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Abstract—Regression testing — running available tests after
each project change — is widely practiced in industry. Despite its
widespread use and importance, regression testing is a costly
activity. Regression test selection (RTS) optimizes regression
testing by selecting only tests affected by project changes. RTS
has been extensively studied and several tools have been deployed
in large projects. However, work on RTS over the last decade has
mostly focused on languages with abstract computing machines
(e.g., JVM). Meanwhile development practices (e.g., frequency
of commits, testing frameworks, compilers) in C++ projects
have dramatically changed and the way we should design and
implement RTS tools and the benefits of those tools is unknown.

We present a design and implementation of an RTS technique,
dubbed RTS++, that targets projects written in C++, which
compile to LLVM IR and use the Google Test testing framework.
RTS++ uses static analysis of a function call graph to select tests.
RTS++ integrates with many existing build systems, including
AutoMake, CMake, and Make. We evaluated RTS++ on 11
large open-source projects, totaling 3,811,916 lines of code. To
the best of our knowledge, this is the largest evaluation of an
RTS technique for C++. We measured the benefits of RTS++
compared to running all available tests (i.e., retest-all). Our
results show that RTS++ reduces the number of executed tests
and end-to-end testing time by 88% and 61% on average.

Index Terms—Regression test selection, static analysis, call
graph, LLVM, Google Test

I. INTRODUCTION

Regression testing — running available tests at each project
revision to check the correctness of recent project changes —
is widely practiced in industry. The widespread availability of
continuous integration systems simplified build configurations
to enable regression testing, and continuous integration ser-
vices, e.g., TravisCI [45], provide necessary resources even to
open-source projects. Although regression testing is important,
it is a rather costly activity, and this cost tends to increase
with the increase in the number of tests and the frequency of
project changes [43], [44]. Many large software organizations,
including Apache, Facebook, Google, Microsoft, Salesforce,
and Uber have reported high cost of regression testing and
have been adopting various techniques to reduce this cost [7],
[13], [15], [21], [23], [42].

Regression test selection (RTS) optimizes the regression
testing activity by selecting tests that are affected by recent
project changes and skipping to run the remaining subset of
tests [5], [14], [39], [50]. Traditionally, RTS techniques keep a
mapping from each test to all code elements (e.g., statements,
basic blocks, functions, classes) that the test might use and
select those tests (at a new project revision) that depend on any
modified code element. The mapping from each test to code
elements can be obtained either statically (without running

the test) or dynamically (during test execution on the old
project revision). The code elements on which dependencies
are kept determines the granularity of an RTS technique, e.g.,
statement-level, function-level.

RTS techniques have been studied for over four decades,
and several surveys summarize RTS status and progress [5],
[14], [50]. Researchers and practitioners have studied RTS
techniques for various programming languages, including
C/C++, C#, and Java (e.g., [10], [16], [27], [34], [35], [47],
[52]). These techniques kept dependencies on various code
elements, such as basic blocks, functions/methods, and classes
(e.g., [10], [16], [42]), and used both static and dynamic
analysis (e.g., [16], [27], [52]).

Motivation. Most of the initial work on RTS techniques was
focused on languages that compile to an executable file, e.g.,
C/C++, but work in the last decade has mostly focused on RTS
for languages with abstract computing machines, such as Java
and C#. Although C++ is still a widely used programming
language and projects written in C++ come with many tests,
researchers arguably focused on Java and C# as they were
easier to analyze and come with an abundance of libraries.
Despite the revolution of C++ compilers (e.g., the popularity
of LLVM), testing frameworks (e.g., the widespread use of
Google Test), and development processes (the popularity of
GitHub and continuous integration services), the impact of
these factors on RTS design, implementation, and provided
benefits is unknown. Additionally, recent practices to evaluate
RTS implementations based on end-to-end time (i.e., time to
run the RTS tool and selected tests) were not used for RTS
tools that target C++ projects for decades.

Technique. We designed, implemented, and evaluated the
first RTS technique, named RTS++, which supports projects
that compile to LLVM IR (intermediate representation) [28],
use Google Test, and follow modern development practices.
RTS++ is the first RTS technique for C++ based on static
function-level call graph analysis. At a new project revision,
RTS++ analyzes code changes and runs those tests that de-
pend on one of the modified/deleted/added functions. RTS++
ensures to select an appropriate set of tests even in the presence
of dynamic dispatch; this is achieved by a separate analysis of
call graphs obtained for both the old and new project revisions.
RTS++ also supports changes in macros and templates by
design, because it analyzes LLVM IR. RTS++ is influenced
by prior RTS techniques that analyze class-firewall, control-
flow graphs, and dangerous-edges [24], [34], [35], [39]. The
key differences include the level on which RTS++ keeps



dependencies, the way analysis is performed, and support for
LLVM IR and Google Test.

We implemented RTS++ as an LLVM compiler pass [29].
The benefit of this approach is that RTS++ can be ex-
tended to support other languages that compile to LLVM
bitcode. RTS++ blends nicely with Google Test and supports
all test types. However, most of RTS++ is independent of
Google Test and could be integrated with other testing frame-
works, such as the Boost Test Library [6]. RTS++ currently
supports AutoMake, CMake, and Make build systems.
Evaluation. We performed an extensive evaluation of RTS++
on 11 open-source projects available on GitHub, totaling
3,811,916 lines of code and 1,709 test cases. To the best of our
knowledge, this is the largest evaluation of an RTS technique
for C++. This is also the first evaluation of an RTS for C++
that uses each revision rather than project releases. We use (up
to) 50 latest revisions of each project.

To assess the benefits of RTS++, we measured savings
compared to retest-all strategy — running all test at each project
revision (i.e., a strategy oblivious of the program changes). We
compared the number of executed tests and end-to-end testing
time. Our results show that RTS++ can provide substantial
savings. RTS++ reduced the number of tests of up to 97.20%
(88% on average) compared to retest-all. RTS++ reduced
the end-to-end testing time up to 88.09% (61% on average)
compared to retest-all (considering only those projects when
testing time is substantial). These were surprising findings
as recent work for Java showed that using static method
call graph, which is analogous to function members in C++,
provides no benefits [16], [27], [51].

The main contributions of this paper include:

* RTS++, an RTS technique, based on a static function-level
call graph analysis.

* Implementation of RTS++ for projects that compile to
LLVM IR and use the Google Test testing framework.

* Extensive evaluation of RTS++ on 11 open-source projects,
totaling 3,811,916 lines of code and 1,709 test cases.

II. BACKGROUND AND EXAMPLE

This section provides a brief background on Google Test
and illustrates our technique with a simple example.

A. Google Test

Google Test [18] is a popular testing framework for au-
tomating test execution for C++ programs. Its design is ispired
by JUnit [25], a popular testing framework for Java projects.
The terminology used by Google Test is similar to that used by
JUnit: a single test function is a fest and a class containing tests
is a fest case. Google Test supports five different types of tests:
Normal Test, Fixture Test, Typed Test, Type-Parameterized
Test, and Value-Parameterized Test. RTS++ supports all avail-
able test types.

Figure la shows an example (unittest.cc) that illus-
trates Normal Tests. The example has three classes under
test (A, B, and C) and one test case (UnitTest) with three

// unittest.cc // unittest.cc

1 1
2 class A { 2 class A {
3 public: 3 public:
4 virtual int foo() { 4 virtual int foo() {
5 return 5; } 5 return 5; }
6} 6 };
7 class B : public A { 7 class B : public A {
8 public: 8 public:
9 virtual int foo() { 9 virtual int foo() {
10 return 20; } 10 return 30; }
1} 11}
12 class C: public A { 12 class C: public A {
13 13 public:
14 14 virtual int foo() {
15 15 return 30; }
16 }; 16 };
17 17
18 TEST(UnitTest, TestA) { 18 TEST(UnitTest, TestA) {
19 Aa; 19 Aa;
20 EXPECT_EQ(5, a.foo()); 20 EXPECT_EQ(5, a.foo());
21 } 21
22 TEST(UnitTest, TestB) { 22 %’EST(UnitTest, TestB) {
23 B b; 23 B b;
24 EXPECT_EQ(20, b.foo()); 24 EXPECT_EQ(20, b.foo());
25} 25}
26 TEST(UnitTest, TestC) { 26 TEST(UnitTest, TestC) {
27 Cc; 27 Cc;
28 EXPECT_EQ(5, c.foo()); 28 EXPECT_EQ(5, c.foo());
29 } 29 }

(a) R revision (b) R’ revision

Fig. 1: An illustrative example that shows the old (left) and
new (right) revisions of a simple project with three classes and

three test cases.
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Fig. 2: Annotated dependency graphs for the illustrative ex-
ample. Each node is a function and there is an edge if one
function might invoke another function; the shape of the node
is squared if the checksum for that node changed between two
revisions; newly added nodes are always considered modified.

tests (TestA, TestB, and TestC). TEST, similar to @Test
annotation in JUnit, is a macro used for writing Normal Tests
available in the Google Test framework and EXPECT_EQ is a
macro to assert if an actual value (given as the first argument)
matches the expected value (given as the second argument).

B. RTS++ Illustrated

Assume, for the sake of the example, that a developer
integrates RTS++ at the time of the revision R shown in
Figure la. If the developer runs tests by running a target
from a build script, RTS++ will intercept the execution of
the build script after the compilation (and before running
tests) and analyze the call graph on LLVM IR. RTS++ will
statically build an annotated dependency graph as shown in
Figure 2a. Test nodes are shown as black nodes and other
functions and function members are shown as white circles or
red squares. An edge that connects two nodes (n,n’) shows



that function n may invoke function n’. Although the function
member foo is virtual, generated IR does not use any virtual
table because the exact type of each variable and the function
member to be invoked is known at the compilation time. In the
next section, we describe our support for dynamic dispatch.
After the annotated dependency graph is built for the current
revision, RTS++ performs the traversal of both the old graph
and the new graph to detect affected tests, i.e., those tests
whose outcome may be affected by changes. Because this is
the first revision of the program that RTS++ analyzed, the old
graph does not yet exist and so RTS++ marks all available
tests as affected. Additionally, RTS++ stores the new graph
for future use.

Assume that the developer modifies the original code to
obtain the new code revision R’ shown in Figure 1b and
runs the tests. RTS++ constructs the new dependency graph
shown in Figure 2b. Next, RTS++ traverses both graphs (one
at a time) to detect affected tests. It detects modified nodes
by comparing the checksums of function bodies between two
revisions; these nodes that are modified are marked as red
squares in Figure 2. To detect all affected tests, RTS++
computes the upward transitive closure [3] and finds that
TestB is affected based on the old graph and tests TestB
and TestC are affected based on the new graph. The final
result is the union of the two traversals.

The traversal of the new graph was necessary to ensure
that we detect those tests that are affected by changes in
class hierarchies. While we can often detect the change in
a function by observing a change in the metadata in IR, if a
function member is added in a subclass and a function that uses
that member accepts a pointer to a superclass (e.g., fun (A
xa) ), no changes can be detected; traversing both old and
new graphs solves this problem.

III. TECHNIQUE AND IMPLEMENTATION

This section describes RTS++ technique and its implemen-
tation. We keep our implementation generic to enable future
support for other compilers and testing frameworks. Figure 3
shows a high-level overview of the RTS++ integration into the
existing testing processes. RTS++ intercepts the build process,
perform analysis to detect affected tests and sends the list of
affected tests to the testing framework, which then simply runs
those tests.

RTS++ includes three traditional RTS phases, which are all
performed statically:

o Analysis phase detects the tests that need to be re-executed
due to code changes (Section III-A).

o Execution phase executes only the selected tests and skips
other available tests (Section III-B).

o Collection phase saves statically computed metadata needed
by the next analysis phase and constructs the annotated
program dependency graph (Section III-C).

An annotated dependency graph is the key data structure
that allows RTS++ to select the tests to be executed. We define
it as a tuple G = (N, E,C,T). N is the set of nodes, such
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Fig. 3: Overview of the testing process that integrates RTS++.
The integration requires minimal changes in the build process.
RTS++ processes executable files to obtain a dependency
graph for the current project revision, analyzes both old and
new dependency graphs to detect affected tests, stores new
dependency graph for future use, and sends the list of affected
tests to the testing framework.

that each node is a fully qualified name of a function. A fully
qualified name includes the namespace, declaring class name,
which is optional because a function in C++ need not be inside
a class, and the function signature, i.e., function name with
argument types. F is the set of edges; an edge connects two
nodes iff one function may invoke another function. C' is a
map from a node to its checksum value, which is computed
at the time of the graph construction. Finally, 7" is the set of
tests (1" C N).

Next, we describe each phase of RTS++ in more detail.
Note that we describe the analysis and collection as separate
phases although they are implemented as one pass in our tool;
we take this approach to be consistent with prior work on RTS.

A. Analysis

The analysis phase identifies tests affected by code changes.
RTS++ analyzes all .bc files (i.e., files in LLVM bitstream
file format that contains encoding of LLVM IR) in the project.
Note that, based on the project configuration, there may be one
or more .bc files, and each file may contain one or more tests.
Without loss of generality, we describe the analysis performed
on a single .bc file that contains multiple tests. Furthermore,
we assume that all libraries are statically linked, i.e., analyzed
.bc files contains every piece of code that may be needed
during test execution. This is achieved by using —f1to (Link
Time Optimization) argument for the linker.

The input to the analysis phase is GG, an annotated depen-
dency graph for the previous code revision, and the .bc file
for the current code revision. The graph G is empty when
the analysis is invoked for the first time; in this case, all
tests discovered in the new graph are considered affected.
Otherwise, the graph G is constructed in the collection phase
of the previous run (Section III-C).



Require: G - graph for the old revision
Require: bc - bitcode file for the current/new revision
1: function ANALYSIS(G, bc)
2: G’ < CONSTRUCTCALLGRAPH (bc)
3: affected + ()
4: affected += FINDAFFECTED(G.E, G.C)
5: affected += FINDAFFECTED(G".E, G.C)
6: return {7 | 7 € affected N7 € G'.T'}
7: end function

Require: edges - edges in the graph being traversed revision
Require: checksums - map from each function to its checksum in
the old revision
8: function FINDAFFECTED(edges, checksums)
9: affected’ < ()

10: repeat

11: affected < affected’

12: for all (f,f') € edges do

13: if CKFUN(f") # checksums[f'| V f' € affected then
14: affected’ += {f, f'}

15: end if

16: end for

17: until |affected| == |affected’]

18: return affected’

19: end function

Fig. 4: Analysis phase in RTS++. The algorithm shown
is intentionally kept simple (and inefficient) to simply the
presentation in the paper.

Figure 4 shows the algorithm for the analysis phase. First,
on line 2, RTS++ constructs an annotated dependency graph
for the new version of the executable. Second (line 3), it
defines an empty set that will represent a set of all affected
functions. A function is affected if its checksum is modified;
we assume the existence of a function CKFUN that takes a
function as an input and computes a checksum of its body.

Third, the algorithm invokes the FindAffected function
on both the old graph and the new graph. The reason to
traverse both graphs is to ensure that tests affected due to
changes in the class hierarchy are included in the set of
affected tests; the old graph is traversed to detect those tests
that are affected by a removal of a virtual function member
from a class hierarchy, and the new graph is traversed to detect
those tests that are affected by an addition of a virtual function
member in a class hierarchy. Finally, on line 6, the algorithm
extracts only tests available in the new revision from the set
of impacted functions, which is the final set of selected tests.

FindAffected function traverses the edges of the graph
and for each callee, it computes its new checksum value by
invoking the CKFUN function. If the checksum is different
from the time when the graph was constructed or the function
is in the set of affected nodes, then both the caller and callee
are added to the set of affected nodes. The loop stops when
it reaches the fixed-point, i.e., the set of affected nodes does
not change.

We implemented the analysis phase as an LLVM Pass.
Specifically, we leverage the LLVM’s CallGraphSCCPass
pass, which allows us to traverse the call graph of an exe-
cutable [8]. The main function in the pass that we override,

runOnSCC, runs on every node in a call graph. One of the
reasons for our design decision to traverse the old and new
graphs separately (rather than simultaneously, as it was done
for dynamic RTS with control-flow graphs [34], [38]) was the
existence of the Cal1GraphSCCPass pass. We leverage this
pass to obtain an efficient and robust implementation, which
follows from well-tested LLVM code.

B. Execution

The execution phase runs the selected tests discovered dur-
ing analysis. Integration of RTS++ into the well established
testing process is straightforward.

In C++ projects, it is common to have a target in a build
script for running tests. Projects that use Google Test simply
invoke (one or more) executables that contain tests, e.g.,
./unittests. Rather than running the executable, we per-
form four steps. First, we obtain the list of available tests in the
executable by executing ./unittests --gtest list
tests. This list is needed to be able to filter only some
tests for the execution as described below. Second, we invoke
RTS++’s analysis phase to select tests. Third, we map names
of selected tests to the names used by Google Test obtain in
the first step. Finally, we invoke the original executable and
pass the list of tests to execute via . /unittests -—gtest
filter=colon_separated_list_of_tests.

An implementation challenge in the execution phase is
keeping track of the test names between the source code
(which we refer to as filter test names) and the names
Google Test uses in the executable (which we refer to as
the compiled test names). Table I shows compiled and fil-
ter test names for various test types. Name matching for
Normal Test or a Fixture Test is straightforward. Next, for
Typed Test, we match the types and construct the filter
test name. For Type-Parameterized Test, we overapproxi-
mate the set of tests by using global prefix, e.g., ——gtest
filter=+TypeParamTest/0.Testl. Finally, we check
if a test is Value-Parameterized Test, and if so, we run
the test with generic prefix and suffix (e.g., ——gtest
filter=+«Value—- ParamTest.Testl/x*).

C. Collection

The collection phase prepares the dependency graph used in
the current and next run of the analysis phase. Recall that the
analysis and collection phases are implemented as one pass
in RTS++. In this section, we describe the way we build and
annotate the graph; the algorithm is shown in Figure 5.

First, we build a class hierarchy by processing .bc files.
Second, we traverse the call graph to save dependencies
between functions. If a call is non-virtual, we simply store
that the caller function depends on the callee function. In
the case of a virtual call, we find the base class (let’s call
it C) based on the call and hierarchy that we built. Then, we
traverse all classes in the hierarchy of C (both superclasses and
subclasses). If a class (let’s call it B) in the hierarchy has a
function member with the same signature as the callee (the SIG
function obtains a signature for a given function), we store the



TABLE I: “Filter” and “Compiled” Test Names; Filter Format is Used by Google Test to Exclude Tests from Execution and

Compiled Format is Available in Executable Files.

Test Type Filter Name

Compiled Name

TestCase.TestName
FixtureTest. TestName
TypedTest/0.Test1 # TypeParam = A

Normal Test

Fixture Test

Typed Test
Type-Parameterized Test

Value-Parameterized Test  Prefix/ValueParamTest. Test1/0

Prefix/TypeParamTest/0.Testl # TypeParam = A

TestCase_TestName_Test:: TestBody()
FixtureTest_TestName_Test:: TestBody()
TypedTest_Testl_Test<<A>::TestBody()
gtest_case_TypeParamTest:: Test] <A>::TestBody()
ValueParamTest_Test1_Test:: TestBody()

Require: bc - bitcode file
1: function CONSTRUCTCALLGRAPH(bc)
2: N+ E+C+T<+10

3: inheritance < ()

4: for all ¢ € EXTRACTCLASSES(bc) do

5: for all s € GETSUPERCLASSES(c) do

6: inheritance += (c, s)

7: end for

8: end for

9: for all ¢ € EXTRACTCLASSES(bc) do

10: for all m € GETMETHODS(c) do

11: N += {m}

12: if ISTEST(m) then

13: T +={m}

14: end if

15: cksum + 0

16: for all ¢ € GETINSTRUCTIONS(m) do
17: cksum += CKFUN(%)

18: if ISFUNCTIONCALL(¢) then

19: callee < EXTRACTCALLEE(%)
20: > for non-virtual calls
21: E += {(m,callee)}
22: > for virtual calls
23: base <— BASECLS(DECLCLS(callee))
24 E += {(m,m/)| m'ismemberof ¢’
25: A (', base) € inheritance
26: ASIG(m') == S1G(callee) }
27: end if

28: end for
29: C += {(m, cksum)}

30: end for

31: end for
32: return (N, E,C,T)
33: end function

Fig. 5: Collection phase in RTS++.

dependency between the caller and the called function member
in class B. However, we do not store dependencies on classes
that do not implement the virtual function member; keeping
such dependencies are unnecessary because we traverse both
the old and the new graphs during the analysis phase.

To find the base class for a virtual function call we analyze
getelementptr instruction, which contains the index into
a virtual table. This is one of the places where we depend on
a specific ABI, specifically the Itanium C++ ABL

During the graph traversal, we also compute the checksum
of each function; we create a mapping from each function to
its checksum. We extend the FunctionComparator class
available in LLVM to compute SHA-1 checksum based on
instruction opcodes, constant values, and global values used
as operands of instructions.

TABLE II: Supported Change Types.

Name  Description

DI Delete an instance initializer

Al Add an instance initializer

CI Change an instance initializer

DSM Delete a static non-initializer method
ASM Add a static non-initializer method

CSM Change a static non-initializer method
DIM Delete an instance non-initializer method
AIM Add an instance non-initializer method
CIM Change an instance non-initializer method
DGF Delete a global function

AGD Add a global function

MGF  Modify a global function

D. Build System Integration

RTS++ can be easily integrated with AutoMake, CMake,
and Make with minimal changes to the build scripts by using
the GNU Gold Linker [17], which is distributed with the newer
versions of the GNU Bintools, and link time optimization
(LTO). To enable link time optimization, the flag —flto
should be passed to both the compiler and the linker. Ad-
ditionally, the option save—temps should be passed to the
linker to emit the bitcode for the executable.

E. Safety

RTS++ is safe, i.e., it guarantees to select tests affected
by changes, for any code change except those related to
non-primitive global variables, function pointers, and use of
set jump and longjump; if such code is present, a user has
to decide if RTS++ should be used. The safety of RTS++
follows from the safety of RTS techniques based on control-
flow dependencies, which was proven in the past [38]. Table II
shows the list of supported change types, i.e., types of changes
for which RTS++ can detect affected tests. We leave it as
future work to formally prove the safety of RTS++.

F. Generalizability

Among the three phases — analysis, execution, and collection
— two of them — analysis and collection — are independent on
any testing framework. Our implementation follows a modular
design, such that each phase can easily be replaced to support a
new testing framework, different hashing function, new graph
traversal, etc.

IV. EVALUATION
Our evaluation answers the following research questions:

RQ1: What is the reduction in the number of executed
tests obtained by RTS++ compared to retest-all across many
revisions of popular open-source projects?



TABLE III: Subjects Used in Our Evaluation.
Project URL #Revs. SHA LOC Binary (MB) BuildSys  #Tests  #Test Cases
Abseil https://github.com/abseil/abseil-cpp 14 9c9477fa 53,468 100 CMake 1,084 207
Boringssl https://github.com/google/boringssl.git 50 9b2c6a9 193,262 56 CMake 839 57
gRPC https://github.com/grpc/grpc.git 50 17f682d 1,406,407 1,934 CMake 1,682 150
Kokkos https://github.com/kokkos/kokkos.git 50 d3a9419 128,452 45 Make 227 29
Libcouchbase  https://github.com/couchbase/libcouchbase.git 50 b028b9e 98,931 12 CMake 303 62
Libtins https://github.com/mfontanini/libtins.git 50 b18c2ce 92,707 285 CMake 797 63
OpenCV https://github.com/opencv/opencv.git 33 9a8a%964 1,018,274 670 CMake 21,106 673
Protobuf https://github.com/google/protobuf.git 50 264e615 317,477 116  AutoMake 2,086 193
Rapidjson https://github.com/Tencent/rapidjson.git 34 af223d4 82,536 46 CMake 425 33
Rocksdb https://github.com/facebook/rocksdb.git 31 2¢2f388 238,995 13,886 Make 2,571 208
Tiny-dnn https://github.com/tiny-dnn/tiny-dnn.git 45 152594 181,407 9 CMake 294 34
Total N/A 407 N/A 3,811,916 17,159 N/A 31414 1709
Average N/A 37 N/A 346,538 1,560 N/A 2,856 155

RQ2: What is the reduction in the end-to-end testing time ob-
tained by RTS++ compared to retest-all across many revisions
of popular open-source projects?

Prior to answering these research questions (Section IV-D),
we describe the system configuration (Section IV-A), the sub-
jects used in our experiments (Section IV-B) and experiment
setup (Section IV-C).

A. System Configuration

We ran experiments on a 4-core 3.9 GHz AMD 1800X CPU
with 8GB of RAM running Ubuntu Linux 16.04 LTS. We
used Clang++ and LLVM 6 as well as Google Test 1.8. Some
projects bundled their own version of Google Test, which
was either 1.7 or 1.8. We ran experiments several times and
observed only minor noise in execution time across multiple
runs of experiments.

B. Subjects

As stated earlier, there has been no recent work on re-
gression testing for C++ projects. Therefore, we had to find
projects that would be appropriate to be used for evaluating
our technique/implementation. Thus, our minor contribution
is the list of projects and buildable revisions that could be
used for evaluating regression testing techniques for C++. We
followed steps taken by recent research on regression testing
for Java: we searched for popular projects (in terms of the
number of stars) on GitHub. Additionally, we filtered out those
projects that do not use AutoMake/CMake/Make or Google
Test. We also ignored those projects that we were not able to
build successfully on our platforms; we dedicated up to 8h for
setting up each project.

Table III shows the final set of projects used in our eval-
uation. For each project we show its name, URL, number of
buildable revisions (in the latest 50 revisions), latest SHA at
the time of our experiments, number of lines of code (LOC),
size of the binary file, build system used, number of tests,
and number of test cases; we defined “test” and “test case”
in Section II. The last five columns are computed for the
latest revision. We can see that the projects differ in size
(between 53,468 and 1,406,407), build system, and number
of tests (between 227 and 21,106).

The last two rows show, when applicable, the total and
average values across all projects. In sum, we used 11 projects,
totaling 3,811,916 lines of code and 31,414 tests.

Abseil is a collection of C++ code that extends the C++
standard library; this project migrated to CMake recently,
which is the reason we use only a small number of revisions.
Boringssl is Google’s fork of OpenSSL. gRPC is a modern
open-source remote procedure call (RPC) framework devel-
oped by Google. Kokkos is a programming model in C++ that
provides abstractions for code to run efficiently on different
hardware such as multi-core CPUs and GPUs. Libcouchbase is
the C client for Couchbase (an open-source NoSQL database).
Libtins is a high-level C++ library for sending, receiving,
and manipulating network packets. OpenCV stands for Open
Source Computer Vision Library. Protobuf is a language and
platform agnostic method for serializing data. Rapidjson is
a C++ library for parsing and generating JavaScript Object
Notation (JSON). Rocksdb is an embedded database for key-
value storage developed by Facebook. Tiny-dnn is a header-
only deep learning library written in C++. In the end, we were
able to build most of revisions for most of the projects, and
some failing builds were expected as building old revisions
leads to a number of challenges [46].

C. Experiment Setup

Our experiment setup closely follows recent work on RTS
for Java, which performed extensive evaluations using open-
source projects and large number of revisions [16], [27], [35],
[51]; this evaluation approach started with work on Chianti.
Our setup only differs in the details due to the differences
in the technology used by C++ projects, e.g., integration
with a build system, obtaining the list of available tests, etc.
Specifically, we perform the following steps for each subject
(P) in Table III.

a) clone (P, P.SHA) - clone the latest revision (as spec-
ified in Table III) of the project,

b) checkout (P, -50) - checkout a revision from the
history that is 50 commits prior to the latest revision. If
a project does not have 50 revisions, checkout the first
revision available in the repo,



TABLE IV: Test Selection Results Using RTS++.
“#Tests retest-all” - total number of tests across all revisions executed, “#Tests RTS++" - total number of tests executed with RTS++ across
all revisions, “Time retest-all” - total time to execute all tests, “Time RTS++" - total time to execute tests with RTS++, “Ratio test” - ratio
of executed tests retest-all/ RTS++ * 100, “Ratio time” - ratio of execution time retest-all/ RTS++ * 100.

Project #Tests Time [s] Ratio [%]
retest-all  RTS++ retest-all RTS++ test time
Abseil 15,176 1,312 2,583 617 8.65 23.90
Boringssl 41,523 6,756 1,606 478  16.27 29.76
gRPC 84,085 4,797 31,637 17,511 5.70 55.35
Kokkos 5,609 1,251 13,540 3,614 22.30 26.69
Libcouchbase 14,668 1,403 1,494 178 9.57 11.91
Libtins 38,922 1,607 43 1,334 4.13  3,083.39
OpenCV 695,505 206,804 11,621 4,364 29.73 37.55
Protobuf 104,300 2,918 796 2,357 2.80 296.13
Rapidjson 14,349 1,546 929 805 10.77 86.66
Rocksdb 78,390 6,715 39,517 25,487 8.57 64.50
Tiny-dnn 13,034 525 48,977 5,849 4.03 11.94
Total 1,105,561 235,634 152,743 62,594 - -
Average - - - - 1114 38.70*

*the average ratio for time excludes Libtins and Protobuf; these projects are the smallest in terms of the test execution time and analysis

and collections phases dominate the test execution phase.

¢) build (P) - build the current revision. If the build (of
at least one module) is successful proceed to the next
step; otherwise go to step f),

d) retest—-all (P) - run all available tests,

e) RTS++ (P) - integrate RTS++ into the project, analyze
the project, execute selected tests, and collect new meta-
data that will be used in the next analysis run,

f) if this is the latest revision, stop the loop; otherwise
checkout the subsequent revision and go to step c).

During the execution of steps d) and e), we collect exe-
cution logs that we post-process to extract data necessary to
answer our research questions. From step d), we extract the
number of available tests (N,etest—qy;) and total testing time
(Tretest—aqir)- From step e), we extract the number of selected
tests (Nrrs++) and end-to-end testing time (Trrs++); end-to-
end testing time includes all phases of RTS++: analysis, test
filtering, execution, and collection.

Based on the extracted data, we compute two key metrics
used to evaluate the benefits of RTS++. (1) Test selection
ratio (Nyequction), Which is computed as a ratio of the number
of selected tests over the total number of available tests,
i.e., Nreduction= NrTS++/ Nyetest—an™ 100. (2) Time ratio
(Treduction), Which is computed as a ratio of end-to-end
time taken by RTS++ and testing time for retest-all, i.e.,
Treduction= TRTS++/ Tretest—aqu* 100. Finally we compute the
average values for both N,cquction and Trequction across all
revisions used in the experiments.

D. Results

a) Reduction in the Number of Executed Tests: This
section answers RQI1. Table IV summarizes the number of
executed tests for all projects used in the study. Column 2
shows the total number across all revisions of executed tests

with retest-all, and Column 3 shows the total number of
selected tests with RTS++. Column 6 shows test selection
ratio (Nyequction) averaged across all revisions. We can see
that test selection ratio varies from 2.80% (for Protobuf) to
29.73% (for OpenCV).

The last two rows of the table show total and average values,
across all projects, if applicable. It is worth noting that the

total number of tests executed by retest-all and RTS++ was
1,105,561 and 235,634, respectively.

b) Reduction in the End-to-End Test Execution Time:
This section answers RQ2. Table IV also shows end-to-end
testing time for all projects used in the study. Column 4 show
the total time (across all revisions) to run tests with retest-
all. Column 5 shows total end-to-end testing time for RTS++.
Column 7 shows time ratio (T,cquction) averaged across all
revisions. The results show that RTS++ substantially reduces
time for all but two projects. These two projects, Libtins and
Protobuf are the smallest among all projects used in our study
in terms of the test execution time, and RTS++ analysis and
collection phases take more time than the test execution phase;
this is expected for projects with short test time, and it is a
reasonable expectation that these projects would not benefit
from any RTS technique [16].

As before, the last two rows of the table show total and
average values, across all projects if applicable. It is worth
noting that the total time when using retest-all and RTS++
was 152,743 seconds and 62,594 seconds, respectively.

¢) Representative Case Studies: Figures 6 and 7 visual-
ize the raw data extracted from the execution logs, as described
in the previous section, for Boringssl and gRPC, respectively.
Each figure has tree subfigures: (a) number of tests executed
with retest-all and RTS++, (b) end-to-end testing time for
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Fig. 7: Results for gRPC.

retest-all and RTS++, and (c) cumulative end-to-end testing
time over all revisions used in our experiments. We do not
show plots for other projects due to the space limits.

We can observe (figures 6a and 7a) that at no revision,
RTS++ selects all the tests. As expected, and one of the
assertions in our scripts, the number of tests run by retest-
all and RTS++ has to be the same for the first revisions used
in the experiments.

Furthermore, we can observe (figures 6b and 7b) that the
end-to-end testing time for RTS++ is longer than testing time
for retest-all for the first revision; this is expected as all tests
are executed and RTS++ collects metadata, i.e., checksums
and the annotated call graph.

Finally, we can observe (figures 6¢ and 7c) that RTS++
can save substantial time even when only a subset of software
history is considered.

V. DISCUSSION

Build time vs. test time. For the sake of completeness, we
report and compare build time (excluding test time) and test
time for projects used in our experiments. Figure 8 shows,
for each project, build time (blue) and test time (green). Note
that we use the log scale for y-axis. The results showed in
this figure are only for the latest revisions of the projects.
Although testing may not always be the dominant part of a
build, we focus on speeding up test execution, as recent work

on incremental build systems [1], [3] does not support fine-
grained test selection and testing still takes substantial time.
Java vs. C++. Recent work on RTS for Java has shown that
two language features — dynamic class loading and reflection
— may compromise the safety of static RTS techniques [27].
A static RTS technique for C++ does not face those issues be-
cause C++ does not support reflection and projects frequently
statically link libraries for the testing purpose, i.e., the entire
call graph is known. We also note that there was no need to
implement the smart checksum [27], i.e., the checksum that
ignores debug info not observed by tests, e.g., original source
code lines. Clang strips those debug info automatically unless
a developer specifies the O0 optimization level; none of the
projects used in our study uses OO.

Note that RTS++ supports various C++ language features,

including preprocessor macros and templates. This is sup-
ported by design because we analyze executable file, where
macros and templates are not available any longer.
Test order dependencies. Dependencies among tests (e.g.,
via shared/static variables) may cause problems for an RTS
tool [4], [19], [30], [31]. If a tool selects only dependent test,
the test may fail as it will start in an unexpected state. If such
cases exist, a developer can specify that some tests have to be
run prior to some other tests.

Zero selected tests. We have observed that RTS++ selects no
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Fig. 8: Build vs. test time for projects used in the experiments.

test at many revisions (e.g., Figure 7b); similar observations
were made for Java projects [16]. Our closer look at several
revisions revealed that developers frequently change other files
that do not impact tests, e.g., README. However, further
research is needed to understand various types of changes and
their potential impact on an RTS tool [9].

Future work. Although our experiments showed that RTS++
can be useful for large projects that have long testing time,
several other questions remain. (1) Improve precision by
removing dependency on classes that are not instantiated by
a test. Namely, if a test only instantiates classes A and B
(such that B extends 2), we do not need to add dependencies
on other classes that extend class A. We can detect this
statically by finding the set of constructors potentially invoked
from the test. (2) Improve precision by dynamically collecting
dependencies. We plan to explore using LLVM XRay instru-
mentation tool [49] to collect dynamic dependencies. It will be
interesting to compare differences in precision and overhead
for static and dynamic approaches. (3) Support the Boost
testing framework [6] and integrate RTS++ with the Bazel
build system [3]. (4) Develop adaptive [2] and hybrid [52]
RTS techniques for C++.

VI. THREATS TO VALIDITY

Our work is subject to several threats, similar to prior work

on regression testing and RTS.
External. We used 11 projects in our evaluation, but these
projects may not be representative of all C++ projects. To
mitigate this threat, we searched for popular open-source
projects on GitHub developed by large software organizations,
which differ in size and the application domain.

We ran our experiments on (max) 50 revisions per project.
Had we used a different number of revisions or different time
frame, we could have observed different results. We chose the
number of revisions per project in line with recent work on
RTS; looking at longer sequences leads to broken builds due
to changes in compiler version, build system, etc. [46].

The reported results are obtained on a single platform.
However, our findings could be different if we run experiments
on a different platform. To mitigate this threat, we did run a

subset of experiments on another platform; while the absolute
numbers are not exactly the same across platforms, the benefits
of using RTS++ are clear.

Internal. Our implementation and scripts may contain bugs,
which may impact our findings. To mitigate this threat we
performed three-fold testing approach. First, we wrote a num-
ber of unit tests for our tool, which is a common practice in
industry. Second, two of the authors manually inspected more
than 200 revisions in the projects used in our study and agreed
if tests should be selected or not; manually finding the exact
set of tests that should be executed is infeasible. In the future,
we plan to check safety, precision, and generality of RTS++
by adopting the RTSCheck framework [53] to C/C++. Finally,
the scripts for running the experiments were built on top of
the infrastructure used by other researchers.

Our implementation currently does not detect function in-

vocations via pointers. This requires more engineering effort,
and considering that function pointers are not widely used in
C++, we plan to support this in the future.
Construct. Although several RTS techniques have been pro-
posed for C/C++, to the best of our knowledge, there are
no publicly available tools that implement these techniques.
As mentioned earlier in this paper, there has been no active
research on RTS for C/C++ for over a decade, so even if
some tools were publicly available they would not be readily
applicable to projects that use LLVM and Google Test.

VII. RELATED WORK

RTS has been studied for decades, but it remains a relevant
topic [22], [33]; several surveys nicely summarize prior work
on RTS [5], [14], [50]. In this section we briefly present most
closely related work and contrast the prior work with the work
presented in this paper.

Early techniques supported projects written in C/C++ [10],
[26], [37], [39]. Rothermel and Harrold [37] presented a tech-
nique (for C) that builds control dependency graphs to detect
affected tests; this work was evaluated in later years [38]. In
their work, dependencies for tests were collected dynamically.
Chen et al. [10] developed a technique that combines static
and dynamic analysis for C; dynamic part was used to capture



function invocations via pointers. Kung et al. [26] introduced
class firewall approach to detect affected tests by tracking de-
pendencies among classes. Rothermel et al. [39] were among
the first to study RTS for C++ and object-oriented languages in
general. Their work uses interprocedural control flow graph to
select tests, analyzes source code of two project revisions, and
uses dynamic coverage. Our work targets C++ and uses call
graph analysis to detect affected tests. RTS++, unlike prior
work, supports projects that compile to LLVM bitcode and
use Google Test. Moreover, we evaluated our technique on
actual revisions from publicly available open-source projects
rather than on project releases.

Ren et al. [35] developed Chianti, a tool that selects affected
tests by detecting the impact of various atomic changes on a
call graph. Chianti was developed for Java, analyzes source
code to detect atomic changes, uses dynamic call graphs,
and is evaluated only on a single project. Jang et al. [24]
developed an approach similar to Chianti for C++; their tool
was evaluated on a single small program (26 classes) and
revisions were manually created by the authors. Orso et al. [34]
presented a hierarchical RTS technique. In the first phase —
partitioning — their technique finds what classes and interfaces
are changed (and those that depend on the changed classes).
In the second phase, the technique analyzes only classes that
belong to the partition and detects dangerous edges [38].
Their approach requires traversal of two — old and new
— Java interclass graphs (JIG) simultaneously. Additionally,
their approach assumes that dynamic coverage information is
readily available. Arguably, RTS++ is most closely related
to Chianti and the work on dangerous edges. Unlike prior
work, RTS++ targets C++, does not analyze source code but
binaries, and does not assume availability of any dynamically
computed coverage but computes coverage statically. RTS++
is also evaluated on much larger set of projects.

Gligoric et al. [16] presented Ekstazi, an RTS technique
based on dynamic class-dependencies for Java projects. Ek-
stazi has been adopted by both open-source projects and
industry. Ekstazi# [47] implements the Ekstazi technique for
.NET platform. Legunsen et al. [27] developed and evaluated
STARTS, an RTS technique based on the class firewall.
STARTS was extensively evaluated, and the results showed
that STARTS compares favorably with Ekstazi. Zhang [51]
presented a hybrid technique that dynamically tracks depen-
dencies on both methods and classes. Recently, Wang et
al. [48] introduced the first refactoring-aware RTS, i.e., an
RTS technique that does not run tests that are affected only by
behavior-preserving transformations. Celik et al. [9] presented
RTSLinux, an RTS technique that tracks dynamic dependen-
cies for tests running in a JVM that spawns other processes or
uses native code. Like these recent RTS projects, RTS++ is
also extensively evaluated using open-source projects and large
number of revisions available in public repositories of those
projects. Unlikely recent work, RTS++ targets C/C++ projects
that compile to LLVM bitcode and use Google Test. Ad-
ditionally, RTS++ tracks dependencies on fine-grained level
(i.e., functions); interestingly, recent work on Java showed that

using fine-grained dependencies (i.e., methods) may lead to
high overhead [16], [27], [51], and our findings in this paper
show that function-level granularity can provide substantial
reduction in test execution time for C++ projects. RTSLinux
would behave as retest-all for C/C++ code that compiles to a
single executable.

An interesting future direction is to develop a coarse-grained
RTS technique for C++ by extending RTS++ and compare
its performance with the technique presented in this paper.
Romano et al. [36] introduced an exotic technique, named
SPIRITuS, which uses information retrieval to perform an
unsafe RTS for Java projects. It would be interesting to
implement SPIRITuS for C++ and compare the performance
with RTS++.

RTS++ is also related to other work on regression testing,
such as test case prioritization, i.e., ordering tests with the
goal to run the failing tests earlier (e.g., [12], [40], [42]), and
test-suite reduction, i.e., detecting likely duplicate tests without
significant reduction in the fault detection capability (e.g., [20],
[32], [41]). Our infrastructure could be used as a good starting
point for (re)implementing or evaluating test case prioritization
and test-suite reduction techniques for C++.

Finally, our work is related to (modern) build systems, e.g.,
Bazel [3], Buck [1], and CloudMake [11], which commonly
keep an explicit list of dependencies/files for each build
target. RTS++ performs more precise analysis as it keeps
dependencies for individual tests and tracks dependencies on
function members rather than files. Thus, RTS++ can be
integrated in projects that use these modern build systems to
improve their precision.

VIII. CONCLUSION

We presented a novel RTS technique, named RTS++, that
targets projects written in C++, which use the LLVM IR
and the Google Test testing framework. RTS++ implements
an RTS technique based on static function-level call graph
analysis; to ensure correctness in the presence of inheritance,
RTS++ analyzes call graphs obtained from two revisions.
RTS++ integrates with many existing build systems, including
AutoMake, CMake, and Make. RTS++ was evaluated on 11
large open-source projects, totaling 3,811,916 lines of code
and 1,709 test cases. We measured the benefits of RTS++
compared to running all available tests (i.e., retest-all) in terms
of the number of executed tests, as well as end-to-end testing
time. Our results show that RTS++ reduces the number of
executed tests and end-to-end testing time by up to 97.20%
and 88.09%, respectively. Based on the results presented in
this paper, RTS++ can be a valuable addition to any large
C++ project that uses continuous integration system, i.e., runs
tests frequently, and has tests that run for long time.
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