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SOME KÄHLER STRUCTURES ON PRODUCTS OF

2-SPHERES

JEAN-FRANÇOIS LAFONT†, GANGOTRYI SORCAR, AND FANGYANG ZHENG∗

Abstract. We consider a family of Kähler structures on products of
2-spheres, arising from complex Bott manifolds. These are obtained via
iterated P1-bundle constructions, generalizing the classical Hirzebruch
surfaces. We show that the resulting Kähler structures all have identical
Chern classes. We construct Bott diagrams, which are rooted forests
with an edge labelling by positive integers, and show that these classify
these Kähler structures up to biholomorphism.

1. Introduction

In complex geometry, it is interesting to study the class of complex struc-
tures (or Kähler structures) supported on a fixed smooth oriented manifold
M . Since the basic invariants of a complex manifolds are the Chern classes,
it is tempting to try and use these to distinguish complex structures on M .
In complex dimension two, the Hirzebruch surfaces Fm are topologically ei-
ther diffeomorphic to S2 × S2 (if m is even), or to P2#P2 (if m is odd).
Focusing on the Hirzebruch surfaces diffeomorphic to S2 × S2, a celebrated
result of Hirzebruch [Hir51] shows that all the F2k are distinct as complex
manifolds, even though they have identical Chern classes.

In the present paper, we extend Hirzebruch’s result, by considering Z-
trivial complex Bott manifolds (see Bott and Samelson [BS58]). In complex
dimension two, these are precisely the Hirzebruch surfaces F2k. In complex
dimension n, these are compact Kähler manifolds diffeomorphic to S2×· · ·×
S2 = (S2)n. To each n-dimensional Z-trivial complex Bott manifold M , we
associate a Bott diagram, which is a rooted forest equipped with an edge
labelling by positive integers. Our main result is the following:

Main Theorem. Every n-vertex rooted forest equipped with an edge la-
belling by positive integers arises as the Bott diagram of some n-dimensional
Z-trivial complex Bott manifold. Moreover, for an arbitrary pair of n-
dimensional Z-trivial complex Bott manifolds M1,M2, we have:
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(1) M1 is biholomorphic to M2 if and only if their Bott diagrams are
isomorphic, but

(2) there is a diffeomorphism φ : M1 → M2 with the property that
φ∗(c(M2)) = c(M1), where c denotes the total Chern classes.

Our result provides a combinatorial classification of a certain family of
Kähler structures on the products S2 × · · · × S2 = (S2)n. When n = 2,
the only Kähler structures on S2×S2 are those arising from the Hirzebruch
surfaces. When n ≥ 3, we do not know whether these products of 2-spheres
support any other Kähler structures. Our result also shows that these Kähler
structures are indistinguishable as far as Chern classes are concerned.

Recall that the rational Pontrjagin classes of a smooth manifold are de-
fined using the smooth structure. A celebrated result of Novikov [Nov66]
shows however that these classes in fact only depend on the underlying topo-
logical structure (other proofs were given in [Gro95], [Ran95], [RY06], and
[RW10]). More precisely, if one has a pair of homeomorphic smooth man-
ifolds, then the homeomorphism can be chosen to take the total rational
Pontrjagin class to the total rational Pontrjagin class. Because of the lack
of known counterexamples, we would like to raise the following analogous
question for Chern classes:

Question. Let X be a compact smooth manifold and let M0 be the set of
biholomorphism classes of all Kählerian complex structures on X. Do the
total Chern classes c(J) ∈ H2∗(M,Z) (for all J ∈ M0) belong to a single
orbit for the action of the diffeomorphism group on the cohomology ring?

Part of the difficulty in addressing this question is the lack of examples.
Indeed, several classes of manifolds are known to support unique Kähler
structures – see for instance the rigidity results of Hirzebruch-Kodaira
[HK57], Yau [Y77] and Siu [S80]. In contrast, there are very few smooth
manifolds that are known to support multiple distinct Kähler structures.
Our main theorem shows that the answer to this question is yes for a par-
ticular family of Kähler structures on X = (S2)n.

We also point out that there are examples of manifolds where the answer
to this question is no. Notably, it follows from work of Kotschick [Kot09]
[Kot12], that there exist a pair of Kähler 3-folds M1,M2 which are diffeo-
morphic, but have distinct Chern numbers c31(M1) 6= c31(M2). A consequence
is that their first Chern classes must lie in distinct orbits of the diffeomor-
phism group action on second cohomology. Similar examples exist in higher
dimensions. Nevertheless, the question might have an affirmative answer for
some manifolds, particularly in the presence of a high degree of symmetry.

Our paper is structured as follows. We review some background material
in Section 2, and prove our main theorem in Section 3. Our argument
requires a reconstruction result for labelled rooted forests, which is explained
in Section 4.
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2. Background material

Bott manifolds. Recall that a Bott manifold Mn is one that admits a Bott
Tower, namely, Mn = Bn and

(2.1) Bn
πn−→ Bn−1

πn−1
−−−→ · · ·

π2−→ B1
π1−→ B0 = {a point}

where for each 1 ≤ j ≤ n, Bj = P(O ⊕ Sj) is the projectivization of the
direct sum of the trivial line bundle with a holomorphic line bundle Sj over
Bj−1, with πj the projection map.

Clearly, B1 = P1, and B2 is a Hirzebruch surface Fm = P(OP1⊕OP1(−m))
over P1, wherem is any nonnegative integer. It is well-known that all F2k are
diffeomorphic to F0 = P1 × P1 ∼= S2×S2, while all F2k−1 are diffeomorphic

to F1 = P2#P2, the one point blow up of P2.

Definition 2.1. A Bott manifoldMn is called Z-trivial, if it is diffeomorphic
to (P1)n, the product of n copies of the complex projective line.

By the work of Choi and Masuda [CM12], a Bott manifold Mn is Z-trivial
if its integral cohomology ring is isomorphic (as a graded ring) to that of
(P1)n. In fact, they show that every graded ring isomorphism between the
cohomology rings of two Q-trivial Bott manifolds is induced by a diffeomor-
phism. Here Mn is Q-trivial means that the cohomology ring of M with
Q-coefficients is isomorphic (as a graded ring) to that of (P1)n.

Projectivization of vector bundles. Let us recall some general facts
concerning projectivizations of vector bundles.

Let E be a holomorphic vector bundle of rank r over a compact complex
manifold B, let π : M = P(E) → B be the projectivization of E, where
π is the projection map. We adopt the algebro-geometric convention here,
namely, π−1(x) = P(Ex) is the set of all the hyperplanes (instead of lines)
through the origin in the fiber Ex

∼= Cr−1. M is again a compact complex
manifold, a holomorphic fiber bundle with fiber Pr−1 over B.

Denote by L the dual of the tautological line bundle, then we have the
following two short exact sequences of holomorphic vector bundles over M :

0 → OM → π∗E∗ ⊗ L → TM |B → 0(2.2)

0 → TM |B → TM → π∗TB → 0(2.3)

where TM |B is the relative tangent bundle, namely, the kernel of the dif-
ferential of π. The first Chern class ξ = c1(L) satisfies the Grothendieck
equation

f(ξ) := ξr − ξr−1 · π∗c1(E) + ξr−2 · π∗c2(E) − · · ·+ (−1)rπ∗cr(E) = 0,

while the cohomology ring (or the Chow ring) of M is generated by the pull
back of that of B and ξ:

(2.4) H∗(M,Z) := π∗H∗(B,Z) [ξ] / (f(ξ)).

Recall that a section of π is a complex submanifold Z ⊆ M such that
π|Z : Z → B is a biholomorphism. Equivalently, a section of π is given by a
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holomorphic map i : B → M such that π ◦ i = idB . In this case the image
i(B) is the submanifold in M isomorphic to B. Note that the sections of π
correspond to quotient line bundles of E.

To see this, let Q be a holomorphic line bundle on B which is a quotient
bundle of E. As we are using the hyperplane convention for projectiviza-
tions, so P(Q) ∼= B is a submanifold of P(E) = M , which gives a section of
π. Conversely, given a section i : B → M of π, since the tautological line
bundle L∗ is a subbundle of π∗E∗ on M , Q = i∗L would be a quotient line
bundle of i∗π∗E = E on B.

Next, let us specialize to the situation when the vector bundle on B is
E = O ⊕ S, the sum of the trivial line bundle with another line bundle S.
Writing s = −π∗c1(S), the above short exact sequences (2.2) , (2.3), along
with the Grothendieck equation, gives us

(2.5) c1(TM |B) = 2ξ + s, c(M) = (1 + 2ξ + s) · π∗c(B), and ξ2 = −ξ · s

in the cohomology (or the Chow) ring H∗(M,Z).

Cohomology ring of Bott manifolds. Now let us apply these formula to
the j-th stage πj : Bj → Bj−1, which is the projectivization of the splitting
rank 2 vector bundle O ⊕ Sj on Bj−1, then we get the following:

H∗(Bj ,Z) = π∗
jH

∗(Bj−1,Z)[ξj ]/(ξ
2
j + ξjsj)

c(Bj) = (1 + 2ξj + sj) · π
∗
j c(Bj−1),

where −sj and ξj are the first Chern class of π∗
jSj and Lj = Oπj

(1), the
dual of the tautological line bundle on Bj.

Given a Bott manifold Mn with Bott tower (2.1), let us write

xj = (πj+1 ◦ · · · ◦ πn)
∗ξj

hj = (πj+1 ◦ · · · ◦ πn)
∗sj

for each 1 ≤ j ≤ n. Note that x1 is the first Chern class of the pull back to
M of OP1(1) on B1, and h1 = 0. By an inductive argument, we obtain the
following:

H∗(M,Z) = Z[x1, . . . , xn]/(x
2
1, x

2
2 + x2h2, . . . , x

2
n + xnhn)(2.6)

c(M) = (1 + 2x1)(1 + 2x2 + h2) · · · (1 + 2xn + hn)(2.7)

where x1, . . . , xn is a set of generators for H2(M,Z) ∼= Zn, and each hj
satisfies

(2.8) hj = aj1x1 + aj2x2 + · · ·+ aj,j−1xj−1

where all ajk are integers.

Example. In the special case where all the line bundles Sj are trivial, we
get the product P = (P1)n of n-copies of the complex projective line P1. In
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this case, all hj = 0 and we will denote the corresponding xj by yj. The
above computations give us:

H∗(P,Z) = Z[y1, . . . , yn]/(y
2
1 , . . . , y

2
n)(2.9)

c(P ) = (1 + 2y1) · · · (1 + 2yn)(2.10)

3. Proof of the Main Theorem.

This entire section is devoted to the proof of the Main Theorem.

3.1. The structure of Z-trivial Bott manifolds. We start by analyzing
how the Z-triviality condition affects the cohomology elements hj.

For a given a Bott tower on Mn, assume that 2 | hj and h2j = 0 for all j.

Write zj = xj +
1
2hj . Since h1 = 0, and for each 2 ≤ j ≤ n the correspond-

ing hj is generated by x1, . . . , xj−1, it follows that {z1, . . . , zn} generates
H∗(M,Z). Also, each z2j = 0 by the Grothendieck equation. So defining

φ(yj) = zj gives a graded ring isomorphism φ : H∗(P ;Z) → H∗(Mn;Z).
By the result of Choi and Masuda [CM12], there is a diffeomorphism
Φ : Mn → P ∼= (S2)n, which induces Φ∗ = φ. It follows that Mn is Z-
trivial. Moreover, by the Chern class formula, we see that φ(c(P )) = c(M).

Conversely, if there exists an isomorphism φ : H∗(P,Z) → H∗(M,Z),
then we claim that 2 | hj and h2j = 0 for all j. To see this, let us write

φ(yj) = zj . We have

H∗(M,Z) = Z[z1, . . . , zn]/(z
2
1 , . . . , z

2
n).

For each 1 ≤ k ≤ n, the group H2k(M,Z) is a free abelian group generated
by products zI = zi1 · · · zik for all multi-indices I = (i1 · · · ik) of length
k, where 1 ≤ i1 < i2 < · · · < ik ≤ n. Note that for any integer linear
combination z = a1z1 + · · · + anzn, if z

2 = 0, then aiaj = 0 for all i 6= j,
thus at most one of these ai could be non-zero.

Now we proceed to show that 2 | hj and h2j = 0, by induction on j, where

j ∈ A := {1, 2, . . . , n}. First we have h1 = 0. For j = 2, since x21 = 0,
we know that there must be a unique i1 ∈ A such that x1 = ε1zi1 , where
ε1 = ±1 since x1 is a primitive element in H2(M,Z). Write x2 = azi1 + z,
where z is a linear combination of zj for j ∈ A \ {i1}. We have h2 = bzi1
since h2 is a multiple of x1. Since x2(x2 + h2) = 0, we have

(2a+ b)zi1z + z2 = 0.

SinceH4(M,Z) is a free abelian group with generators zizj for 1 ≤ i < j ≤ n,
we conclude from the above equality that 2a+ b = 0 and z2 = 0. So 2 | h2,
h22 = 0, and z = x2 +

1
2h2 satisfies z2 = 0, thus equals to ε2zi2 for some

i2 6= i1, and ε2 = ±1.
Now assume that for a fixed 2 ≤ k < n, we already have 2 | hj , h

2
j = 0 for

each j ≤ k, and x′j := xj +
1
2hj = εjzij where i1, ..., ik are all distinct in A
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and εj = ±1. Since hk+1 is a linear combination of x′1, . . . , x
′
k, we can write

hk+1 = b1zi1 + · · ·+ bkzik

Also, let us write xk+1 = a1zi1 + · · · + akzik + z, where z is a combination
of those zj for j in A \ {i1, . . . , ik}. Now by applying the Grothendieck
equation, namely, xk+1(xk+1 + hk+1) = 0, we get the equation

k∑

j=1

(2aj + bj)zijz + z2 +
k∑

j,l=1

al(aj + bj)zijzil = 0.

Since z cannot be zero, we know that bj = −2aj for each j ≤ k, so 2 | hk+1

and h2k+1 = 0. Furthermore, x′k+1 = z is a square zero primitive element,
thus must be of the form ±zik+1

for some ik+1 in A \ {i1, . . . , ik}.
To summarize, we have established the following (also independently ob-

tained by J. H. Kim [Kim16]):

Lemma 3.1. If Mn is a Bott manifold and φ is an isomorphism between the
integral cohomology rings of P = (P1)n and M , then for any Bott tower (2.1)
with M = Bn, we have 2 | hj and h2j = 0 for each j, and φ(c(P )) = c(M).

Note that for any holomorphic line bundle Q on B, the projectivizations
P(E) and P(E ⊗ Q) are isomorphic to each other. In particular, for Bj =
P(O ⊕ Sj) over Bj−1, one can replace Sj by its dual S∗

j , as

O ⊕ Sj
∼= (S∗

j ⊕O)⊗ Sj.

This replacement will not change Bj, but will affect the choice of sections
Lj thus affecting xj , while hj is replaced by −hj.

By the proof of the lemma above, we know that for any Z-trivial Bott
manifold Mn and any Bott tower (2.1) on M , if we write zj = xj +

1
2hj ,

then {z1, . . . , zn} is a set of generators for the cohomology ring, with z2j = 0

for each j. For any 2 ≤ j ≤ n, since h2j = 0, we know that either hj = 0,

or hj = 2qjzσ(j) for some positive integer qj and σ(j) < j. Here we used
the fact that we can replace Sj by S∗

j without changing the Bott tower to
ensure that these qj be positive.

From now on, we will make these choices, so qj > 0 whenever hj 6= 0.
That is, under our choices of these Sj , each xj is represented by the central

sections of πj , and each zj = xj +
1
2hj is represented by an effective divisor.

We have shown

Lemma 3.2. For any Bott tower (2.1) we can choose the generator sets
{x1, . . . , xn} and {z1, . . . , zn} so that (i) each z2j = 0, (ii) each zj is repre-

sented by an effective divisor, and (iii) each xj is represented by a smooth
hypersurface, which is iteself a Bott manifold of dimension n− 1.

Obviously, for a given Bott manifold Mn, there are many Bott towers on
it. So to sort out all distinct complex structures on P = (S2)n given by the
Bott manifolds, we need to find canonical representations for the Z-trivial
Bott manifolds. This is the goal of the next section.



SOME KÄHLER STRUCTURES ON PRODUCTS OF 2-SPHERES 7

3.2. Bott diagrams. Let us denote by A = {1, 2, . . . , n} and write A0 =
{j ∈ A | hj = 0}. When A0 6= A, we have a map σ : A \ A0 → A
satisfying σ(j) < j, given by the equation hj = 2qjzσ(j). Let us denote by

A1 = σ−1(A0), A2 = σ−1(A1), and so on. It is easy to see that there exists
some positive integer r such that A is the disjoint union of non-empty sets
A0, A1, ... , Ar.

We will say that the level of j ∈ A is k if j ∈ Ak. It takes σ exactly k
times to send a level k element into A0.

Definition 3.3. For a given Bott tower (2.1), we define its Bott diagram
to be the following data: each element of A gives a vertex, each j ∈ A \ A0

gives a vertical edge from j to σ(j), marked with a positive integer qj.

In other words, a Bott diagram G in dimension n is a disjoint union
A = A0 ∪ A1 ∪ · · · ∪ Ar into r + 1 nonempty subsets, along with maps
Ar → Ar−1 → · · · → A1 → A0 and a map q : A \ A0 → Z+. Here A is the
set of n elements and r ≥ 0.

Two Bott diagrams are considered isomorphic, if there is a bijection from
A to A which commutes with the partition of A and the maps.

We can arrange all the dots in Ak at the same height, and will refer to that
(imagined) horizontal line the level k line (when k = 0 we will also call it the
base line). The diagram is a graph, with finitely many connected components
which are trees. Each tree has a distinguished vertex, lying in A0, which is
the root of the tree. Thus from a combinatorial viewpoint, a Bott diagram is
a rooted forest. Clearly, the Bott manifold is a product of lower dimensional
ones, with each factor corresponds to a connected component of the Bott
diagram. SoMn is irreducible (in the sense that it is not the product of lower
dimensional Bott manifolds) if and only if the Bott diagram is connected,
which occurs if and only if A0 contains only one element.

Example. To illustrate how these diagrams work, let us first consider the
case n = 2. In this case we have only two possibilities for the Bott diagram:
the first one just has two dots lying horizontally, with no edges, representing
the surface P1 × P1; and the second one is two dots with a vertical edge
connecting them, marked by a positive integer q. This corresponds to the
Hirzebruch surface F2q.

Example. For n = 3, we have three horizontal dots, corresponding to P1 ×
P1 × P1; two dots on the base line, the third dot on top of the right one
with a vertical edge marked mark q, corresponding to P1 × F2q; one dot on
the base line, two dots on the level 1 line joining the base point by edges
marked with q and p, which corresponds to the fiber product F2p ×P1 F2q;
and finally, we have three dots lined up in a vertical line, with two edges
marked with p and q (with p on top). In this case the threefold is M3 =
P(OB ⊕OB(−2p(C0 + qF ))), where B = F2q is the Hirzebruch surface with
F the ruling and C0 the central section (so C2

0 = −2q).
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3.3. Bott diagrams determine biholomorphism type. Our goal here
is to complete the proof of our main theorem, by showing the following:

Theorem 3.4. Two Bott manifolds of dimension n are biholomorphic to
each other if and only if they have isomorphic Bott diagram.

Since one can build up a Bott tower from the data of a Bott diagram, we
just need to prove the “only if” part of the statement, namely, if f : M ′ → M
is a biholomorphism, then M ′ and M must have isomorphic Bott diagrams.

Let us fix a Bott tower on M . By our previous discussion, we know that
each xj is represented by a smooth hypersurface Xj in the sense that xj =
c1(Xj), where the divisor Xj is identified with the line bundle associated
with it, and each zj is represented by an effective divisor. To be more
precise, for any j ∈ A0 of level 0, Zj = Xj is irreducible. For any j ∈ A1,
Zj = Xj + qjXσ(j). For any j ∈ A2, we have

Zj = Xj + qj(Xl + qlXσ(l)), where l = σ(j) ∈ A1.

Note that each Xj is itself a Bott manifold of dimension n − 1, and the
support of each Zj is a normal crossing divisor.

In the case of a Bott tower, X1 is a fiber of the composition map π =
π2 ◦π3 ◦· · ·◦πn from Mn to P1, and M is covered by the pencil of the divisor
X1. Given a Bott diagram, for any j ∈ A0, we can choose a Bott tower on
M so that j corresponds to the bottom layer, so we know that M is covered
by a pencil |Xj | of the smooth hypersurface Xj , denote as Yt for t ∈ P1.
These Yt do not intersect with each other.

We claim that, if D is any effective divisor in M homologous to Xj , then
D ∈ |Xj |, namely, D is a member of the pencil. To see this, first consider
the special case when D is irreducible. If D is not in |Xj |, we may choose a
member Y in the pencil so that D ∩ Y 6= φ. This codimension 2 subvariety
is homologous to 0, since D ∼ Xj and x2j = 0, which is a contradiction since
M is projective. The same argument works when D is just effective.

Now suppose f : M ′ → M is a biholomorphism. It induces a graded
isomorphism φ = f∗ between the cohomology rings. We want to show that
f induces an isomorphism between the Bott diagrams as well. First we claim
that f induces a bijection between A′

0 and A0, the set of level 0 vertices. Let
{z1, . . . , zn} and {z′1, . . . , z

′
n} be generators on M and M ′ as before. Then

φ(zj) = z′
τ(j) for some permutation τ on A (the sign is positive since zj , z

′
j

are all represented by non-trivial effective divisors). If j ∈ A0, then M is
covered by the pencil Xj = Zj of non-intersecting divisors. Consider the
effective divisor D = f(Z ′

τ(j)) in M . D represents zj , thus is homologous

to Zj. By the claim above, we know that D must be irreducible and is a
member of the pencil |Xj |. This means that τ(j) lies in A′

0. So the level 0
sets of M and M ′ are bijective to each other.

Note that in the above argument, we furthermore obtained the fact that
f(X ′

τ(j)) = Xj for j ∈ A0. For j ∈ A0, the smooth hypersurface Xj is



SOME KÄHLER STRUCTURES ON PRODUCTS OF 2-SPHERES 9

itself an (n − 1)-dimensional Bott manifold. Its Bott diagram is obtained
from that of Mn by deleting the vertex corresponding to j, and pulling
down one level in the tree above this vertex, while keeping everything else
unchanged. We will call this new Bott diagram the card at vertex j. Now
since f(X ′

τ(j)) = Xj , the two Bott (n − 1)-manifolds X ′
τ(j) and Xj are

biholomorphic, so by induction on the dimension of the Bott manifolds, we
see that the card of the Bott diagram G′ at vertex τ(j) must be isomorphic
to the card of the Bott diagram G at the vertex j.

When A0 has more than one elements, we have at least two cards, and we
can use the set of cards to reconstruct the Bott diagram, see Proposition 4.3
and Remark 4.4. This implies that G and G′ must be isomorphic to each
other. When A0 has only one element, the Bott diagrams agree as graphs,
but we additionally need to show that the marking numbers qj for j ∈ A1

should match those on M ′ (see Remark 4.4).
Without loss of generality, let us assume that A0 = {1} = A′

0. We already
know that f(X ′

1) = X1, and the card of the Bott graph G at vertex 1 is
isomorphic to the card of the Bott graph G′ at vertex 1. So f gives bijection
between A1 and A′

1. Again without loss of generality, let us assume that
φ(z2) = z′2, where 2 ∈ A1 and 2 ∈ A′

1. We have

Z2 = X2 + q2X1, Z ′
2 = X ′

2 + q′2X
′
1.

Consider the irreducible divisorD = f(X ′
2). We have D+q′2X1 ∼ X2+q2X1.

If D 6= X2, then D ∩ X2 is an effective cycle of codimension 2 (could be
trivial), and the intersection

DX2 + q′2X1X2 ∼ Z2X2 ∼ Z2(Z2 − q2X1) ∼ −q2Z2X1 ∼ −q2X2X1,

so the non-trivial effective cycle D ∩ X2 + (q2 + q′2)X1 ∩ X2 would be ho-
mologous to 0 – which is impossible since M is projective. So D must be
equal to X2, forcing q′2 = q2. So the Bott diagrams of M and M ′ are indeed
isomorphic to each other. This completes the proof of the theorem.

4. Appendix: Reconstruction of rooted forests

A famous problem in graph theory is the reconstruction conjecture. This
conjecture asserts that finite graphs with at least three vertices are com-
pletely determined by their collection of vertex deleted graphs, see [Har74],
[BH77], [Man88]. In this short appendix, we formulate and establish an
analogue for rooted forests.

Definition 4.1. A contractable connected graph is called a tree. If such a
graph is marked with a distinguished vertex (the root), we call it a rooted
tree. If every connected component of a graph is a (rooted) tree, then we
call the graph a (rooted) forest.

Given a rooted tree T with n vertices, we can form an associated rooted
forest with n−1 vertices by deleting the root v of T (and all incident edges).
This leaves a forest with connected components T1, . . . , Tk, and we can pick
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a root on each tree Ti to be the unique vertex vi of Ti that was incident to v.

We denote this rooted forest by “T , and call its individual trees the children
of the original tree T .

Definition 4.2. Let F be a rooted forest, with connected components the
rooted trees T1, . . . , Tk. Given a component Ti, we define the associated

card to be the rooted forest with components T1, . . . , Ti−1, “Ti, Ti+1, . . . , Tk,
i.e. we replace the rooted tree Ti by its collection of children. The forest F
has k associated cards, each of which is a rooted forest.

A graph is finite if it has finitely many vertices. We can now establish the
reconstruction conjecture for rooted forests.

Proposition 4.3. Let F be a finite rooted forest. Then the set of cards of
F uniquely determines the forest F .

In other words, if one has a pair of forests F1, F2, and a bijection between
the set of cards of F1 and those of F2, which has the property that corre-
sponding cards are isomorphic (as rooted forests), then the original forests
have to be isomorphic.

Proof. We prove the statement using mathematical induction on the number
of cards. Note that the number of cards coincides with the number of roots
(and hence the number of connected components) in the original rooted
forest F .

Base case: When there is only one card, we know that there is only one tree
T in the original forest F . The individual trees in the single card are the
children of T . We can thus reconstruct T by taking a root vertex v, and for
each of the children of T , connecting its root to the vertex v. The resulting
rooted tree is the single tree in the forest F .

Inductive step: Let there be n ≥ 2 cards in total. We run through the n
cards and locate a maximal tree (i.e. with the maximal number of vertices)
among all the trees appearing on all the cards. Of course there could be
more than one such tree, but we pick one of them. Let us call this chosen
maximal tree T . Our claim is that T must be a rooted tree present in the
original forest. If not, then T appeared on the card after eliminating the
root of one of the original trees Ti of the forest. This means that T is a
proper subgraph of Ti, and that Ti contains more vertices than T (as the
root vi of Ti is not in T ). Since n ≥ 2, there is at least one other card, arising
from the deletion of another root vj . The corresponding card contains Ti as
a rooted tree, contradicting the fact that T was a maximal tree from all the
cards. Note that this argument also shows that T is not a child of any of
the rooted trees in the original rooted forest.

Now that we have established T is one of the original trees in the forest
we are trying to rebuild, let us try and identify the multiplicity with which
it occurs in the forest. Assume the forest consists of n rooted trees, and that
r of them are isomorphic to T (where 1 ≤ r ≤ k. Then there are precisely r
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cards that contain r − 1 copies of T , and n − r cards that contain r copies
of T . Thus, we may compute the integer r from the set of cards.

Let F ′ denote the forest obtained from the original forest F by removing
the r copies of T . If we can reconstruct F ′, then by adding in r copies of
T , we will have reconstructed F . But note that the cards of F ′ are easy
to identify: just take the n − r cards of F that contain exactly r copies of
T , and remove from each of these cards the r copies of T . The resulting
n−r rooted forests are the cards of F ′. Since r ≥ 1, the rooted forest F ′ has
n−r < n cards, so by the inductive hypothesis, F ′ can be reconstructed from
its cards. Adding in r disjoint copies of T then produces F , and completes
the proof of the Proposition. �

Remark 4.4. Note that the proof of the proposition also holds for labelled
rooted forests, where the cards are equipped with the natural induced la-
belling. In this setting, you need to additionally assume that the number
of cards is n ≥ 2 (i.e. this is the base case of the induction, and is argued
exactly like the inductive step above). When n = 1, the only indeterminacy
lies in the labels for the edges in the rooted tree which are connected to the
root vertex. These are obviously not recoverable from the single correspond-
ing card. This is the reason for the additional argument at the end of the
proof of Theorem 3.4.
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[Hir51] F. Hirzebruch. Über eine Klasse von einfachzusammenhängenden komplexen
Mannigfaltigkeiten. Math. Ann. 124 (1951), 77–86.

[HK57] F. Hirzebruch and K. Kodaira. On the complex projective spaces. J. Math. Pures
Appl. 36 (1957), 201–216.

[Kim16] J. H. Kim. On a generalization of Hirzebruch’s theorem to Bott towers. J. Korean
Math. Soc. 53 (2016), 331–346.

[Kot09] D. Kotschick. Characteristic numbers of algebraic varieties. Proc. Natl. Acad. Sci.
USA 106 (2009), 10114–10115.

[Kot12] D. Kotschick. Topologically invariant Chern numbers of projective varieties. Adv.
Math. 229 (2012), 1300–1312.

[Man88] B. Manvel. Reconstruction of graphs: progress and prospects. In 250th Anniver-
sary Conference on Graph Theory (Fort Wayne, IN, 1986). Congr. Numer., Vol.
63, pages 177–187, 1988.

[Nov66] S.P. Novikov. On manifolds with free abelian fundamental group and their appli-
cation. Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 207–246.
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