(T,. &) € Cle, e [Ty, Ta, .. 1.

The non-negative and negative degree parts of the pseudo-differential operator A are defined by

m
A, = Zana;‘ and A_=A—A,,
n=0

and residue of the operator A is defined by
resA:=a_q.

The Laurent series

m

’A\(T*s“;’z) = Z an(T*,S)Zn’

n=—oo

in which z is a formal variable, is called the symbol of the operator A.



142 A. Buryak, E. Clader and R/J. Tessler / Journal of Geometry and Physics 137 (2019) 132-153

The space of pseudo-differential operators is endowed with a structure of a non-commutative associative algebra, in
which the multiplication is defined by the formula

oo

8)l:of:=Zk(l<_1)'”(k_l+1)ﬂak4

Il axt*

=0

where k € Z,f € Cle, e '[[Ty, T2, .. .11, and the variable x is identified with T;. For any r > 2 and any pseudo-differential
operator A of the form

[e ]
A=+ ad "
n=1
there exists a unique pseudo-differential operatorA% of the form
. [o]
AT =0+ ) @i,
n=0

.
such that (A7) = A.
Consider the pseudo-differential operator

L=d+Y uwd, ujeCle, e "N Ta.. 1.
i>1

The KP hierarchy is the following system of partial differential equations for the power series u;:

0L n—1 [ n ]

— = Y o,cl, n>1. 4.1

AT, (7). (4.1)
For n = 1, the equation is equivalent to

Bu,- Bui .

=, =1,

3T1 0x

compatible with our identification of x with T;.

Remark 4.1. The factor ¢"! is not included usually in the definition of the KP hierarchy (4.1). This rescaling is necessary, if
we want to describe the function exp (F %’C(T*, e)) as a tau-function of the KP hierarchy.

Suppose an operator £ satisfies the system (4.1). Then there exists a pseudo-differential operator P of the form
P=1+) pu(T.. )", (4.2)
n>1
satisfying £ = P o 9, o P~! and
P n—1 n
— =" (L P, n>1. 4.3
oT, COR = (43)
The operator P is called the dressing operator.

We can now introduce the notion of a tau-function. Denote by G, the shift operator, which acts on a power series
f e Cle, e [[Tq, To, .. .]] as follows:

1 1 1
G Ty, T, T3, ...) = Ii——-Th——, T3 — ——,... ).
T T2 T, ) f(l e N )
LetP = 1+ anl Pn(Ty, €)0," be the dressing operator of some operator £ satisfying the KP hierarchy (4.1). Then there
exists a series T € C[e, e '][[Ty, T2, Ts, . . .]] with constant term Tlpmo =1 for which
G,(7)
mt

The series 7 is called a tau-function of the KP hierarchy. The operator £ can be reconstructed from the tau-function t by the
following formula:

’I;:

1, 0%logT
AT, 0T,

Another important object associated to a solution of the KP hierarchy is the wave function (also called the Baker-Akhiezer
function). Let P be the dressing operator of some operator £ satisfying the KP hierarchy (4.1) and let t be the tau-function.

resc" =¢ > 1.
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Let
E(Ty, €,2) = Z Tk 12",
k>1
The wave function is defined by
~ G, (7
Wil e,2) =P of = Lo e e, e ITy, Ty Tz 271
T
It satisfies the equations

ow

="M w, n>1. 44
aT, (LM > (4.4)

4.2. Gelfand-Dickey reduction and the closed r-spin partition function

Let r > 2.1t is easy to see that the equation
(£)-=0 (4.5)
is invariant with respect to the flows of the KP hierarchy (4.1). Therefore, it defines a reduction of the KP hierarchy that is
called the rth Gelfand-Dickey hierarchy. Let

r—2

L= =3+ ) fid.

i=0

Then all the coefficients u; of the operator L can be expressed in terms of the functions fy, f1, . . . , fr_2, and the Gelfand-Dickey
hierarchy can be written as the following system of equations:
oL
— =" 1, n= 1. (4.6)
aT,

Clearly, ;’Tﬁr =0foranyd > 1.

Suppose £ is a solution of the KP hierarchy satisfying the property (4.5). Then the dressing operator P and the tau-function
T can be chosen in such a way that 387'1;, =0and aarsr = Oforany d > 1. In this case, the function t is called a tau-function of
the Gelfand-Dickey hierarchy.

Consider the generating series F%‘:(t;‘, &) of the closed r-spin intersection numbers,

282 1
l, & o ap\" Lo on
Fr C(t:’g): Z o Z <Td11 ...-ernﬂ>g tdll ...[‘dn_
£20,n>1 T 0<aq,..op<r—2
2g—2+4n>0 dq,....dn=0
1
In [14], it is proven that the exponent 17 = e becomes a tau-function of the Gelfand-Dickey hierarchy after the change
of variables
1
Th=——5——5—t{, 0<a=<r-2 d>0, (4.7)

(=) 2y,
where k = o + 1+ rd and
d
Ky o= [ o + 14 ri).
i=0
The corresponding solution L of the Gelfand-Dickey system (4.6) satisfies the initial condition
L|T22:0: 8; + &7 rx. (48)

Let us prove a simple lemma describing the lowest-degree term in ¢ of the operator L.

Lemma 4.2. Define a Poisson bracket {-, -} in the ring C[[T.]](z] by

{z.f} = of, f e ClT.],
{fhfz}:{zwz} = 07 f15f2 E(C[[T*]]
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Then:
(a) The functions f; for 0 < i < r — 2 have the form
fi= Zfi[g]gi—r—kg’ fi[g] e C[[T.]1.

g0
(b) Denote
r—2
Lo:= 0y + Y f%L.

i=0
Then the operator Ly is uniquely determined by the equations

821_.1/r,c
resly/" = —%
0T10T,

1<n<r-—1.
(c) We have
o (CORCE
Proof. Introduce the notation
0 ._ 1 9PF

V=g —_ 1<i<r-1, j=>0,
i X9T,aT; =1= J
9= 3if; 0<i<r—2 j>0.
Then it is easy to see that
i * *
wi=froi + PO ). (4.9)
where P; is a polynomial in fr(f)i, cee, f,(f)z. Moreover, if we assign to f,f’) degree r —k-+j, then the polynomial P; is homogeneous
of degree i + 1. The transformation (4.9) is clearly invertible, so we have
r
fi=swrio Q. w ), (4.10)
where Q; is a homogeneous polynomial of degree r — i if we assign to wj(k) degree j 4+ 1 + k. It remains to note that
) 821_-1/r,c )
Wi = 8—1—1 0 40 gt
’ AT, 0T; (e7)

and parts (a) and (b) of the lemma become clear.
Let us prove part (c), again using the homogeneity argument. We have

r—2
[(1F) 1] = 2R,
* i=0
where a polynomial R; has degree a + r — i. Let us assign to fiw differential degree j and express a polynomial R; as
R =D Riy(F),
j=0
where a polynomial R; j has differential degree j. Clearly, R; o = 0 and for R; 1 we have the formula

r—2
ZRMZ' = {(ﬁ) ,L} .
i=0 +
We have R;j = 0(¢'~"~92), for j > 2, and
Ri1 = & " R(T,) + O(e' " ~42),

where

a

rf:ﬁi(n)zf = [(LT,)+ ,Zo] .
i=0

Part (c) of the lemma is proved. O
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4.3. Special solution of the equations for the wave function

Let L be the solution of the Gelfand-Dickey hierarchy (4.6) associated to the tau-function T7C. Let &(T,, €) be the unique
solution of the system of equations

8<1>

VN, o 4.11
3T, M, (4.11)
that satisfies the initial condition
¢|T22:0 == 1.

Remark 4.3. In the case r = 2, the function @ was first considered in [4], and the first author proved there that the
logarithm of @ coincides with the generating series of the intersection numbers on the moduli space of Riemann surfaces
with boundary. Properties of the function @ for general r were first studied in [2]. Note that the system of equations (4.11)
for the function @ coincides with the system of equations (4.4) for the wave function w of the KP hierarchy. In [2], the authors
found an explicit formula for @ in terms of the wave function w.

Denote ¢ := log @ and consider the expansion
=) &' ¢ €ClLIL
g€z
Let

Tor = el om>1. (4.12)

m(r—2)
(=r)2+F0 mlrm

aq an ¢
Define correlators <‘Cd1 Ty > by
g

>¢ _ 0"y

<.L.a1 .L.Oln
dq by T o on
TR T

tF=0

¢
Lemma 4.4. The correlator <r§‘1 ... r&") can be non-zero only if
g

g>0 (4.13)
L r+1)g-1)

» (7 i — 1) - . (4.14)
P r r

Proof. Let us prove property (4.13). The function ¢ satisfies the following equations:

8¢ _ aa(lr)ee?
aT, eb

Therefore, it is sufficient to prove that for any function & € C[e, e '][[T.]] such that & = O(¢~!), we have ¢"~! (L?e%ee =

O(e~1). From Lemma 4.2 it follows that the operator L+ hastheformLi = > R,-B};, Ri € Cle, e "[[T.]], where R; = O(¢'~™).
By induction, it is easy to prove that

ol 69 ;
Y ]_[ 0')m]m' > 0. (4.15)

my,my,..>20 j>1

> jmj=i

i<n

Since & = O(¢~ '), we have ]_[ 9)”71 = O(e~"). Therefore, R; Ze = 0(¢ ™")and

1 pief
g1 ZRi 29 =0 ).
i=0

Property (4.13) is proved.
Let us prove property (4.14). Consider the linear differential operator

a d r+1 9
0:= (S+d-1)eg- - =
2 (G o T Coe

O0<a<r—1
d>0




146 A. Buryak, E. Clader and R/J. Tessler / Journal of Geometry and Physics 137 (2019) 132-153

We have to prove that O¢ = 0 or, equivalently, 0& = 0. Using the Gelfand-Dickey equations (4.6), it is easy to show that

Then, similarly, using Eq. (4.11) one can show that 0¢ = 0. The lemma is proved. O

Lemma 4.5. The function ¢ satisfies the string equation

a el
(8T1 — Z(l + r)Ti+r8T-) ¢) = r€71Tr. (4'16)

i>1 !
Proof. Eq. (4.16) was proved in [2], but in order to make the paper more self-contained let us give a proof here. Denote by O

the operator in the brackets on the left-hand side of (4.16). Using the Gelfand-Dickey equations (4.6), it is easy to show that
OL = ¢ "r. Then, similarly, using Eq. (4.11) one can show that 0® = (r¢~'T,)®. O

4.4. Closed extended potential and the special solution

1
. . . - ,ext - . .
Consider the generating series F; " (t}) of the closed extended r-spin intersection numbers in genus zero,
1 ext 1 a1 o 1 %,ext @ o
r * frd —_— DEEEEY n - DEEERY n
Fy(t)) = E <rd1 T4 To >0 tg, * gy

The main result of our paper is the following theorem.
Theorem 4.6. We have

1 1

Before proving the theorem, let us formulate several auxiliary statements.

Lemma 4.7. The function ¢q satisfies the equations

K] n
D_@)y] o= (4.17)
oT, z=(¢o)x
Proof. From Lemma 4.2 it follows that the operator L7 has the form Lt = > icn Rid}, where R; = > is0 Rije'™"H,

Rij € C[[T,]]. It is also clear that ZiSn R,-,ozi :13. We have

n

A . dle?
Y R
at, ~ ¢ ; et

Since ¢ = ¢~ '@ + 0(£°), for any numbers my, my, ... > 0, satisfying Y _ jm; = i, we have

T@er = e (¢o) + O(e™), ifmy =iandmy =m3=--- =0,
i X T lo(e~H*, otherwise.
Using formula (4.15) we then get R,-ai—;dj = Rioe (o)}, + O(e ") and
T ie? 1 ) n
! gki = ;;‘R,-,owo); +OE) = L] _ 4O

The lemma is proved. O
Proposition 4.8. The function ¢y satisfies the equations

1
3P¢o Z 2F;C 9o | do 9o

ats, ot) atgaty arvart Aty ol lorl

0O<a,B<r—1, p,q=0. (4.18)
n4v=r—2
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Proof. In the variables T; equations (4.18) look as follows:

Ao ri a+r BZF’ a9 @t %0, (90 i1
0Tosr ) ~ &= b(r —b) 9T,0T, \ 0T, r al, \or, )" "7

By Lemma 4.7, this equation follows from

r—1 l.c
matr a+r 9%F)"  [wrb a+r g\ ~
( ) -y L + a(fr) +2F (L(;) dly, a>1. (4.19)
b(r — b) 8T, 0T, N r +
b=1
Let

:res(ﬁ), 1<i<r-1.
Clearly, the functions f, lOJ ki 01 and Vi, ..., Upop ArE related by an invertible polynomial transformation. Therefore, for
any i € Z, the coeff1c1ents of the Laurent series L' can be considered as polynomials in vy, ...,v,_q. Fora > 1 and

1 < b < r — 1 we have the following identity (see, for example, [13, Sections 3.5 and 3.6]):

1
2F;C  b(r—b) @ atr
dT,dT,  a+r dv_p  °

We see that Eq. (4.19) is equivalent to

r—1
a+r a AT ~b a—+r /~a -~
d(Lr) - —res(L’)d i (L) do. 420
o J4 ; dup 0 °), T ), db (420)
Let us express the left-hand side in the following way:
~a+r o~ o~
a7 = atr (L(;) dip+ 4T ((Lg) dly)
+ r - +

Notice that the underlined term here cancels the underlined term on the right-hand side of (4.20). Therefore, Eq. (4.20) is
equivalent to

r—1

() @), - Eat ) (E),

=1

We compute
r—1 r—1
0 T b b o T ,L ~
Z—res(Lor )d(Lg) :Zf—res(Lor )( dLo) .
b1 avp + b1 r vy +

We see that Eq. (4.21) follows from the property

r—1

a+r (~a b 9 alFT \ b=t o 0] 0] B
LT> -y 22 (L’)L’ ez, z! 422
r (07 ;ravbres o )ko I Sz (4.22)
Recall that (see, for example, [ 13, Section 3.5])
r—2
a+r (\a ad AN i1 —r—1pel0] [0] yrp,—1
L’) - —res(L’)zl ezl L 9. (4.23)
()2l
For any two elements f, g € (C[f[o] .. f[O] 1[[z~ 1] let us write f = g if the difference f — g lies in z‘r‘1C[f[O], .. f[o]
[[z~'1]. Then, using identity (4.23), we can compute
r—2 r—1r-2
a+r (/J 9 O+T 7,7] 0 (~8+r\ QU i1
— Lg) EZ—res(L’) : EZZ—res(Lr)—z’ =
_ [0] 0 0 [0]
r izo Of; b1 im0 OV of;
—

ril:b 0 (atr N b=t ]b 0 (a8t \ b=t
= ———res (LOr ) Ly = ———res (Lor )LOr .
b1 r avb _ b1 r 31)1,

Formula (4.22) is proved. This completes the proof of the proposition. O
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Lemma 4.9. We have

129 _ )1 ifr =2, 1oae L ifr =2,
(Tofo > _{\/1:’ ifr >3, (T()(To ))0— \/%77 ifr > 3. (4.24)

Proof. Let us prove the first equation in (4.24). We compute
32 3 2 2 ofl°
LI (G2 +2%)| =2 3=
8T28Tr,1 8Tr,1 r

To=0 r BTr,1
We proceed as follows:

T,=0

T+=0

B/L\ =1 -~ r—
| [6), 2 o)
0Tr—1 11,20 + T,=0 + x=0
={Z" )| _,=r(r— 1)
Therefore, 81‘2;?0 - = 2(r — 1). Applying changes of variables (4.7) and (4.12), we see that the first equation in (4.24) is
r=117,=0
true.
Now, let us prove the second equation in (4.24). First of all, we compute
%o
=9 "+ X =r.
STt |,y = 0+l
Therefore, we have
53 92 2 20 \’
%o = — ( (o) + =f1°, =2 do =2r2.
dT,0T? =0 aT? T =0 aT;0T, o

Using Eqs. (4.7) and (4.12), we can see that the second equation in (4.24) is also true. O

1
Proof of Theorem 4.6. We have seen (see Section 3.1 and Lemmas 3.6, 3.8) that the function For’ext and the correlators

,ext
<T(; 1'[;11 --~r§;”>r satisfy the following properties:

0
1 ext Y- (r—1)

1 a\ T i

<To Ty Ty >0 =0 unless — +Zdi =n-2, (4.25)
1 1 1 1 1

9 7oext 207:C a2 78Xt 78Xt o 7.ext
T oy 2R CPR W R gapsr—1 pgzo, (426)
g0ty T, oty dty atyaty oty aty~ ' oty

_ o Lext _ 1y eext 1
(‘L’O AR 2>0 =1, (‘L’O EAICH l)2)0 =- (4.27)

It is easy to see that for any non-zero complex constant C, the function 50 defined by
Go(t= 2, 67") == Copo(t5 2, €M)

also satisfies equations (4.18). Let C = /—r and

<t"‘1 an) — "o

G o T gyt oty

t¥=0
. . o~ o an\® .
Lemmas 4.4, 4.9 and Proposition 4.8 imply that the function ¢ and the correlators <r 4, "'fdn”> also satisfy proper-
0

1
ties (4.25)-(4.27). Therefore, it is sufficient to check that these properties are enough to reconstruct the function Fy o
Note that the dimension constraint in property (4.25) implies that n > 2. Therefore, by (4.26), it suffices to determine the
primary correlators

1
— _ —,ext
[t rg gy ) 0o, =T -2 (4.28)

By (4.25), such a correlator can be non-zero only if
I

(r—o)+k=r+1. (4.29)
=1

§
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First of all, suppose that | < 1, so we consider the correlators

1_ap _r— l)a+1) Jext
0

Xa._<1'0 75 (7, , O0<a<r-—1.

Suppose 0 < y < r — 2 and consider the correlator
Y, = <7"0 171178/(%; l)Hz)o

Let us compute it using the topological recursion relation (4.26) in two different ways. Applying (4.26)withae = 1,p=q =10
and B8 = y, we obtain

2
Y, = (V;r )xlxy. (4.30)
On the other hand, applying (4.26) withae = 1,p=q=0and 8 =r — 1, we get
y + 1 3_ ,ext
Y, = ( ) )xlx +(ww V)() X, 1. (4.31)
Fory < r — 3, we have (t/t) 7y ") = 1 (see e.g. [20, Section 0.6]), and, by (4.27), (rgmg~ 2r0_1>0 = 1. Therefore,

equating the right-hand sides of (4.30) E:(I)Ild (4.31), we obtain
Xy41 = (y +1)X1X,, 0<y<r-—2.

Since X; = —, 1 this immediately implies that X, = (— 1)"‘ Jforany0 <o <r—1.
Consider now the correlator (4.28) with [ > 2. Suppose that condition (4.29) is satisfied. Recall that by [I] we denote the

set{1,2,...,1l}.Forasubset] C [I], let
Lext
0
Consider the correlator

m=r+1-— Z(r — i), A= <-[01 (1_[ 1—8“’) (r’ﬂ
7 = <‘L’0 Ty (l_[r ) =1y "+’> ) (4.32)
0

iel iel
Applying (4.26) witha = a1,p = q = 0and 8 = o, we get
1 ext

z= ¥ <<]‘[f§">r€>r<rglro” [T | “‘“> + ) (rrj;k)A,A]. (433)
0 0

Iy=[l p+v=r—2 iel jel Iu=(1]
1el, le] 1el, lgf

Note that the underlined term on the right-hand side of this equation vanishes, because otherwise we should have

r—v+Z(r—aj)+k+r:r+1:>Z(r—a,-):r+(r—v):>
jel iel
I
:>Z(r—ai)zr+2:>2(r—ai)zr+2,
iel i=1
which contradicts (4.29). On the other hand, applying to the correlator (4.32) relation (4.26) witha = a1, p = q¢ = 0, and
B =r — 1, we obtain

r+k—1
7 = AA
z}( s

=l
Tel

r+k_ T+k T+I{— r—1yr41\7-€xt
= Z ( my >A1A]+ Z ( >A1A1+< " )A[”( (.,:0 )+>0 . (4.34)

=11 =1
1el, lg] 1,lel, J#0

Note that here, by the same argument as above, we also do not have terms with closed r-spin correlators. Equating the

1
right-hand side of (4.33) and expression (4.34) and using that( Iz 75 l)’“)0 =(=1)y"1 (r ” , we get
L r+k=1) r+k—1 r+k—1
1) Ay = AlA — AlA;. 435
(=1 a1 Au > m—1 )4 > m 1A (4.35)

Iu=[ll Iy=[n
1el, lg] 1,lel, J#0
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We see that for [ > 2, this equation allows one to compute the primary correlator (4.28) in terms of primary correlators with
smaller L. The theorem is proved. O

4.5. Lax operator and the closed extended potential

1
Let us show that the operator Ly |@1 —o has asimple interpretation in terms of the function F; ™ Define the primary closed
extended potential in genus 0 by

1 ext _ 1 ext
FUS, 0y = B
t5,=0
Proposition 4.10. We have
1
+,ext
ar] 1 -
= — Lo Joar (4.36)
dty (=r)2+Dr Z=(*”*“* )
[21:0

Proof. Using Theorem 4.6 we see that Eq. (4.36) is equivalent to the equation

d —~
¢0 = LO z=rTr

aT; Topi1=0 Torp1=0

that follows from Lemma 4.7 and the fact that, by the string equation (4.16), (¢o )X|T>r+ =0 =TT O

4.6. Main conjecture

We conjecture that foranyb > 1,2, n > 0,0 < a1, ...,a, <r—1,anddy, ..., d, > 0, there is a geometric construction
of correlators
1 ext
aq a —1\b\ "’
(td1 ...tdn”(fo )> s
4
1
.. . . . . . —,ext
generalizing the construction for b = 1and g = 0. Given such correlators, define a generating series Fy’ X (tf)foranyg >0
by
1 ext « 1 o o 1b %A,ext @ N
r’ — —_— e n - e n
Y=Y Yo 2 (rir e mgnes ™) >h ARER
h>0,b>1 n>0 0<aq,....an<r—1
2htb—1=g dseensdn =0

Conjecture 4.11. Forany g > 0,

Text 1-g <r— 1 —
Fg™m =(-1)7 ¢ (f;r z’ﬁfi ’)-

5. Open-closed correspondence

In the forthcoming work [5], the authors generalize the definition of the moduli space of r-spin structures and its Witten
class to the setting of genus-zero surfaces with boundary, or disks. We summarize the construction of [5] in this section and
explain the connection between open and closed extended theory.

5.1. Open r-spin theory
A Riemann surface with boundary is a tuple (C, ¢, X, {z;}, {x;}), where C is an orbifold curve equipped with an involution

¢ : C — C thatrealizes |C| as a union of two copies of the Riemann surface with boundary ¥, glued along their common
boundary; we write

ICl=2 Uys X.
Here, z, ..., 2z, € C are the internal marked points (whose images in |C| lie in X' \ X, and each of which has a partner
Z; '= ¢(z;) whose image lies in X') and x4, ..., X, € 3 X are the boundary marked points. We define a graded r-spin structure

on a Riemann surface with boundary as an orbifold line bundle S on C together with an isomorphism

S =00 | =Y alal - Y alzl— Y (r—2)x] |,
i—1 i1 =
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an involution 5 : S — S lifting ¢, and an additional structure that we refer to as a grading. (Roughly, a grading is an
involution-invariant section of S on the complement of the special points in d X' that changes sign at each boundary marked
point, this notion was first defined for r = 2 in [23].) Here, we assume that the internal twists «q, ..., o, lie in the range
{0, 1,...,r — 1}. Note that we can re-express the genus in terms of the number b of boundary components of X' and the
genus g. of the closed surface obtained from X by gluing a disk to each boundary component:

g=b+g -1

For example, adiskhasg = g. =0and b = 1.

In [5] we construct the moduli space M” I «y) Parameterizing graded r-spin disks, and prove that it is nonempty
exactly when a certain congruence condltlon on the twists ; is satisfied. There should be no difficulty with constructing the
all-genus generalization MY .ay) @0d this space is nonempty if and only if

g,m{aq,
m—1)r—-2)+23" o
eO::(g+ X . )+ Z’=la'eN and e, =14+m+g mod2. (5.1)
There are line bundles I; for eachi = 1, ..., n, defined by the cotangent line to the orbifold curve C at the ith internal

marked point. Furthermore, in genus zero, there is a real analogue of Witten'’s bundle,
W = (R7.(8" ® wr))+,

areal-rank-e, bundle overﬂé/,; ) Whose fiberover (C, ¢, X', {zi}, {x;}, S, 5)consists of $—invariant sections of S¥ Q@wc.

Because MO m.{aq..... , has boundary, one must work with a relative version of the Chern classes of the cotangent
line bundles and the Wltten bundles. In [5] the requisite canonical boundary conditions are defined over the space
PMO,m,[al !!!! ay)» Which is some canonical perturbation of the space MO,m,{al..‘.,an]' From here, we define open r-spin

correlators by

1o
<1_[ T, > = /pMVT (W ® @ L Scarmmcal) (5.2)
0,m,{o

1s-0n}

,,,,,

where e(E, s) is the Euler class relative to the canonical boundary conditions s. Alternatively, the number in (5.2) can be
defined as a weighted, signed count of the number of zeroes of a generic extension of Scanonica, defining this count to be zero
unless e, + 2 Z?:l d; = m+ 2n — 3 + 3g, or in other words, unless

n
€o+2) di=m+2n—6+3g +3b. (5.3)
i=1
One of the key results of [5] is that these intersection numbers are independent of the specific choice of Scanonical-
We define a generating function for genus-zero open r-spin theory by
[

n
1 1
- — 0(1 m al e an Jm
F0 E E ey <l_[tdia > tg, - tg, S -
i=1

n,m>=0 0<aq,..., an<r—1 0
2n+m-2>0 dq,.... dn=0

==

Remark 5.1. We caution the reader, that, similarly to the closed extended theory, the Ramond vanishing property does not
hold for the open r-spin correlators.

Remark 5.2. In the case where r = 2 and all of the insertions are Neveu-Schwarz, open r-spin theory is equivalent to the
intersection theory of disks constructed by Pandharipande, Solomon, and the third author in [21]. This is currently the only
case in which we can extend the theory to higher genus [24], calculate all numbers [25], and prove the relationship to the
wave function in all genus [4,6].

5.2. Connection to closed extended theory

In [5' Theorem 1-3], we prove that the genus-zero open r-SI)iIl potential is related to the closed extended pOtential in the
fOllOWing way.
F - 1 T 1.1
(tg’t;v---,f; ],S) FrEXt + For'EXt,

r—1 r 1 r
ty ety —Tdq 08

We currently do not know of a geometric explanation for the intimate relation between these two theories. Nevertheless,
let us explore more explicitly what is known.
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Heuristically, the dictionary between closed extended and open r-spin theory is given by

(a) replacing a marked point with twist —1 by a boundary component, and
(b) replacing a marked point with twist r — 1 by a boundary marked point.

To make this more precise, we first observe that these exchanges are compatible with the rank-dimension constraints for
the two theories. That is, replacing every boundary component in the open theory with a marked point of twist —1 converts
Eq. (5.3) into Eq. (2.5), and replacing an internal marked point of twist r — 1 by a boundary marked point leaves (5.3)
invariant.! Moreover, at the level of intersection numbers, we have the relation

. 1o 0, 1 ifm=0,
@ _m _ n 7 oext
1_[ Tdi o - (_ )m—] -1 Ofi( rfl)m ifm>1
i=1 0 r To Tg; (To irm =1,
i=1 0

which realizes the above dictionary when there is a single boundary component.
Moreover, this dictionary matches the topological recursion relations in genus zero. In [5], we prove two topological
recursion relations for open r-spin theory. First, for any i € [n] with d; > 0 and anyj € ([n] \ {i}), we have

-
Hr;”o"' = E E tgr;Lll_[t;’ A "‘l_[r + (5.4)
le[n] 0 I [J=[n\{i} a=—1 lel 0 leJ 0
Jjel
1 1
7,0 7,0
ol __my
+ 2 Il o[
my !mz i 1
1LL=(n\(0) lel 0 le] 0
my+my=m

jel
Second, if m > 1, then for any i € [n] with d; > 0, we have
,0

le[n] 0 I ]J=[n\{i} a=—1 lel leJ 0

S

1

_1 [ "
+ Z (m1 ) < dl_l 1—[‘[ > <cr Hrdzlom2+]>

IT1J=ln\(i} lel 0 leJ
my+my=m—1

==

,0

-~

0

Under the above dictionary, every term on the right-hand side of (5.4) or (5.5) corresponds to a single term on the right-hand
side of (3.9) or (3.10) with m Ramond marked points.

Since marked points of twist r — 1 in closed extended theory may have descendents, one would expect the open-closed
correspondence to generalize to that setting. In [3], the first author conjectured the precise equations that the open theory
for r = 2 should satisfy if it incorporates boundary descendents. The construction of boundary descendents when r = 2
and all insertions are Neveu-Schwarz, was carried by Solomon and the third author, and will appear in the near future. It
is also known how to construct these descendents for any r in genus zero, and that will also appear in a forthcoming work.
The resulting topological recursion relations in genus zero are as follows. First, if i € [m], b; > 0, andj € [n], then

<nobh1‘[rd1>: - ¥ <ablnabh1—[fd,>: < nm,hnfdl> , (56)

he[m] le[n] 0 K; ]_[K]:[m]\(i) heK; lel heK] leJ
I1]J=[n]
Jjel

where o, corresponds to b descendents at a boundary marked point; and second, if i € [m], b; > 0, and j € [m]\{i}, then

1 1
0 v

1o
1_[ Oy 1_[ ‘L’ZI = Z Oh—1 1_[ O, 1_[ r;’ o 1—[ O, 1—[ TZI . (5.7)

he[m] le[n] 0 K ]_[K]:[m]\(i) hek; lel 0 heK] leJ

1]J=In]
Jek;

,0

These two equations indeed transform to (3.10) under the open-closed dictionary.

1 These observations are mostly numerological at this point, since the open theory is currently only defined for disks and the closed extended theory in
genus zero with a single —1 twist.
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Perhaps the most surprising effect of the open-closed correspondence is the —1 TRR (equation (3.11)). If we believe the
dictionary, then this equation suggests, on the open side, the existence of “cotangent line classes” corresponding to a bundle
Lpoun associated to a boundary component. These classes should satisfy the following equation for h > 0 and i, j € [n]:

-1
boun ap _ boun__« aq r—2—a p
A [T [Tew) = 5 (ot [Teir [Ton) ([T 58)
peln] qe[m] 0 I]_l];][n] a=0 pel qe[m] 0 peJ 0
ije,
1, 1,
boun “p p
+ 2 ool [Tow) (ITw [1ow) -
111J=I[n] pel qek; 0 peJ qek; 0
Ky LT Kj=Im]

ije]

where a,?m‘“ corresponds to h copies of Loy (There are analogous equations, also, if one or both of i, j lies in [m].) Based on
this hint, the first and third authors have constructed a “class” that satisfies Eq. (5.8)—or, more precisely, a line bundle Lyoup
and boundary conditions for which generic extensions give rise to (5.8). We leave the details of the construction, however,
to future work.
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