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Abstract—Regression testing – running available tests after
each project change – is widely practiced in industry. Despite its
widespread use and importance, regression testing is a costly
activity. Regression test selection (RTS) optimizes regression
testing by selecting only tests affected by project changes. RTS
has been extensively studied and several tools have been deployed
in large projects. However, work on RTS over the last decade has
mostly focused on languages with abstract computing machines
(e.g., JVM). Meanwhile development practices (e.g., frequency
of commits, testing frameworks, compilers) in C++ projects
have dramatically changed and the way we should design and
implement RTS tools and the benefits of those tools is unknown.

We present a design and implementation of an RTS technique,
dubbed RTS++, that targets projects written in C++, which
compile to LLVM IR and use the Google Test testing framework.
RTS++ uses static analysis of a function call graph to select tests.
RTS++ integrates with many existing build systems, including
AutoMake, CMake, and Make. We evaluated RTS++ on 11
large open-source projects, totaling 3,811,916 lines of code. To
the best of our knowledge, this is the largest evaluation of an
RTS technique for C++. We measured the benefits of RTS++
compared to running all available tests (i.e., retest-all). Our
results show that RTS++ reduces the number of executed tests
and end-to-end testing time by 88% and 61% on average.

Index Terms—Regression test selection, static analysis, call
graph, LLVM, Google Test

I. INTRODUCTION

Regression testing – running available tests at each project

revision to check the correctness of recent project changes –

is widely practiced in industry. The widespread availability of

continuous integration systems simplified build configurations

to enable regression testing, and continuous integration ser-

vices, e.g., TravisCI [45], provide necessary resources even to

open-source projects. Although regression testing is important,

it is a rather costly activity, and this cost tends to increase

with the increase in the number of tests and the frequency of

project changes [43], [44]. Many large software organizations,

including Apache, Facebook, Google, Microsoft, Salesforce,

and Uber have reported high cost of regression testing and

have been adopting various techniques to reduce this cost [7],

[13], [15], [21], [23], [42].

Regression test selection (RTS) optimizes the regression

testing activity by selecting tests that are affected by recent

project changes and skipping to run the remaining subset of

tests [5], [14], [39], [50]. Traditionally, RTS techniques keep a

mapping from each test to all code elements (e.g., statements,

basic blocks, functions, classes) that the test might use and

select those tests (at a new project revision) that depend on any

modified code element. The mapping from each test to code

elements can be obtained either statically (without running

the test) or dynamically (during test execution on the old

project revision). The code elements on which dependencies

are kept determines the granularity of an RTS technique, e.g.,

statement-level, function-level.

RTS techniques have been studied for over four decades,

and several surveys summarize RTS status and progress [5],

[14], [50]. Researchers and practitioners have studied RTS

techniques for various programming languages, including

C/C++, C#, and Java (e.g., [10], [16], [27], [34], [35], [47],

[52]). These techniques kept dependencies on various code

elements, such as basic blocks, functions/methods, and classes

(e.g., [10], [16], [42]), and used both static and dynamic

analysis (e.g., [16], [27], [52]).

Motivation. Most of the initial work on RTS techniques was

focused on languages that compile to an executable file, e.g.,

C/C++, but work in the last decade has mostly focused on RTS

for languages with abstract computing machines, such as Java

and C#. Although C++ is still a widely used programming

language and projects written in C++ come with many tests,

researchers arguably focused on Java and C# as they were

easier to analyze and come with an abundance of libraries.

Despite the revolution of C++ compilers (e.g., the popularity

of LLVM), testing frameworks (e.g., the widespread use of

Google Test), and development processes (the popularity of

GitHub and continuous integration services), the impact of

these factors on RTS design, implementation, and provided

benefits is unknown. Additionally, recent practices to evaluate

RTS implementations based on end-to-end time (i.e., time to

run the RTS tool and selected tests) were not used for RTS

tools that target C++ projects for decades.

Technique. We designed, implemented, and evaluated the

first RTS technique, named RTS++, which supports projects

that compile to LLVM IR (intermediate representation) [28],

use Google Test, and follow modern development practices.

RTS++ is the first RTS technique for C++ based on static

function-level call graph analysis. At a new project revision,

RTS++ analyzes code changes and runs those tests that de-

pend on one of the modified/deleted/added functions. RTS++

ensures to select an appropriate set of tests even in the presence

of dynamic dispatch; this is achieved by a separate analysis of

call graphs obtained for both the old and new project revisions.

RTS++ also supports changes in macros and templates by

design, because it analyzes LLVM IR. RTS++ is influenced

by prior RTS techniques that analyze class-firewall, control-

flow graphs, and dangerous-edges [24], [34], [35], [39]. The

key differences include the level on which RTS++ keeps



dependencies, the way analysis is performed, and support for

LLVM IR and Google Test.

We implemented RTS++ as an LLVM compiler pass [29].

The benefit of this approach is that RTS++ can be ex-

tended to support other languages that compile to LLVM

bitcode. RTS++ blends nicely with Google Test and supports

all test types. However, most of RTS++ is independent of

Google Test and could be integrated with other testing frame-

works, such as the Boost Test Library [6]. RTS++ currently

supports AutoMake, CMake, and Make build systems.

Evaluation. We performed an extensive evaluation of RTS++

on 11 open-source projects available on GitHub, totaling

3,811,916 lines of code and 1,709 test cases. To the best of our

knowledge, this is the largest evaluation of an RTS technique

for C++. This is also the first evaluation of an RTS for C++

that uses each revision rather than project releases. We use (up

to) 50 latest revisions of each project.

To assess the benefits of RTS++, we measured savings

compared to retest-all strategy – running all test at each project

revision (i.e., a strategy oblivious of the program changes). We

compared the number of executed tests and end-to-end testing

time. Our results show that RTS++ can provide substantial

savings. RTS++ reduced the number of tests of up to 97.20%

(88% on average) compared to retest-all. RTS++ reduced

the end-to-end testing time up to 88.09% (61% on average)

compared to retest-all (considering only those projects when

testing time is substantial). These were surprising findings

as recent work for Java showed that using static method

call graph, which is analogous to function members in C++,

provides no benefits [16], [27], [51].

The main contributions of this paper include:

⋆ RTS++, an RTS technique, based on a static function-level

call graph analysis.

⋆ Implementation of RTS++ for projects that compile to

LLVM IR and use the Google Test testing framework.

⋆ Extensive evaluation of RTS++ on 11 open-source projects,

totaling 3,811,916 lines of code and 1,709 test cases.

II. BACKGROUND AND EXAMPLE

This section provides a brief background on Google Test

and illustrates our technique with a simple example.

A. Google Test

Google Test [18] is a popular testing framework for au-

tomating test execution for C++ programs. Its design is ispired

by JUnit [25], a popular testing framework for Java projects.

The terminology used by Google Test is similar to that used by

JUnit: a single test function is a test and a class containing tests

is a test case. Google Test supports five different types of tests:

Normal Test, Fixture Test, Typed Test, Type-Parameterized

Test, and Value-Parameterized Test. RTS++ supports all avail-

able test types.

Figure 1a shows an example (unittest.cc) that illus-

trates Normal Tests. The example has three classes under

test (A, B, and C) and one test case (UnitTest) with three

1 // unittest.cc

2 class A {
3 public:
4 virtual int foo() {
5 return 5; }
6 };
7 class B : public A {
8 public:
9 virtual int foo() {

10 return 20; }
11 };
12 class C: public A {
13
14
15
16 };
17
18 TEST(UnitTest, TestA) {
19 A a;
20 EXPECT EQ(5, a.foo());
21 }
22 TEST(UnitTest, TestB) {
23 B b;
24 EXPECT EQ(20, b.foo());
25 }
26 TEST(UnitTest, TestC) {
27 C c;
28 EXPECT EQ(5, c.foo());
29 }

(a) R revision

1 // unittest.cc

2 class A {
3 public:
4 virtual int foo() {
5 return 5; }
6 };
7 class B : public A {
8 public:
9 virtual int foo() {

10 return 30; }
11 };
12 class C: public A {
13 public:
14 virtual int foo() {
15 return 30; }
16 };
17
18 TEST(UnitTest, TestA) {
19 A a;
20 EXPECT EQ(5, a.foo());
21 }
22 TEST(UnitTest, TestB) {
23 B b;
24 EXPECT EQ(20, b.foo());
25 }
26 TEST(UnitTest, TestC) {
27 C c;
28 EXPECT EQ(5, c.foo());
29 }

(b) R′ revision

Fig. 1: An illustrative example that shows the old (left) and

new (right) revisions of a simple project with three classes and

three test cases.
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Fig. 2: Annotated dependency graphs for the illustrative ex-

ample. Each node is a function and there is an edge if one

function might invoke another function; the shape of the node

is squared if the checksum for that node changed between two

revisions; newly added nodes are always considered modified.

tests (TestA, TestB, and TestC). TEST, similar to @Test

annotation in JUnit, is a macro used for writing Normal Tests

available in the Google Test framework and EXPECT_EQ is a

macro to assert if an actual value (given as the first argument)

matches the expected value (given as the second argument).

B. RTS++ Illustrated

Assume, for the sake of the example, that a developer

integrates RTS++ at the time of the revision R shown in

Figure 1a. If the developer runs tests by running a target

from a build script, RTS++ will intercept the execution of

the build script after the compilation (and before running

tests) and analyze the call graph on LLVM IR. RTS++ will

statically build an annotated dependency graph as shown in

Figure 2a. Test nodes are shown as black nodes and other

functions and function members are shown as white circles or

red squares. An edge that connects two nodes (n, n′) shows



that function n may invoke function n′. Although the function

member foo is virtual, generated IR does not use any virtual

table because the exact type of each variable and the function

member to be invoked is known at the compilation time. In the

next section, we describe our support for dynamic dispatch.

After the annotated dependency graph is built for the current

revision, RTS++ performs the traversal of both the old graph

and the new graph to detect affected tests, i.e., those tests

whose outcome may be affected by changes. Because this is

the first revision of the program that RTS++ analyzed, the old

graph does not yet exist and so RTS++ marks all available

tests as affected. Additionally, RTS++ stores the new graph

for future use.

Assume that the developer modifies the original code to

obtain the new code revision R′ shown in Figure 1b and

runs the tests. RTS++ constructs the new dependency graph

shown in Figure 2b. Next, RTS++ traverses both graphs (one

at a time) to detect affected tests. It detects modified nodes

by comparing the checksums of function bodies between two

revisions; these nodes that are modified are marked as red

squares in Figure 2. To detect all affected tests, RTS++

computes the upward transitive closure [3] and finds that

TestB is affected based on the old graph and tests TestB

and TestC are affected based on the new graph. The final

result is the union of the two traversals.

The traversal of the new graph was necessary to ensure

that we detect those tests that are affected by changes in

class hierarchies. While we can often detect the change in

a function by observing a change in the metadata in IR, if a

function member is added in a subclass and a function that uses

that member accepts a pointer to a superclass (e.g., fun(A

*a)), no changes can be detected; traversing both old and

new graphs solves this problem.

III. TECHNIQUE AND IMPLEMENTATION

This section describes RTS++ technique and its implemen-

tation. We keep our implementation generic to enable future

support for other compilers and testing frameworks. Figure 3

shows a high-level overview of the RTS++ integration into the

existing testing processes. RTS++ intercepts the build process,

perform analysis to detect affected tests and sends the list of

affected tests to the testing framework, which then simply runs

those tests.

RTS++ includes three traditional RTS phases, which are all

performed statically:

• Analysis phase detects the tests that need to be re-executed

due to code changes (Section III-A).

• Execution phase executes only the selected tests and skips

other available tests (Section III-B).

• Collection phase saves statically computed metadata needed

by the next analysis phase and constructs the annotated

program dependency graph (Section III-C).

An annotated dependency graph is the key data structure

that allows RTS++ to select the tests to be executed. We define

it as a tuple G = (N,E,C, T ). N is the set of nodes, such
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Fig. 3: Overview of the testing process that integrates RTS++.

The integration requires minimal changes in the build process.

RTS++ processes executable files to obtain a dependency

graph for the current project revision, analyzes both old and

new dependency graphs to detect affected tests, stores new

dependency graph for future use, and sends the list of affected

tests to the testing framework.

that each node is a fully qualified name of a function. A fully

qualified name includes the namespace, declaring class name,

which is optional because a function in C++ need not be inside

a class, and the function signature, i.e., function name with

argument types. E is the set of edges; an edge connects two

nodes iff one function may invoke another function. C is a

map from a node to its checksum value, which is computed

at the time of the graph construction. Finally, T is the set of

tests (T ⊆ N ).

Next, we describe each phase of RTS++ in more detail.

Note that we describe the analysis and collection as separate

phases although they are implemented as one pass in our tool;

we take this approach to be consistent with prior work on RTS.

A. Analysis

The analysis phase identifies tests affected by code changes.

RTS++ analyzes all .bc files (i.e., files in LLVM bitstream

file format that contains encoding of LLVM IR) in the project.

Note that, based on the project configuration, there may be one

or more .bc files, and each file may contain one or more tests.

Without loss of generality, we describe the analysis performed

on a single .bc file that contains multiple tests. Furthermore,

we assume that all libraries are statically linked, i.e., analyzed

.bc files contains every piece of code that may be needed

during test execution. This is achieved by using -flto (Link

Time Optimization) argument for the linker.

The input to the analysis phase is G, an annotated depen-

dency graph for the previous code revision, and the .bc file

for the current code revision. The graph G is empty when

the analysis is invoked for the first time; in this case, all

tests discovered in the new graph are considered affected.

Otherwise, the graph G is constructed in the collection phase

of the previous run (Section III-C).



Require: G - graph for the old revision
Require: bc - bitcode file for the current/new revision

1: function ANALYSIS(G, bc)
2: G′ ← CONSTRUCTCALLGRAPH(bc)
3: affected← ∅
4: affected += FINDAFFECTED(G.E,G.C)
5: affected += FINDAFFECTED(G′.E,G.C)
6: return {τ | τ ∈ affected ∧ τ ∈ G′.T}
7: end function

Require: edges - edges in the graph being traversed revision
Require: checksums - map from each function to its checksum in

the old revision
8: function FINDAFFECTED(edges, checksums)
9: affected’← ∅

10: repeat
11: affected← affected’
12: for all (f, f ′) ∈ edges do
13: if CKFUN(f ′) 6= checksums[f ′] ∨ f ′ ∈ affected then
14: affected’ += {f, f ′}
15: end if
16: end for
17: until |affected| == |affected’|
18: return affected’
19: end function

Fig. 4: Analysis phase in RTS++. The algorithm shown

is intentionally kept simple (and inefficient) to simply the

presentation in the paper.

Figure 4 shows the algorithm for the analysis phase. First,

on line 2, RTS++ constructs an annotated dependency graph

for the new version of the executable. Second (line 3), it

defines an empty set that will represent a set of all affected

functions. A function is affected if its checksum is modified;

we assume the existence of a function CKFUN that takes a

function as an input and computes a checksum of its body.

Third, the algorithm invokes the FindAffected function

on both the old graph and the new graph. The reason to

traverse both graphs is to ensure that tests affected due to

changes in the class hierarchy are included in the set of

affected tests; the old graph is traversed to detect those tests

that are affected by a removal of a virtual function member

from a class hierarchy, and the new graph is traversed to detect

those tests that are affected by an addition of a virtual function

member in a class hierarchy. Finally, on line 6, the algorithm

extracts only tests available in the new revision from the set

of impacted functions, which is the final set of selected tests.

FindAffected function traverses the edges of the graph

and for each callee, it computes its new checksum value by

invoking the CKFUN function. If the checksum is different

from the time when the graph was constructed or the function

is in the set of affected nodes, then both the caller and callee

are added to the set of affected nodes. The loop stops when

it reaches the fixed-point, i.e., the set of affected nodes does

not change.

We implemented the analysis phase as an LLVM Pass.

Specifically, we leverage the LLVM’s CallGraphSCCPass

pass, which allows us to traverse the call graph of an exe-

cutable [8]. The main function in the pass that we override,

runOnSCC, runs on every node in a call graph. One of the

reasons for our design decision to traverse the old and new

graphs separately (rather than simultaneously, as it was done

for dynamic RTS with control-flow graphs [34], [38]) was the

existence of the CallGraphSCCPass pass. We leverage this

pass to obtain an efficient and robust implementation, which

follows from well-tested LLVM code.

B. Execution

The execution phase runs the selected tests discovered dur-

ing analysis. Integration of RTS++ into the well established

testing process is straightforward.

In C++ projects, it is common to have a target in a build

script for running tests. Projects that use Google Test simply

invoke (one or more) executables that contain tests, e.g.,

./unittests. Rather than running the executable, we per-

form four steps. First, we obtain the list of available tests in the

executable by executing ./unittests --gtest list

tests. This list is needed to be able to filter only some

tests for the execution as described below. Second, we invoke

RTS++’s analysis phase to select tests. Third, we map names

of selected tests to the names used by Google Test obtain in

the first step. Finally, we invoke the original executable and

pass the list of tests to execute via ./unittests --gtest

filter=colon_separated_list_of_tests.

An implementation challenge in the execution phase is

keeping track of the test names between the source code

(which we refer to as filter test names) and the names

Google Test uses in the executable (which we refer to as

the compiled test names). Table I shows compiled and fil-

ter test names for various test types. Name matching for

Normal Test or a Fixture Test is straightforward. Next, for

Typed Test, we match the types and construct the filter

test name. For Type-Parameterized Test, we overapproxi-

mate the set of tests by using global prefix, e.g., --gtest

filter=*TypeParamTest/0.Test1. Finally, we check

if a test is Value-Parameterized Test, and if so, we run

the test with generic prefix and suffix (e.g., --gtest

filter=*Value- ParamTest.Test1/*).

C. Collection

The collection phase prepares the dependency graph used in

the current and next run of the analysis phase. Recall that the

analysis and collection phases are implemented as one pass

in RTS++. In this section, we describe the way we build and

annotate the graph; the algorithm is shown in Figure 5.

First, we build a class hierarchy by processing .bc files.

Second, we traverse the call graph to save dependencies

between functions. If a call is non-virtual, we simply store

that the caller function depends on the callee function. In

the case of a virtual call, we find the base class (let’s call

it C) based on the call and hierarchy that we built. Then, we

traverse all classes in the hierarchy of C (both superclasses and

subclasses). If a class (let’s call it B) in the hierarchy has a

function member with the same signature as the callee (the SIG

function obtains a signature for a given function), we store the



TABLE I: “Filter” and “Compiled” Test Names; Filter Format is Used by Google Test to Exclude Tests from Execution and

Compiled Format is Available in Executable Files.

Test Type Filter Name Compiled Name

Normal Test TestCase.TestName TestCase TestName Test::TestBody()

Fixture Test FixtureTest.TestName FixtureTest TestName Test::TestBody()

Typed Test TypedTest/0.Test1 # TypeParam = A TypedTest Test1 Test<A>::TestBody()

Type-Parameterized Test Prefix/TypeParamTest/0.Test1 # TypeParam = A gtest case TypeParamTest::Test1<A>::TestBody()

Value-Parameterized Test Prefix/ValueParamTest.Test1/0 ValueParamTest Test1 Test::TestBody()

Require: bc - bitcode file
1: function CONSTRUCTCALLGRAPH(bc)
2: N ← E ← C ← T ← ∅
3: inheritance← ∅
4: for all c ∈ EXTRACTCLASSES(bc) do
5: for all s ∈ GETSUPERCLASSES(c) do
6: inheritance += (c, s)
7: end for
8: end for
9: for all c ∈ EXTRACTCLASSES(bc) do

10: for all m ∈ GETMETHODS(c) do
11: N += {m}
12: if ISTEST(m) then
13: T += {m}
14: end if
15: cksum← 0
16: for all i ∈ GETINSTRUCTIONS(m) do
17: cksum += CKFUN(i)
18: if ISFUNCTIONCALL(i) then
19: callee← EXTRACTCALLEE(i)
20: ⊲ for non-virtual calls
21: E += {(m, callee)}
22: ⊲ for virtual calls
23: base← BASECLS(DECLCLS(callee))
24: E += {(m,m′)|m′ismemberof c′

25: ∧ (c′, base) ∈ inheritance
26: ∧ SIG(m′) == SIG(callee)}
27: end if
28: end for
29: C += {(m, cksum)}
30: end for
31: end for
32: return (N,E,C, T )
33: end function

Fig. 5: Collection phase in RTS++.

dependency between the caller and the called function member

in class B. However, we do not store dependencies on classes

that do not implement the virtual function member; keeping

such dependencies are unnecessary because we traverse both

the old and the new graphs during the analysis phase.

To find the base class for a virtual function call we analyze

getelementptr instruction, which contains the index into

a virtual table. This is one of the places where we depend on

a specific ABI, specifically the Itanium C++ ABI.

During the graph traversal, we also compute the checksum

of each function; we create a mapping from each function to

its checksum. We extend the FunctionComparator class

available in LLVM to compute SHA-1 checksum based on

instruction opcodes, constant values, and global values used

as operands of instructions.

TABLE II: Supported Change Types.

Name Description

DI Delete an instance initializer
AI Add an instance initializer
CI Change an instance initializer
DSM Delete a static non-initializer method
ASM Add a static non-initializer method
CSM Change a static non-initializer method
DIM Delete an instance non-initializer method
AIM Add an instance non-initializer method
CIM Change an instance non-initializer method
DGF Delete a global function
AGD Add a global function
MGF Modify a global function

D. Build System Integration

RTS++ can be easily integrated with AutoMake, CMake,

and Make with minimal changes to the build scripts by using

the GNU Gold Linker [17], which is distributed with the newer

versions of the GNU Bintools, and link time optimization

(LTO). To enable link time optimization, the flag -flto

should be passed to both the compiler and the linker. Ad-

ditionally, the option save-temps should be passed to the

linker to emit the bitcode for the executable.

E. Safety

RTS++ is safe, i.e., it guarantees to select tests affected

by changes, for any code change except those related to

non-primitive global variables, function pointers, and use of

setjump and longjump; if such code is present, a user has

to decide if RTS++ should be used. The safety of RTS++

follows from the safety of RTS techniques based on control-

flow dependencies, which was proven in the past [38]. Table II

shows the list of supported change types, i.e., types of changes

for which RTS++ can detect affected tests. We leave it as

future work to formally prove the safety of RTS++.

F. Generalizability

Among the three phases – analysis, execution, and collection

– two of them – analysis and collection – are independent on

any testing framework. Our implementation follows a modular

design, such that each phase can easily be replaced to support a

new testing framework, different hashing function, new graph

traversal, etc.

IV. EVALUATION

Our evaluation answers the following research questions:

RQ1: What is the reduction in the number of executed

tests obtained by RTS++ compared to retest-all across many

revisions of popular open-source projects?



TABLE III: Subjects Used in Our Evaluation.

Project URL #Revs. SHA LOC Binary (MB) BuildSys #Tests #Test Cases

Abseil https://github.com/abseil/abseil-cpp 14 9c9477fa 53,468 100 CMake 1,084 207

Boringssl https://github.com/google/boringssl.git 50 9b2c6a9 193,262 56 CMake 839 57

gRPC https://github.com/grpc/grpc.git 50 17f682d 1,406,407 1,934 CMake 1,682 150

Kokkos https://github.com/kokkos/kokkos.git 50 d3a9419 128,452 45 Make 227 29

Libcouchbase https://github.com/couchbase/libcouchbase.git 50 b028b9e 98,931 12 CMake 303 62

Libtins https://github.com/mfontanini/libtins.git 50 b18c2ce 92,707 285 CMake 797 63

OpenCV https://github.com/opencv/opencv.git 33 9a8a964 1,018,274 670 CMake 21,106 673

Protobuf https://github.com/google/protobuf.git 50 264e615 317,477 116 AutoMake 2,086 193

Rapidjson https://github.com/Tencent/rapidjson.git 34 af223d4 82,536 46 CMake 425 33

Rocksdb https://github.com/facebook/rocksdb.git 31 2c2f388 238,995 13,886 Make 2,571 208

Tiny-dnn https://github.com/tiny-dnn/tiny-dnn.git 45 1c52594 181,407 9 CMake 294 34

Total N/A 407 N/A 3,811,916 17,159 N/A 31,414 1709

Average N/A 37 N/A 346,538 1,560 N/A 2,856 155

RQ2: What is the reduction in the end-to-end testing time ob-

tained by RTS++ compared to retest-all across many revisions

of popular open-source projects?

Prior to answering these research questions (Section IV-D),

we describe the system configuration (Section IV-A), the sub-

jects used in our experiments (Section IV-B) and experiment

setup (Section IV-C).

A. System Configuration

We ran experiments on a 4-core 3.9 GHz AMD 1800X CPU

with 8GB of RAM running Ubuntu Linux 16.04 LTS. We

used Clang++ and LLVM 6 as well as Google Test 1.8. Some

projects bundled their own version of Google Test, which

was either 1.7 or 1.8. We ran experiments several times and

observed only minor noise in execution time across multiple

runs of experiments.

B. Subjects

As stated earlier, there has been no recent work on re-

gression testing for C++ projects. Therefore, we had to find

projects that would be appropriate to be used for evaluating

our technique/implementation. Thus, our minor contribution

is the list of projects and buildable revisions that could be

used for evaluating regression testing techniques for C++. We

followed steps taken by recent research on regression testing

for Java: we searched for popular projects (in terms of the

number of stars) on GitHub. Additionally, we filtered out those

projects that do not use AutoMake/CMake/Make or Google

Test. We also ignored those projects that we were not able to

build successfully on our platforms; we dedicated up to 8h for

setting up each project.

Table III shows the final set of projects used in our eval-

uation. For each project we show its name, URL, number of

buildable revisions (in the latest 50 revisions), latest SHA at

the time of our experiments, number of lines of code (LOC),

size of the binary file, build system used, number of tests,

and number of test cases; we defined “test” and “test case”

in Section II. The last five columns are computed for the

latest revision. We can see that the projects differ in size

(between 53,468 and 1,406,407), build system, and number

of tests (between 227 and 21,106).

The last two rows show, when applicable, the total and

average values across all projects. In sum, we used 11 projects,

totaling 3,811,916 lines of code and 31,414 tests.

Abseil is a collection of C++ code that extends the C++

standard library; this project migrated to CMake recently,

which is the reason we use only a small number of revisions.

Boringssl is Google’s fork of OpenSSL. gRPC is a modern

open-source remote procedure call (RPC) framework devel-

oped by Google. Kokkos is a programming model in C++ that

provides abstractions for code to run efficiently on different

hardware such as multi-core CPUs and GPUs. Libcouchbase is

the C client for Couchbase (an open-source NoSQL database).

Libtins is a high-level C++ library for sending, receiving,

and manipulating network packets. OpenCV stands for Open

Source Computer Vision Library. Protobuf is a language and

platform agnostic method for serializing data. Rapidjson is

a C++ library for parsing and generating JavaScript Object

Notation (JSON). Rocksdb is an embedded database for key-

value storage developed by Facebook. Tiny-dnn is a header-

only deep learning library written in C++. In the end, we were

able to build most of revisions for most of the projects, and

some failing builds were expected as building old revisions

leads to a number of challenges [46].

C. Experiment Setup

Our experiment setup closely follows recent work on RTS

for Java, which performed extensive evaluations using open-

source projects and large number of revisions [16], [27], [35],

[51]; this evaluation approach started with work on Chianti.

Our setup only differs in the details due to the differences

in the technology used by C++ projects, e.g., integration

with a build system, obtaining the list of available tests, etc.

Specifically, we perform the following steps for each subject

(P ) in Table III.

a) clone(P,P.SHA) - clone the latest revision (as spec-

ified in Table III) of the project,

b) checkout(P, -50) - checkout a revision from the

history that is 50 commits prior to the latest revision. If

a project does not have 50 revisions, checkout the first

revision available in the repo,



TABLE IV: Test Selection Results Using RTS++.

“#Tests retest-all” - total number of tests across all revisions executed, “#Tests RTS++” - total number of tests executed with RTS++ across
all revisions, “Time retest-all” - total time to execute all tests, “Time RTS++” - total time to execute tests with RTS++, “Ratio test” - ratio
of executed tests retest-all/ RTS++ * 100, “Ratio time” - ratio of execution time retest-all/ RTS++ * 100.

Project #Tests Time [s] Ratio [%]

retest-all RTS++ retest-all RTS++ test time

Abseil 15,176 1,312 2,583 617 8.65 23.90

Boringssl 41,523 6,756 1,606 478 16.27 29.76

gRPC 84,085 4,797 31,637 17,511 5.70 55.35

Kokkos 5,609 1,251 13,540 3,614 22.30 26.69

Libcouchbase 14,668 1,403 1,494 178 9.57 11.91

Libtins 38,922 1,607 43 1,334 4.13 3,083.39

OpenCV 695,505 206,804 11,621 4,364 29.73 37.55

Protobuf 104,300 2,918 796 2,357 2.80 296.13

Rapidjson 14,349 1,546 929 805 10.77 86.66

Rocksdb 78,390 6,715 39,517 25,487 8.57 64.50

Tiny-dnn 13,034 525 48,977 5,849 4.03 11.94

Total 1,105,561 235,634 152,743 62,594 - -

Average - - - - 11.14 38.70*

*the average ratio for time excludes Libtins and Protobuf; these projects are the smallest in terms of the test execution time and analysis
and collections phases dominate the test execution phase.

c) build(P) - build the current revision. If the build (of

at least one module) is successful proceed to the next

step; otherwise go to step f),

d) retest-all(P) - run all available tests,

e) RTS++(P) - integrate RTS++ into the project, analyze

the project, execute selected tests, and collect new meta-

data that will be used in the next analysis run,

f) if this is the latest revision, stop the loop; otherwise

checkout the subsequent revision and go to step c).

During the execution of steps d) and e), we collect exe-

cution logs that we post-process to extract data necessary to

answer our research questions. From step d), we extract the

number of available tests (Nretest−all) and total testing time

(Tretest−all). From step e), we extract the number of selected

tests (NRTS++) and end-to-end testing time (TRTS++); end-to-

end testing time includes all phases of RTS++: analysis, test

filtering, execution, and collection.

Based on the extracted data, we compute two key metrics

used to evaluate the benefits of RTS++. (1) Test selection

ratio (Nreduction), which is computed as a ratio of the number

of selected tests over the total number of available tests,

i.e., Nreduction= NRTS++/ Nretest−all* 100. (2) Time ratio

(Treduction), which is computed as a ratio of end-to-end

time taken by RTS++ and testing time for retest-all, i.e.,

Treduction= TRTS++/ Tretest−all* 100. Finally we compute the

average values for both Nreduction and Treduction across all

revisions used in the experiments.

D. Results

a) Reduction in the Number of Executed Tests: This

section answers RQ1. Table IV summarizes the number of

executed tests for all projects used in the study. Column 2

shows the total number across all revisions of executed tests

with retest-all, and Column 3 shows the total number of

selected tests with RTS++. Column 6 shows test selection

ratio (Nreduction) averaged across all revisions. We can see

that test selection ratio varies from 2.80% (for Protobuf) to

29.73% (for OpenCV).

The last two rows of the table show total and average values,

across all projects, if applicable. It is worth noting that the

total number of tests executed by retest-all and RTS++ was

1,105,561 and 235,634, respectively.

b) Reduction in the End-to-End Test Execution Time:

This section answers RQ2. Table IV also shows end-to-end

testing time for all projects used in the study. Column 4 show

the total time (across all revisions) to run tests with retest-

all. Column 5 shows total end-to-end testing time for RTS++.

Column 7 shows time ratio (Treduction) averaged across all

revisions. The results show that RTS++ substantially reduces

time for all but two projects. These two projects, Libtins and

Protobuf are the smallest among all projects used in our study

in terms of the test execution time, and RTS++ analysis and

collection phases take more time than the test execution phase;

this is expected for projects with short test time, and it is a

reasonable expectation that these projects would not benefit

from any RTS technique [16].

As before, the last two rows of the table show total and

average values, across all projects if applicable. It is worth

noting that the total time when using retest-all and RTS++

was 152,743 seconds and 62,594 seconds, respectively.

c) Representative Case Studies: Figures 6 and 7 visual-

ize the raw data extracted from the execution logs, as described

in the previous section, for Boringssl and gRPC, respectively.

Each figure has tree subfigures: (a) number of tests executed

with retest-all and RTS++, (b) end-to-end testing time for
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Fig. 6: Results for Boringssl.
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Fig. 7: Results for gRPC.

retest-all and RTS++, and (c) cumulative end-to-end testing

time over all revisions used in our experiments. We do not

show plots for other projects due to the space limits.

We can observe (figures 6a and 7a) that at no revision,

RTS++ selects all the tests. As expected, and one of the

assertions in our scripts, the number of tests run by retest-

all and RTS++ has to be the same for the first revisions used

in the experiments.

Furthermore, we can observe (figures 6b and 7b) that the

end-to-end testing time for RTS++ is longer than testing time

for retest-all for the first revision; this is expected as all tests

are executed and RTS++ collects metadata, i.e., checksums

and the annotated call graph.

Finally, we can observe (figures 6c and 7c) that RTS++

can save substantial time even when only a subset of software

history is considered.

V. DISCUSSION

Build time vs. test time. For the sake of completeness, we

report and compare build time (excluding test time) and test

time for projects used in our experiments. Figure 8 shows,

for each project, build time (blue) and test time (green). Note

that we use the log scale for y-axis. The results showed in

this figure are only for the latest revisions of the projects.

Although testing may not always be the dominant part of a

build, we focus on speeding up test execution, as recent work

on incremental build systems [1], [3] does not support fine-

grained test selection and testing still takes substantial time.

Java vs. C++. Recent work on RTS for Java has shown that

two language features – dynamic class loading and reflection

– may compromise the safety of static RTS techniques [27].

A static RTS technique for C++ does not face those issues be-

cause C++ does not support reflection and projects frequently

statically link libraries for the testing purpose, i.e., the entire

call graph is known. We also note that there was no need to

implement the smart checksum [27], i.e., the checksum that

ignores debug info not observed by tests, e.g., original source

code lines. Clang strips those debug info automatically unless

a developer specifies the O0 optimization level; none of the

projects used in our study uses O0.

Note that RTS++ supports various C++ language features,

including preprocessor macros and templates. This is sup-

ported by design because we analyze executable file, where

macros and templates are not available any longer.

Test order dependencies. Dependencies among tests (e.g.,

via shared/static variables) may cause problems for an RTS

tool [4], [19], [30], [31]. If a tool selects only dependent test,

the test may fail as it will start in an unexpected state. If such

cases exist, a developer can specify that some tests have to be

run prior to some other tests.

Zero selected tests. We have observed that RTS++ selects no





function invocations via pointers. Kung et al. [26] introduced

class firewall approach to detect affected tests by tracking de-

pendencies among classes. Rothermel et al. [39] were among

the first to study RTS for C++ and object-oriented languages in

general. Their work uses interprocedural control flow graph to

select tests, analyzes source code of two project revisions, and

uses dynamic coverage. Our work targets C++ and uses call

graph analysis to detect affected tests. RTS++, unlike prior

work, supports projects that compile to LLVM bitcode and

use Google Test. Moreover, we evaluated our technique on

actual revisions from publicly available open-source projects

rather than on project releases.

Ren et al. [35] developed Chianti, a tool that selects affected

tests by detecting the impact of various atomic changes on a

call graph. Chianti was developed for Java, analyzes source

code to detect atomic changes, uses dynamic call graphs,

and is evaluated only on a single project. Jang et al. [24]

developed an approach similar to Chianti for C++; their tool

was evaluated on a single small program (26 classes) and

revisions were manually created by the authors. Orso et al. [34]

presented a hierarchical RTS technique. In the first phase –

partitioning – their technique finds what classes and interfaces

are changed (and those that depend on the changed classes).

In the second phase, the technique analyzes only classes that

belong to the partition and detects dangerous edges [38].

Their approach requires traversal of two – old and new

– Java interclass graphs (JIG) simultaneously. Additionally,

their approach assumes that dynamic coverage information is

readily available. Arguably, RTS++ is most closely related

to Chianti and the work on dangerous edges. Unlike prior

work, RTS++ targets C++, does not analyze source code but

binaries, and does not assume availability of any dynamically

computed coverage but computes coverage statically. RTS++

is also evaluated on much larger set of projects.

Gligoric et al. [16] presented Ekstazi, an RTS technique

based on dynamic class-dependencies for Java projects. Ek-

stazi has been adopted by both open-source projects and

industry. Ekstazi# [47] implements the Ekstazi technique for

.NET platform. Legunsen et al. [27] developed and evaluated

STARTS, an RTS technique based on the class firewall.

STARTS was extensively evaluated, and the results showed

that STARTS compares favorably with Ekstazi. Zhang [51]

presented a hybrid technique that dynamically tracks depen-

dencies on both methods and classes. Recently, Wang et

al. [48] introduced the first refactoring-aware RTS, i.e., an

RTS technique that does not run tests that are affected only by

behavior-preserving transformations. Celik et al. [9] presented

RTSLinux, an RTS technique that tracks dynamic dependen-

cies for tests running in a JVM that spawns other processes or

uses native code. Like these recent RTS projects, RTS++ is

also extensively evaluated using open-source projects and large

number of revisions available in public repositories of those

projects. Unlikely recent work, RTS++ targets C/C++ projects

that compile to LLVM bitcode and use Google Test. Ad-

ditionally, RTS++ tracks dependencies on fine-grained level

(i.e., functions); interestingly, recent work on Java showed that

using fine-grained dependencies (i.e., methods) may lead to

high overhead [16], [27], [51], and our findings in this paper

show that function-level granularity can provide substantial

reduction in test execution time for C++ projects. RTSLinux

would behave as retest-all for C/C++ code that compiles to a

single executable.

An interesting future direction is to develop a coarse-grained

RTS technique for C++ by extending RTS++ and compare

its performance with the technique presented in this paper.

Romano et al. [36] introduced an exotic technique, named

SPIRITuS, which uses information retrieval to perform an

unsafe RTS for Java projects. It would be interesting to

implement SPIRITuS for C++ and compare the performance

with RTS++.

RTS++ is also related to other work on regression testing,

such as test case prioritization, i.e., ordering tests with the

goal to run the failing tests earlier (e.g., [12], [40], [42]), and

test-suite reduction, i.e., detecting likely duplicate tests without

significant reduction in the fault detection capability (e.g., [20],

[32], [41]). Our infrastructure could be used as a good starting

point for (re)implementing or evaluating test case prioritization

and test-suite reduction techniques for C++.

Finally, our work is related to (modern) build systems, e.g.,

Bazel [3], Buck [1], and CloudMake [11], which commonly

keep an explicit list of dependencies/files for each build

target. RTS++ performs more precise analysis as it keeps

dependencies for individual tests and tracks dependencies on

function members rather than files. Thus, RTS++ can be

integrated in projects that use these modern build systems to

improve their precision.

VIII. CONCLUSION

We presented a novel RTS technique, named RTS++, that

targets projects written in C++, which use the LLVM IR

and the Google Test testing framework. RTS++ implements

an RTS technique based on static function-level call graph

analysis; to ensure correctness in the presence of inheritance,

RTS++ analyzes call graphs obtained from two revisions.

RTS++ integrates with many existing build systems, including

AutoMake, CMake, and Make. RTS++ was evaluated on 11

large open-source projects, totaling 3,811,916 lines of code

and 1,709 test cases. We measured the benefits of RTS++

compared to running all available tests (i.e., retest-all) in terms

of the number of executed tests, as well as end-to-end testing

time. Our results show that RTS++ reduces the number of

executed tests and end-to-end testing time by up to 97.20%

and 88.09%, respectively. Based on the results presented in

this paper, RTS++ can be a valuable addition to any large

C++ project that uses continuous integration system, i.e., runs

tests frequently, and has tests that run for long time.
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