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BARYCENTRIC STRAIGHTENING AND BOUNDED COHOMOLOGY

JEAN-FRANÇOIS LAFONT† AND SHI WANG

Abstract. We study the barycentric straightening of simplices in higher rank irreducible symmetric spaces of

non-compact type. We show that, for an n-dimensional symmetric space of rank r ≥ 2 (excluding S L(3,R)/S O(3)

and S L(4,R)/S O(4)), the p-Jacobian has uniformly bounded norm, provided p ≥ n − r + 2. As a consequence,

for the corresponding non-compact, connected, semisimple real Lie group G, in degrees p ≥ n − r + 2, every

degree p cohomology class has a bounded representative. This answers Dupont’s problem in small codimen-

sion. We also give examples of symmetric spaces where the barycentrically straightened simplices of dimension

n − r have unbounded volume, showing that the range in which we obtain boundedness of the p-Jacobian is

very close to optimal.

1. Introduction

When studying the bounded cohomology of groups, an important theme is the comparison map from

bounded cohomology to ordinary cohomology. In the context of non-compact, connected, semisimple Lie

groups, Dupont raised the question of whether this comparison map is always surjective [10] (see also

Monod’s ICM address [17, Problem A’], and [4, Conjecture 18.1]). Properties of these Lie groups G are

closely related to properties of the corresponding non-positively curved symmetric space X = G/K. Geo-

metric methods on the space X can often be used to recover information about the Lie group G. This

philosophy was used by Lafont and Schmidt [16] to show that the comparison map is surjective in degree

dim(X). In the present paper, we extend this result to smaller degrees, and show:

Main Theorem. Let X = G/K be an n-dimensional irreducible symmetric space of non-compact type of

rank r = rank(X) ≥ 2, excluding S L(3,R)/S O(3) and S L(4,R)/S O(4), and Γ a cocompact torsion-free

lattice in G. Then the comparison maps η : H∗
c,b

(G,R) → H∗c (G,R) and η′ : H∗
b
(Γ,R) → H∗(Γ,R) are both

surjective in all degrees ∗ ≥ n − r + 2.

The idea of the proof is similar to that in [16]. One defines a barycentric straightening of simplices in

X, and uses it to construct bounded cocycles representing any given cohomology class. These cocycles are

obtained by integrating a suitable differential form on various straightened simplices. Since the differential

form has bounded norm, the key step is to show that the Jacobian of the straightened simplex is uniformly

controlled (independent of the simplex or the point in it). Showing this later property requires some work,

1991 Mathematics Subject Classification. 57T10 (primary), 53C35 (secondary).

Key words and phrases. Barycenter method, bounded cohomology, semisimple Lie group, Dupont’s problem.
† The work of the first author is partially supported by the NSF, under grants DMS-1510640, DMS-1812028.

1



2 JEAN-FRANÇOIS LAFONT AND SHI WANG

and is done in Sections 3 and 4 (following the general approach of Connell and Farb [6], [7]). The proof of

the Main Theorem is then given in Section 5.

Remark. For the various families of higher rank symmetric spaces, the dimension grows roughly quadrati-

cally in the rank. Our Main Theorem thus answers Dupont’s question for continuous cohomology classes

in degree close to the dimension of the symmetric space. Prior results on this problem include some work on

the degree two case (Domic and Toledo [8], as well as Clerk and Orsted [5]) as well as the top-degree case

(Lafont and Schmidt [16]). In his seminal paper on the subject, Gromov showed that characteristic classes

of flat bundles are bounded classes [13]. Using Gromov’s result, Hartnick and Ott [14] were able to obtain

complete answers for several specific classes of Lie groups (e.g. of Hermitian type, as well as some other

cases).

The recently posted preprint [15] of Inkang Kim and Sungwoon Kim uses similar methods to obtain

uniform control of the Jacobian in codimension one. Their paper also contains a wealth of other applications,

which we have not pursued in the present paper. On the other hand, their results do not produce any new

bounded cohomology classes (since in the higher rank case, the codimension one continuous cohomology

always vanishes).
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2. Preliminaries

2.1. Symmetric spaces of non-compact type. In this section, we give a quick review of some results on

symmetric spaces of non-compact type; for more details, we refer the reader to Eberlein’s book [11]. Let

X = G/K be a symmetric space of non-compact type, where G is semisimple and K is a maximal compact

subgroup of G. Geometrically G can be identified with Isom0(X), the connected component of the isometry

group of X that contains the identity, and K = Stabp(G) for some p ∈ X. Fixing a basepoint p ∈ X, we

have a Cartan decomposition g = k + p of the Lie algebra g of G, where k is the Lie algebra of K, and p

can be isometrically identified with TpX using the Killing form. Let a ⊆ p be a maximal abelian subalgebra

of p. We can identify a with the tangent space of a flat F at p – that is to say, an isometrically embedded

Euclidean space Rr ⊆ X, where r is the rank of X. Given any vector v ∈ TpX, there exists a flat F that is

tangent to v. We say v is regular if such a flat is unique, and singular otherwise.

Now let v ∈ p be a regular vector. This direction defines a point v(∞) on the visual boundary ∂X of X.

G acts on the visual boundary ∂X. The orbit set Gv(∞) = ∂FX ⊆ ∂X is called a Furstenberg boundary of

X. Since both G and K act transitively on ∂FX, ∂FX is compact. In fact, a point stabilizer for the G-action

on ∂FX is a minimal parabolic subgroup P, so we can also identify ∂FX with the quotient G/P. In the rest

of this paper, we will use a specific realization of the Furstenberg boundary – the one given by choosing the

regular vector v to point towards a barycenter of a Weyl chamber in the flat.
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For each element α in the dual space a∗ of a, we define gα = {Y ∈ g | [A, Y] = α(A)Y for all A ∈ a}. We

call α a root if gα is nontrivial, and in such case we call gα the root space of α. We denote the finite set of

roots Λ, and we have the following root space decomposition

g = g0 ⊕
⊕

α∈Λ
gα

where g0 = {Y ∈ g | [A, Y] = 0 for all A ∈ a}, and the direct sum is orthogonal with respect to the canonical

inner product on g.

Let θ be the Cartan involution at the point p. Then θ is an involution on g, which acts by I on k and −I

on p, hence it preserves Lie bracket. We can define kα = (I + θ)gα ⊆ k, and pα = (I − θ)gα ⊆ p, with the

following properties:

Proposition 2.1. [11, Proposition 2.14.2] (1) I + θ : gα → kα and I − θ : gα → pα are linear isomorphisms.

Hence dim(kα) = dim(gα) = dim(pα).

(2) kα = k−α and pα = p−α for all α ∈ Λ, and kα ⊕ pα = gα ⊕ g−α.
(3) k = k0 ⊕

⊕
α∈Λ+ kα and p = a ⊕

⊕
α∈Λ+ pα, where k0 = g0 ∩ k, and Λ+ is the set of positive roots.

Remark. Since pα = (gα + g−α) ∩ p, the direct sum of p in (3) of Proposition 2.1 is also orthogonal with

respect to the canonical inner product on p.

We now analyze the adjoint action of k on a. Let u ∈ kα and v ∈ a, we can write u as (I + θ)w where

w ∈ gα, hence we have

[u, v] = [(I + θ)w, v] = [w, v] + [θw, v] = −α(v)w + θ[w,−v]

= −α(v)w + θ(α(v)w) = −α(v)(I − θ)(w)

= −α(v)(I − θ)(I + θ)−1u

This gives the following proposition.

Proposition 2.2. Let α be a root. The adjoint action of kα on a is given by

[u, v] = −α(v)(I − θ)(I + θ)−1u

for any u ∈ kα and v ∈ a. In particular, kα maps v into pα.

Assume v ∈ a ⊆ TxX is inside a fixed flat through x, and let Kv be the stabilizer of v in K. Then the

space Kva is the tangent space of the union of all flats that goes through v. Equivalently, it is the union of all

vectors that are parallel to v, hence it can be identified with a⊕
⊕
α∈Λ+,α(v)=0 pα. In particular, if v is regular,

then the space is just a. Moreover, if we denote by kv the Lie algebra of Kv, then kv = {u ∈ k | [u, v] = 0} =
k0 ⊕

⊕
α∈Λ+,α(v)=0 kα.
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2.2. Patterson-Sullivan measures. Let X = G/K be a symmetric space of non-compact type, and Γ be

a cocompact lattice in G. In [1], Albuquerque generalizes the construction of Patterson-Sullivan to higher

rank symmetric spaces. He showed that for each x ∈ X, we can assign a probability measure µ(x) that

is G-equivariant and is fully supported on the Furstenberg boundary ∂F(X). Moreover, for x, y ∈ X and

θ ∈ ∂F(X), the Radon-Nikodym derivative is given by

dµ(x)

dµ(y)
(θ) = ehB(x,y,θ)

where h is the volume entropy of X/Γ, and B(x, y, θ) is the Busemann function on X. Recall that, in a

non-positively curved space X, the Busemann function B is defined by

B(x, y, θ) = lim
t→∞

(dX(y, γθ(t)) − t)

where γθ is the unique geodesic ray from x to θ. Fixing a basepoint O in X, we shorten B(O, y, θ) to just

B(y, θ). Notice that for fixed θ ∈ ∂F(X) the Busemann function is convex on X, and by integrating on ∂F(X),

we obtain, for any probability measure ν that is fully supported on the Furstenberg boundary ∂FX, a strictly

convex function

x 7→
∫

∂F X

B(x, θ)dν(θ)

(See [6, Proposition 3.1] for a proof of this last statement.)

Hence we can define the barycenter bar(ν) of ν to be the unique point in X where the function attains its

minimum. It is clear that this definition is independent of the choice of basepoint O.

2.3. Barycenter method. In this section, we discuss the barycentric straightening introduced by Lafont

and Schmidt [16] (based on the barycenter method originally developed by Besson, Courtois, and Gallot

[3]). Let X = G/K be a symmetric space of non-compact type, and Γ be a cocompact lattice in G. We denote

by ∆k
s the standard spherical k-simplex in the Euclidean space, that is

∆
k
s =

{
(a1, . . . , ak+1) | ai ≥ 0,

k+1∑

i=1

a2
i = 1

}
⊆ Rk+1,

with the induced Riemannian metric from Rk+1, and with ordered vertices (e1, . . . , ek+1). Given any singular

k-simplex f : ∆k
s → X, with ordered vertices V = (x1, . . . , xk+1) = ( f (e1), . . . , f (ek+1)), we define the

k-straightened simplex

stk( f ) : ∆k
s → X

stk( f )(a1, . . . , ak+1) := bar


k+1∑

i=1

a2
i µ(xi)



where µ(xi) is the Patterson-Sullivan measure at xi. We notice that stk( f ) is determined by the (ordered)

vertex set V , and we denote stk( f )(δ) by stV (δ), for δ ∈ ∆k
s.
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Observe that the map stk( f ) is C1, since one can view this map as the restriction of the C1-map stn( f ) to

a k-dimensional subspace (see e.g. [16, Property (3)]). For any δ =
∑k+1

i=1 aiei ∈ ∆k
s , stk( f )(δ) is defined to be

the unique point where the function

x 7→
∫

∂F X

B(x, θ)d


k+1∑

i=1

a2
i µ(xi)

 (θ)

is minimized. Hence, by differentiating at that point, we get the 1-form equation

∫

∂F X

dB(stV (δ),θ)(·)d


k+1∑

i=1

a2
i µ(xi)

 (θ) ≡ 0

which holds identically on the tangent space TstV (δ)X. Differentiating in a direction u ∈ Tδ(∆
k
s) in the source,

one obtains the 2-form equation

(2.1)

k+1∑

i=1

2ai〈u, ei〉δ
∫

∂F X

dB(stV (δ),θ)(v)d(µ(xi))(θ) +

∫

∂F X

DdB(stV (δ),θ)(Dδ(stV )(u), v)d


k+1∑

i=1

a2
i µ(xi)

 (θ) ≡ 0

which holds for every u ∈ Tδ(∆
k
s) and v ∈ TstV (δ)(X). Now we define two semi-positive definite quadratic

forms Q1 and Q2 on TstV (δ)(X):

Q1(v, v) =

∫

∂F X

dB2
(stV (δ),θ)(v)d


k+1∑

i=1

a2
i µ(xi)

 (θ)

Q2(v, v) =

∫

∂F X

DdB(stV (δ),θ)(v, v)d


k+1∑

i=1

a2
i µ(xi)

 (θ)

In fact, Q2 is positive definite since
∑k+1

i=1 a2
i
µ(xi) is fully supported on ∂FX (see [6, Section 4]). From

Equation (2.1), we obtain, for u ∈ Tδ(∆
k
s) a unit vector and v ∈ TstV (δ)(X) arbitrary, the following

|Q2(Dδ(stV )(u), v)| =
∣∣∣∣∣∣∣
−

k+1∑

i=1

2ai〈u, ei〉δ
∫

∂F X

dB(stV (δ),θ)(v)d(µ(xi))(θ)

∣∣∣∣∣∣∣
(2.2)

≤


k+1∑

i=1

〈u, ei〉2δ



1/2 
k+1∑

i=1

4a2
i

(∫

∂F X

dB(stV (δ),θ)(v)d(µ(xi))(θ)

)2


1/2

≤ 2


k+1∑

i=1

a2
i

∫

∂F X

dB2
(stV (δ),θ)(v)d(µ(xi))(θ)

∫

∂F X

1d(µ(xi))



1/2

= 2Q1(v, v)1/2

via two applications of the Cauchy-Schwartz inequality.

We restrict these two quadratic forms to the subspace S = Im(Dδ(stV )) ⊆ TstV (δ)(X), and denote the

corresponding k-dimensional endomorphisms by Hδ and Kδ, that is

Q1(v, v) = 〈Hδ(v), v〉stV (δ)
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Q2(v, v) = 〈Kδ(v), v〉stV (δ)

for all v ∈ S .

For points δ ∈ ∆k
s where stV is nondegenerate, we now pick orthonormal bases {u1, . . . , uk} on Tδ(∆

k
s),

and {v1, . . . , vk} on S ⊆ TstV (δ)(X). We choose these so that {vi}ki=1
are eigenvectors of Hδ, and {u1, . . . , uk} is

the resulting basis obtained by applying the orthonormalization process to the collection of pullback vectors

{(Kδ ◦ Dδ(stV ))−1(vi)}ki=1
. So we obtain

det(Q2|S ) · |Jacδ(stV )| = |det(Kδ) · Jacδ(stV )|

=

∣∣∣det(〈Kδ ◦ Dδ(stV )(ui), v j〉)
∣∣∣

By the choice of bases, the matrix (〈Kδ ◦ Dδ(stV )(ui), v j〉) is upper triangular, so we have

∣∣∣det(〈Kδ ◦ Dδ(stV )(ui), v j〉)
∣∣∣ =

∣∣∣∣∣∣∣

k∏

i=1

〈Kδ ◦ Dδ(stV )(ui), vi〉
∣∣∣∣∣∣∣

≤
k∏

i=1

2〈Hδ(vi), vi〉1/2

= 2k det(Hδ)
1/2
= 2k det(Q1|S )1/2

where the middle inequality is obtained via Equation (2.2). Hence we get the inequality

|Jacδ(stV )| ≤ 2k · det(Q1|S )1/2

det(Q2|S )

We summarize the above discussion into the following proposition.

Proposition 2.3. Let Q1, Q2 be the two positive semidefinite quadratic forms defined as above (note Q2 is

actually positive definite). Assume there exists a constant C that only depends on X, with the property that

det(Q1|S )1/2

det(Q2|S )
≤ C

for any k-dimensional subspace S ⊆ TstV (δ)X. Then the quantity |Jac(stV )(δ)| is universally bounded –

independent of the choice of (k + 1)-tuple of points V ⊂ X, and of the point δ ∈ ∆k
s .

3. Jacobian Estimate

Let X = G/K be an irreducible symmetric space of non-compact type. We fix an arbitrary point x ∈ X

and identify TxX with p. Let µ be a probability measure that is fully supported on the Furstenberg boundary

∂FX. Using the same notation as in Section 2.3, we define a semi-positive definite quadratic form Q1 and a

positive definite quadratic form Q2 on TxX

Q1(v, v) =

∫

∂F X

dB2
(x,θ)(v)dµ(θ)

Q2(v, v) =

∫

∂F X

DdB(x,θ)(v, v)dµ(θ)
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for v ∈ Tx(X). We will follow the techniques of Connell and Farb [6], [7], and show the following theorem.

Theorem 3.1. Let X be an irreducible symmetric space of non-compact type excluding SL(3,R)/SO(3) and

SL(4,R)/SO(4), and let r = rank(X) ≥ 2. If n = dim(X), then there exists a constant C that only depends

on X, such that

det(Q1|S )1/2

det(Q2|S )
≤ C

for any subspace S ⊆ TxX with n − r + 2 ≤ dim(S ) ≤ n.

In view of Proposition 2.3, this implies that the barycentrically straightened simplices of dimension ≥
n − r + 2 have uniformly controlled Jacobians. The reader whose primary interest is bounded cohomology,

and who is willing to take Theorem 3.1 on faith, can skip ahead to Section 5 for the proof of the Main

Theorem.

The rest of this Section will be devoted to the proof of Theorem 3.1. In Section 3.1, we explain some sim-

plifications of the quadratic forms, allowing us to give geometric interpretations for the quantities involved

in Theorem 3.1. In Section 3.2, we formulate the “weak eigenvalue matching” Theorem 3.3 (which will be

established in Section 4). Finally, in Section 3.3, we will deduce Theorem 3.1 from Theorem 3.3.

3.1. Simplifying the quadratic forms. Following [6, Section 4.3], we fix a flat F going through x, and

denote the tangent space by a, so dim(a) = r is the rank of X. By abuse of notation, we identify a with

F . Choose an orthonormal basis {ei} on TxX such that {e1, ..., er} spans F , and assume e1 is regular so that

e1(∞) ∈ ∂FX. Then Q1, Q2 can be expressed in the following matrix forms.

Q1 =

∫

∂F X

Oθ


1 0

0 0(n−1)

 O∗θdµ(θ)

Q2 =

∫

∂F X

Oθ


0(r) 0

0 D
(n−r)
λ

 O∗θdµ(θ)

where Dλ = diag(λ1, ..., λ(n−r)), and Oθ is the orthogonal matrix corresponding to the unique element in K

that sends e1 to v(x,θ), the direction at x pointing towards θ. Moreover, there exists a constant c > 0 that only

depends on X, so that λi ≥ c for 1 ≤ i ≤ n − r. For more details, we refer the readers to the original [6].

Denote by Q̄2 the quadratic form given by

Q̄2 =

∫

∂F X

Oθ


0(r) 0

0 I(n−r)

 O∗θdµ(θ)

Then the difference Q2 − cQ̄2 is positive semi-definite, hence det(Q2|S ) ≥ det(cQ̄2|S ). So in order to show

Theorem 3.1, it suffices to assume Q2 has the matrix form

∫

∂F X

Oθ


0(r) 0

0 I(n−r)

 O∗θdµ(θ)
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Given any v ∈ TxX, we have the following geometric estimates on the value of the quadratic form

Q1(v, v) =

∫

∂F X

vtOθ


1 0

0 0(n−1)

 O∗θv dµ(θ)(3.1)

=

∫

∂F X

〈O∗θv, e1〉2dµ(θ)

≤
∫

∂F X

r∑

i=1

〈O∗θv, ei〉2dµ(θ)

=

∫

∂F X

sin2(∠(O∗θv,F ⊥))dµ(θ)

Roughly speaking, Q1(v, v) is bounded above by the weighted average of the time the K-orbit spends away

from F ⊥. Similarly we can estimate

Q2(v, v) =

∫

∂F X

vtOθ


0(r) 0

0 I(n−r)

 O∗θv dµ(θ)(3.2)

=

∫

∂F X

n∑

i=r+1

〈O∗θv, ei〉2dµ(θ)

=

∫

∂F X

sin2(∠(O∗θv,F ))dµ(θ)

So again, Q2(v, v) roughly measures the weighted average of the time the K-orbit spends away from F .

3.2. Eigenvalue matching. In their original paper, Connell and Farb showed an eigenvalue matching the-

orem [6, Theorem 4.4], in order to get the Jacobian estimate in top dimension. For the small eigenvalues

of Q2 (there are at most r of them), they want to find twice as many comparatively small eigenvalues of

Q1. Then by taking the product of those eigenvalues, they obtain a uniform upper bound on the ratio of

determinants det(Q1)1/2/ det(Q2), which yields an upper bound on the Jacobian. However, as was pointed

out by Inkang Kim and Sungwoon Kim, there was a mistake in the proof. Connell and Farb fixed the gap by

showing a weak eigenvalue matching theorem [7, Theorem 0.1], which was sufficient to imply the Jacobian

inequality.

We generalize this method and show that in fact we can find (r − 2) additional small eigenvalues of Q1

that are bounded by a universal constant times the smallest eigenvalue of Q2. This allows for the Jacobian

inequality to be maintained when we pass down to a subspace of codimension at most (r − 2). We now state

our version of the weak eigenvalue matching theorem.

Definition 3.2. We call a set of unit vectors {w1, ...,wk} a δ-orthonormal k-frame if 〈wi,w j〉 < δ for all

1 ≤ i < j ≤ k.

Theorem 3.3. (Weak eigenvalue matching.) Let X be an irreducible symmetric space of non-compact type,

with r = rank(X) ≥ 2, excluding SL(3,R)/SO(3) and SL(4,R)/SO(4). There exist constants C′, C, δ that
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only depend on X so that the following holds. Given any ǫ < δ, and any orthonormal k-frame {v1, ..., vk} in

TxX with k ≤ r, whose span V satisfies ∠(V,F ) ≤ ǫ, then there is a (C′ǫ)-orthonormal (2k+r−2)-frame given

by vectors {v′
1
, v′′

1
, ..., v

(r)
1
, v′

2
, v′′

2
, ..., v′

k
, v′′

k
}, such that for i = 1, ..., k, and j = 1, ..., r, we have the following

inequalities:

∠(hv′i ,F ⊥) ≤ C∠(hvi,F )

∠(hv′′i ,F ⊥) ≤ C∠(hvi,F )

∠(hv
( j)
1
,F ⊥) ≤ C∠(hv1,F )

for all h ∈ K, where hv is the linear action of h ∈ K on v ∈ TxX ≃ p.

The proof of Theorem 3.3 will be delayed to Section 4.

3.3. Proof of Theorem 3.1. In this section, we will prove Theorem 3.1 using Theorem 3.3. Before starting

the proof, we will need the following three elementary results from linear algebra.

Lemma 3.4. Let Q be a positive definite quadratic form on some Euclidean space V of dimension n, with

eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn. Let W ⊆ V be a subspace of codimension l, and let µ1 ≤ µ2 ≤ ... ≤ µn−l be

the eigenvalues of Q restricted to W. Then λi ≤ µi ≤ λi+l holds for i = 1, . . . , n − l.

Proof. We argue by contradiction. Assume µi > λi+l for some i. Take the subspace W0 ⊆ W spanned by the

eigenvectors corresponding to µi, µi+1, . . . , µn−l; clearly dim(W0) = n − l − i + 1. So for any nonzero vectors

v ∈ W0, we have Q(v, v) ≥ µi‖v‖2 > λi+l‖v‖2. However, if we denote V0 ⊆ V the (i+ l)-dimensional subspace

spanned by the eigenvectors corresponding to λ1, . . . , λi+l, we have Q(v, v) ≤ λi+l‖v‖2 for any v ∈ V0. But

dim(W0∩V0) ≥ dim(W0)+dim(V0)−dim(V) = 1 implies W0∩V0 is nontrivial, so we obtain a contradiction.

This establishes µi ≤ λi+l. A similar argument shows λi ≤ µi. �

Lemma 3.5. Let Q be a positive definite quadratic form on some Euclidean space V of dimension n, with

eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. If {v1, . . . , vn} is any orthonormal frame of V, ordered so that Q(v1, v1) ≤
Q(v2, v2) ≤ · · · ≤ Q(vn, vn), then Q(vi, vi) ≥ λi/n for i = 1, . . . , n.

Proof. We show this by induction on the dimension of V . The statement is clear when n = 1, so let us

now assume we have the statement for dim(V) = n − 1. Now if dim(V) = n, we restrict the quadratic form

Q to the (n − 1)-dimensional subspace W spanned by v1, . . . , vn−1, and denote the eigenvalues of Q|W by

µ1 ≤ µ2 ≤ ... ≤ µn−1. By the induction hypothesis and Lemma 3.4, we obtain

Q(vi, vi) ≥
µi

n − 1
≥ λi

n − 1
≥ λi

n

for 1 ≤ i ≤ n − 1. Finally, for the last vector, we have

Q(vn, vn) ≥ Q(v1, v1) + ... + Q(vn, vn)

n
=

tr(Q)

n
=
λ1 + ... + λn

n
≥ λn

n

This completes the proof of the lemma. �
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Lemma 3.6. Let Q be a positive definite quadratic form on some Euclidean space V of dimension n.

If {v1, ..., vk} is any τ-orthonormal k-frame for τ sufficiently small (only depends on n), ordered so that

Q(v1, v1) ≤ ... ≤ Q(vk, vk), then there is an orthonormal k-frame {u1, ..., uk} such that Q(ui, ui) ≤ 2Q(vi, vi).

Proof. We do the Gram-Schmidt process on {v1, ..., vk} and obtain an orthonormal k-frame {u1, ..., uk}. Notice

{v1, ..., vk} is τ-orthonormal, so we have ui = vi + O(τ)v1 + ... + O(τ)vi, where by O(τ) we denote a number

that has universal bounded (only depends on n) ratio with τ. This implies

Q(ui, ui) = Q(vi, vi) + O(τ)
∑

1≤s≤t≤i

Q(vs, vt)

Since |Q(vs, vt)| ≤
√

Q(vs, vs)Q(vt, vt) ≤ Q(vi, vi), we obtain

Q(ui, ui) ≤ Q(vi, vi) + O(τ)Q(vi, vi) ≤ 2Q(vi, vi)

for τ sufficiently small. This completes the proof of the lemma. �

We are now ready to establish Theorem 3.1.

Proof. As was shown in [6, Section 4.4], for any fixed ǫ0 ≤ 1/(r + 1), there are at most r eigenvalues of

Q2 that are smaller than ǫ0 (we will choose ǫ0 in the course of the proof). By Lemma 3.4 the same is true

for Q2|S . We arrange these small eigenvalues in the order L1 ≤ L2 ≤ . . . ≤ Lk, where k ≤ r. Observe that,

if no such eigenvalue exists, then by Lemma 3.4, det(Q2|S ) is uniformly bounded below, and the theorem

holds (since the eigenvalues of Q1|S are all ≤ 1). So we will henceforth assume k ≥ 1. We denote the

corresponding unit eigenvectors by v1, ..., vk (so that vi has eigenvalue Li). Although V = span{v1, ...vk}
might not have small angle with F , it is shown in [7, Section 3] that there is a k0 ∈ K so that ∠(k0vi,F ) ≤
2ǫ1/4

0
for each i.

Let ǫ be a constant small enough so that ǫ < δ, where δ is from Theorem 3.3, and also τ := C′ǫ satisfies

the condition of Lemma 3.6 (where C′ is obtained from Theorem 3.3). Hence the choice of ǫ only depends

on X. We now make a choice of ǫ0 such that 2ǫ1/4
0
< ǫ, and hence ∠(k0V,F ) < ǫ. (Note again the choice of

ǫ0 only depends on X.)

Apply Theorem 3.3 to the frame {k0v1, . . . , k0vk}, and translate the obtained (C′ǫ)-orthonormal frame by

k−1
0

. This gives us a (C′ǫ)-orthonormal (2k + r − 2)-frame {v′
1
, v′′

1
, ..., v

(r)
1
, v′

2
, v′′

2
, ..., v′

k
, v′′

k
}, such that for

i = 1, ..., k, and j = 1, ...r, we have

∠(hv′i ,F ⊥) ≤ C∠(hvi,F )

∠(hv′′i ,F ⊥) ≤ C∠(hvi,F )

∠(hv
( j)
1
,F ⊥) ≤ C∠(hv1,F )

for all h ∈ K (note that we have absorbed the k0-translation into the element h).

We notice ∠(hv′
i
,F ⊥) ≤ C∠(hvi,F ) implies sin2(∠(hv′

i
,F ⊥)) ≤ C0 sin2(∠(hvi,F )) for some C0 depending

on C. For convenience, we still use C for this new constant. Hence, we obtain

Q1(v′i , v
′
i) ≤

∫

∂F X

sin2(∠(O∗θv
′
i ,F ⊥))dµ(θ)
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≤ C

∫

∂F X

sin2(∠(O∗θvi,F ))dµ(θ) = CQ2(vi, vi) = CLi

An identical estimate gives us Q1(v′′
i
, v′′

i
) ≤ CLi, and Q1

(
v

( j)
1
, v

( j)
1

)
≤ CL1.

We rearrange the (C′ǫ)-orthonormal (2k + r − 2)-frame as {u′
1
, u′′

1
, ..., u

(r)
1
, u′

2
, u′′

2
, ..., u′

k
, u′′

k
} so that it has

increasing order when applying Q1. Then the inequalities still hold for this new frame:

Q1(u′i , u
′
i) ≤ CLi

Q1(u′′i , u
′′
i ) ≤ CLi

Q1

(
u

( j)
1
, u

( j)
1

)
≤ CL1

Since the choice of ǫ makes C′ǫ satisfy the condition of Lemma 3.6, we apply the lemma to this C′ǫ-

orthonormal frame. This gives us an orthonormal (2k + r − 2)-frame
{
u′

1
, u′′

1
, ..., u

(r)
1
, u′

2
, u′′

2
, ..., u′

k
, u′′

k

}
, such

that

Q1(u′
i
, u′

i
) ≤ 2Q1(u′i , u

′
i ) ≤ 2CLi

Q1(u′′
i
, u′′

i
) ≤ 2Q1(u′′i , u

′′
i ) ≤ 2CLi

Q1

(
u

( j)
1
, u

( j)
1

) ≤ 2Q1(u
( j)
1
, u

( j)
1

)
≤ 2CL1

Again, we can rearrange the orthonormal basis to have increasing order when applying Q1, and it is easy to

check that, for the resulting rearranged orthonormal basis, the same inequalities still hold.

We denote the first (2k + r − 2) eigenvalues of Q1 by λ′
1
≤ λ′′

1
≤ ... ≤ λ(r)

1
≤ λ′

2
≤ λ′′

2
≤ ... ≤ λ′

k
≤ λ′′

k
, and

the first 2k eigenvalues of Q1 |S by µ′1 ≤ µ′′1 ≤ ... ≤ µ′k ≤ µ
′′
k

. Applying Lemma 3.5, we have

λ′i ≤ nQ1(u′
i
, u′

i
) ≤ 2nCLi

λ′′i ≤ nQ1(u′′
i
, u′′

i
) ≤ 2nCLi

λ
( j)
1
≤ nQ1

(
u

( j)
1
, u

( j)
1

)
≤ 2nCL1

for 1 ≤ i ≤ k and 1 ≤ j ≤ l.

Notice dim(S ) ≥ n − r + 2. We apply Lemma 3.4 and obtain

µ′1 ≤ λ
(r−1)
1
≤ 2nCL1

µ′′1 ≤ λ
(r)
1
≤ 2nCL1

µ′i ≤ λ′i ≤ 2nCLi

µ′′i ≤ λ′′i ≤ 2nCLi

for 2 ≤ i ≤ k. The eigenvalues of Q1|S are bounded above by 1, and L1, ..., Lk are the only eigenvalues of

Q2 |S that are below ǫ0 (and recall the choice of ǫ0 only depends on X). Therefore,

det(Q1|S ) ≤
k∏

i=1

µ′iµ
′′
i ≤

k∏

i=1

(2nCLi)
2 ≤ (2nC)2k


det(Q2 |S )

ǫ
dim(S )−k

0



2

≤ C det(Q2 |S )2
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where C only depends on X. This completes the proof of Theorem 3.1. �

4. Reduction to the Combinatorial Problem

In this section, we will prove the “weak eigenvalue matching” Theorem 3.3, which was introduced in

Section 3.2. The approach is to follow [7], and reduce the theorem to a combinatorial problem. Then we

apply Hall’s Marriage theorem to solve it.

4.1. Hall’s Marriage Theorem. We introduce the classic Hall’s Marriage Theorem, and later on we will

apply a slightly stronger version (Corollary 4.3 below) in the proof of Lemma 4.5.

Theorem 4.1 (Hall’s Marriage Theorem). Suppose we have a set of m different species A = {a1, .., am}, and

a set of n different planets B = {b1, ..., bn}. Let φ : A → P(B) be a map which sends a species to the set of

all suitable planets for its survival. Then we can arrange for each species a different planet to survive if and

only if for any subset A0 ⊆ A, we have the cardinality inequality |φ(A0)| ≥ |A0|.

Corollary 4.2. Under the assumption of Theorem 4.1, we can arrange for each species two different planets

if and only if for any subset A0 ⊆ A, we have the cardinality inequality |φ(A0)| ≥ 2|A0|.

Proof. Assume there exists such arrangement, the cardinality condition holds obviously. On the other hand,

assume we have the cardinality condition, we want to show there is an arrangement. We make an identical

copy on each species and form the set A′ = {a′
1
, ..., a′m}. We apply the Hall’s Marriage Theorem to the set

A ∪ A′ relative to B. Then for each i, both species ai and a′
i

have its own planet, and that means there are

two planets for the original species ai.

To see why the cardinality condition holds, we choose an arbitrary subset H ∪ K′ ⊆ A ∪ A′ where H ⊆ A

and K′ ⊆ A′. Let K be the corresponding identical copy of K′ in A. We have φ(H ∪ K′) = φ(H ∪ K) ≥
2|H ∪ K| ≥ |H| + |K| = |H ∪ K′|. This completes the proof. �

Corollary 4.3. Suppose we have a set of vectors V = {v1, ..., vr}, and for each vi, the selectable set is denoted

by Bi ⊆ B. If for any subset V0 = {vi1 , ..., vik} ⊆ V, we have |Bi1 ∪ ... ∪ Bik | ≥ 2k + r − 2, then we can pick

(3r − 2) distinct element
{
b′

1
, ..., b

(r)
1
, b′

i
, b′′

i
(2 ≤ i ≤ r)

}
in B such that b′

1
, ..., b

(r)
1
∈ B1 and b′

i
, b′′

i
∈ Bi.

Proof. First we choose V0 the singleton set that consists of only v1. By hypothesis, we have |B1| ≥ r ≥ (r−2),

hence we are able to choose (r − 2) elements b
(3)
1
, ..., b

(r)
1

for v1. Next we can easily check the cardinality

condition and apply Corollary 4.2 to the set V with respect to B \
{
b

(3)
1
, ..., b

(r)
1

}
to obtain the pairs {b′

i
, b′′

i
}

(for each 1 ≤ i ≤ r). This completes the proof of this corollary. �

4.2. Angle inequality. Throughout this section, we will work exclusively with unit vectors in TxX ≃ p.
We embed the point stabilizer Kx into Isom(TxX) ≃ O(n), and endow it with the induced metric. This

gives rise to a norm on K, defined by ||k|| = maxv∈TxX ∠(v, kv),∀k ∈ K. We denote the Lie algebra of

Kx ≃ K by k, which has root space decomposition k = k0 ⊕
⊕
α∈Λ+ kα. For each small element k ∈ K, the

action on a vector v can be approximated by the Lie algebra action, that is, if k = exp(u) is small, then
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||[u, v]|| ≈ ||kv− v|| ∼ ∠(v, kv), where we write A ∼ B if A/B and B/A are both universally bounded. By abuse

of notation, we do not distinguish between ||k|| and ||u|| inside a very small neighborhood U of 0 inside k.

Although || · || is not linear onU, it is linear up to a universal constant, that is, ||tu|| ∼ t||u||, for all u ∈ U and

t such that tu ∈ U. We now show the following lemmas.

Lemma 4.4. (Compare [7, Lemma 1.1]) Let X = G/K be a rank r ≥ 2 irreducible symmetric space of

non-compact type, and fix a flat F ⊆ TxX at x. Then for any small ρ > 0, there is a constant C(ρ) with the

following property. If v ∈ F is arbitrary, and v∗ ∈ F is a maximally singular vector in the ρ-neighborhood

of v (in the sense that the dimension of Kv∗ is as large as possible), then

∠(hu,F ⊥) ≤ C∠(hv,F )

for any h ∈ K, and u ∈ (Kv∗F )⊥ ≃
⊕
α∈Λ+,α(v∗),0 pα, where Λ+ is the set of all positive roots. Moreover, we

have

∠(hu,F ⊥) ≤ C∠(hk0v,Kv∗F )

for any h ∈ K, u ∈ (Kv∗F )⊥, and k0 ∈ Kv∗ .

Proof. We only need to verify the inequality when ∠(hv,F ) is small. Notice for any vector v ∈ F , and any

small element w ∈ kα = (I + θ)gα = (I + θ)(I − θ)−1pα, the Lie algebra action (see Proposition 2.2) has norm

(4.1) ||[w, v]|| = || − α(v) · (I − θ)(I + θ)−1w|| ∼ |α(v)| · ||w||.

This is due to the fact that (I + θ)(I − θ)−1 is a linear isomorphism between kα and pα (see Proposition 2.1),

and when restricted to kα ∩U, it preserves the norms up to a uniform multiplicative constant.

Infinitesimally speaking, for h = exp(w), we have that hv − v = [w, v], so the estimate on the Lie algebra

action tells us about the infinitesimal growth of ||hv − v||. We also see that, since [w, v] ∈ pα, h moves the

vector v in the direction pα (which we recall is orthogonal to the flat F , see Proposition 2.1). Now v∗ is a

maximally singular vector in the ρ-neighborhood of the unit vector v, so once ρ is small enough, if α is any

root with α(v∗) , 0, then α(v) will be uniformly bounded away from zero (depending only on the choice of

ρ). This shows that if a root α satisfies α(v∗) , 0, then ∠(hv,F ) ∼ ||h|| for all h ∈ exp(kα ∩U).

Now we move to analyzing the general case h = exp(w), where w ∈ k is arbitrary. If ∠(hv,F ) is small,

then it follows that the components of hv on each pα must be small. From the discussion above, this implies

that the component of w in each kα |α(v∗),0 is small, i.e. w almost lies in kv∗ = k0 ⊕
⊕
α(v∗)=0 kα. Since h

almost lies in Kv∗ , there exists an element h0 ∈ Kv∗ such that h−1
0 h is close to the identity. We write h = h0h1,

where h1 = exp(w1) ∈ exp(k⊥v∗) = exp
(⊕

α(v∗),0 kα

)
, and observe that the analysis in the previous paragraph

applies to the element h1. Now observe that, infinitesimally, h1v − v = [u1, v] ∈
⊕
α(v∗),0 pα, so h1 moves

v in a direction lying in
⊕
α(v∗),0 pα. On the other hand, infinitesimally, Kv∗ moves the entire flat F in

the directions
⊕
α(v∗)=0 pα (corresponding to the action of its Lie algebra kv∗). But these two directions are

orthogonal, which means that h1v leaves not just F orthogonally, but actually leaves orthogonally to the

entire orbit Kv∗F . This allows us to estimate

(4.2) ∠(hv,F ) = ∠(h1v, h−1
0 F ) ≥ ∠(h1v,Kv∗F ) ∼ ||h1||,
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where at the last step, we use that h1 moves v orthogonally off the Kv∗ orbit of F . On the other hand, we are

assuming that the vector u lies in (Kv∗F )⊥, hence also in h−1
0 F ⊥. So we have the sequence of inequalities

(4.3) ∠(hu,F ⊥) = ∠(h1u, h−1
0 F

⊥) ≤ ∠(h1u, u) ≤ ||h1||.

Combining equations (4.2) and (4.3) gives us the first inequality.

Similarly, ∠(hk0v,Kv∗F ) being small also implies that the component of h on each kα |α(v∗),0 is small.

So by writing h = h0h1 in the same manner, we get ∠(hk0v,Kv∗F ) = ∠(h1k0v,Kv∗F ) = ∠(k−1
0

h1k0v,Kv∗F ).

Notice that Kv∗ conjugates k⊥v∗ to itself, so k−1
0

h1k0 is an element in exp(k⊥v∗ ). In view of equation (4.1)

and the fact that k−1
0

h1k0v leaves orthogonally to Kv∗F , we obtain ∠(k−1
0

h1k0v,Kv∗F ) ∼ ||k−1
0

h1k0|| = ||h1||.
Combining this estimate with equation (4.3) gives the second inequality. �

Lemma 4.5. Let X = G/K be a rank r ≥ 2 irreducible symmetric space of non-compact type excluding

SL(3,R)/SO(3) and SL(4,R)/SO(4), and fix a flat F ⊆ TxX at x. Then there exists a constant C > 0

that only depends on X, such that for any 1
2 -orthonormal r-frame {v1, ..., vr} in F , there is an orthonormal

(3r − 2)-frame
{
v′

1
, v′′

1
, ..., v

(r)
1
, v′

i
, v′′

i
(2 ≤ i ≤ r)

}
in F ⊥ such that

∠(hv′i ,F ⊥) ≤ C∠(hvi,F )

∠(hv′′i ,F ⊥) ≤ C∠(hvi,F )

∠(hv
( j)
1
,F ⊥) ≤ C∠(hv1,F )

for all h ∈ K, i = 2, ..., r, j = 1, ..., r.

Proof. Once we have chosen a parameter ρ, we will denote by v∗
i

a maximally singular vector in F that is

ρ-close to vi, and we will let Qi = (Kv∗
i
F )⊥ ≃

⊕
α∈Λ+,α(v∗

i
),0 pα. We now fix an ρ small enough so that,

for every 1
2 -orthonormal r-frame {v1, . . . , vr} ⊂ F , the corresponding {v∗

i
}|r

i=1 are distinct. For each vi, the

vectors in Qi are the possible choice of vectors that satisfy the angle inequality provided by Lemma 4.4. So

it suffices to find r vectors in Q1, and two vectors in each Qi (i , 1), such that the chosen (3r − 2) vectors

form an orthonormal frame.

Now for each root α, we pick an orthonormal frame {bαi
} on pα, we collect them into the set B := {bi}|n−r

i=1
,

which forms an orthonormal frame on F ⊥. We will pick the (3r − 2)-frame from the vectors in B. For

instance, vector v1 has selectable set B1 := Q1 ∩ B, in which we want to choose r elements, while for

i = 2, ..., r, vector vi has selectable set Bi := Qi ∩ B, from which we want to choose two elements. Most

importantly, the (3r − 2) chosen vectors have to be distinct from each other. This is a purely combinatorial

problem, and can be solved by using Hall’s Marriage theorem. In view of Corollary 4.3, we only need to

check the cardinality condition. We notice the selectable set of vi is Bi which spans Qi, so |Bi| = dim(Qi).

The next lemma will estimate the dimension of the Qi, and hence will complete the proof of Lemma 4.5. �

Lemma 4.6. Let X = G/K be a rank r ≥ 2 irreducible symmetric space of non-compact type, excluding

SL(3,R)/SO(3) and SL(4,R)/SO(4), and fix a flat F . Assume {v∗
1
, ..., v∗r } spans F , and let Qi = Kv∗

i
F . Then

for any subcollection of vectors {v∗
i1
, ..., v∗

ik
}, we have dim(Qi1 + ... + Qik ) ≥ (2k + r − 2).
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Proof. Since Qi = (Kv∗
i
F )⊥ ≃

⊕
α∈Λ+,α(v∗

i
),0 pα, we obtain Qi1 + ... + Qik =

⊕
α∈Λ+,α(V),0 pα, where V =

Span(v∗
i1
, ..., v∗

ik
). We can estimate

dim(Qi1 + ... + Qik ) =
∑

α∈Λ+,α(V),0

dim(pα) ≥
∣∣∣{α ∈ Λ+, α(V) , 0

}∣∣∣ = 1

2

(
|Λ| −

∣∣∣∣
{
α ∈ Λ,Hα ∈ V⊥

}∣∣∣∣
)
,

where V⊥ is the orthogonal complement of V in F , and Hα is the vector in F that represents α.

Now we denote ti =
1
2 maxU⊆F ,dim(U)=i |{α ∈ Λ,Hα ∈ U}|, the number of positive roots in the maximally

rooted i-dimensional subspace. We use the following result that appears in the proof of [6, Lemma 5.2]. For

completeness, we also add their proof here.

Claim 4.7. [6, Lemma 5.2] ti − ti−1 ≥ i, for 1 ≤ i ≤ r − 1.

Proof. This is proved by induction on i. For i = 1, the inequality holds since t0 = 0 and t1 = 1. Assuming

ti−1 − ti−2 ≥ i − 1 holds, we let Vi−1 be an (i − 1)-dimensional maximally rooted subspace. By definition,

the number of roots that lie in Vi−1 is 2ti−1. There exists a root α so that Hα does not lie in Vi−1, and also

does not lie on its orthogonal complement (by irreducibility of the root system). So H⊥α ∩ Vi−1 := Z is a

codimension one subspace in Vi−1. By the induction hypothesis, there are at least i − 1 pairs of root vectors

that lie in Vi−1 − Z, call them ±Hα1
, ...,±Hαi−1

. Hence by properties of root system [11, Proposition 2.9.3],

either ±(Hα + Hαl
) or ±(Hα − Hαl

) is a pair of root vectors, for each 1 ≤ l ≤ i − 1. Along with ±Hα, these

pairs of vectors lie in (Vi−1 ⊕ 〈Hα〉)−Vi−1. We have now found 2i root vectors in the i-dimensional subspace

Vi−1 ⊕ 〈Hα〉, which do not lie on the maximally rooted subspace Vi−1. This shows ti − ti−1 ≥ i, proving the

claim. �

Finally, we can estimate dim(Qi1 + ... + Qik ) ≥ 1
2

(
|Λ| −

∣∣∣{α ∈ Λ,Hα ∈ V⊥
}∣∣∣
)
≥ tr − tr−k. Using the Claim,

a telescoping sum gives us tr − tr−k ≥ r + (r − 1) + ... + (r − k + 1) = k(2r − k + 1)/2, whence the lower

bound dim(Qi1 + ... + Qik ) ≥ k(2r − k + 1)/2. When r ≥ 4, or k < r = 3 , or k < r = 2, it is easy to check

that k(2r − k + 1)/2 ≥ 2k + r − 2. This leaves the case when r = k = 3, or r = k = 2. When r = k = 3, we

can instead estimate dim(Q1 + Q2 + Q3) = dim(F ⊥) = n − 3 ≥ 7 = 2k + r − 2, provided n ≥ 10, which only

excludes the rank three symmetric space SL(4,R)/SO(4). A similar analysis when r = k = 2 only excludes

the rank two symmetric space S L(3,R)/S O(3). This completes the proof of Lemma 4.6, hence completing

the proof of Lemma 4.5. �

Remark. In the rank two case, both Theorem 3.3 and Theorem 3.1 only give you statements about degree

= n. Our Main Theorem then only gives surjectivity of comparison maps in top degree, which agrees with

the result of [16], and the corresponding Jacobian estimate is consistent with [6] [7].

4.3. Proof of Theorem 3.3. We assume k = r without loss of generality since otherwise we can always

extend the k-frame to an r-frame that has small angle to F . Our first step is to move the frame so as to lie

in F , while controlling the angles between the resulting vectors (so that we can apply Lemma 4.5). This is

done by first moving the vectors to the respective Kv∗
i
F , and then moving to F .
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As in the proof of Lemma 4.4, ∠(vi,F ) being small implies that the components of vi on each pα is small.

The K-orbit of vi intersects F finitely many times (exactly once in each Weyl chamber), and if each of these

intersections is ρ-close to a maximally singular vector, choose v∗
i

to be the one closest to vi. The element in

K moving vi to F will almost lie in Kv∗
i

(by an argument similar to the one in Lemma 4.4). By decomposing

this element as a product k̂iki, we obtain a small ki which sends vi to Kv∗
i
F (and k̂i ∈ Kv∗

i
). If k−1

i
= exp(ui),

we have ui ∈
⊕
α∈Λ+,α(v∗),0 kα.

We now estimate the norm ||ki||. From the identification of norms in a small neighborhood of the identity,

we have ||ki || = ||ui||. Since k̂i is an element in Kv∗
i

that sends kivi to F , an argument similar to the proof of

second inequality in Lemma 4.4 gives us

∠(vi,Kv∗
i
F ) = ∠((k̂ik

−1
i k̂−1

i )(k̂ikivi),Kv∗
i
F ) ∼ρ ||k̂ik

−1
i k̂−1

i || = ||ki||

(where the constant will depend on the choice of ρ). On the other hand, since F ⊂ Kv∗
i
F , we obtain

∠(vi,Kv∗
i
F ) ≤ ∠(vi,F ). But by hypothesis, ∠(vi,F ) < ǫ. Putting all this together, we see that, for each fixed

ρ, there exists a constant C′ that only depends on X, so that each of the ||ki|| is bounded above by 1
2C′ǫ. In

particular, any {ki}ri=1
perturbation of an orthonormal frame gives rise to a C′ǫ-orthonormal frame, and hence

the collection {k1v1, . . . , krvr} forms a C′ǫ-orthonormal frame.

Next, since k̂i is an element in Kv∗
i
, it leaves v∗

i
fixed. From triangle inequality we obtain

∠(k̂ikivi, kivi) ≤ 2∠(kivi, v
∗
i ) < 2ρ.

It follows that the collection of vectors {k̂1k1v1, . . . , k̂rkrvr} ⊂ F is obtained from the C′ǫ-orthonormal frame

{k1v1, . . . , krvr} by rotating each of the various vectors by an angle of at most 2ρ hence forms a (C′ǫ + 4ρ)-

orthonormal basis in F . In particular, once ρ and δ are chosen small enough, it gives us a 1/2-orthonormal

basis inside F .

Applying Lemma 4.5 to the 1/2-orthonormal frame {k̂1k1v1, . . . , k̂rkrvr} ⊂ F gives us an orthonormal

(3r − 2)-frame
{
v′

1
, ..., v

(r)
1
, v′

i
, v′′

i
(2 ≤ i ≤ r)

}
such that the angle inequalities hold. Now by the second in-

equality of Lemma 4.4, we have the following inequalities:

∠(hv′i ,F ⊥) ≤ C∠(hkivi,Kv∗
i
F ) ≤ C∠(hkivi,F )

∠(hv′′i ,F ⊥) ≤ C∠(hkivi,Kv∗
i
F ) ≤ C∠(hkivi,F )

∠(hv
( j)
1
,F ⊥) ≤ C∠(hk1v1,Kv∗

1
F ) ≤ C∠(hk1v1,F )

for 2 ≤ i ≤ r, 1 ≤ j ≤ r and any h ∈ K. Finally we translate each of the vectors v′
i
, v′′

i
by k−1

i
, and each

v
( j)
1

by k−1
1

, producing a C′ǫ-orthonormal (3r − 2)-frame that satisfies the inequalities in Theorem 3.3, hence

completing the proof.

5. Surjectivity of the comparison map in bounded cohomology

In this Section, we provide some background on cohomology (see Section 5.1), establish the Main The-

orem (Section 5.2), establish some limitations on our technique of proof (Section 5.3), and work out a

detailed class of examples (Section 5.4).
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5.1. Bounded cohomology. Let X = G/K be a symmetric space of non-compact type, and Γ be a cocom-

pact lattice in G. We recall the definition of group cohomology, working with R coefficients (so that we can

relate these to the de Rham cohomology). Let Cn(Γ,R) = { f : Γn → R} be the space of n-cochains. Then

the coboundary map d : Cn(Γ,R)→ Cn+1(Γ,R) is defined by

d f (γ1, ..., γn+1) = f (γ2, ..., γn+1) +

n∑

i=1

(−1)i f (γ1, ...γi−1, γiγi+1, γi+2, ..., γn+1)

+(−1)n+1 f (γ1, ..., γn)

The homology of this chain complex is H∗(Γ,R), the group cohomology of Γ with R coefficients. More-

over, if we restrict the cochains above to bounded functions, we obtain the space of bounded n-cochains

Cn
b
(Γ,R) = { f : Γn → R | f is bounded} and the corresponding bounded cohomology H∗

b
(Γ,R) of Γ. The

inclusion of the bounded cochains into the ordinary cochains induces the comparison map H∗
b
(Γ,R) →

H∗(Γ,R).

Similarly, we can define the (bounded) continuous cohomology of G, by taking the space of continuous

n-cochains Cn
c (G,R) = { f : Gn → R | f is continuous} or the space of bounded continuous cochains

Cn
c,b

(G,R) = { f : Gn → R | f is continuous and bounded}. With the same coboundary maps as above, this

gives two new chain complexes, whose homology will be denoted by H∗c (G,R) and H∗
c,b

(G,R) respectively.

Again, one has a naturally induced comparison map H∗
c,b

(G,R)→ H∗c (G,R).

Now let M = X/Γ be the closed locally symmetric space covered by X. Note that M is a K(Γ, 1), so

H∗dR(M,R) ≃ H∗sing(M,R) ≃ H∗(Γ,R)

The isomorphism between the de Rham cohomology and group cohomology is explicitly given by

φ : Hk
dR(M,R)→ Hk(Γ,R)

ω 7→ fω

where fω(γ1, . . . , γk) =
∫
∆(γ1,...,γk)

ω̃. Here, ω̃ is a lift of ω to X, and ∆(γ1, . . . , γk) is any natural C1 k-filling

with ordered vertices {x, γ1x, (γ1γ2)x, . . . , (γ1γ2 · · · γk)x} for some fixed basepoint x ∈ X (for instance, one

can choose ∆(γ1, . . . , γk) to be the geodesic coning simplex, see Dupont [9]). Alternatively, we can use the

barycentric straightened C1 simplex st(∆(γ1, . . . , γk)) (which we defined in Section 2.3). That is to say, if

we define fω(γ1, . . . , γk) =
∫

st(∆(γ1 ,...,γk))
ω̃, then fω represents the same cohomology class as fω. This is

due to the fact that the barycentric straightening is Γ-equivariant (see [16, Section 3.2]). We call fω the

barycentrically straightened cocycle.

On the other hand, there is a theorem of van Est [18] which gives the isomorphism between the relative Lie

algebra cohomology H∗(g, k,R) and the continuous bounded cohomology H∗c (G,R). A class in Hk(g, k,R)

can be expressed by an alternating k-form ϕ on g/k ≃ TxX. By left translation, it gives a closed C∞ k-form

ϕ̃ on X = G/K. In [9], this isomorphism is explicitly given by

φ : Hk(g, k,R)→ Hk
c(G,R)
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ϕ 7→ fϕ

where fϕ(g1, . . . , gk) =
∫
∆(g1,...,gk)

ϕ̃, and ∆(g1, . . . , gk) is the geodesic simplex with ordered vertices con-

sisting of {x, g1x, (g1g2)x, . . . , (g1g2 · · · gk)x} for some fixed basepoint x ∈ X. Again, we can replace

∆(g1, . . . , gk) by the barycentric straightened C1 simplex st(∆(g1, . . . , gk)), and the resulting barycentrically

straightened function fϕ(g1, . . . , gk) =
∫

st(∆(g1 ,...,gk))
ϕ̃ is in the same cohomology class as fϕ.

5.2. Proof of the Main Theorem. In this section, we use Theorem 3.1 to establish the Main Theorem.

We need to show both comparison maps η and η′ are surjective. Let us start with η. We use the van Est

isomorphism (see Section 5.1) to identify H∗c (G,R) with H∗(g, k,R). For any class [ fϕ] ∈ Hk
c (G,R) where

fϕ(g1, . . . , gk) =
∫
∆(g1,...,gk)

ϕ̃, we instead choose the barycentrically straightened representative fϕ. Then for

any (g1, . . . , gk) ∈ Gk, we have

(5.1)
∣∣∣∣ fϕ(g1, . . . , gk)

∣∣∣∣ =
∣∣∣∣∣∣

∫

st(∆(g1 ,...,gk))

ϕ̃

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∫

∆
k
s

st∗V ϕ̃

∣∣∣∣∣∣ ≤
∫

∆
k
s

|Jac(stV )| · ‖ϕ̃‖dµ0

where dµ0 is the standard volume form of ∆k
s. But from Proposition 2.3 and Theorem 3.1, the expression

|Jac(stV )| is uniformly bounded above by a constant (independent of the choice of vertices V and the point

δ ∈ ∆k
s), while the form ϕ̃ is invariant under the G-action, hence bounded in norm. It follows that the last

expression above is less than some constant C that depends only on the choice of alternating form ϕ. We

have thus produced, for each class [ fϕ] in Hk
c (G,R), a bounded representative fϕ. So the comparison map

η is surjective. The argument for surjectivity of η′ is virtually identical, using the explicit isomorphism

between Hk(Γ,R) and Hk
dR

(M,R) discussed in Section 5.1. For any class [ fω] ∈ Hk(Γ,R), we choose the

barycentrically straightened representative fω. The differential form ω̃ has bounded norm, as it is the Γ-

invariant lift of the smooth differential form ω on the compact manifold M. So again, the estimate in

Equation (5.1) shows the representative fω is bounded, completing the proof.

5.3. Obstruction to Straightening Methods. In this section, we give a general obstruction to the straight-

ening method that is applied in section 5.2. In the next section, we will use this to give some concrete

examples showing that Theorem 3.1 is not true when dim(S ) ≤ n − r. Throughout this section, we let

X = G/K be an n-dimensional symmetric space of non-compact type, and we give the following definitions.

Definition 5.1. Let C0(∆k, X) be the set of singular k-simplices in X, where ∆k is assumed to be equipped

with a fixed Riemannian metric. Assume that we are given a collection of maps stk : C0(∆k, X)→ C0(∆k, X).

We say this collection of maps forms a straightening if it satisfies the following properties:

(a) the maps induces a chain map, that is, it commutes with the boundary operators.

(b) stn is C1 smooth, that is, the image of stn lies in C1(∆n, X).

For a subgroup H ≤ G, we say the straightening is H-equivariant if the maps stk all commute with the

H-action.

Since X is simply connected, property (a) of Definition 5.1 implies that the chain map st∗ is actually

chain homotopic to the identity. Also, property (b) of Definition 5.1 implies the image of any straightened
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k-simplex is C1-smooth, i.e. Im(stk) ⊂ C1(∆k, X). The barycentric straightening introduced in Section 2.3

is a G-equivariant straightening. As we saw in Section 5.2, obtaining a uniform control on the Jacobian of

the straightened k-simplices immediately implies a surjectivity result for the comparison map from bounded

cohomology to ordinary cohomology. This motivates the following:

Definition 5.2. We say the straightening is k-bounded, if there exists a constant C > 0, depending only on

X and the chosen Riemannian metric on ∆k, with the following property. For any k-dimensional singular

simplex f ∈ C0(∆k, X), and corresponding straightened simplex stk( f ) : ∆k → X, the Jacobian of stk( f )

satisfies:

|Jac(stk( f ))(δ)| ≤ C

where δ ∈ ∆k is arbitrary (and the Jacobian is computed relative to the fixed Riemannian metric on ∆k).

Our Theorem 3.1 and Proposition 2.3 then tells us that, when r = R-rank(G) ≥ 2 (excluding the two cases

SL(3,R)/SO(3) and SL(4,R)/SO(4)), our barycentric straightening is k-bounded for all k ≥ n − r + 2. One

can wonder whether this range can be improved. In order to obtain obstructions, we recall [16, Theorem

2.4]. Restricting to the case of locally symmetric spaces of non-compact type, the theorem says:

Theorem 5.3. [16, Theorem 2.4] Let M be an n-dimensional locally symmetric space of non-compact type,

with universal cover X, and Γ be the fundamental group of M. If X admits an n-bounded, Γ-equivariant

straightening, then the simplicial volume of M is positive.

Corollary 5.4. If X splits off an isometric R-factor, then X does not admit an n-bounded, G-equivariant

straightening.

Proof. Let X ≃ X0×R for some symmetric space X0. If X admits an n-bounded, G-equivariant straightening,

then consider a closed manifold M ≃ M0 × S 1, where M̃0 ≃ X0. According to Theorem 5.3, the simplicial

volume ||M|| is positive. But on the other hand ||M|| = ||M0 × S 1|| ≤ C · ||M0|| · ||S 1|| = 0. This contradiction

completes the proof. �

We will use subspaces satisfying Corollary 5.4 to obstruct bounded straightenings.

Definition 5.5. For X a symmetric space of non-compact type, we define the splitting rank of X, denoted

srk(X), to be the maximal dimension of a totally geodesic submanifold Y ⊂ X which splits off an isometric

R-factor.

For the irreducible symmetric spaces of non-compact type, computations of the splitting rank can be

found in a recent paper by the second author [19] (see also Berndt and Olmos [2] for some related work).

Theorem 5.6. If k = srk(X), then X does not admit any k-bounded, G-equivariant straightening.

Proof. We show this by contradiction. Assume X = G/K admits a k-bounded, G-equivariant straightening

sti, and let Y ⊂ X be a k-dimensional totally geodesic subspace which splits isometrically as Y ′ ×R. Denote

by p : X → Y the orthogonal projection from X to Y , and note that the composition p ◦ st∗ is a straightening
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on Y , which we denote by st∗. Notice Y is also a symmetric space and can be identified with G0/K0, for

some G0 < G, and K0 < K. Then the straightening st∗ is certainly G0-equivariant. We claim it is also

k-bounded. This is because the projection map p is volume-decreasing, hence
∣∣∣Jac(stk( f ))

∣∣∣ =
∣∣∣∣Jac

(
p
(
stk( f )

))∣∣∣∣ ≤
∣∣∣Jac

(
stk( f )

)∣∣∣ ≤ C

for any f ∈ C0(∆k, X). Therefore, we conclude that Y admits a G0-equivariant, k-bounded straightening.

This contradicts Corollary 5.4. �

Remark. In view of Proposition 2.3 and the arguments in Section 5.2, we can view Theorem 5.6 as obstruct-

ing the bounded ratio Theorem 3.1. Specifically, if k = srk(X), then Theorem 5.6 tells us that one has a

sequence fi : ∆k
s → X with the property that the Jacobian of stk( fi) is unbounded. From the definition of

our straightening maps stk, this means one has a sequence Vi =

{
v

(i)
0
, . . . v

(i)
k

}
⊂ X of (k + 1)-tuples of points

(the vertices of the singular simplices fi), and a sequence of points δi =
(
a

(i)
0
, . . . , a

(i)
k

)
inside the spherical

simplex ∆k
s ⊂ Rk+1, satisfying the following property. If one looks at the corresponding sequence of points

pi := (stk( fi)) (δi) = Bar


k∑

j=0

a
(i)
j
µ
(
v

(i)
j

)
 ,

one has a sequence of k-dimensional subspace S i ⊂ Tpi
X (given by the tangent spaces D(stVi

)(Tδi∆
k
s) to

the straightened simplex stk( fi) at the point pi), and the sequence of ratios det(Q1|S i
)1/2/ det(Q2|S i

) tends to

infinity. It is not too hard to see that, for each dimension k′ ≤ k, one can find a k′-dimensional subspace

S̄ i ⊂ S i such that the sequence of ratios of determinants, for the quadratic forms restricted to the S̄ i, must

also tend to infinity. Thus the bounded ratio Theorem 3.1 fails whenever k′ ≤ srk(X).

5.4. The case of S L(m,R). We conclude our paper with a detailed discussion of the special case of the Lie

group G = S L(m,R), m ≥ 5. The continuous cohomology has been computed (see e.g. [12, pg. 299]) and

can be described as follows. If m = 2k is even, then H∗c (S L(2k,R)) is an exterior algebra in k generators

in degrees 5, 9, . . . , 4k − 3, 2k. If m = 2k + 1 is even, then H∗c (S L(2k + 1,R)) is an exterior algebra in k

generators in degrees 5, 9, . . . , 4k + 1.

The associated symmetric space is X = S L(m,R)/S O(m), and we have that

n = dim(X) = dim (S L(m,R)) − dim (S O(m)) = (m2 − 1) − 1

2
m(m − 1) =

(
m + 1

2

)
− 1,

while the rank of the symmetric space is clearly r = m − 1. Thus, our Main Theorem tells us that, for these

Lie groups, the comparison map

H∗c,b(S L(m,R))→ H∗c (S L(m,R))

is surjective within the range of degrees ∗ ≥
(
m+1

2

)
− m + 2.

Observe that the exterior product of all the generators H∗c (S L(m,R)) yields the generator for the top-

dimensional cohomology, which lies in degree
(
m+1

2

)
− 1. Dropping off the 5-dimensional generator in the

exterior product yields a non-trivial class in degree
(
m+1

2

)
− 6. Comparing with the surjectivity range in
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our Main Theorem, we see that the first interesting example occurs in the case of S L(8,R), where our

results imply that H30
c,b

(
S L(8,R)

)
, 0 (as well as H35

c,b

(
S L(8,R)

)
, 0, which was previously known). Of

course, as m increases, our method provides more and more non-trivial bounded cohomology classes. For

example, once we reach S L(12,R), we get new non-trivial bounded cohomology classes in H68
c,b

(
S L(12,R)

)

and H72
c,b

(
S L(12,R)

)
.

Finally, let us consider Theorem 5.6 in the special case of X = S L(m,R)/S O(m). Choose a maximally

singular direction in the symmetric space X, and let X0 be the set of geodesics that are parallel to that

direction. Without loss of generality, we can take X0 = G0/K0, where

G0 =

{ 
A 0

0 a

 | det(A) · a = 1, a > 0

}

and K0 = SO(m) ∩ G0. Moreover, X0 clearly splits off an isometric R-factor, and can be isometrically

identified with SL(m − 1,R)/SO(m − 1) × R. This is the maximal dimensional subspace of S L(m,R) that

splits off an isometric R-factor (see [2, Table 3]), and the splitting rank is just dim(X0) =
(
m
2

)
. So in this

special case, Theorem 5.6 tells us that our method for obtaining bounded cohomology classes fails once we

reach degrees ≤
(
m
2

)
. Comparing this to the range where our method works, we see that, in the special case

where G = S L(m,R), the only degree which remains unclear is
(
m
2

)
+ 1. This example shows our Main

Theorem is very close to the optimal possible.

6. Concluding remarks

As we have seen, the technique used in our Main Theorem seems close to optimal, at least when re-

stricted to the Lie groups S L(m,R). Nevertheless, the authors believe that for other families of symmetric

spaces, there are likely to be improvements on the range of dimensions in which a barycentric straightening

is bounded.

We also note that it might still be possible to bypass the limitations provided by the splitting rank. Indeed,

the splitting rank arguments show that the barycentric straightening is not k-bounded, when k = srk(X). But

the barycentric straightening might still be k′-bounded for some k′ < srk(X) (even though the bounded

Jacobian Theorem 3.1 must fail for k′-dimensional subspaces).
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[18] W. T. van Est. On the algebraic cohomology concepts in Lie groups. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag.

Math., 17:225–233, 286–294, 1955.

[19] S. Wang. On splitting rank of non-compact type symmetric spaces and bounded cohomology. http://arxiv.org/abs/1602.01495,

preprint to appear in J. Topol. Anal., 2016.

Department ofMathematics, The Ohio State University, 231 W. 18th Ave., Columbus, OH 43210, U.S.A.

E-mail address: jlafont@math.ohio-state.edu

Department ofMathematics, Indiana University, 831 E. Third St., Bloomington, IN 47405, U.S.A.

E-mail address: wang679@iu.edu


	1. Introduction
	2. Preliminaries
	2.1. Symmetric spaces of non-compact type
	2.2. Patterson-Sullivan measures
	2.3. Barycenter method

	3. Jacobian Estimate
	3.1. Simplifying the quadratic forms
	3.2. Eigenvalue matching
	3.3. Proof of Theorem ??

	4. Reduction to the Combinatorial Problem
	4.1. Hall's Marriage Theorem
	4.2. Angle inequality
	4.3. Proof of Theorem ??

	5. Surjectivity of the comparison map in bounded cohomology
	5.1. Bounded cohomology
	5.2. Proof of the Main Theorem
	5.3. Obstruction to Straightening Methods
	5.4. The case of SL(m, R)

	6. Concluding remarks
	References

