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Social structure affects the emergence and maintenance of cooperation. Here we study

the evolutionary dynamics of cooperation in fragmented societies, and show that conjoin-

ing segregated cooperation-inhibiting groups, if done properly, rescues the fate of collective

cooperation. We highlight the essential role of inter-group ties, that sew the patches of the

social network together and facilitate cooperation. We point out several examples of this

phenomenon in actual settings. We explore random and non-random graphs, as well as em-

pirical networks. In many cases we find a marked reduction of the critical benefit-to-cost

ratio needed for sustaining cooperation. Our finding gives hope that the increasing world-

wide connectivity, if managed properly, can promote global cooperation.

A core problem in evolutionary game theory is that of cooperation. Cooperation involves

individuals paying a cost to benefit others, and is a ubiquitous feature of the social life 1, 2. The

structure of social networks affect pathways of information, exchange, and other interpersonal

mechanisms which undergird cooperation 2. Thus a natural question in the mathematical study of

evolutionary dynamics of cooperation is how network structure influences collective cooperative

outcomes 5–8, 10.

Here we look at the evolution of cooperation from a new perspective. We ask the question

of how the interconnection between segregated groups can promote cooperation. Similar to indi-

viduals forming groups towards collective individually-implausible accomplishments, sometimes

groups come together to form larger composite structures. Examples abound throughout history,

from trade and intermarriage relations between tribes and communities in antiquity, to the waves
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of globalization which increasingly connect local entities for economic, cultural, and technolog-

ical exchange. Another example is project management at different levels in corporations and

organizations, which involves the cooperative division of labor between sparsely-interconnected

distinctly-specialized units.

We use the framework of evolutionary graph theory 6, 7, 10 to study settings where groups

that are individually undesirable for cooperation can be conjoined to build larger cooperation-

promoting structures. We first study the conjoining of cohesive communities (clique-like structurally-

homogeneous groups) under different connection schemes. We then focus on extremely-heterogeneous

structures. We study stars and their various interconnection schemes, as well as rich clubs, and in-

troduce ensuing topologies that are super-promoters of cooperation. Then we focus on bipartite

graphs. In addition to these ideal graph families, we consider several random graph models. Fi-

nally, we consider empirical social networks and investigate the role of community structure on the

evolution of cooperation. The findings are consistent across topologies: sparse interconnections

of cooperation-inhibiting graphs leads to composite structures that are better for the evolution of

cooperation.

Under the framework of mathematical graph theory, social structure is described by a graph,

in which nodes represent individuals and links represent interactions and/or relations. In the sim-

plest setting, individuals are conventionally envisaged with two possible strategies pertaining to a

2 × 2 context-specific payoff matrix which characterizes their interaction. The outcomes of these

interactions (‘games’) determine the ‘fitness’ values of the individuals: those who accrue more
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benefits are endowed with higher fitness, which governs their influence over the peers’ choices of

strategy. The most stringent form of cooperation is found in the Prisoner’s Dilemma (PD) game, in

which individuals are either cooperators (paying a cost c and bestowing benefit b > c upon the in-

teraction partner) or defectors (who seek to benefit without paying a cost). The analysis throughout

this paper uses the so-called ‘donation game’ version of PD (as shall be discussed, generalization

to arbitrary symmetric 2-player games is straightforward). In this game, mutual cooperation has

payoff b − c, unilateral cooperation has payoff −c for the cooperator and b for the defector, and

mutual defection has payoff 0. The ratio b/c characterizes the trade-off players face. Through-

out this paper, without loss of generality, we set c = 1. This is simply equivalent to a change

of scale in payoffs, and helps brevity of notation. The strategies of the agents change according

to death-birth (dB) updating: a random individual is chosen to update; it adopts one of the the

neighbors’ strategies proportional to payoff. The small ‘d’ indicates that death is random, while

the large ‘B’ indicates that birth is under selection. The probability that the chosen node copies

the strategy of neighbor y is proportional to 1 + δπy, where δ denotes the selection strength and

πy is the average payoff that node y gleans playing with its own neighbors. We consider the limit

of weak selection. To see if natural selection favors or hinders collective cooperation, we must

calculate the probability that a single cooperator emerging at a random place in the network takes

over the population. Natural selection favors cooperation if this fixation probability exceeds that

of the fixation probability of a defector. Otherwise, natural selection inhibits cooperation.

Before we proceed, we point out a central feature of network models of cooperation, such

as ours. In these models, social influence spreads beyond immediate neighbors. In conventional
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models of social contagion, such as simple contagion models, which often describe information

diffusion, and complex contagion models, which often describe spread of behaviors 11, 12, the ego’s

activation probability depends on the states of the alters. An activated alter exerts the same in-

fluence on the ego regardless of the states of the neighbors of that alter. For example, in the

simple-contagion model of information diffusion, the ego needs to have heard the news from only

one alter to have become informed, and is agnostic to how many neighbors of that alter have heard

the news. Or in threshold models of complex contagion, the ego is activated once a certain number

or fraction of alters are activated, regardless of the ego’s second neighbors. In contrast, due to

the strategic nature of cooperative dynamics, in our model, the radius of influence is two 13. Ego

is influenced directly by the strategies of the alters (from whom ego copies its strategy), and also

indirectly by those of the neighbors of each alter (who contribute to the payoff of that alter). Our

model, with a setting similar to the previous theoretical 5–7, 10 and experimental 3, 4 studies of human

cooperation, thereby adds a strategic element to pure imitation dynamics. Our model shares one

similarity with simple contagion processes: having one alter who has adopted each of the strategies

makes the ego’s adoption probability for that strategy nonzero.

A recently-discovered formulation gives the exact condition under which natural selection

favors cooperation on a given network 10. The solution utilizes the mathematical equivalence of

the problem to that of coalescing random walks on the graph, and the solution is in terms of the

remeeting times of random walkers initiated at each node. In the Methods section, we provide a

brief overview of the framework. For a given network, the framework produces a quantity (which

we denote by b∗) that determines the fate of cooperation. For any network, we have |b∗| > 1.
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If b∗ is positive, then b∗ is the critical benefit-to-cost ratio. That is, natural selection promotes

cooperation on the given network if the benefit-to-cost-ratio is greater than b∗. The closer b∗ is to

unity, the better the network is for promoting cooperation. Conversely, if b∗ is negative, natural

selection inhibits cooperation for any benefit-to-cost ratio. In these cases, the network promotes

‘spite’ instead of cooperation. That is, individuals are willing to pay a cost to reduce the payoff

of others. The closer the value of b∗ is to −1, the more strongly the network promotes spite.

The convention of the literature has hitherto been using b∗ to characterize the conduciveness of

networks for cooperation 1, 4, 6, 7, 10. In Supplementary Method 1.2., we remark that 1/b∗ can also be

used, we discuss the advantages of each measure, and we find that some of the numerical results

are visually better presentable using 1/b∗ instead of b∗. For consistency with the previous literature,

we use b∗ to present the results in the main text.

We consider distinct settings in which structures that are known to inhibit cooperation can be

connected under various schemes to create larger structures that are conducive to cooperation. In

the main text, for brevity, we only provide the simplified version of the results in the large-n limit

(that is, the leading term), and present the full expressions in the corresponding Supplementary

Methods. We use the terminology of asymptotic analysis throughout. We say that b∗ grows as anb,

denoted b∗ ∼ anb, if limn→∞ b∗/(anb) = 1. Equivalently, we call anb the leading term of b∗.

Suppose there is a complete graph (clique) of n nodes. For a clique, selection does not favor

cooperation, regardless of b. Namely, the value of b∗ that the method gives is negative. This means

that cliques promote spite.
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In real-world networks, communities can join together to form larger structures that are better

for cooperation. Suppose there are two cliques (which for simplicity we consider to be of the same

size, and the analytical steps for the general case are the same) and we connect a node from the

first one to a node in the second one (Fig. 1a). We call these two nodes ‘gate nodes’, and the rest of

the nodes in the two communities ‘commoners’. In organizational settings, for example, these gate

nodes are called ‘boundary spanners’. They are essential for intergroup flow of information and

ideas, intergroup coordination and collaboration, and organizational effectiveness and novelty 14.

For two communities of size n with the described interconnection, b∗ is positive and finite, but

it grows as 1× n2. Thus it is in principle possible that natural selection favors cooperation, but

the necessary b∗ grows quickly with network size. This might be infeasible for actual settings.

Connecting the gate nodes via an intermediary ‘broker’ node (Fig. 1b) reduces the leading term

to (2/5)× n2, which is slightly better, but it still grows quickly with n. Marked reduction of b∗

ensues if instead of one broker, there are two brokers on the path between the gate nodes (Fig. 1c).

Each group is connected to a third-party trustee node, or representative, and exchange is done via

these two nodes. With two broker nodes in the middle, then the leading term of b∗ drops to 4n, thus

b∗ grows considerably slower with network size. This interconnection scheme offers a substantial

improvement and the two communities which individually promote spite can now be conjoined to

form a new composite network which supports cooperation with more plausible values of b∗.

Longer chains of intermediary nodes between the two cliques is mathematically possible, but

relatively less common in actual settings. The possible exceptions are chain-of-command struc-

tures which resemble this topology: a group of decision-makers sit at one end (the first clique)
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and through a chain of intermediary units, the agenda reaches the bottom-most unit (the second

clique) which is in charge of implementation. For chains with more than two intermediary nodes,

the analytical results become too lengthy to be presented. But fortunately the employed coalescing

random walks framework enables numerical extraction of the leading term. If the chain of inter-

mediaries has length L, with L ≪ n, then the leading term of b∗ drops further to n× 4/(L− 1).

The results for intermediate values of L, with the possibility of L > n, are presented in Supple-

mentary Method 1.4.

There are also alternative intercommunity connection schemes that offer a marked reduc-

tion in b∗. For example, if there is one broker node between the gate nodes, and the broker

is connected to m > 1 peripheral leaf nodes (Fig. 1d), then the leading term of b∗ is given by

n(m+ 2)(m+ 5)/[m(m+ 3)], which is linear in n.

In actual settings, often there are more than two communities (local social networks, pro-

duction units, etc.). Urbanization has led to a proliferation of diverse subcultures and enhanced

interaction and diffusion between them as a daily principle of contemporary life 15, 16. In orga-

nizational settings, ‘network brokers’ can bridge existing ‘structural holes’ and connect multiple

segregated sectors and facilitate cooperation among them 17, 18. An simple example of such a set-

ting would be a star of cliques: m > 2 communities connected via a highly-central broker node

(Fig. 1e). With this m-community structure, with m > 2 communities, b∗ has the leading term

n × m/(m − 2). Linear growth in community size n indicates a substantial improvement over a

single community or two communities is attained.
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Another interconnection scheme of multiple cohesive communities is the so-called ‘caveman

graph’ from the sociological literature 19 (Fig. 1f). With L > 2 cliques, situated on a ring, the

leading term of b∗ is given by n× L/(L− 2), which is linear in clique size.

Cliques can also be organized hierarchically, such as in modern organizational bureaucracies

(Fig. 1g). In this case, too, for large cliques, the leading term of b∗ grows linearly with clique size.

A star graph comprises a hub and n leaf nodes connected to the hub. In this strictly-

centralized system, natural selection does not promote cooperation regardless of b. Similar to

the case of cliques, stars can be connected to promote collective cooperation. If we have two stars,

one with n leaf nodes and the other with αn leaf nodes (Fig. 2a), then if we connect the hubs, b∗

for large n approaches a constant (8 + α + 1/α)/4. The smallest possible b∗ for two stars is 5/2,

which pertains to α = 1 (identical stars). The independence from network size is a remarkable

feature that star structures exhibit.

If we connect the hubs via one intermediary broker node, we get b∗ ∼ (10 + α + 1/α)/4.

For two identical stars, this simplifies to b∗ ∼ 3. We can also connect the hubs via a chain of L

intermediary brokers, such as in a chain-of-command structure with a decision-making unit at the

top and and an implementation unit at the bottom. For L ≥ 1, the leading term of b∗ is given by

(8 + 2L+ α + 1/α)/(L+ 3). In all these cases, it is remarkable that for large network size, b∗

tends to a constant. This independence from network size evinces the high merit of locally-star-

like structures in the promotion of cooperation.
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In many actual settings, star-like structures are not directly connected as we envisaged above.

Rather, global hubs are connected to local large-scale hubs, which are in turn connected to local

peripheral nodes. This leads to a hierarchical organization: the head unit connects to a number

of subsidiary units, each of them connect in turn to subordinate units, and so an. To study this

interconnection scheme, we consider graphs with megahubs and hubs in a nested manner. We

consider only two levels, though the calculation can be in principle extended to more. Out of

the n total leaf nodes of a star graph, we take ng of them and attach nd nodes to each (Fig. 2b).

The total number of nodes will be 1 + n+ ngnd, and the number of links is n + ngnd. The full

expressions for b∗ are long (see Supplementary Method 1.3), but simplifications can be obtained

in some interesting limits. We consider the case where the number of leaf nodes are much larger

than the number of hubs. This is the case in many actual settings, to the extent that the marked

imbalance between the latter two numbers constitutes the cornerstone of many egalitarian social

discourses and movements. If we have ng ≪ n, then the leading term of b∗ approaches 3/2.

Whether nd and n are of the same order of magnitude, or if we haven ≪ nd, only affects the

second leading order terms. This leading behavior of b∗ is particularly interesting because the

average degree approaches 2 in these cases, and b∗ being less than the average degree is a rare

property of graphs. Hence we can dub these structures ‘super-promoters’ of cooperation.

We can readily generalize these results to the fully-hierarchical structure (where ng = n),

that is, a star of stars (Fig. 2c). A mega-hub is connected to n hubs which are each connected to nd

leaf nodes. In the limit of n ≪ nd, b∗ approaches 2, which indicates that this structure is a strong

promoter of cooperation.
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Hierarchies can also be more ‘flat’, which is getting popular in certain management ap-

proaches 20. The simplest model would be to have the upper layer of nodes connect horizontally

instead of hierarchically. We consider the simple case where the hubs of m stars, each with n

leaf nodes, are connected on a ring (Fig. 2d). For large n, the leading term of b∗ approaches

(3m− 1)/(2m− 2), which is independent of n. This means that for large m, the value of b∗ ap-

proaches 3/2. The average degree in this limit approaches 2. Hence, a ring of stars is another

super-promoter of cooperation.

A rich-club network is one comprised of a small dense core of connection-rich high-degree

nodes and a large sparse periphery. These structures are found across social and technological

networks. The notion of ‘oligarchy’ in institutions and organizations is usually linked to struc-

tures that can be characterized by such a rich-club feature 21. Other examples with this feature

include the social network of company executives and directors (within-company 22, national inter-

company 23, and international inter-company 24), the collaboration network between academics 25,

and the Internet 26.

As a simple example with this characteristic, we consider a clique of nc nodes (where c

denotes ‘core’) and np peripheral nodes. Each core node is connected to every other core node

and every peripheral node. Each peripheral node is connected to every core node but to none of

the other peripheral nodes. In the special case of nc = 1, this becomes a star graph. For a single

rich-club network, natural selection does not favor cooperation, regardless of b. Similar to the case

of a single clique, single rich-club networks promote spite.
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To improve the situation, we connect two rich-club networks by connecting a ‘gate’ node in

the first core to a gate node in the second (Fig. 3a). An actual example of conjoining rich clubs via

cores is that director networks of different companies often connect, and they do so predominantly

via their cores, rather than the peripheries—creating ‘interlocked directorates’ 27. In the simple

case of two identical rich-club networks with nc ≪ np (small core and large periphery), the leading

term of b∗ is given by 4nc − 3/2, which is a linear function of nc. That is, the leading behavior

in the large-np limit only depends on the number of core nodes and is independent of the number

of peripheral nodes. In the case of nc = 1, this leading term is 5/2, which is consistent with our

previous findings for star graphs. For nc = 2, the leading term of b∗ is 13/2. The results point

out a remarkable feature of these structures: when the periphery is large, the fate of the collective

outcome is determined solely by the core.

In a bipartite network, nodes can be divided into two distinct groups, where there is no

intra-group link. For example, traditional heterosexual marriage networks comprised two disjoint

sets; males only connected to females and vice versa. Other examples include buyer/seller 28, and

employer/employee 29 bipartite networks.

Here we present the results for the simplest case of a bipartite graph which is analytically

tractable: we consider a complete bipartite graph. A complete bipartite network is one which has

two groups, and each node is connected to every node in the other group but no node in its own

group. Natural selection does not promote cooperation on a complete bipartite graph, regardless

of b. If we connect two bipartite networks, however, the situation improves (Fig. 3b). Consider
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a bipartite graph comprising two groups of nodes with sizes nx and ny, respectively. Suppose

we connect two identical such bipartite graphs by connecting a type-x node in the first graph in

a type-x node in the second. In the special case of nx = ny = n, b∗ grows linearly with n. The

leading term of b∗ in this case is given by 2n. Alternatively, if nx ≪ ny, then the leading term of

b∗ only depends on nx, and is given by 4nx − 3/2. Hence, similar to rich clubs, if a large group of

nodes are not interconnected within themselves and are all connected only to another small group

of nodes, the collective outcome will be determined by that small group.

Since actual social networks typically have more randomness than the ideal structured con-

sidered above, we investigate random networks to check if they have qualitatively similar prop-

erties. Our first test (see Supplementary Method 1.9) is to add structural noise to the above-

considered topologies and verify that the b∗ values are indeed robust against structural deviations.

For the next check, we investigate how conjoining cooperation-inhibiting random networks can

promote cooperation. We generate 10 random Erdős-Rényi graphs 30, with values of b∗ that are

undesirable for cooperation: negative (promoting spite) or highly positive (hindering cooperation).

Network size is fixed at 40. There are 55 possible network pairs (45 pairs in which the two net-

works are different and 10 pairs in which they are identical), and there are 1600 ways to conjoin

two networks via one gate node in each. We calculate the median value of b∗ among all these

possible conjoinings for each pair of networks. The lower triangle in Fig. 4a presents the resulting

b∗ of the conjoined network against the b∗ of the first and the second network. The upper triangle

presents the results for the same procedure, except the gate nodes are connected via one broker

node, instead of being directly connected. It can be seen that in most cases, a substantial improve-
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ment is achieved in both conjoining schemes. The most resistant case is the one with b∗ = −50.

Note that networks whose b∗ is negative are promoters of spite, and the closer to zero the value of

b∗ is, the more strongly the structure promotes spite. The results indicate that if the spite-promotion

capacity of either group is high, conjoining them would be less helpful collectively. In Supplemen-

tary Method 1.7, we present these results using 1/b∗ instead of b∗ to measure the conduciveness

to cooperation. In Fig. 4b we illustrate that the conjoining mechanism works also for more than

two ER networks. In the example case shown, three of the four ER networks promote spite, and

one of them promotes cooperation with b∗ ≈ 43. Creating inter-community links between these

four groups with probability 0.01 begets a marked improvement: the overall structure has b∗ ≈ 14,

which is considerably better than each of the individual groups for promoting cooperation. A

generalization of this procedure gives rise to the stochastic block model, which we investigate in

Supplementary Method 1.8.

The same conjoining procedure is applicable to networks with heavy-tailed degree distribu-

tions, which emulate actual social networks more realistically than ER networks. Here we use the

model proposed by Klemm and Eguiluz 31 to generate scale-free networks with both small-world

property and high clustering coefficient, which are both ubiquitous features in social networks. The

results are presented in Fig. 4c. Conjoining every pair of networks produces a composite network

with positive b∗. In Supplementary Method 1.7, we present results for four additional scale-free

models. The results are qualitatively similar, and the improvement in b∗ via conjoining ensues

consistently.
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To study the effect of community structure on the cooperative outcome, we employ the

Lancichinetti-Fortunato-Radicchi (LFR) benchmark 32 that are used for comparing community-

detection algorithms. The procedure generates networks with community structure in which the

degree distribution within each community and the distribution of community sizes are both heavy-

tailed. Fig. 4d depicts an example case with 100 nodes divided into three communities. The degree

distribution is scale-free with exponent 2. The community sizes are 10, 23, and 67. Only the largest

community has a positive b∗, with b∗ ≈ 99. The composite network (with mixing parameter 0.1)

has b∗ ≈ 35. In Supplementary Method 1.8, we provide a systematic investigation for LFR net-

works and show that, consistent with the above findings, when communities are not conducive to

cooperation, sparse interconnections tend to generate composite networks better than the individual

modules.

We can apply the same mathematical formalism to real-world social network data. We use

offline social networks that pertain to friendships, to ascertain that cooperative dynamics would be

reasonable. We use two children friendship networks of fourth grade and fifth grade students 33, 34

(for the third grade, no community structure is detected because the network is dense and most

people are friends with most others, so we did not use it). The second data set is the well-known

friendship network of the members of a Karate club 35, and the third data set we use is Cole-

man’s classic highschool friendship network data set 36. The results are presented in Fig. 4, panels

e-h (more detailed results are presented in Supplementary Table 1). We divided the graphs into

two communities using the Girvan-Newman method 37. In cases where using three as the num-

ber of communities returned meaningful results, we considered both two and three communities
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separately. For all networks, the algorithm returned single-node communities for more than three

communities, so we did not consider those cases. It can be seen that in all cases, the collective

cooperative merit of the network is markedly better than that of the individual communities. This

reaffirms the advantageousness of inter-group connection vis-à-vis cooperation.

Each population structure can be quantified according to its intrinsic propensity to promote

cooperation (paying a cost to benefit others) or spite (paying a cost to harm others) 10. Here we

report the observation that sparsely conjoining cooperation-inhibiting structures tend to produce

cooperation-promoting structures. We have explored this effect when joining together fully con-

nected cliques, star-like structures (which are dominated by a single individual), rich-clubs, and

even random graphs. We have found the phenomenon in examples of real social networks that

already consist of conjoined sub-structures.

In our findings, conjoining two graphs that are already favorable for cooperation always

results in a cooperation-promoting composite structure, though sometimes the composite graph

might not promote cooperation as strongly as the two individual graphs did. But we did not find

any example in which the composite graph would inhibit cooperation, that is, either with b∗ signif-

icantly larger than those of the two initial graphs, or with a negative b∗. We investigated random

and non-random graph families considered in this paper, and several others.

An extension to our work would be finding better conjoining schemes for cliques. Here we

showed that conjoining cliques in the manners described above results in composite networks that

are considerably better than individual cliques. These conjoining methods yield b∗ values that grow
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linearly with n. For very large networks, this improvement might still not be enough. A valuable

extension would be to find structures that, similar to the case of stars and rich clubs, would produce

b∗ that reaches a constant for large clique size.

We note that evolutionary graph theory, which we employed in this paper, is a general ap-

proach to study the effect of population structure on natural selection. It is not limited to any

particular game and not restricted to one shot interactions. The results are generalizable to any

matrix game (see Methods). Hence the competing strategies could instantiate repeated interac-

tions and conditional behavior 38. Extensions of evolutionary graph theory can be used to study

direct reciprocity with crosstalk 39, and indirect reciprocity with optional interactions and private

information 40. On the other hand, there are social settings our model is not applicable to. For ex-

ample, if each individual interacts with only a subset of its neighbors, then exclusion and inclusion

become essential elements of network power. This is an important feature in Network Exchange

Theory 41. In this case, broker nodes have leverage over others due to the high exclusion/inclusion

asymmetry. Our model does not consider the possibilities of exclusion and inclusion, and each

player plays with every neighbor. Thus an interesting extension to the present paper would be to

study analytically the aforementioned effects of exclusion/inclusion in a game-theoretical setting

to build on the previous experimental work, particularly Network Exchange Theory.

Finally, we highlight that our results are qualitatively consistent with several simulation

studies in the literature across different contexts: cooperation is promoted by interdependence

between networks in spatial public goods games and the Prisoner’s Dilemma on interdependent
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networks 42–44, even if it is endogenous and inter-population links are only rewarded to high-payoff

individuals 45. The same is true if multiple types of interactions are considered, resulting in a

multiplex network 46.

Our findings suggest a recipe for how to build societal structures that effectively promote

cooperation, and together with the ensemble of previous results in the literature, they engender

hope regarding the increasing interconnection of the contemporary world.

Methods

We follow a recently-discovered framework for unweighted, undirected graphs without self-loops 10. Let us denote

the degree of node x with kx and its set of neighbors by Nx. Then, we define px as the probability that a random walk

of length 2 initiated at node x will terminate at node x:

px
def
=

1

kx

∑
y∈Nx

1

ky
. (1)

We then solve the following system of
(
N
2

)
linear equations for symmetric quantities τxy , which are the meeting times

of two random walkers initiated at nodes x and y:

τxy = τyx = (1− δxy)

[
1 +

1

2kx

∑
z∈Nx

τzy +
1

2ky

∑
z∈Ny

τzx

]
. (2)

Here, δxy equals unity if x = y and is zero otherwise. Using these quantities, we define τx for each node as the

expected remeeting time of two random walkers initiated at node x as follows:

τx
def
= 1 +

1

kx

∑
y∈Nx

τyx. (3)

The necessary condition for cooperation to be favored by natural selection is that b(
∑

x pxτxkx − 2Nk) is greater

than c(
∑

x τxkx − 2Nk). If the coefficient of b in this inequality is nonpositive, cooperation is never favored. If the
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coefficient is positive, then the critical benefit-to-cost ratio is given by the following relation:

b∗ =

∑
x τxkx − 2Nk∑

x pxτxkx − 2Nk
. (4)

The calculations for specific graphs discussed in the main text can be simplified utilizing their structural sym-

metry. For example, for a single community (a complete graph), there is only one variable: the remeeting time between

any pair of nodes (because τxx values are zero). For two communities connected directly by a link, there are only four

distinct values for τxy: the remeeting time between two commoners, between a commoner and the gate node of the

same community, between a commoner and the gate node of the other community, and between the two gate nodes.

This reduces Equation (2) to a system of four equations with four unknowns.

The results are generalizable to arbitrary 2×2 games 47. For a game with strategies A and B with corresponding

payoff matrix R,S, T, P , the condition that natural selection favors strategy A over B in the limit of weak selection is:

(T − S) < (R− P )(b∗ + 1)/(b∗ − 1).

For the KE networks used in Figure. 4c, we used the model of Klemm and Eguiluz 31. We generated many

networks, with the cross-over parameter µ and the number of initial active nodes m both selected randomly in their

valid ranges. We selected 6 networks whose b∗ differed from the corresponding values used in Fig. 4 by less than 5%.

Data Availability. All the network data sets used in this paper are freely and publicly available in The Colorado

Index of Complex Networks (ICON) collection: https://icon.colorado.edu

Code Availability. For the LFR benchmark, we used the publicly-available code that the authors of Ref. 32

have provided:

https://sites.google.com/site/santofortunato/inthepress2

For the coalescing random walks framework, the code for computing b∗ is publicly available in Zenodo at

http://dx.doi.org/10.5281/zenodo.276933
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Figure 1 From spite to cooperation by conjoining cliques. Cohesive communities (cliques) hinder

the flourishing of cooperation. Each clique for itself promotes spiteful behavior. Conjoining cliques to build

larger groups facilitates cooperation. This figure illustrates several topologies of conjoining two (a-d) or

multiple (e-g) cliques to build composite cooperation-promoting structures. If we connect two cliques, either

directly (a) or via an intermediary node (b), then the composite structure is a promoter of cooperation: the

critical benefit-to-cost ratio, b∗, grows with the square of the clique size, n2. This is a steep increase of

b∗ with network size, thus although cooperation is in principle possible, it might be impractical for actual

settings . (c) Having two intermediary nodes leads to further improvement: the critical benefit-to-cost ratio

now grows linearly with n. This is a much slower increase of b∗ with network science, as compared to the

previous case. Thus, this is a more desirable interconnection scheme for actual scenarios. (d) The broker

node who bridges two cliques can also be connected to leaf nodes. In this case, too, b∗ grows linearly

with n. The following conjoining schemes for multiple cliques produce composite structures that promote

cooperation with a critical benefit-to-cost ratio, b∗, that grows linearly in n, which is the size of individual

cliques. (e) A broker node connects multiple cliques. (f) A ring of cliques which represents the ‘caveman

graph’. (g) Hierarchical organization of cliques.

Figure 2 Super-promoters of cooperation. Star graphs represent extreme core-periphery structures

where a central node is connected to many leaf nodes. Although a single star hinders cooperation, con-

necting stars promotes cooperation. All reported critical benefit-to-cost ratios, b∗, pertain to the limit of large

population size. Exact formulas are shown in Supplementary Methods. (a) Two stars, one with n leaf nodes

and the other with αn leaf nodes. (b) An imperfect meta-star: a central node has n peripheral nodes, ng of

them are hubs, while nd of them are leaves. If ng ≪ n ≪ nd, then b∗ tends to 3/2 and the average degree

tends to 2. Thus, the structure is a super-promoter of cooperation, since b∗ is less than the average degree.

(c) The perfect meta-star is a hierarchical structure with a head node connected to n subsidiary nodes, each

of them connected to nd peripheral nodes. The reported result is for the case n ≪ nd, which means most of

the population belongs to the bottom layer. (d) A more flat hierarchical structure: there are m head nodes
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connected on a ring, each with n peripheral nodes. For m ≪ n, this graph becomes a super-promoter of

cooperation, outperforming the strict hierarchy.

Figure 3 Rich clubs and bipartite graphs. (a) Rich-club graphs comprise a dense core and a large,

sparse periphery. A single rich club hinders cooperation, but conjoined rich clubs promotes cooperation.

For the simple case of two identical rich clubs, with the periphery size, np, much larger than the core, nc,

the critical benefit-to-cost ratio b∗ grows linearly with nc. (b) Complete bipartite graphs comprise two distinct

groups of nodes, where links exist only between the two groups, but not within each group. Examples are

buyer-seller networks or heterosexual marriage networks. A single bipartite graph hinders cooperation, but

connecting them promotes cooperation. For the simple case of two identical graphs, each with two groups

of the same size, b∗ grows linearly with group size n.

Figure 4 Conjoining random graphs and empirical networks. a) Conjoining two Erdős-Rényi random

graphs directly (bottom triangle, orange values) and via one broker node (upper triangle, blue values). The

critical benefit-to-cost ratio, b∗, of each graph separately (as shown on the x and y axis) is either negative

(promoting spite) or highly positive (promoting cooperation but at a very high benefit-to-cost ratio). The

graph size is 40. In all cases, connecting two graphs leads to critical benefit-to-cost ratios of order n.

Therefore, we find that conjoining cooperation-inhibiting random graphs also promotes cooperation. b)

Extension to more than two graphs: four ER graphs with link-formation probabilities 0.8 (top left, promoting

spite), 0.7 (top right, promoting spite), 0.45 (bottom right, promoting spite), and 0.35 (bottom left, promoting

cooperation, with b∗ ≈ 43). The inter-community link probability is 0.01. The very few inter-community

links engender a considerable improvement: the overall structure promotes cooperation b∗ = 14, which

is markedly better than each individual group. c) Conjoining two scale-free networks generated by the

model of Klemm and Eguiluz 31. d) An example network with community structure generated by the LFR

benchmark 32. Community structure is a ubiquitous feature of actual social networks; there are cohesive

friendship groups connected by long ties. We use four empirical data sets pertaining to friendship networks
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(e-h). We employed standard community detection algorithms to partition the data set into communities,

and calculated the critical benefit-to-cost ratio for the whole network and for each community. In every case,

the whole network is better than individual subnetworks in promoting cooperation.
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