

Controlled Substrate Transport to Electrocatalyst Active Sites for Enhanced Selectivity in the Carbon Dioxide Reduction Reaction

Yingshuo Liu,^a Kwan Yee Leung,^a Samuel E. Michaud,^a Taylor L. Soucy,^a and Charles C. L. McCrory ^{a,b,*}

^a*Department of Chemistry, University of Michigan, Ann Arbor, MI, USA*

^b*Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, USA*

Address correspondence to: Charles C. L. McCrory, Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, USA. Email: cmccrory@umich.edu

McCrory: ORCID: 0000-0001-9039-7192, Twitter: @McCroryLab

Liu: ORCID: 0000-0003-4780-8384

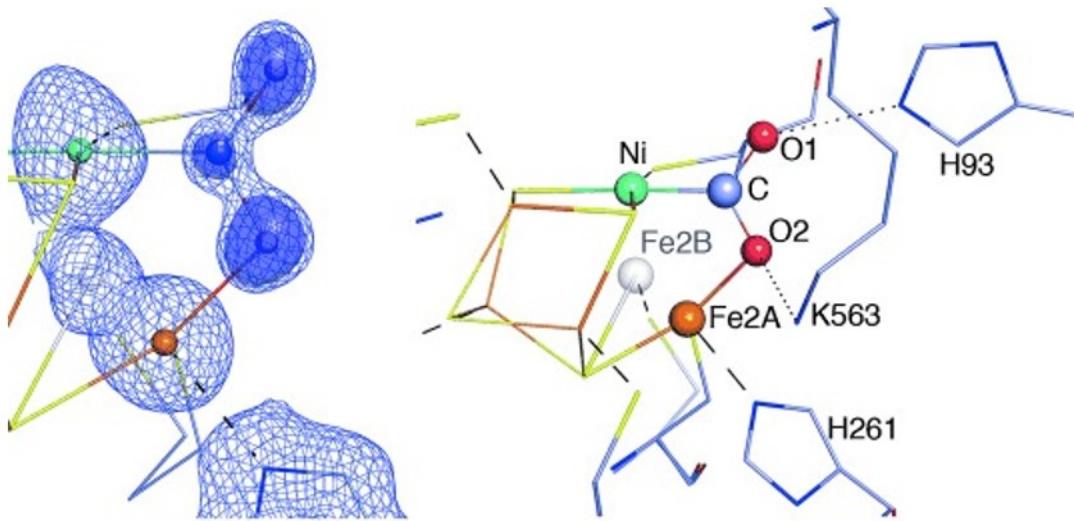
Leung: ORCID: 0000-0002-5292-4569

Michaud: ORCID: 0000-0002-0807-2194

Soucy: ORCID: 0000-0002-0090-6721

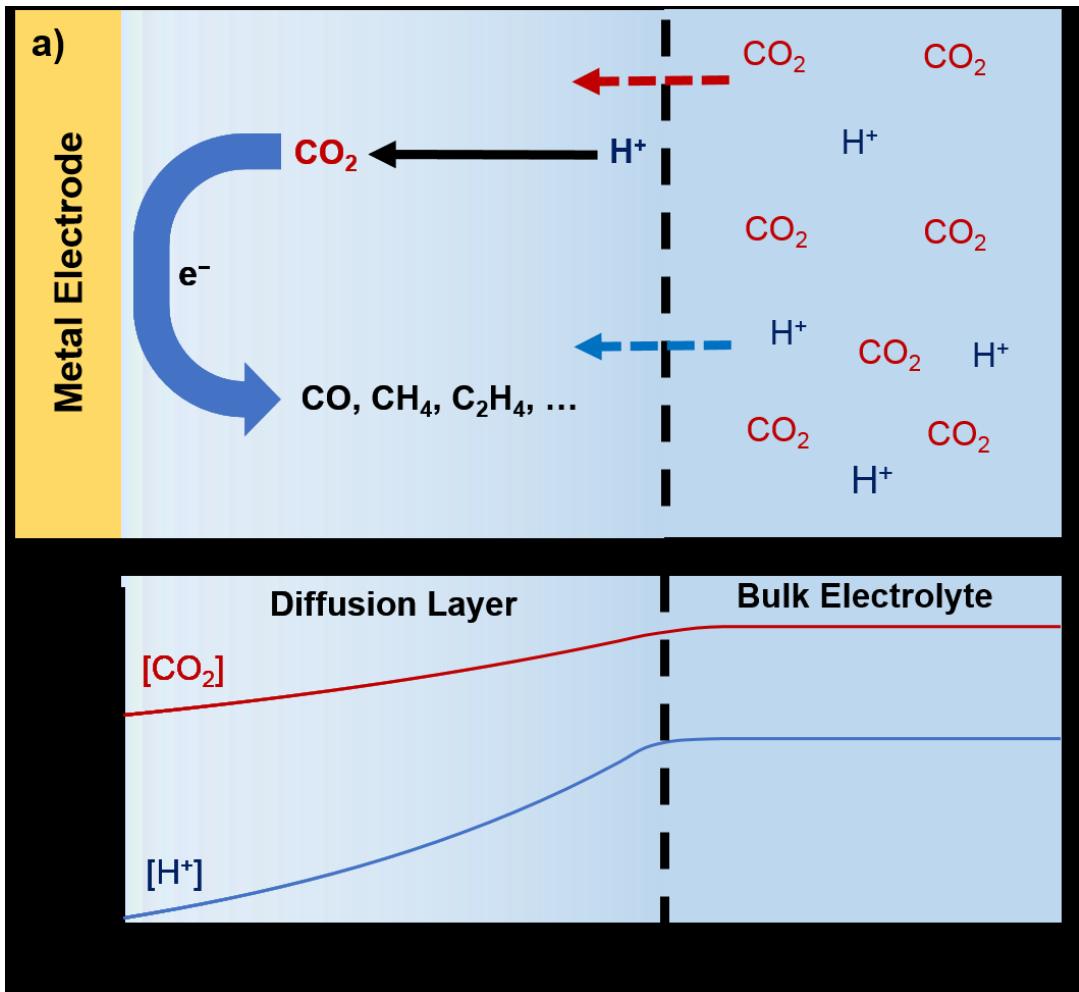
Controlled Substrate Transport to Electrocatalyst Active Sites for Enhanced Selectivity in the Carbon Dioxide Reduction Reaction.

The selective electrochemical reduction of CO₂ to value added products is a useful strategy for the local storage of intermittent energy sources as chemical fuels and the recycling of industrial CO₂ waste into industrial feedstocks. This review highlights some of the recent research focused specifically on modulating substrate delivery and local catalyst environment to enhance reaction and product selectivity in the CO₂ reduction reaction by both solid-state materials and discrete molecular systems. We discuss recent studies that focus on (1) using nanostructured and mesoporous solid-state electrocatalysts to modulate local pH and CO₂ concentrations near active sites, (2) coating electrocatalysts with porous overlayers to directly control substrate delivery to the electrocatalyst surface, and (3) using polymer encapsulation to modify the coordination environment surrounding molecular electrocatalysts to enhance activity and selectivity for CO₂ reduction. We believe that increased research in controlling substrate delivery to enhance reaction and product selectivity for the CO₂ reduction reaction is a promising strategy for designing new electrocatalytic systems for the selective and efficient conversion of CO₂ to value-added products.


Keywords: carbon dioxide reduction, electrocatalysis, proton transport, substrate transport, polymer encapsulation

1. Introduction

The *selective* electrochemical conversion of CO₂ in the carbon dioxide reduction reaction (CO₂RR) offers an intriguing approach for the local storage of intermittent energy sources as chemical fuels (e.g. solar fuels) and for the recycling of industrial CO₂ waste into useful chemical feedstocks.^[1-12] However, developing electrocatalytic systems that show promising *reaction selectivity* for the CO₂RR over competitive side reactions like the hydrogen evolution reaction (HER) and show promising *product selectivity* for the formation of single C-containing products remains a fundamental challenge in CO₂ conversion technology. State-of-the-art polycrystalline Cu electrocatalysts show high activity for the CO₂RR but tend to operate with low selectivity,

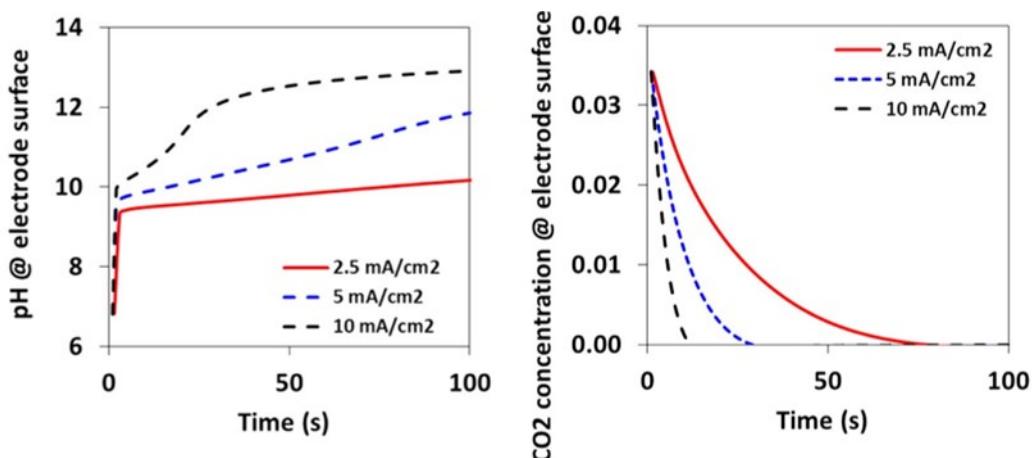

generating up to 16 different C-based products as well as H₂.^[13-17] Planar Au and Ag catalysts are more selective for CO₂ reduction to CO, but this increased selectivity is potential dependent and the systems still suffer from the competitive HER.^[14,18,19] The desire for enhanced reaction and product selectivity for the CO₂RR has been the focus of intense research over the past few decades as has been summarized in several reviews.^[2,5-7,14,17,19-49]

Enzymatic systems such as NiFe carbon monoxide dehydrogenase (CODH) provide fundamental insight for the design of electrocatalytic systems that operate with high activity and product selectivity.^[6,50] In these biological systems, fast catalytic activity and high product selectivity are achieved by carefully controlling the primary, secondary, and outer coordination spheres of the enzyme's active site. Of particular importance in enzymatic systems is the use of the outer-coordination sphere to exclude solvent (e.g. H₂O) from the active site, which is crucial for the stabilization of catalytic transition states^[51,52] and for the controlled delivery of substrate.^[6] For example, in the case of NiFe CODH, coordination of CO₂ to the 2 e⁻ reduced NiFe active site is thought to occur at the coordinatively-unsaturated Ni^I site, and the coordinated CO₂ is stabilized by H-bonding interactions with lysine and histidine moieties in the secondary coordination sphere (Figure 1).^[6,53,54] Subsequent protonation and loss of water leads to the initial formation of a reduced CO₂ intermediate bridged by the Ni and Fe sites and the eventual cleavage of a C-O bond to form a Ni^{II}CO species, which then releases CO.^[6] Note that in this system, the active site resides in a hydrophobic core and H⁺ delivery is carefully controlled through H⁺ relays in the outer-coordination sphere. The control of primary, secondary, *and outer* coordination spheres in this system is essential for catalytic activity and selectivity.

Figure 1. The proposed structure of coordinated CO_2 to the NiFe CODH active site. The CO_2 adduct is stabilized by H-bonding from histidine and lysine residues in the secondary coordination sphere. H^+ delivery to the active site is controlled through proton-relays in the protein structure. Adapted with permission from Ref. [54].

One way to increase product selectivity in the CO_2RR is to modulate the local concentration of CO_2 and H^+ near the electrocatalytic active sites in a manner similar to enzymatic systems. During electrolysis, depletion of electroactive species at the electrode surface gives rise to innate concentration gradients due to diffusion limited replenishment of both species (Figure 2). These gradients result in lower CO_2 concentration and higher pH near the electrode surface compared to bulk solution during the CO_2RR process. The extent of these gradients depends on numerous factors: bulk CO_2 concentration, solution pH, buffer concentration and composition, solution convection, etc. However, there has been a recent interest in the CO_2RR community to develop systems that purposely control the transport of CO_2 and H^+ to electrocatalyst active sites and/or control the coordination environment surrounding these electrocatalyst active sites as a means of enhancing CO_2RR selectivity.

Figure 2. a) Schematic illustrating CO₂ and H⁺ transport to and consumption at a metal electrode surface during the CO₂RR, and b) the resulting concentration gradients for CO₂ and H⁺.


This review highlights some of the recent research focused specifically on modulating substrate delivery and local catalyst environment to enhance reaction and product selectivity in the CO₂RR by both solid-state materials and discrete molecular systems. We begin our discussion focusing on the importance of local H⁺ concentration near the catalyst surface on reaction mechanism and product selectivity for C-containing

products by solid-state metal electrocatalysts. We also highlight recent studies in which porous oxide and polymer overlayers on metal electrodes are used to control substrate delivery and protect electrocatalyst surfaces from solution contamination and poisoning. Finally, we discuss new research using polymer-encapsulation of molecular electrocatalysts to directly control both substrate transport to and coordination environment **surrounding** catalyst active sites to promote increased activity and selectivity for the CO₂RR.

1. Effect of Local pH and Local CO₂ Concentration on CO₂RR Selectivity at Solid-State Metal Electrocatalysts

During the CO₂RR, H⁺ are consumed in the formation of the various CO₂RR products as well as through the competitive hydrogen evolution reaction (HER). The consumption of H⁺ results in increased local pH near the electrode surface^[55-60] For unbuffered systems at intermediate bulk pH (10 > pH > 4), the effective local pH rapidly increases to above pH = 10 when consuming H⁺ during the HER at 1 mA cm⁻² current density.^[55] The addition of a pH buffer into the system can mitigate this increase in local pH, with the extent of the mitigation depending on the buffer capacity.^[55,61] Local pH is important not only in controlling the supply of H⁺ to the catalyst active site, but also in determining the local concentration of dissolved CO₂ due to the pH dependence of CO₂ solubility and the CO₂/HCO₃⁻ equilibrium.^[56,57,62] A recent study modeling CO₂ concentration and local pH at an electrode surface during CO₂RR in 0.1 M bicarbonate solution as a function of both current density (e.g. H⁺/CO₂ consumption rate) and time (Figure 3) illustrates the effects of substrate consumption on local pH and local CO₂ concentration.^[56] As the CO₂RR reaction proceeds, both H⁺ and CO₂ are consumed, leading to increased local pH and decreased local CO₂ concentration. The extent of the change in local concentration depends on the current density and the duration of the

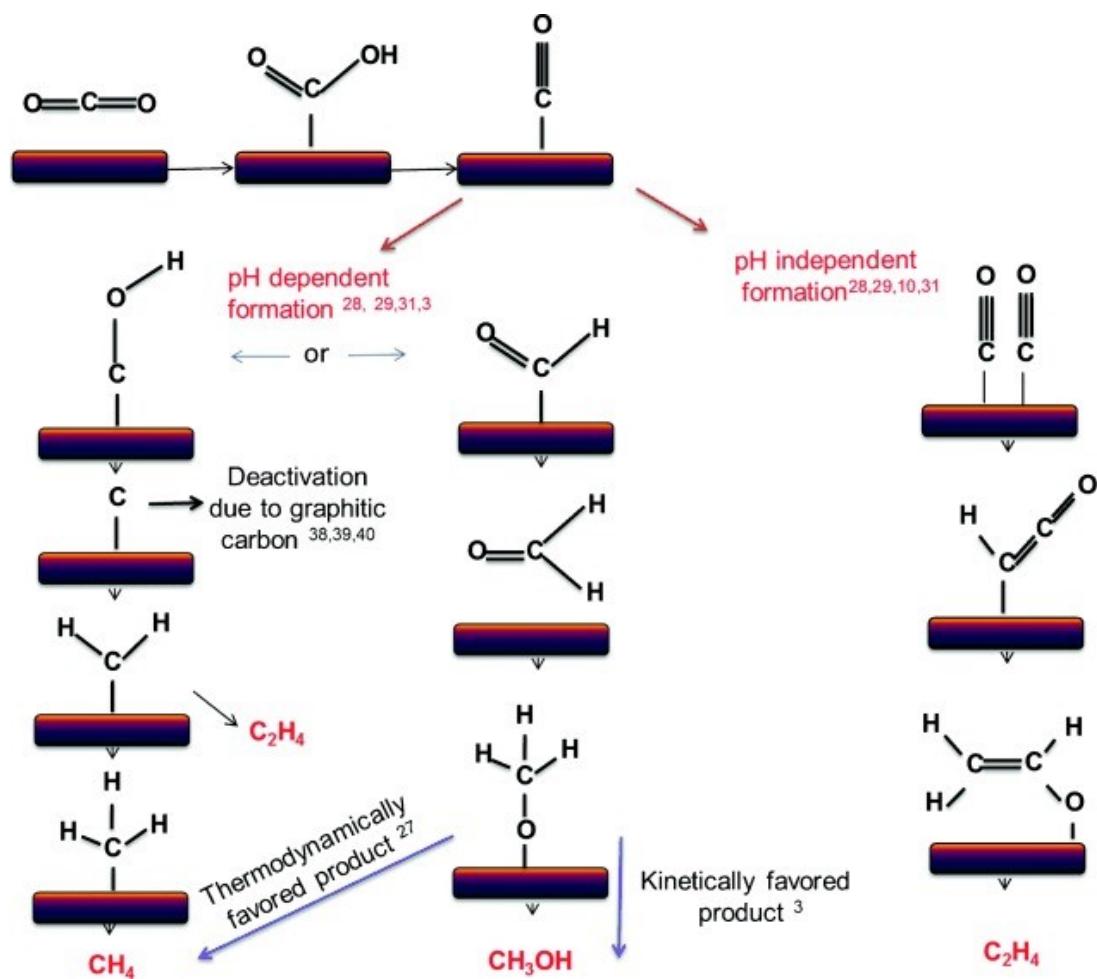

reaction.

Figure 3. (left) Local pH and (right) local CO_2 concentration at the electrode surface as a function of time in a CO_2 -saturated bicarbonate buffer at different operating current densities.^[56] Adapted with permission from Billy, J. T.; Co, A. C. *ACS Catal.* **2017**, *7*, 8467-8479. Copyright 2017 American Chemical Society.

Several recent studies have focused on understanding the role of bulk pH and local pH near the electrode surface on the mechanism of the CO_2 RR by Cu electrocatalysts. One such study investigated the effect of bulk pH on product distributions for the CO_2 RR at Cu(111) and Cu(100) electrocatalysts in buffered and unbuffered solutions.^[16] In particular, they showed that at intermediate bulk pH, the onset potential vs NHE of the 8 e^- reduction of CO_2 to CH_4 on Cu(100) and Cu(111) surface is pH dependent on both surfaces, whereas the onset potential vs NHE for the 12 e^- reduction of CO_2 to C_2H_4 on a Cu(100) surface is pH-independent.^[16] This suggests that rate-limiting step for CO_2 reduction to CH_4 on Cu(100) and Cu(111) involves a proton transfer event (such as the formation of a CHO species), whereas CO_2 reduction to C_2H_4 on a Cu(100) surface operates via a pH-independent rate limiting step (such as the formation of a surface CO dimer) as shown in Figure 4.^[16] CO_2 reduction to C_2H_4 on Cu(111) surfaces shows a pH dependence similar to that for CO_2 reduction to CH_4 , suggesting there also exists a pH-

dependent pathway for C_2H_4 formation on this crystal facet that shares a common intermediate with CH_4 .^[16] The proposed mechanisms from these pH-dependent studies are consistent with other experimental^[63-66] and computational^[67,68] mechanistic investigations.

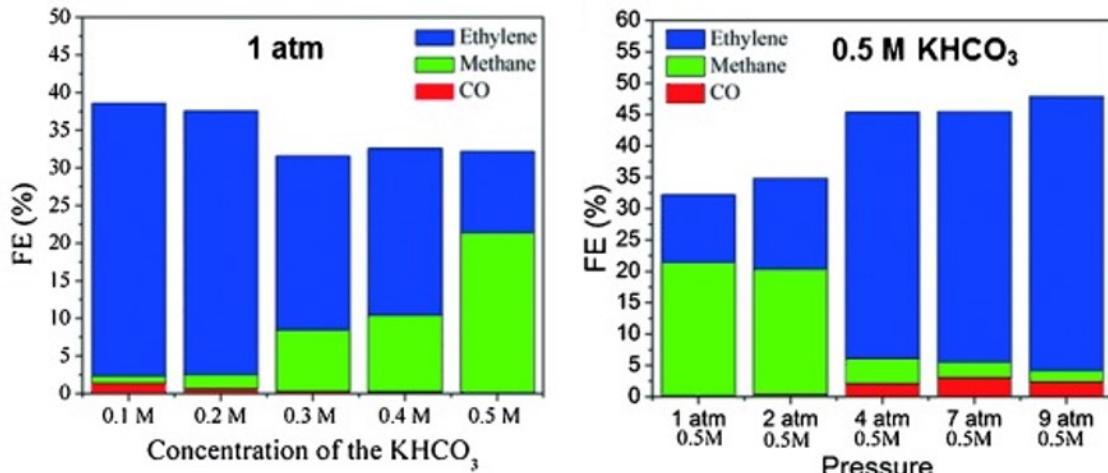


Figure 4. Proposed mechanisms for the CO₂RR to different products showing the pH-dependent pathways for the formation of CH_4 , and CH_3OH , and the pH independent pathway for the formation of C_2H_4 . Reprinted with permission from Reference [69].

The local pH and the extent of the change in local pH during CO₂RR predominantly depend on the buffer capacity of the electrolyte. Buffer capacity has significant effect on CO₂RR product distributions not only on planar Cu metals,^[63,66] but

also on other Cu-based catalysts. The change in production distribution using Cu nanoparticles was investigated in various concentrations, which dictate the buffer capacity, of bicarbonate buffers. They showed that as the bicarbonate concentration was increased from 0.1 M (weaker buffer capacity) to 0.5 M (stronger buffer capacity), there was a corresponding increase in CH₄ production and decrease in C₂H₄ production.^[69] These results are consistent with the findings of several other studies including studies on CO reduction.^[16,56,60,70] Although increasing bicarbonate concentration increases bulk pH, it also increases the buffering capacity of the solution which allows for fast replenishment of the consumed H⁺ near the electrode surface. This means that at higher buffer capacity, the local pH near the electrode surface is closer to that of bulk, favoring the production of pH-dependent CH₄ and H₂, whereas at lower buffer concentrations the local pH near the electrode surface increases, leading to increased formation of pH-independent products such as C₂H₄ (Figure 5).^[69] The authors also showed that increasing CO₂ pressure increases the Faradaic efficiency for C₂H₄ from the CO₂RR (Figure 5).^[69] This observation is consistent with a rate-limiting CO dimerization step for the CO₂RR to C₂H₄—as the bulk CO₂ concentration increases, the relative coverage of *CO adducts on the surface also increases, leading to an increased probability of CO dimerization. Another recent study has suggested there is a competition between forming surface *CO and *H on Cu surfaces, and increased Faradaic efficiency for C₂H₄ production at increased CO₂ pressures is due to suppression of CH₄ and H₂ production rather than increased rate of C₂H₄ production. This is because at higher CO₂ pressures, there is a larger surface concentration of *CO adsorbed to Cu active sites resulting in a lower surface concentration of *H.^[71] This led to a decrease in CH₄ and H₂ production which require surface *H, but there was no corresponding increase in C₂H₄ production rate.^[71] This competition for active sites between CO₂RR and HER is consistent with

studies that have shown HER is suppressed in the presence of CO_2 , and that this suppression is enhanced with increased local concentration of CO_2 .^[72,73]

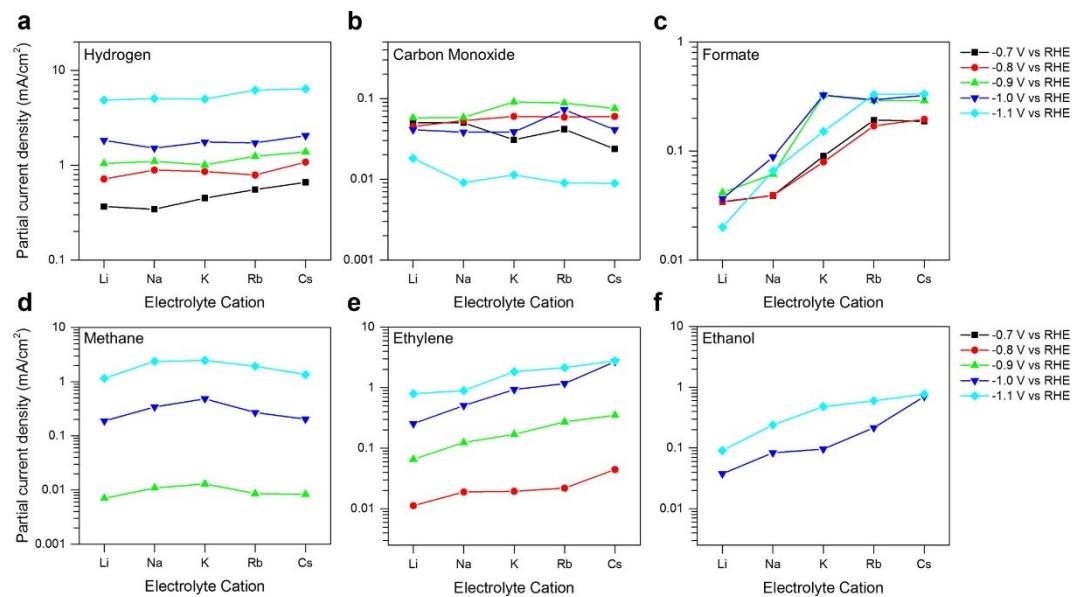


Figure 5. Product distributions for the CO_2RR on Cu nanoparticle catalysts as a function of (left) buffer concentration and (right) CO_2 pressure. Adapted with permission from Reference [69].

In another study, a rotating disk electrode assembly was used to control the transport of substrate to a Cu disk electrode in bicarbonate buffered solutions and studied the effects of rotation rate on CO_2RR product distributions.^[74] As the rotation rate of the electrode increases, there is a corresponding decrease in the formation of CH_4 and an increase in the formation of CO and H_2 .^[74] The authors attribute this change in product distribution to changes in local pH and local CO_2 and CO concentrations. The increase in CO production with faster rotation rates is due to the weakly adsorbed $^*\text{CO}$ leaving the electrode surface before it is further reduced to other hydrocarbons. The increase in HER at faster rotation rates is attributed to the decrease in surface CO coverage, thus increasing the number of active sites for proton reduction.^[74] Other studies using rotating disc voltammetry showed that the HER is inhibited by surface adsorbed CO, which blocks

active sites for water reduction. This inhibition becomes more pronounced as transport of CO₂ is improved.^[73] These studies once again highlight the importance of controlling mass transport in CO₂RR to improve reaction selectivity and product distribution.

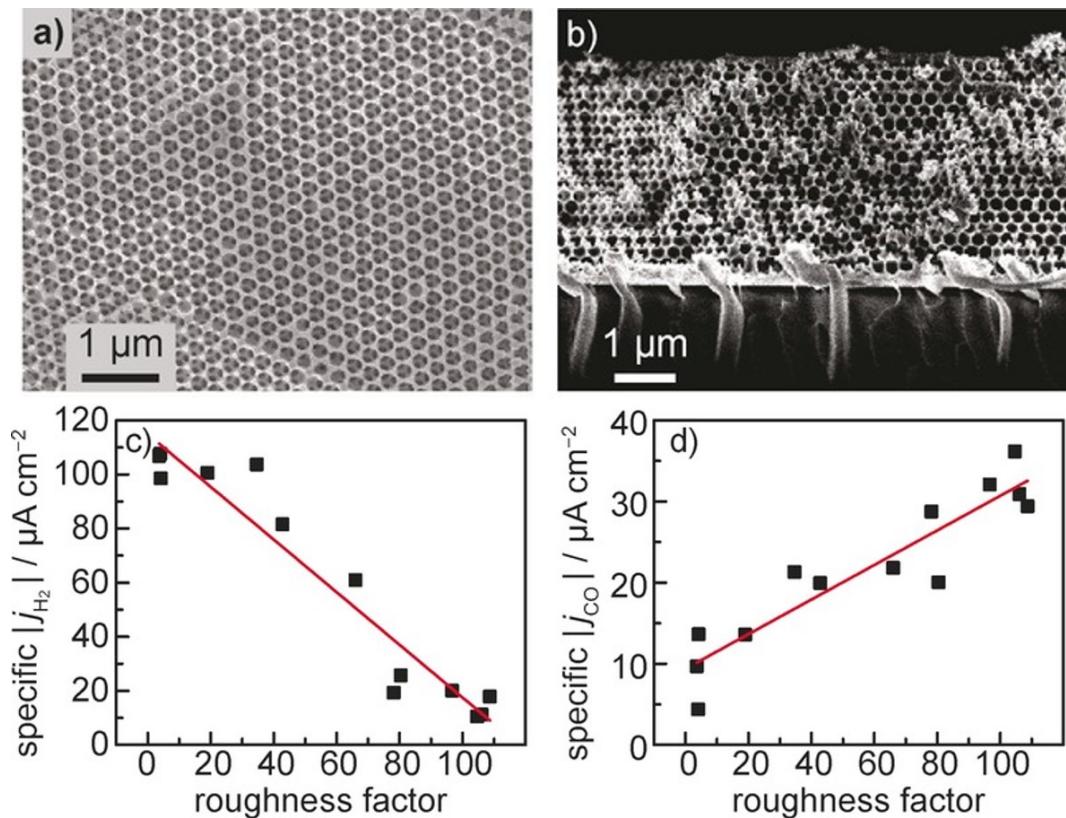
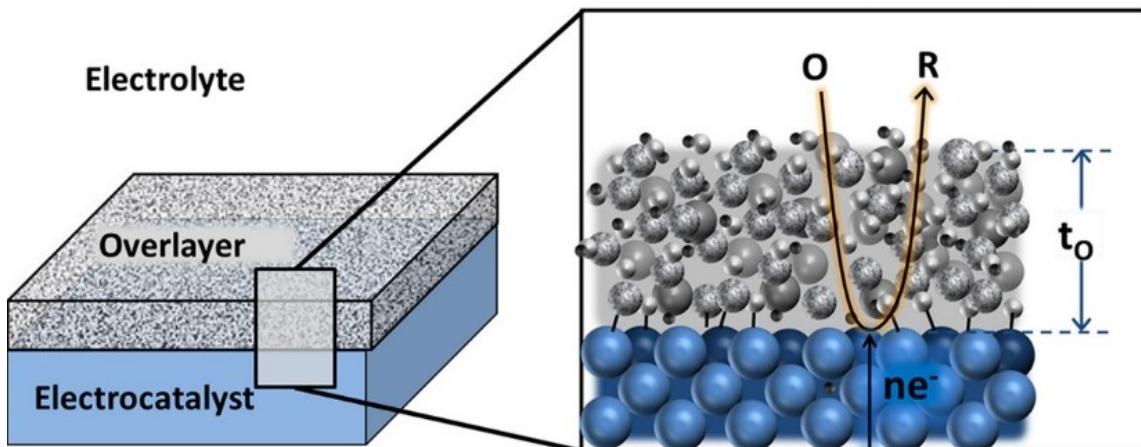

The identity of the cation associated with the buffer system has also been observed to alter the product distribution during the CO₂RR on Cu surfaces,^[14,75] and this may be partially due to local pH effects, although the exact mechanism is not clear. A recent study investigated the product distribution for CO₂RR on Ag and Cu surfaces in CO₂-saturated bicarbonate solutions as a function of cation size (Li⁺ → Cs⁺).^[76] An increase in CO production and decrease in competitive HER on Ag electrodes was observed when increasing the cation size from Li⁺ to Cs⁺. When exploring CO₂RR on Cu electrodes, the authors found that rate of production of highly-reduced C₂ products such as C₂H₄ and CH₃CH₂OH increase as cation size increases (Figure 6), although interestingly the rates of CO and H₂ production are unaffected.^[76,77] One hypothesis provided by the authors to explain this observation is that larger cations have higher buffering capacity than smaller cations and are able to keep local pH sufficiently low to retain higher concentrations of CO₂ near the electrode and available for reduction.^[76] Higher CO₂ concentrations near the electrode surface would account for increased CO production at Ag electrodes, and also for increased production of C₂ products at Cu electrodes. However, this argument disagrees with other mechanistic studies that suggest low local pH favors HER and CH₄ production because of a pH-dependent reaction mechanism.^[16,63-68] An alternative explanation is that the interaction between solvated cations and adsorbed species on the electrode can stabilize intermediates such as *CO₂ and *CO, therefore increasing the product selectivity towards CO and hydrocarbons, and this is supported by DFT calculations.^[77] Although the exact explanation is still unclear, cation identity had been experimentally shown to affect product distribution in CO₂RR.^[76,77]

Figure 6. Partial current densities (e.g. rates of production) for various CO₂RR products as a function of electrolyte cations. As the size of the electrolyte cation increases, there is increased production of HCOOH and the C₂ products C₂H₄ and CH₃CH₂OH.^[77] Reprinted with permission from Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. *J Am. Chem. Soc.* **2017**, *139*, 11277-11287. Copyright 2017 American Chemical Society.

Researchers have also designed nanostructured and porous catalyst systems to better control local pH to increase CO₂RR product selectivity. In one series of studies, mesoporous Ag and Au catalysts have shown high selectivity for CO₂RR to CO over the competitive HER.^[78,79] For instance, in the case of mesostructured Ag films, as the roughness factor is increased by growing thicker porous films, there is a corresponding increase in CO production from the CO₂RR and a decrease in competitive HER (Figure 7).^[79] This reaction selectivity is attributed to increased local pH within the porous catalyst that suppresses HER and promotes CO₂ adsorption on the metal surfaces.^[78,79] In another study, Cu nanoparticles deposited onto a high-surface area carbon paper

support showed higher activity for C_2^+ products than the same nanoparticles deposited at similar loadings onto a planar graphite plate.^[80] The authors suggest the increased activity for C_2^+ products for the Cu nanoparticles on the high-surface carbon paper may be due to increased local pH.^[80] Likewise, studies of the effects of surface roughness on C_2H_4 production have shown a general increase in C_2^+ products with increasing surface roughness, which has been attributed to an increase in local pH.^[81,82] However, there was an optimal roughness beyond which the local pH was thought to increase too much, decreasing local CO_2 concentration, thus inhibiting CO_2RR .^[82] It is important to note that other factors may contribute to increased activity for more highly-reduced products in porous and nanostructured materials including increasing numbers of defect sites or grain boundaries^[83-87] and the mobility of reaction intermediates.^[88]

Figure 7. a) Top down and b) cross-sectional SEM images of a mesostructured Ag film with \sim 200 nm voids interconnected by \sim 50 nm diameter channels. c) H_2 production shown here as a specific current density j_{H_2} , decreases with increasing roughness factor, and d) CO production increases with increasing roughness factor.


Adapted with permission from Reference [79].

The effects of pH on product distributions are also evident on single-site catalyst systems. For instance, in the CO_2 RR by Fe-N-C systems—porphyrin-like $Fe-N_4$ active sites embedded within extended graphite structures—the rate of formation of H_2 and CH_4 are both dependent on the solution pH. The rates decreases with increasing pH in a trend qualitatively similar to that observed on Cu surfaces.^[59] In contrast, CO formation in this system was found to be independent of pH, suggesting CO is formed through decoupled electron-proton transfer process.^[59]

3. Using Overlayer Films to Control Substrate Transport and Influence CO_2 RR Selectivity

One approach to controlling local pH and CO_2 concentration near catalyst active sites is to coat solid-state electrocatalyst surfaces with porous overlayers that directly control substrate transport to the catalyst surface (Figure 8). Overlays have been used extensively to control stability and efficiency for the electrocatalytic oxygen reduction reaction (ORR)^[89-91] and the HER,^[92,93] but are far less prevalent in the CO_2 RR literature. However, overlayer-coated electrodes hold significance promise as electrocatalyst systems for enhanced CO_2 RR reaction and product selectivity. For example, a recent DFT study on porous graphdiyne (GDY) coated Cu surface suggests that the GDY overlayer decreases reaction barriers and onset potential of CO_2 RR intermediate steps, which enhances the performance of metal catalyst.^[94] The GDY coating is thought to

interact with CO_2 and increase local CO_2 concentration near the Cu surface. It may also stabilize *CO intermediates on the Cu surface favoring the subsequent reduction of *CO to CH_4 .

Figure 8. Illustration of an overlayer-coated electrode showing controlled substrate transport through the overlayer film to the electrocatalyst surface.^[95] Adapted with permission from Esposito, D. V. *ACS Catal.* **2018**, 8, 457-465. Copyright 2018 American Chemical Society

Polymer-coated catalysts are a specific subset of overlayer-coated electrodes which have been used to modulate the activity, product distribution, and stability of electrocatalysts for various electrocatalytic reactions including the CO_2RR .^[96] The polymer films can impart significant benefits on the electrocatalysts by controlling substrate transport, stabilizing the reaction intermediate, and protecting against contaminants.^[95,96] When polymer-coated catalysts are used to enhance the CO_2RR , the hydrophobicity of polymer films can increase local CO_2 concentration near catalytic active sites and limit the transport of protons, thus enhancing the CO_2RR and suppressing the competitive HER.

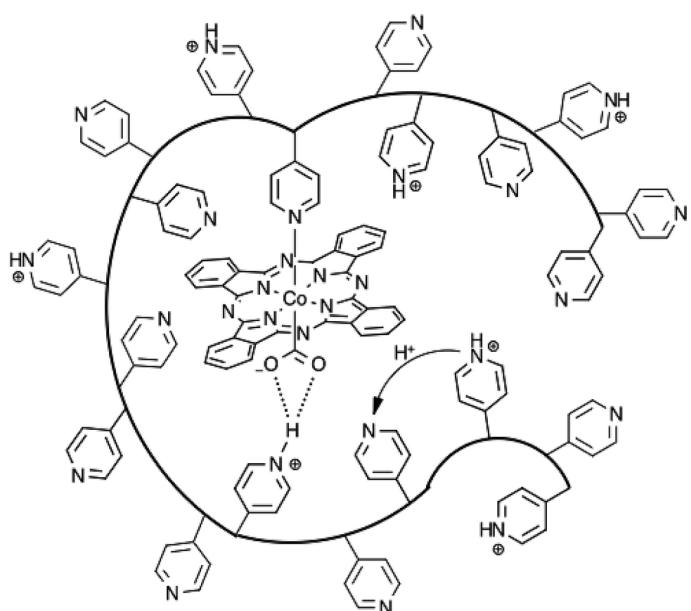
For example, studies of CO₂RR by Cu surfaces coated with electropolymerized polypyrrole (PPy) films show a shift in the product distribution of CO₂RR towards more highly-reduced hydrocarbons while suppressing H₂ production.^[97] The authors propose that the polypyrrole films decreases the concentration of H⁺ and causes a change in the mechanism of the CO₂RR to a surface hydrogenation of CO₂ intermediates rather than sequential electron and proton transfer events.^[97] Similar enhancement of the CO₂RR and suppression of the HER have been shown for MoS_x nanoparticle incorporated within polyethylenimine (PEI)-modified reduced graphene oxide films.^[98] PEI is thought to suppress the HER by inhibiting H₂ formation,^[98] and also to stabilize reaction intermediates through secondary-coordination sphere effects.^[98,99] In the case of the CO₂RR on poly-4-vinylpyridine (P4VP) coated Cu electrodes, P4VP is postulated to coordinate with reduced Cu sites on the surfaces to form active Cu^{II}-P4VP complexes which strongly interact with CO₂. This polymer-coordination on the surface facilitates the formation of surface-CO₂ intermediates and limits the available sites for interactions with H⁺, thus preferentially favoring the CO₂RR and suppressing the HER.^[100]

Because of their hydrophobicity, polymer films can also increase local CO₂ concentration and stabilize reactive intermediates. For instance, it's thought that polymers such as P4VP and PEI might stabilize the formation of CO₂^{•-} radical anions either through direct electrostatic interactions between CO₂^{•-} and protonated sites on the polymer,^[98,99] or by forming a local non-aqueous environment which facilitates formation of the radical anion species.^[100,101] In addition, polymer films may increase the lifetime of desorbed intermediates. For example, Re surfaces coated with electropolymerized PPy films show increased activity for CO₂RR to CH₄ compared to bare Re.^[102] It has been postulated that this increased activity for CH₄ production may be

due to trapping of desorbed CO within the PPy matrix which increases the probability of CO re-adsorption and subsequent reduction to CH₄.^[102]

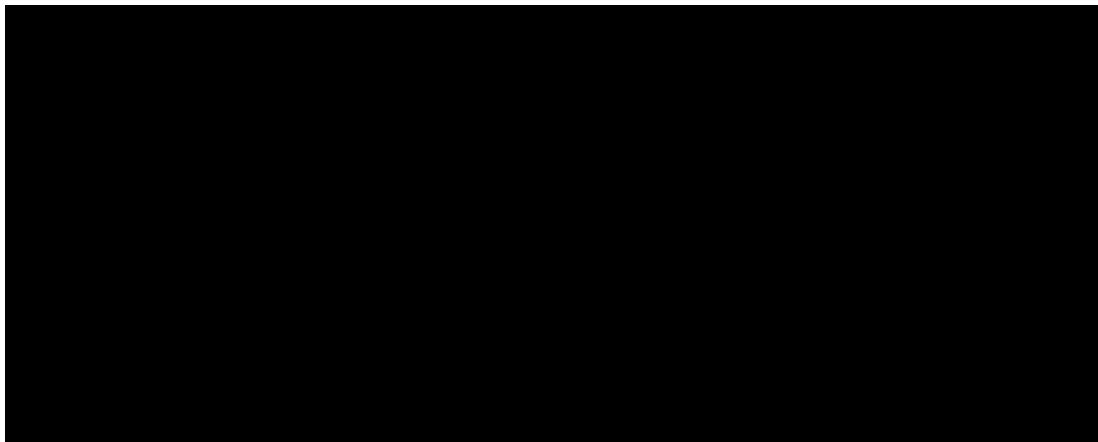
Coating electrode surfaces with porous overlayers can also play an important role in decreasing transport of contaminants to the electrode surface and thus preventing electrode poisoning and deactivation.^[93,95,103] This is particularly important for CO₂RR at Cu surfaces which are extremely susceptible to surface poisoning,^[14,104] especially by trace metal contaminants in the electrolyte solutions.^[104-106] A recent study of CO₂RR by P4VP-coated Cu electrodes for the CO₂RR found that P4VP can act as a sink for heavy-metal contaminants in standard purity (99.7+ %) electrolytes, thereby decreasing the effect of the metal contaminants on the electrocatalytic activity and product distribution.^[100]

4. Selective CO₂RR by Polymer-Catalyst Composite Films


In addition to serving as porous overlayers that control substrate transport to catalyst active sites, polymers can also be used to modulate the coordination environment of metal-macrocyclic complexes to increase their activity and selectivity for the CO₂RR. There are two common strategies for heterogenizing molecular catalysts within polymer films: 1) electropolymerization of metal complexes in which the molecular catalysts are directly incorporated into the polymer structure, and 2) polymer encapsulation in which the molecular catalyst is confined within a coordination polymer. The resulting polymer-catalyst composite films typically retain the main advantages of molecular electrocatalysts—including high selectivity for single products, single active sites, and tunable structures—while increasing effective charge transfer to the catalyst sites and increasing catalyst stability.

For electropolymerized catalyst-polymer composite films, 2-electron reduced products such as CO and HCOOH are the most common CO₂RR products in both aqueous

and organic electrolyte solutions.^[96,107-112] More highly-reduced products (e.g. CH₄, CH₃OH, and C₂H₆) have been achieved by some polymeric structures,^[113-116] especially systems with bimetallic or multimetallic active centers that can stabilize CO₂RR intermediates and/or facilitate C-C coupling.^[113,117,118] However, proton-delivery can also play an important role in these systems. For instance, electropolymerized films of Co-polyvinylterpyridine complexes show selective CO₂RR towards the 2-electron production of HCOOH in non-aqueous solutions (DMF and acetonitrile),^[112,119] but these films reduce CO₂ by 4-electrons to formaldehyde in aqueous sodium perchlorate electrolytes.^[120] It is postulated that the difference in the CO₂RR products in non-aqueous and aqueous electrolytes is due to proton-transport—when non-aqueous electrolytes are used, CO₂RR is limited by a lack of H⁺ which results in release of HCOOH before it can be further reduced to HCHO.^[120] It's also worth noting that the electrocatalytic activity per active site decreases with increasing film thickness, presumably due to poor electron transport through the non-conducting polymer films.^[120]


Polymer-encapsulation of molecular catalysts is another way to promote selective CO₂RR by composite catalyst-polymer films. In this case, the polymers can influence the activity of the molecular catalysts through numerous effects including primary coordination sphere effects such as axial-coordination to the metal active sites, secondary-coordination effects such as H-bonding interactions, and outer-coordination sphere effects such as controlled delivery of H⁺ and CO₂ to the active sites.^[121-126] A polymer-encapsulated system of particular interest to our group is cobalt phthalocyanine (CoPc) immobilized within poly-4-vinylpyridine (P4VP) films (Figure 9). CoPc-P4VP composite films have been shown to have enhanced CO₂RR activity and selectivity compared to the parent CoPc.^[122-124] It was postulated that the enhancement in CO₂RR activity and selectivity was due to three synergistic effects imbued by the P4VP polymer.

First, the pyridyl groups in P4VP can axially-coordinate to the Co metal center and facilitate CO_2 binding and reduction.^[124] This is consistent with studies that show when σ -donating ligands such as pyridines or imidazoles are coordinated to metal porphyrin and phthalocyanine complexes, the resulting systems show an increase in catalytic activity for CO_2 reduction and O_2 reduction.^[127-130] In addition, the polymer membrane can stabilize reduced CO_2 intermediates through H-bonding interactions with protonated pyridyl moieties. This proposed secondary-coordination sphere stabilization of reactive intermediates is analogous to that reported in several other studies of synthetic molecular catalysts.^[131-135] Finally, the P4VP film can modulate H^+ transport to the active sites by using the pyridyl moieties as proton relays.

Figure 9. Cobalt phthalocyanine (CoPc) encapsulated within a poly-4-vinylpyridine (P4VP) film. The postulated primary coordination sphere effects (axial coordination of the pyridyl group to the CoPc), secondary coordination sphere effects (H-bonding stabilization of CO_2 intermediates), and outer coordination sphere effects (control of H^+ -transport through a proton relay) are shown.^[124] [W. W. Kramer and C. C. L. McCrory, Chem. Sci., 2016, 7, 2506] – Published by The Royal Society of Chemistry.

Our work has focused on distinguishing between the primary, secondary, and outer-coordination sphere effects in the polymer-encapsulated CoPc system and determining the extent to which each effect modulates the activity and selectivity for CO₂ reduction by CoPc. We systematically altered the polymer-encapsulated system to independently assess the role of each coordination sphere in the CO₂ reduction mechanism by the CoPc-P4VP system (**Figure 10**). In doing so, we determined the following effects: 1) axial coordination of pyridine to CoPc to form CoPc(py) leads to an increase in the CO₂ reduction activity and a moderate increase in selectivity; 2) immobilizing CoPc into poly-2-vinylpyridine (P2VP) to form CoPc-P2VP leads to an increase in the selectivity for CO production, but no change in the overall catalytic activity compared to the parent adsorbed CoPc. We propose that the steric congestion surrounding the P2VP pyridyl moieties prevents axial coordination to the Co metal center, and that inhibition of H₂ production in the CoPc-P2VP system is due to the limited transport of H⁺ through the polymer film; and 3) immobilizing CoPc(py) into P2VP to form the CoPc(py)-P2VP system leads to dramatically increased activity and selectivity for CO₂ reduction compared to the parent CoPc system. We hypothesize that the increase in selectivity is due to a combination of both axial-coordination effects and the outer-coordination sphere effects.^[124] Note that rigorous studies on the types of polymers have been shown that synergy between catalyst and polymer effects is required for increased activity and selectivity in polymer-encapsulated systems.^[125]

Figure 10. CO₂-reduction activity (TOF_{CO}) and Faradaic efficiency for CO production (ε_{CO}) by CoPc-P4VP and related systems. CoPc and CoPc(py) are complexes directly adsorbed to carbon electrodes with no polymer, whereas CoPc-P4VP, CoPc-P2VP, and CoPc(py)-P2VP are catalyst-polymer composites in which the catalyst is encapsulated within the P4VP or P2VP polymer.^[124] Adapted with permission from: [W. W. Kramer and C. C. L. McCrory, Chem. Sci., 2016, 7, 2506] – Published by The Royal Society of Chemistry.

In addition, we used kinetic isotope effect (KIE) measurements to probe the effect of axial coordination on the CO₂RR mechanism by CoPc-P4VP.^[126] In particular, CoPc has a KIE ≈ 1 which suggests that the rate determining step does not involve a H⁺-transfer event and is presumably instead the CO₂ binding step. However, CoPc(py) showed a KIE ≈ 3 which is indicative of H⁺-transfer event in the rate-determining step. Thus, axial-coordination of a pyridyl-group to the CoPc facilitates CO₂ binding, consistent with our previous hypothesis, and changes the rate-determining step to a subsequent protonation event.^[126] Using proton-inventory studies,^[136-138] we were able to show that H⁺-delivery to the CoPc active sites is controlled via a proton-relay mechanism through the polymer involving the partially-protonated pyridyl moieties (rather than H⁺ diffusion through the polymer film),^[126] supporting our hypothesis regarding the mechanism of H⁺ delivery

within our polymer-catalyst composite system. We postulate that the protonated pyridyl residues within the polymer are acidic enough to facilitate H^+ transport and stabilize reduced CO_2 intermediates at the CoPc active sites, but H^+ transport in the polymer is sluggish enough to suppress the competitive HER.

Developing a comprehensive understanding of the mechanism and rate of substrate and electron transport to electrocatalyst sites is crucial for rationally designing new polymer-catalyst composite films. Transport and activity in polymer-catalyst composite films can be described by a combination of five interdependent rates, expressed here as currents:^[139-144] (1) i_A , the rate of transport of substrate through the electrolyte solution to the film, (2) i_S , the rate of transport of substrate within the polymer film to the catalyst, (3) i_p , the rate of substrate transport across the polymer/electrolyte interface, (4) i_E , the rate of electron transport through the film to the randomly-distributed catalysts, and (5) i_K , is the rate of the catalytic transformation and is not dependent on transport. Although exact relationship between these five rates and measured catalytic activity is complicated,^[139-144] better understanding how each of these rates contributes to overall activity of polymer-composite electrocatalysts will inform the design of new, more active materials for the CO_2RR .

5. Conclusions

This review highlights some of the recent work focused on developing new electrocatalytic systems for selective CO_2RR by controlling H^+ and CO_2 delivery to catalyst materials. In the CO_2RR , controlling H^+ and CO_2 delivery to electrocatalyst active sites is essential to achieve high reaction selectivity (CO_2RR vs competitive HER) and high product selectivity (for specific carbon products). For solid-state electrocatalysts for the CO_2RR , local pH and CO_2 concentration influence both electrocatalytic mechanism and product distribution. In particular, high local pH and/or

high CO₂ concentration near the electrocatalyst surface facilitates C-C coupling reactions and enhances production of C₂ products. To better control local substrate concentrations, researchers have developed new mesoporous and nanostructured catalyst that result in concentration gradients near interior active sites and modulate overall CO₂RR product distributions, and have designed overlayer-coated electrocatalysts in which substrate transport to the catalyst directly controlled by transport through the porous overlayer. In the case of CO₂RR by molecular catalysts, polymer-catalyst composite films, including polymer-encapsulated molecular catalysts, provide a unique strategy to not only control substrate delivery but also enhance reaction activity by modulating the catalyst's primary, secondary, and outer coordination spheres. We believe that the studies featured in this review demonstrate the promising strategy of controlling substrate delivery to enhance reaction and product selectivity for the CO₂RR and efficiently convert of CO₂ to value-added products.

Funding.

This work was supported by a National Science Foundation CAREER grant (CHE-1751791) and by the University of Michigan. T.L.S. acknowledges support by the National Science Foundation Graduate Research Fellowship Program (DGE 1256260) and a University of Michigan Rackham Merit Fellowship.

Disclosure Statement.

No potential conflict of interest is reported by the authors.

References

[1] Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, A. P. *Basic Research Needs for Solar Energy Utilization*, Department of Energy, 2005.

[2] Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO₂ to liquid fuels. *Chem. Soc. Rev.* **2009**, *38*, 89-99. DOI: 10.1039/b804323j

[3] Whipple, D. T.; Kenis, P. J. A. Prospects of CO₂ Utilization via Direct Heterogeneous Electrochemical Reduction. *J. Phys. Chem. Lett.* **2010**, *1*, 3451-3458. DOI: 10.1021/jz1012627

[4] Friend, C. M.; Sanford, M. S.; Abruña, H. D. *Catalytic Chemistry Workshop on Defining Critical Directions for the Future*, National Science Foundation, 2011. http://faculty.chemistry.harvard.edu/files/friend-lab/files/nsf_catreport_final_august_2011_mar2013_1.pdf

[5] Inglis, J. L.; MacLean, B. J.; Pryce, M. T.; Vos, J. G. Electrocatalytic pathways towards sustainable fuel production from water and CO₂. *Coord. Chem. Rev.* **2012**, *256*, 2571-2600. DOI: 10.1016/j.ccr.2012.05.002

[6] Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO₂ Fixation. *Chem. Rev.* **2013**, *113*, 6621-6658. DOI: 10.1021/cr300463y

[7] Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. *Chem. Soc. Rev.* **2014**, *43*, 631-675. DOI: 10.1039/c3cs60323g

[8] Berardi, S.; Drouet, S.; Francas, L.; Gimbert-Surinach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. *Chem. Soc. Rev.* **2014**, *43*, 7501-7519. DOI: 10.1039/c3cs60405e

[9] Nocera, D. G. Solar Fuels and Solar Chemicals Industry. *Acc. Chem. Res.* **2017**, *50*, 616-619. DOI: 10.1021/acs.accounts.6b00615

[10] Senftle, T. P.; Carter, E. A. The Holy Grail: Chemistry Enabling an Economically Viable CO₂ Capture, Utilization, and Storage Strategy. *Acc. Chem. Res.* **2017**, *50*, 472-475. DOI: 10.1021/acs.accounts.6b00479

[11] Martín, A. J.; Larrazábal, G. O.; Pérez-Ramírez, J. Towards sustainable fuels and chemicals through the electrochemical reduction of CO₂: lessons from water electrolysis. *Green Chem.* **2015**, *17*, 5114-5130. DOI: 10.1039/C5GC01893E

[12] Pletcher, D. The cathodic reduction of carbon dioxide—What can it realistically achieve? A mini review. *Electrochem. Commun.* **2015**, *61*, 97-101. DOI: 10.1016/j.elecom.2015.10.006

[13] Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. *Energy Environ. Sci.* **2012**, *5*, 7050-7059. DOI: 10.1039/C2EE21234J

[14] Hori, Y. "Electrochemical CO₂ Reduction on Metal Electrodes," In *Modern Aspects of Electrochemistry*; Vayemas, C. G., Ed.; Springer: New York, 2008; Vol. 42, p 89-189.

[15] Li, C. W.; Kanan, M. W. CO₂ Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu₂O Films. *J. Am. Chem. Soc.* **2012**, *134*, 7231-7234. DOI: 10.1021/ja3010978

[16] Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. The influence of pH on the reduction of CO and to hydrocarbons on copper electrodes. *J. Electroanal. Chem.* **2014**, *716*, 53-57. DOI: 10.1016/j.jelechem.2013.08.033

[17] Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO₂ to hydrocarbons at copper. *J. Electroanal. Chem.* **2006**, *594*, 1-19. DOI: 10.1016/j.jelechem.2006.05.013

[18] Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces. *Phys. Chem. Chem. Phys.* **2014**, *16*, 13814-13819. DOI: 10.1039/c4cp00692e

[19] Hori, Y.; Kikuchi, K.; Suzuki, S. Production of CO and CH₄ in Electrochemical Reduction of CO₂ at Metal Electrodes in Aqueous Hydrogencarbonate Solution. *Chem. Lett.* **1985**, *14*, 1695-1698. DOI: 10.1246/cl.1985.1695

[20] Keene, F. R.; Creutz, C.; Sutin, N. Reduction of carbon dioxide by tris(2,2'-bipyridine)cobalt(I). *Coord. Chem. Rev.* **1985**, *64*, 247-260. DOI: 10.1016/0010-8545(85)80053-9

[21] Taniguchi, I. "Electrochemical and Photoelectrochemical Reduction of Carbon Dioxide," In *Modern Aspects of Electrochemistry No. 20*; Bockris, J. O. M., White, R. E., Conway, B. E., Eds.; Springer US: Boston, MA, 1989, p 327-400.

[22] Collin, J. P.; Sauvage, J. P. Electrochemical reduction of carbon dioxide mediated by molecular catalysts. *Coord. Chem. Rev.* **1989**, *93*, 245-268. DOI: 10.1016/0010-8545(89)80018-9

[23] Costamagna, J.; Ferraudi, G.; Canales, J.; Vargas, J. Carbon dioxide activation by aza-macrocyclic complexes. *Coord. Chem. Rev.* **1996**, *148*, 221-248. DOI: 10.1016/0010-8545(95)01231-1

[24] Jitaru, M.; Lowy, D. A.; Toma, M.; Toma, B. C.; Oniciu, L. Electrochemical reduction of carbon dioxide on flat metallic cathodes. *J. Appl. Electrochem.* **1997**, *27*, 875-889. DOI: 10.1023/A:1018441316386

[25] Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide. *Chem. Rev.* **2007**, *107*, 2365-2387. DOI: 10.1021/cr068357u

[26] Hori, Y. "CO₂-reduction, catalyzed by metal electrodes," In *Handbook of Fuel Cells*; John Wiley & Sons, Ltd: 2010.

[27] Windle, C. D.; Perutz, R. N. Advances in molecular photocatalytic and electrocatalytic CO₂ reduction. *Coord. Chem. Rev.* **2012**, *256*, 2562-2570. DOI: 10.1016/j.ccr.2012.03.010

[28] Finn, C.; Schnittger, S.; Yellowlees, L. J.; Love, J. B. Molecular approaches to the electrochemical reduction of carbon dioxide. *Chem. Commun.* **2012**, *48*, 1392-1399. DOI: 10.1039/C1CC15393E

[29] Costentin, C.; Robert, M.; Saveant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. *Chem. Soc. Rev.* **2013**, *42*, 2423-2436. DOI: 10.1039/c2cs35360a

[30] Oh, Y.; Hu, X. Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO₂ reduction. *Chem. Soc. Rev.* **2013**, *42*, 2253-2261. DOI: 10.1039/C2CS35276A

[31] Grice, K. A.; Kubiak, C. P. "Chapter Five - Recent Studies of Rhenium and Manganese Bipyridine Carbonyl Catalysts for the Electrochemical Reduction of

CO₂," In *Adv. Inorg. Chem.*; Aresta, M., van Eldik, R., Eds.; Academic Press: 2014; Vol. 66, p 163-188.

[32] Lu, X.; Leung, D. Y. C.; Wang, H.; Leung, M. K. H.; Xuan, J. Electrochemical Reduction of Carbon Dioxide to Formic Acid. *ChemElectroChem* **2014**, *1*, 836-849. DOI: 10.1002/celc.201300206

[33] Lim, R. J.; Xie, M.; Sk, M. A.; Lee, J.-M.; Fisher, A.; Wang, X.; Lim, K. H. A review on the electrochemical reduction of CO₂ in fuel cells, metal electrodes and molecular catalysts. *Catal. Today* **2014**, *233*, 169-180. DOI: 10.1016/j.cattod.2013.11.037

[34] Goeppert, A.; Czaun, M.; Jones, J.-P.; Surya Prakash, G. K.; Olah, G. A. Recycling of carbon dioxide to methanol and derived products - closing the loop. *Chem. Soc. Rev.* **2014**. DOI: 10.1039/c4cs00122b

[35] Kobayashi, K.; Tanaka, K. Approach to multi-electron reduction beyond two-electron reduction of CO₂. *Phys. Chem. Chem. Phys.* **2014**, *16*, 2240-2250. DOI: 10.1039/C3CP52635F

[36] Kang, P.; Chen, Z.; Brookhart, M.; Meyer, T. J. Electrocatalytic Reduction of Carbon Dioxide: Let the Molecules Do the Work. *Top. Catal.* **2015**, *58*, 30-45. DOI: 10.1007/s11244-014-0344-y

[37] Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. *J. Phys. Chem. Lett.* **2015**, *6*, 4073-4082. DOI: 10.1021/acs.jpclett.5b01559

[38] Kumar, B.; Brian, J. P.; Atla, V.; Kumari, S.; Bertram, K. A.; White, R. T.; Spurgeon, J. M. New trends in the development of heterogeneous catalysts for

electrochemical CO₂ reduction. *Catal. Today* **2016**, *270*, 19-30. DOI: 10.1016/j.cattod.2016.02.006

[39] Elgrishi, N.; Chambers, M. B.; Wang, X.; Fontecave, M. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO₂. *Chem. Soc. Rev.* **2017**, *46*, 761-796. DOI: 10.1039/C5CS00391A

[40] Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO₂ with Fe and Co metal based complexes. Recent advances. *Coord. Chem. Rev.* **2017**, *334*, 184-198. DOI: 10.1016/j.ccr.2016.09.005

[41] Wang, J.-W.; Liu, W.-J.; Zhong, D.-C.; Lu, T.-B. Nickel complexes as molecular catalysts for water splitting and CO₂ reduction. *Coord. Chem. Rev.* **2019**, *378*, 237-261. DOI: doi.org/10.1016/j.ccr.2017.12.009

[42] Taheri, A.; Berben, L. A. Making C–H bonds with CO₂: production of formate by molecular electrocatalysts. *Chem. Commun.* **2016**, *52*, 1768-1777. DOI: 10.1039/C5CC09041E

[43] Lee, S.; Lee, J. Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide. *ChemSusChem* **2016**, *9*, 333-344. DOI: 10.1002/cssc.201501112

[44] Lu, Q.; Jiao, F. Electrochemical CO₂ reduction: Electrocatalyst, reaction mechanism, and process engineering. *Nano Energy* **2016**, *29*, 439-456. DOI: 10.1016/j.nanoen.2016.04.009

[45] Yang, N.; Waldvogel, S. R.; Jiang, X. Electrochemistry of Carbon Dioxide on Carbon Electrodes. *ACS Appl. Mater. Interfaces* **2016**, *8*, 28357-28371. DOI: 10.1021/acsami.5b09825

[46] Zhao, G.; Huang, X.; Wang, X.; Wang, X. Progress in catalyst exploration for heterogeneous CO₂ reduction and utilization: a critical review. *J. Mater. Chem. A* **2017**, *5*, 21625-21649. DOI: 10.1039/C7TA07290B

[47] Al-Rowaili, F. N.; Jamal, A.; Ba Shammakh, M. S.; Rana, A. A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects. *ACS Sustain. Chem. Eng.* **2018**, *6*, 15895-15914. DOI: 10.1021/acssuschemeng.8b03843

[48] Yang, W.; Dastafkan, K.; Jia, C.; Zhao, C. Design of Electrocatalysts and Electrochemical Cells for Carbon Dioxide Reduction Reactions. *Advanced Materials Technologies* **2018**, *3*, 1700377. DOI: 10.1002/admt.201700377

[49] Wu, J.; Sharifi, T.; Gao, Y.; Zhang, T.; Ajayan, P. M. Emerging Carbon-Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Value-Added Chemicals. *Adv. Mater.* **2019**, *31*, 1804257. DOI: 10.1002/adma.201804257

[50] Parkin, A.; Seravalli, J.; Vincent, K. A.; Ragsdale, S. W.; Armstrong, F. A. Rapid and Efficient Electrocatalytic CO₂/CO Interconversions by *Carboxydothermus hydrogenoformans* CO Dehydrogenase I on an Electrode. *J. Am. Chem. Soc.* **2007**, *129*, 10328-10329. DOI: 10.1021/ja073643o

[51] Dewar, M. J.; Storch, D. M. Alternative view of enzyme reactions. *Proc. Natl. Acad. Sci. U.S.A.* **1985**, *82*, 2225-2229. DOI: 10.1073/pnas.82.8.2225

[52] Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H.; Olsson, M. H. M. Electrostatic Basis for Enzyme Catalysis. *Chem. Rev.* **2006**, *106*, 3210-3235. DOI: 10.1021/cr0503106

[53] Jeoung, J. H.; Dobbek, H. Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. *Science* **2007**, *318*, 1461-1464. DOI: 10.1126/science.1148481

[54] Fesseler, J.; Jeoung, J.-H.; Dobbek, H. How the [NiFe4S4] Cluster of CO Dehydrogenase Activates CO₂ and NCO⁻. *Angew. Chem. Int. Ed.* **2015**, *54*, 8560-8564. DOI: doi:10.1002/anie.201501778

[55] Katsounaros, I.; Meier, J. C.; Klemm, S. O.; Topalov, A. A.; Biedermann, P. U.; Auinger, M.; Mayrhofer, K. J. J. The effective surface pH during reactions at the solid-liquid interface. *Electrochemistry Communications* **2011**, *13*, 634-637. DOI: 10.1016/j.elecom.2011.03.032

[56] Billy, J. T.; Co, A. C. Experimental Parameters Influencing Hydrocarbon Selectivity during the Electrochemical Conversion of CO₂. *ACS Catal.* **2017**, *7*, 8467-8479. DOI: 10.1021/acscatal.7b02373

[57] Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO₂ in KHCO₃ solutions. *Journal of Applied Electrochemistry* **2006**, *36*, 161-172. DOI: 10.1007/s10800-005-9058-y

[58] Raciti, D.; Mao, M.; Park, J. H.; Wang, C. Local pH Effect in the CO₂ Reduction Reaction on High-Surface-Area Copper Electrocatalysts. *Journal of The Electrochemical Society* **2018**, *165*, F799-F804. DOI: 10.1149/2.0521810jes

[59] Varela, A. S.; Kroschel, M.; Leonard, N. D.; Ju, W.; Steinberg, J.; Bagger, A.; Rossmeisl, J.; Strasser, P. pH Effects on the Selectivity of the Electrocatalytic CO₂ Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis. *ACS Energy Lett.* **2018**, *3*, 812-817. DOI: 10.1021/acsenergylett.8b00273

[60] Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Controlling the selectivity of CO₂ electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. *Catalysis Today* **2016**, *260*, 8-13. DOI: 10.1016/j.cattod.2015.06.009

[61] Ryu, J.; Wuttig, A.; Surendranath, Y. Quantification of Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction. *Angew. Chem. Int. Ed.* **2018**, *57*, 9300-9304. DOI: 10.1002/anie.201802756

[62] Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. Which is an Intermediate Species for Photocatalytic Conversion of CO₂ by H₂O as the Electron Donor: CO₂ Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions? *The Journal of Physical Chemistry C* **2017**, *121*, 8711-8721. DOI: 10.1021/acs.jpcc.6b12809

[63] Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. Electrochemical Reduction of CO at a Copper Electrode. *J. Phys. Chem. B* **1997**, *101*, 7075-7081. DOI: 10.1021/jp970284i

[64] Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. *Chem. Sci.* **2011**, *2*, 1902-1909. DOI: 10.1039/c1sc00277e

[65] Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals. *ACS Catalysis* **2013**, *3*, 1292-1295. DOI: 10.1021/cs4002404

[66] Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Controlling the selectivity of CO₂ electroreduction on copper: The effect of the electrolyte concentration and

the importance of the local pH. *Catal. Today* **2016**, *260*, 8-13. DOI: 10.1016/j.cattod.2015.06.009

[67] Calle-Vallejo, F.; Koper, M. T. M. Theoretical Considerations on the Electroreduction of CO to C₂ Species on Cu(100) Electrodes. *Angew. Chem. Int. Ed.* **2013**, *52*, 7282-7285. DOI: 10.1002/anie.201301470

[68] Montoya, J. H.; Peterson, A. A.; Nørskov, J. K. Insights into C \square C Coupling in CO₂ Electroreduction on Copper Electrodes. *ChemCatChem* **2013**, *5*, 737-742. DOI: 10.1002/cctc.201200564

[69] Kas, R.; Kortlever, R.; Yilmaz, H.; Koper, M. T. M.; Mul, G. Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO₂ Electroreduction by Process Conditions. *ChemElectroChem* **2015**, *2*, 354-358. DOI: doi:10.1002/celc.201402373

[70] Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. Electrochemical reduction of CO at a copper electrode. *J Phys Chem B* **1997**, *101*, 7075-7081. DOI: DOI 10.1021/jp970284i

[71] Schreier, M.; Yoon, Y.; Jackson, M. N.; Surendranath, Y. Competition between H and CO for Active Sites Governs Copper-Mediated Electrosynthesis of Hydrocarbon Fuels. *Angew. Chem. Int. Ed.* **2018**, *57*, 10221-10225. DOI: 10.1002/anie.201806051

[72] Wuttig, A.; Yaguchi, M.; Motobayashi, K.; Osawa, M.; Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO₂-to-fuels selectivity. *Proc. Natl. Acad. Sci. U.S.A.* **2016**, *201602984*. DOI: 10.1073/pnas.1602984113

[73] Ooka, H.; Figueiredo, M. C.; Koper, M. T. M. Competition between Hydrogen Evolution and Carbon Dioxide Reduction on Copper Electrodes in Mildly

Acidic Media. *Langmuir* **2017**, *33*, 9307-9313. DOI: 10.1021/acs.langmuir.7b00696

[74] Lim, C. F. C.; Harrington, D. A.; Marshall, A. T. Effects of mass transfer on the electrocatalytic CO₂ reduction on Cu. *Electrochimica Acta* **2017**, *238*, 56-63. DOI: 10.1016/j.electacta.2017.04.017

[75] Kyriacou, G. Z.; Anagnostopoulos, A. K. Influence of Co₂ Partial-Pressure and the Supporting Electrolyte Cation on the Product Distribution in Co₂ Electroreduction. *Journal of Applied Electrochemistry* **1993**, *23*, 483-486. DOI: 10.1007/BF00815700

[76] Singh, M. R.; Kwon, Y.; Lum, Y.; Ager, J. W., 3rd; Bell, A. T. Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO₂ over Ag and Cu. *J Am Chem Soc* **2016**, *138*, 13006-13012. DOI: 10.1021/jacs.6b07612

[77] Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. *J. Am. Chem. Soc.* **2017**, *139*, 11277-11287. DOI: 10.1021/jacs.7b06765

[78] Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. Mesostructure-Induced Selectivity in CO₂ Reduction Catalysis. *J. Am. Chem. Soc.* **2015**, *137*, 14834-14837. DOI: 10.1021/jacs.5b08259

[79] Yoon, Y.; Hall, A. S.; Surendranath, Y. Tuning of Silver Catalyst Mesostructure Promotes Selective Carbon Dioxide Conversion into Fuels. *Angew. Chem. Int. Ed.* **2016**, *55*, 15282-15286. DOI: 10.1002/anie.201607942

[80] Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO₂ to C₂–C₃ products. *Proc. Natl. Acad. Sci. U.S.A.* **2017**, *114*, 10560-10565. DOI: 10.1073/pnas.1711493114

[81] Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T.; Mul, G.; Baltrusaitis, J. Electrochemical CO₂ reduction on Cu₂O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. *Phys Chem Chem Phys* **2014**, *16*, 12194-12201. DOI: 10.1039/c4cp01520g

[82] Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO₂ Reduction. *J. Phys. Chem. C* **2017**, *121*, 14191-14203. DOI: 10.1021/acs.jpcc.7b03673

[83] Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Norskov, J. K.; Chorkendorff, I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO₂ electroreduction. *Phys Chem Chem Phys* **2012**, *14*, 76-81. DOI: 10.1039/c1cp22700a

[84] Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. *ACS Catal.* **2015**, *5*, 2814-2821. DOI: 10.1021/cs502128q

[85] Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W. A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. *ACS Cent Sci* **2016**, *2*, 169-174. DOI: 10.1021/acscentsci.6b00022

[86] Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Selective increase in CO₂ electroreduction activity at grain-boundary surface terminations. *Science* **2017**, *358*, 1187-1191. DOI: 10.1126/science.aoa3691

[87] Durand, W. J.; Peterson, A. A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K. Structure effects on the energetics of the electrochemical reduction of CO₂ by

copper surfaces. *Surf. Sci.* **2011**, *605*, 1354-1359. DOI: 10.1016/j.susc.2011.04.028

[88] Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO(2) on Cu nanoparticles. *J Am Chem Soc* **2014**, *136*, 6978-6986. DOI: 10.1021/ja500328k

[89] Takenaka, S.; Miyamoto, H.; Utsunomiya, Y.; Matsune, H.; Kishida, M. Catalytic Activity of Highly Durable Pt/CNT Catalysts Covered with Hydrophobic Silica Layers for the Oxygen Reduction Reaction in PEFCs. *J. Phys. Chem. C* **2014**, *118*, 774-783. DOI: 10.1021/jp407928m

[90] Takenaka, S.; Susuki, N.; Miyamoto, H.; Tanabe, E.; Matsune, H.; Kishida, M. Highly durable carbon nanotube-supported Pd catalysts covered with silica layers for the oxygen reduction reaction. *J. Catal.* **2011**, *279*, 381-388. DOI: 10.1016/j.jcat.2011.02.008

[91] Takenaka, S.; Kishida, M. Functionalization of Carbon Nanotube-Supported Precious Metal Catalysts by Coverage with Metal Oxide Layers. *Catalysis Surveys from Asia* **2013**, *17*, 71-84. DOI: 10.1007/s10563-013-9152-9

[92] Khiday, N. H.; Ghanem, M. A. Highly dispersed platinum nanoparticles supported on silica as catalyst for hydrogen production. *RSC Adv.* **2014**, *4*, 50114-50122. DOI: 10.1039/C4RA09341K

[93] Labrador, N. Y.; Songcuan, E. L.; De Silva, C.; Chen, H.; Kurdziel, S. J.; Ramachandran, R. K.; Detavernier, C.; Esposito, D. V. Hydrogen Evolution at the Buried Interface between Pt Thin Films and Silicon Oxide Nanomembranes. *ACS Catalysis* **2018**, *8*, 1767-1778. DOI: 10.1021/acscatal.7b02668

[94] Chen, X.; Lin, Z.-Z.; Ju, M.; Guo, L.-X. Confined electrochemical catalysis under cover: Enhanced CO2 reduction at the interface between graphdiyne and

Cu surface. *Appl. Surf. Sci.* **2019**, *479*, 685-692. DOI: 10.1016/j.apsusc.2019.02.132

[95] Esposito, D. V. Membrane-Coated Electrocatalysts—An Alternative Approach To Achieving Stable and Tunable Electrocatalysis. *ACS Catal.* **2018**, *8*, 457-465. DOI: 10.1021/acscatal.7b03374

[96] Ponnurangam, S.; Chernyshova, I. V.; Somasundaran, P. Nitrogen-containing polymers as a platform for CO₂ electroreduction. *Adv. Colloid Interface Sci.* **2017**, *244*, 184-198. DOI: 10.1016/j.cis.2016.09.002

[97] Aydin, R.; Doğan, H. Ö.; Koleli, F. Electrochemical reduction of carbondioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol. *Applied Catalysis B: Environmental* **2013**, *140-141*, 478-482. DOI: 10.1016/j.apcatb.2013.04.021

[98] Li, F.; Zhao, S.-F.; Chen, L.; Khan, A.; MacFarlane, D. R.; Zhang, J. Polyethylenimine promoted electrocatalytic reduction of CO₂ to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. *Energy & Environmental Science* **2016**, *9*, 216-223. DOI: 10.1039/C5EE02879E

[99] Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimine-Enhanced Electrocatalytic Reduction of CO₂ to Formate at Nitrogen-Doped Carbon Nanomaterials. *J. Am. Chem. Soc.* **2014**, *136*, 7845-7848. DOI: 10.1021/ja5031529

[100] Ponnurangam, S.; Yun, C. M.; Chernyshova, I. V. Robust Electroreduction of CO₂ at a Poly(4-vinylpyridine)-Copper Electrode. *ChemElectroChem* **2016**, *3*, 74-82. DOI: 10.1002/celc.201500421

[101] Szaniawska, E.; Rutkowska, I. A.; Frik, M.; Wadas, A.; Seta, E.; Krogul-Sobczak, A.; Rajeshwar, K.; Kulesza, P. J. Reduction of carbon dioxide at

copper(I) oxide photocathode activated and stabilized by over-coating with oligoaniline. *Electrochim. Acta* **2018**, *265*, 400-410. DOI: 10.1016/j.electacta.2018.01.116

[102] Schrebler, R.; Cury, P.; Suárez, C.; Muñoz, E.; Gómez, H.; Córdova, R. Study of the electrochemical reduction of CO₂ on a polypyrrole electrode modified by rhenium and copper–rhenium microalloy in methanol media. *J. Electroanal. Chem.* **2002**, *533*, 167-175. DOI: 10.1016/S0022-0728(02)01086-0

[103] Oughli, A. A.; Ruff, A.; Boralugodage, N. P.; Rodríguez-Maciá, P.; Plumeré, N.; Lubitz, W.; Shaw, W. J.; Schuhmann, W.; Rüdiger, O. Dual properties of a hydrogen oxidation Ni-catalyst entrapped within a polymer promote self-defense against oxygen. *Nat. Commun.* **2018**, *9*, 864. DOI: 10.1038/s41467-018-03011-7

[104] Clark, E. L.; Resasco, J.; Landers, A.; Lin, J.; Chung, L.-T.; Walton, A.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide. *ACS Catal.* **2018**, *8*, 6560-6570. DOI: 10.1021/acscatal.8b01340

[105] Hori, Y.; Konishi, H.; Futamura, T.; Murata, A.; Koga, O.; Sakurai, H.; Oguma, K. “Deactivation of copper electrode” in electrochemical reduction of CO₂. *Electrochimica Acta* **2005**, *50*, 5354-5369. DOI: 10.1016/j.electacta.2005.03.015

[106] Wuttig, A.; Surendranath, Y. Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis. *ACS Catalysis* **2015**, *5*, 4479-4484. DOI: 10.1021/acscatal.5b00808

[107] Han, N.; Wang, Y.; Ma, L.; Wen, J.; Li, J.; Zheng, H.; Nie, K.; Wang, X.; Zhao, F.; Li, Y.; Fan, J.; Zhong, J.; Wu, T.; Miller, D. J.; Lu, J.; Lee, S.-T.; Li, Y. Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO₂ Reduction. *Chem* **2017**, *3*, 652-664. DOI: 10.1016/j.chempr.2017.08.002

[108] Quezada, D.; Honores, J.; García, M.; Armijo, F.; Isaacs, M. Electrocatalytic reduction of carbon dioxide on a cobalt tetrakis(4-aminophenyl)porphyrin modified electrode in BMI₂BF₄. *New J. Chem.* **2014**, *38*, 3606-3612. DOI: 10.1039/C4NJ00519H

[109] Honores, J.; Aguirre, M. J.; Isaacs, M. Electrocatalytic reduction of carbon dioxide on conducting glass electrode modified with polymeric porphyrin films containing transition metals in ionic liquid medium AU - Quezada, Diego. *J. Coord. Chem.* **2014**, *67*, 4090-4100. DOI: 10.1080/00958972.2014.974581

[110] Deronzier, A. "Selective Electrocatalytic Reduction of CO₂ on Electroprepared [Ru(L)(CO)₂]_n Polymeric Film: L = 2,2'-Bipyridine Derivatives," In *Conducting Polymers and Polymer Electrolytes*; American Chemical Society: 2002; Vol. 832, p 141-153.

[111] Sato, S.; Arai, T.; Morikawa, T. Electrocatalytic CO₂ reduction near the theoretical potential in water using Ru complex supported on carbon nanotubes. *Nanotechnology* **2017**, *29*, 034001. DOI: 10.1088/1361-6528/aa9d50

[112] Hurrell, H. C.; Mogstad, A. L.; Usifer, D. A.; Potts, K. T.; Abruna, H. D. Electrocatalytic activity of electropolymerized films of bis(vinylterpyridine)cobalt(2+) for the reduction of carbon dioxide and oxygen. *Inorg. Chem.* **1989**, *28*, 1080-1084. DOI: 10.1021/ic00305a016

[113] García, M.; Aguirre, M. J.; Canzi, G.; Kubiak, C. P.; Ohlbaum, M.; Isaacs, M. Electro and photoelectrochemical reduction of carbon dioxide on multimetallic porphyrins/polyoxotungstate modified electrodes. *Electrochim. Acta* **2014**, *115*, 146-154. DOI: 10.1016/j.electacta.2013.10.142

[114] Dreyse, P.; Honores, J.; Quezada, D.; Isaacs, M. Electrocatalytic Transformation of Carbon Dioxide into Low Carbon Compounds on Conducting Polymers

Derived from Multimetallic Porphyrins. *ChemSusChem* **2015**, *8*, 3897-3904.

DOI: 10.1002/cssc.201500816

[115] Bakir, M.; Sullivan, B. P.; MacKay, S. G.; Linton, R. W.; Meyer, T. J. Coordination Chemistry in Thin Polymeric Films of poly-[Fe(vbpy)2(CN)2],poly-vbpy. Binding and Reduction of [Rh(COD)Cl] and PdCl₂. *Chem. Mater.* **1996**, *8*, 2461-2467. DOI: 10.1021/cm960015p

[116] Zhang, S.; Kang, P.; Bakir, M.; Lapides, A. M.; Dares, C. J.; Meyer, T. J. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane. *Proc. Natl. Acad. Sci. U.S.A* **2015**, *112*, 15809. DOI: 10.1073/pnas.1522496112

[117] Porosoff, M. D.; Chen, J. G. Trends in the catalytic reduction of CO₂ by hydrogen over supported monometallic and bimetallic catalysts. *J. Catal.* **2013**, *301*, 30-37. DOI: 10.1016/j.jcat.2013.01.022

[118] Peterson, A. A.; Nørskov, J. K. Activity Descriptors for CO₂ Electroreduction to Methane on Transition-Metal Catalysts. *The Journal of Physical Chemistry Letters* **2012**, *3*, 251-258. DOI: 10.1021/jz201461p

[119] Arana, C.; Keshavarz, M.; Potts, K. T.; Abruña, H. D. Electrocatalytic reduction of CO₂ and O₂ with electropolymerized films of vinyl-terpyridine complexes of Fe, Ni and Co. *Inorg. Chim. Acta* **1994**, *225*, 285-295. DOI: 10.1016/0020-1693(94)04059-1

[120] Ramos Sende, J. A.; Arana, C. R.; Hernandez, L.; Potts, K. T.; Keshevarz-K, M.; Abruna, H. D. Electrocatalysis of CO₂ Reduction in Aqueous Media at Electrodes Modified with Electropolymerized Films of Vinylterpyridine Complexes of Transition Metals. *Inorg. Chem.* **1995**, *34*, 3339-3348. DOI: 10.1021/ic00116a028

[121] Yoshida, T.; Iida, T.; Shirasagi, T.; Lin, R.-J.; Kaneko, M. Electrocatalytic reduction of carbon dioxide in aqueous medium by bis(2,2': 6',2"-terpyridine)cobalt(II) complex incorporated into a coated polymer membrane. *J. Electroanal. Chem.* **1993**, *344*, 355-362. DOI: 10.1016/0022-0728(93)80066-Q

[122] Yoshida, T.; Kamato, K.; Tsukamoto, M.; Iida, T.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Selective electroacatalysis for CO₂ reduction in the aqueous phase using cobalt phthalocyanine/poly-4-vinylpyridine modified electrodes. *J. Electroanal. Chem.* **1995**, *385*, 209-225. DOI: 10.1016/0022-0728(94)03762-R

[123] Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M. Factors affecting selective electrocatalytic co₂ reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. *J. Electroanal. Chem.* **1996**, *412*, 125-132. DOI: 10.1016/0022-0728(96)04631-1

[124] Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO₂ reduction by cobalt phthalocyanine. *Chem. Sci.* **2016**, *7*, 2506-2515. DOI: 10.1039/C5SC04015A

[125] Birdja, Y. Y.; Vos, R. E.; Wezendonk, T. A.; Jiang, L.; Kapteijn, F.; Koper, M. T. M. Effects of Substrate and Polymer Encapsulation on CO₂ Electroreduction by Immobilized Indium(III) Protoporphyrin. *ACS Catal.* **2018**, *8*, 4420-4428. DOI: 10.1021/acscatal.7b03386

[126] Liu, Y.; McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO₂ reduction by cobalt phthalocyanine through polymer coordination and encapsulation. *Nat. Commun.* **2019**, *10*, 1683. DOI: 10.1038/s41467-019-09626-8

[127] Samanta, S.; Das, P. K.; Chatterjee, S.; Dey, A. Effect of axial ligands on electronic structure and O₂ reduction by iron porphyrin complexes: Towards a

quantitative understanding of the "push effect". *J. Porphyrins Phthalocyanines* **2015**, *19*, 92-108. DOI: 10.1142/S1088424615300049

[128] Cao, R.; Thapa, R.; Kim, H.; Xu, X.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. *Nat. Commun.* **2013**, *4*, 2076. DOI: 10.1038/ncomms3076

[129] Atoguchi, T.; Aramata, A.; Kazusaka, A.; Enyo, M. Electrocatalytic activity of CoII TPP-pyridine complex modified carbon electrode for CO₂ reduction. *J. Electroanal. Chem.* **1991**, *318*, 309-320. DOI: 10.1016/0022-0728(91)85312-D

[130] Aga, H.; Aramata, A.; Hisaeda, Y. The electroreduction of carbon dioxide by macrocyclic cobalt complexes chemically modified on a glassy carbon electrode. *J. Electroanal. Chem.* **1997**, *437*, 111-118. DOI: 10.1016/S0022-0728(97)00386-0

[131] Shook, R. L.; Borovik, A. S. Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation. *Inorg. Chem.* **2010**, *49*, 3646-3660. DOI: 10.1021/ic901550k

[132] Cook, S. A.; Borovik, A. S. Molecular Designs for Controlling the Local Environments around Metal Ions. *Acc. Chem. Res.* **2015**, *48*, 2407-2414. DOI: 10.1021/acs.accounts.5b00212

[133] Yeh, C.-Y.; Chang, C. J.; Nocera, D. G. "Hangman" Porphyrins for the Assembly of a Model Heme Water Channel. *J. Am. Chem. Soc.* **2001**, *123*, 1513-1514. DOI: 10.1021/ja003245k

[134] Chang, C. K.; Liang, Y.; Aviles, G.; Peng, S.-M. Conformational Control of Intramolecular Hydrogen Bonding in Heme Models: Maximal CoII-O₂ Binding

in a C-Clamp Porphyrin. *J. Am. Chem. Soc.* **1995**, *117*, 4191-4192. DOI: 10.1021/ja00119a044

[135] Moore, C. M.; Szymczak, N. K. Nitrite reduction by copper through ligand-mediated proton and electron transfer. *Chem. Sci.* **2015**, *6*, 3373-3377. DOI: 10.1039/C5SC00720H

[136] Schowen, R. L. The use of solvent isotope effects in the pursuit of enzyme mechanisms. *J. Labelled Compd. Radiopharm.* **2007**, *50*, 1052-1062. DOI: 10.1002/jlcr.1436

[137] Efimov, I.; Badyal, S. K.; Metcalfe, C. L.; Macdonald, I.; Gumiero, A.; Raven, E. L.; Moody, P. C. E. Proton Delivery to Ferryl Heme in a Heme Peroxidase: Enzymatic Use of the Grothuss Mechanism. *J. Am. Chem. Soc.* **2011**, *133*, 15376-15383. DOI: 10.1021/ja2007017

[138] Pankhurst, K. L.; Mowat, C. G.; Rothery, E. L.; Hudson, J. M.; Jones, A. K.; Miles, C. S.; Walkinshaw, M. D.; Armstrong, F. A.; Reid, G. A.; Chapman, S. K. A Proton Delivery Pathway in the Soluble Fumarate Reductase from *Shewanella frigidimarina*. *J. Biol. Chem.* **2006**, *281*, 20589-20597. DOI: 10.1074/jbc.M603077200

[139] Andrieux, C. P.; Dumas-Bouchiat, J. M.; Saveant, J. M. Homogeneous redox catalysis of electrochemical reactions: Part II. Rate determining electron transfer, evaluation of rate and equilibrium parameters. *J. Electroanal. Chem.* **1978**, *87*, 55-65. DOI: 10.1016/s0022-0728(78)80379-9

[140] Andrieux, C. P.; Dumas-Bouchiat, J. M.; Saveant, J. M. Homogenous Redox Catalysis of Electrochemical Reactions. Part IV. Kinetic Controls in the Homogenous Process as Characterized by Stationary and Quasi-Stationary

Electrochemical Techniques. *J. Electroanal. Chem.* **1980**, *113*, 1-18. DOI: 10.1016/S0022-0728(80)80507-9

[141] Andrieux, C. P.; Dumas-Bouchiat, J. M.; Savéant, J. M. Catalysis of electrochemical reactions at redox polymer electrodes: Kinetic model for stationary voltammetric techniques. *J. Electroanal. Chem.* **1982**, *131*, 1-35. DOI: 10.1016/0022-0728(82)87059-9

[142] Buttry, D. A.; Anson, F. C. Effects of electron exchange and single-file diffusion on charge propagation in Nafion films containing redox couples. *J. Am. Chem. Soc.* **1983**, *105*, 685-689. DOI: 10.1021/ja00342a001

[143] Leddy, J.; Bard, A. J.; Maloy, J. T.; Savéant, J. M. Kinetics of film-coated electrodes: Effect of a finite mass transfer rate of substrate across the film—solution interface at steady state. *J. Electroanal. Chem.* **1985**, *187*, 205-227. DOI: 10.1016/0368-1874(85)85779-8

[144] Amarasinghe, S.; Ta-Yung, C.; Moberg, P.; Paul, H. J.; Tinoco, F.; Zook, L. A.; Leddy, J. Models for mediated reactions at film modified electrodes: controlled electrode potential. *Anal. Chim. Acta* **1995**, *307*, 227-244. DOI: 10.1016/0003-2670(95)00003-I