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BARYCENTRIC STRAIGHTENING AND BOUNDED COHOMOLOGY

JEAN-FRANCOIS LAFONT' AND SHI WANG

ABsTRACT. We study the barycentric straightening of simplices in higher rank irreducible symmetric spaces of
non-compact type. We show that, for an n-dimensional symmetric space of rank r > 2 (excluding S L(3,R)/S O(3)
and S L(4,R)/S O(4)), the p-Jacobian has uniformly bounded norm, provided p > n — r + 2. As a consequence,
for the corresponding non-compact, connected, semisimple real Lie group G, in degrees p > n — r + 2, every
degree p cohomology class has a bounded representative. This answers Dupont’s problem in small codimen-
sion. We also give examples of symmetric spaces where the barycentrically straightened simplices of dimension
n — r have unbounded volume, showing that the range in which we obtain boundedness of the p-Jacobian is

very close to optimal.

1. INTRODUCTION

When studying the bounded cohomology of groups, an important theme is the comparison map from
bounded cohomology to ordinary cohomology. In the context of non-compact, connected, semisimple Lie
groups, Dupont raised the question of whether this comparison map is always surjective [10] (see also
Monod’s ICM address [17, Problem A’], and [4, Conjecture 18.1]). Properties of these Lie groups G are
closely related to properties of the corresponding non-positively curved symmetric space X = G/K. Geo-
metric methods on the space X can often be used to recover information about the Lie group G. This
philosophy was used by Lafont and Schmidt [16] to show that the comparison map is surjective in degree
dim(X). In the present paper, we extend this result to smaller degrees, and show:

Main Theorem. Let X = G/K be an n-dimensional irreducible symmetric space of non-compact type of
rank r = rank(X) > 2, excluding SL(3,R)/SO@3) and SL(4,R)/S O4), and T a cocompact torsion-free
lattice in G. Then the comparison maps n - H:’b(G, R) —» H:(G,R) and 1’ : H,(I',R) — H*(I',R) are both
surjective in all degrees * > n—r + 2.

The idea of the proof is similar to that in [16]. One defines a barycentric straightening of simplices in
X, and uses it to construct bounded cocycles representing any given cohomology class. These cocycles are
obtained by integrating a suitable differential form on various straightened simplices. Since the differential
form has bounded norm, the key step is to show that the Jacobian of the straightened simplex is uniformly
controlled (independent of the simplex or the point in it). Showing this later property requires some work,
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and is done in Sections 3 and 4 (following the general approach of Connell and Farb [6], [7]). The proof of
the Main Theorem is then given in Section 5.

Remark. For the various families of higher rank symmetric spaces, the dimension grows roughly quadrati-
cally in the rank. Our Main Theorem thus answers Dupont’s question for continuous cohomology classes
in degree close to the dimension of the symmetric space. Prior results on this problem include some work on
the degree two case (Domic and Toledo [8], as well as Clerk and Orsted [5]) as well as the top-degree case
(Lafont and Schmidt [16]). In his seminal paper on the subject, Gromov showed that characteristic classes
of flat bundles are bounded classes [13]. Using Gromov’s result, Hartnick and Ott [14] were able to obtain
complete answers for several specific classes of Lie groups (e.g. of Hermitian type, as well as some other
cases).

The recently posted preprint [15] of Inkang Kim and Sungwoon Kim uses similar methods to obtain
uniform control of the Jacobian in codimension one. Their paper also contains a wealth of other applications,
which we have not pursued in the present paper. On the other hand, their results do not produce any new
bounded cohomology classes (since in the higher rank case, the codimension one continuous cohomology
always vanishes).
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2. PRELIMINARIES

2.1. Symmetric spaces of non-compact type. In this section, we give a quick review of some results on
symmetric spaces of non-compact type; for more details, we refer the reader to Eberlein’s book [11]. Let
X = G/K be a symmetric space of non-compact type, where G is semisimple and K is a maximal compact
subgroup of G. Geometrically G can be identified with Isomg(X), the connected component of the isometry
group of X that contains the identity, and K = Stab,(G) for some p € X. Fixing a basepoint p € X, we
have a Cartan decomposition g = t + p of the Lie algebra g of G, where t is the Lie algebra of K, and p
can be isometrically identified with 7),X using the Killing form. Let a C p be a maximal abelian subalgebra
of p. We can identify a with the tangent space of a flat ¥ at p — that is to say, an isometrically embedded
Euclidean space R" C X, where r is the rank of X. Given any vector v € T,X, there exists a flat # that is
tangent to v. We say v is regular if such a flat is unique, and singular otherwise.

Now let v € p be a regular vector. This direction defines a point v(co0) on the visual boundary X of X.
G acts on the visual boundary dX. The orbit set Gv(0) = dpX C 0X is called a Furstenberg boundary of
X. Since both G and K act transitively on dgX, drX is compact. In fact, a point stabilizer for the G-action
on dpX is a minimal parabolic subgroup P, so we can also identify dzX with the quotient G/P. In the rest
of this paper, we will use a specific realization of the Furstenberg boundary — the one given by choosing the
regular vector v to point towards a barycenter of a Weyl chamber in the flat.
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For each element « in the dual space a* of a, we define g, = {Y € g | [A,Y] = a(A)Y for all A € a}. We
call @ a root if g, is nontrivial, and in such case we call g, the root space of @. We denote the finite set of
roots A, and we have the following root space decomposition

9=00® P g

where go = {Y € g | [A,Y] = 0 for all A € a}, and the direct sum is orthogonal with respect to the canonical
inner product on g.

Let 6 be the Cartan involution at the point p. Then 6 is an involution on g, which acts by / on t and —/
on p, hence it preserves Lie bracket. We can define f, = (I + 0)g, C f, and p, = (I — 6)g, C p, with the
following properties:

Proposition 2.1. [11, Proposition 2.14.2]1 (1) I+ 0 : g, — f, and I — 0 : g, — P, are linear isomorphisms.
Hence dim(t,) = dim(g,) = dim(p,).

)ty =t g and py, = v_g forall @ € A, and t, ® vy = 3o ® 9—0-

Bt=fe @%N t,bandp=a® @%M Pa, Where Yy = go N T, and A™ is the set of positive roots.

Remark. Since p, = (9, + 6-¢) N b, the direct sum of p in (3) of Proposition 2.1 is also orthogonal with
respect to the canonical inner product on p.

We now analyze the adjoint action of t on a. Let u € f, and v € a, we can write u as (I + 6)w where
w € ., hence we have

[u,v] = [ + O)w,v] = [w,v] + [6w,v] = —a(v)w + O[w, —V]
= —a(v)w + 0a(v)w) = —a(v)(I — 6)(w)
=—aWUI -0 +60)'u

This gives the following proposition.

Proposition 2.2. Let a be a root. The adjoint action of ¥, on a is given by
[u,v] = —a()I - O)I +6) 'u

forany u € ¥, and v € a. In particular, ¥, maps v into p,.

Assume v € a € T,X is inside a fixed flat through x, and let K, be the stabilizer of v in K. Then the
space K, a is the tangent space of the union of all flats that goes through v. Equivalently, it is the union of all

vectors that are parallel to v, hence it can be identified with a® €P In particular, if v is regular,

aeA* a(v)=0 Pa-
then the space is just a. Moreover, if we denote by f, the Lie algebra of K, then f, = {u € t | [u,v] = 0} =

fo® @aem,a(v):o fo-
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2.2. Patterson-Sullivan measures. Let X = G/K be a symmetric space of non-compact type, and I be
a cocompact lattice in G. In [1], Albuquerque generalizes the construction of Patterson-Sullivan to higher
rank symmetric spaces. He showed that for each x € X, we can assign a probability measure u(x) that
is G-equivariant and is fully supported on the Furstenberg boundary dz(X). Moreover, for x,y € X and
0 € dp(X), the Radon-Nikodym derivative is given by

du(x) (0) = BErD

du(y)
where / is the volume entropy of X/I', and B(x,y, ) is the Busemann function on X. Recall that, in a
non-positively curved space X, the Busemann function B is defined by

B(x,y,6) = lim (dx(y, yo()) = 1)

where yy is the unique geodesic ray from x to 6. Fixing a basepoint O in X, we shorten B(O,y, 6) to just
B(y, 6). Notice that for fixed 6 € dr(X) the Busemann function is convex on X, and by integrating on dg(X),
we obtain, for any probability measure v that is fully supported on the Furstenberg boundary 07X, a strictly
convex function
X B(x, 0)dv(6)
X

(See [6, Proposition 3.1] for a proof of this last statement.)

Hence we can define the barycenter bar(v) of v to be the unique point in X where the function attains its
minimum. It is clear that this definition is independent of the choice of basepoint O.

2.3. Barycenter method. In this section, we discuss the barycentric straightening introduced by Lafont
and Schmidt [16] (based on the barycenter method originally developed by Besson, Courtois, and Gallot
[3]). Let X = G/K be a symmetric space of non-compact type, and I" be a cocompact lattice in G. We denote
by A the standard spherical k-simplex in the Euclidean space, that is

k+1

A ={@.....aq) 1@ 20, ) af =1} CR,

i=1
with the induced Riemannian metric from R¥*!, and with ordered vertices (e, . . ., ex+1 ). Given any singular
k-simplex f : A’; — X, with ordered vertices V = (x1,...,x+1) = (f(e1),..., f(ex+1)), we define the
k-straightened simplex

str(f) : Al; - X

str(f)ay,...,arw1) := bar

k+1
Z aiz,u(x,-)J

i=1
where u(x;) is the Patterson-Sullivan measure at x;. We notice that st;(f) is determined by the (ordered)
vertex set V, and we denote st;(f)(0) by sty(9), for 6 € Af .
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Observe that the map sti(f) is C ! since one can view this map as the restriction of the C 1—rnap st,(f) to
a k-dimensional subspace (see e.g. [16, Property (3)]). For any ¢ = Zf;’f ae; € Af , Stx(f)(0) is defined to be
the unique point where the function

k+1
x— | B(x6d [Z a,?u(x,-)} ®)

orX i=1

is minimized. Hence, by differentiating at that point, we get the 1-form equation

f dB 51,60/ )d
ArX

which holds identically on the tangent space T, (5)X. Differentiating in a direction u € T(;(A’;) in the source,

k+1

> a?u(x»} ) =0

i=1

one obtains the 2-form equation

k+1 k+1
Q1) Y 2aueds | dBayeoMdui) @) + | DdBuyeaDs(sty)w,v)d| > autx) |(0) = 0
= arX arX

i=1
which holds for every u € T5(A1§) and v € Ty, 5)(X). Now we define two semi-positive definite quadratic
forms Q1 and Q> on Ty, 5)(X):

k+1
Qi(v,v) = fa XdB%S,V@,g)(v)d[Z a%u(x»} ©)

i=1
k+1
— 2
0x(v,v) = f DdB 1,0, v)d [Z a,-u(xi)} ©
orX i=1
In fact, O, is positive definite since Zi:ll al.zu(x,-) is fully supported on dpX (see [6, Section 4]). From
Equation (2.1), we obtain, for u € T5(A1§) a unit vector and v € Ty, 5)(X) arbitrary, the following

k+1

=Y 2aiweds [ dBnioaOMC)0)
i=1 IrX

k1 12 (g1 2\!/2
< [Zw, e,->%;] [21 4a} ( fa " dB<s,V<5>,9>(v)d(u(xi))(e)) ]

i=1

k+1 1/2
<2 z f dB?, d(u(x;))(@ f ld(u(x;
[Zla . BaaM)® | 1dcx ))]

=20i(v,)'?

(2.2) |02 (Ds(sty)(u), v)| =

via two applications of the Cauchy-Schwartz inequality.
We restrict these two quadratic forms to the subspace S = Im(Ds(sty)) € Ty, 5(X), and denote the

corresponding k-dimensional endomorphisms by Hs and Ky, that is

01(v,v) = (Hs(v), V)s1,,(5)
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Or(v,v) = (K5(V), V)st,(5)

forallves.
For points ¢ € A’; where sty is nondegenerate, we now pick orthonormal bases {uy,...,u;} on T(;(A’;),
and {v,..., v} on S C T\ 5(X). We choose these so that {vi}f.‘:1 are eigenvectors of Hg, and {uy, ..., u} is

the resulting basis obtained by applying the orthonormalization process to the collection of pullback vectors
{(Ks © Ds(sty))"" (v)}~ . So we obtain

det(Qals) - [Jacs(sty)| = |det(Ky) - Jacs(sty)|
= |det((Ks o Ds(sty)(w;), v;))|

By the choice of bases, the matrix ((Ks o Ds(sty)(u;),v;)) is upper triangular, so we have

k

|det((Ks o Da(stv)a), vi)| = |[ [(Ks © DoCstv ), v
i=1

k
< [ [2¢Hsw, vy
i=1

= 2" det(Hy)'* = 2" det(Q5)'"?
where the middle inequality is obtained via Equation (2.2). Hence we get the inequality

ok | det(Q1s)'?
det(Qals)

We summarize the above discussion into the following proposition.

|[Jacs(sty)| <

Proposition 2.3. Let Q|, Q> be the two positive semidefinite quadratic forms defined as above (note Q> is
actually positive definite). Assume there exists a constant C that only depends on X, with the property that

det(Q1ls)"/? -
det(Qals)
for any k-dimensional subspace S C Tg,5X. Then the quantity |Jac(sty)(0)| is universally bounded —

independent of the choice of (k + 1)-tuple of points V C X, and of the point § € AX.

3. JacoBIAN ESTIMATE

Let X = G/K be an irreducible symmetric space of non-compact type. We fix an arbitrary point x € X
and identify 7'.X with p. Let  be a probability measure that is fully supported on the Furstenberg boundary
0rX. Using the same notation as in Section 2.3, we define a semi-positive definite quadratic form Q; and a
positive definite quadratic form Q, on T, X

Qv = [ B (o)
o X

Qo (v,v) = f DdB0)(v, v)du(6)
OrX
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for v € T,(X). We will follow the techniques of Connell and Farb [6], [7], and show the following theorem.

Theorem 3.1. Let X be an irreducible symmetric space of non-compact type excluding SL(3,R)/SO(3) and
SL(4,R)/SO4), and let r = rank(X) > 2. If n = dim(X), then there exists a constant C that only depends
on X, such that
det(Q15)!/? <
det(Qals)

for any subspace S C T, X withn —r +2 < dim(S) < n.

In view of Proposition 2.3, this implies that the barycentrically straightened simplices of dimension >
n — r + 2 have uniformly controlled Jacobians. The reader whose primary interest is bounded cohomology,
and who is willing to take Theorem 3.1 on faith, can skip ahead to Section 5 for the proof of the Main
Theorem.

The rest of this Section will be devoted to the proof of Theorem 3.1. In Section 3.1, we explain some sim-
plifications of the quadratic forms, allowing us to give geometric interpretations for the quantities involved
in Theorem 3.1. In Section 3.2, we formulate the “weak eigenvalue matching” Theorem 3.3 (which will be
established in Section 4). Finally, in Section 3.3, we will deduce Theorem 3.1 from Theorem 3.3.

3.1. Simplifying the quadratic forms. Following [6, Section 4.3], we fix a flat # going through x, and
denote the tangent space by a, so dim(a) = r is the rank of X. By abuse of notation, we identify a with
¥ . Choose an orthonormal basis {e;} on T, X such that {ey, ..., e,} spans ¥, and assume ¢ is regular so that
e1(o0) € dpX. Then Qy, O, can be expressed in the following matrix forms.

10 ) .
leflwog[o O(n_l)]Oedﬂ(G)

o= 2 Jome
2= ) _ ndu(0
95X 0 Dflnr) 0

where D, = diag(Ay, ..., A(n—r)), and Oy is the orthogonal matrix corresponding to the unique element in K

that sends e; to v(, g), the direction at x pointing towards 6. Moreover, there exists a constant ¢ > 0 that only

depends on X, so that 4; > ¢ for 1 <i < n — r. For more details, we refer the readers to the original [6].
Denote by O, the quadratic form given by

_ 0" 0 .
0, = fa 0ul) | Ol
F

Then the difference Q> — cQ; is positive semi-definite, hence det(Q»|s) > det(cQ-|s). So in order to show
Theorem 3.1, it suffices to assume Q», has the matrix form

(1) 0
0] O,du(0
jz;FX 9( 0 I(”")] o du6)
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Given any v € T.X, we have the following geometric estimates on the value of the quadratic form

I 0
(3.1 01(v.) = fa VO {0 O(n_l)JOZv du(®)

= f (Opv, e1)*du(6)
orX

< Oiv, e du(o
fwg 5y, e du(6)

= f sin®(£(Ov, FH))du(8)
orX

Roughly speaking, Q(v,v) is bounded above by the weighted average of the time the K-orbit spends away
from F+. Similarly we can estimate

0" 0
(32) 00 = [ voo|° L |owance
orX 0 A& r)
= f > (Opw, e du(®)
OrX =it

= f sin®(£(Ov, F))du(6)
IrX
So again, Q»(v, v) roughly measures the weighted average of the time the K-orbit spends away from 7.

3.2. Eigenvalue matching. In their original paper, Connell and Farb showed an eigenvalue matching the-
orem [6, Theorem 4.4], in order to get the Jacobian estimate in top dimension. For the small eigenvalues
of O (there are at most r of them), they want to find twice as many comparatively small eigenvalues of
Q1. Then by taking the product of those eigenvalues, they obtain a uniform upper bound on the ratio of
determinants det(Q;)'/?/ det(Q,), which yields an upper bound on the Jacobian. However, as was pointed
out by Inkang Kim and Sungwoon Kim, there was a mistake in the proof. Connell and Farb fixed the gap by
showing a weak eigenvalue matching theorem [7, Theorem 0.1], which was sufficient to imply the Jacobian
inequality.

We generalize this method and show that in fact we can find (r — 2) additional small eigenvalues of O,
that are bounded by a universal constant times the smallest eigenvalue of Q,. This allows for the Jacobian
inequality to be maintained when we pass down to a subspace of codimension at most (» — 2). We now state
our version of the weak eigenvalue matching theorem.

Definition 3.2. We call a set of unit vectors {wi, ..., wi} a 6-orthonormal k-frame if (w;,w;) < ¢ for all
I1<i<j<k

Theorem 3.3. (Weak eigenvalue matching.) Let X be an irreducible symmetric space of non-compact type,
with r = rank(X) > 2, excluding SL(3,R)/SO(3) and SL(4,R)/SO(4). There exist constants C’, C, § that
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only depend on X so that the following holds. Given any € < 6, and any orthonormal k-frame {v1, ..., vt} in

T, X with k < r, whose span 'V satisfies /(V,F) < €, then there is a (C’€)-orthonormal (2k+r—2)-frame given

(r)

by vectors {v’l,v’l’, e V) ,v’z,v’z’, ...,v,’{,v,’{’}, such that fori = 1,...,k, and j = 1,...,r, we have the following
inequalities:

LW, Fh) < CLhvi, F)
LW, F+) < Ce(hwi, F)

A(hv(lj), Fr) < CLhvy, F)

for all h € K, where hv is the linear action ofh € K onv € T X =~ p.
The proof of Theorem 3.3 will be delayed to Section 4.

3.3. Proof of Theorem 3.1. In this section, we will prove Theorem 3.1 using Theorem 3.3. Before starting
the proof, we will need the following three elementary results from linear algebra.

Lemma 3.4. Let Q be a positive definite quadratic form on some Euclidean space V of dimension n, with
eigenvalues 11 < 1y < ... < A,. Let W C V be a subspace of codimension I, and let u; < pp < ... < py—; be
the eigenvalues of Q restricted to W. Then A; < u; < iy holds fori=1,...,n—1L

Proof. We argue by contradiction. Assume p; > A;4; for some i. Take the subspace Wy € W spanned by the
eigenvectors corresponding to g, Uit1, - - - » du—; clearly dim(Wy) = n — [ — i + 1. So for any nonzero vectors
v € Wy, we have Q(v, v) > wi|vlI> > AiuilIvl|>. However, if we denote Vi C V the (i + I)-dimensional subspace
spanned by the eigenvectors corresponding to Ay, ..., 4,1, we have Q(v,v) < itV for any v € Vj. But
dim(WyNVy) > dim(Wp) +dim(Vy) —dim(V) = 1 implies Wy NV} is nontrivial, so we obtain a contradiction.
This establishes y; < A;4;. A similar argument shows A; < ;. O

Lemma 3.5. Let Q be a positive definite quadratic form on some Euclidean space V of dimension n, with
eigenvalues 11 < Ay < -+ < A, If {vy, ..., v} is any orthonormal frame of V, ordered so that Q(vi,vy) <
O, ) < -+ < Oy, ), then Q(vi,v;) = A;/nfori=1,...,n.

Proof. We show this by induction on the dimension of V. The statement is clear when n = 1, so let us
now assume we have the statement for dim(V) = n — 1. Now if dim(V) = n, we restrict the quadratic form
Q to the (n — 1)-dimensional subspace W spanned by vy,...,v,_;, and denote the eigenvalues of Q| by
U1 < o < ... < pu-1. By the induction hypothesis and Lemma 3.4, we obtain

for 1 <i < n— 1. Finally, for the last vector, we have

O, v) + ..+ Qn,vp) _ Q) _ A+ A
n oon n n

OWn, vn) 2

This completes the proof of the lemma. O
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Lemma 3.6. Let Q be a positive definite quadratic form on some Euclidean space V of dimension n.
If {vi,...,vi} is any t-orthonormal k-frame for t sufficiently small (only depends on n), ordered so that
OWy,v1) £ ... £ O(vk, W), then there is an orthonormal k-frame {uy, ..., u} such that Q(u;, u;) < 2Q0(v;, v;).

Proof. We do the Gram-Schmidt process on {vy, ..., v} and obtain an orthonormal k-frame {u, ..., ux}. Notice
{vi, ..., v} is T-orthonormal, so we have u; = v; + O(7)v] + ... + O(7)v;, where by O(7) we denote a number
that has universal bounded (only depends on r) ratio with 7. This implies

Oui, u) = Qi) + O(1) D" 0w, v1)

1<s<t<i

Since |Q(vs, vl £ VO, v5)O(vs, vi) < O(v;, v;), we obtain
O(u;, u;) < Qi, vi) + OO, vi) < 20(v;, v;)

for 7 sufficiently small. This completes the proof of the lemma. O

We are now ready to establish Theorem 3.1.

Proof. As was shown in [6, Section 4.4], for any fixed ¢y < 1/(r + 1), there are at most r eigenvalues of
0, that are smaller than ¢ (we will choose € in the course of the proof). By Lemma 3.4 the same is true
for O»|s. We arrange these small eigenvalues in the order L; < L < ... < Ly, where k < r. Observe that,
if no such eigenvalue exists, then by Lemma 3.4, det(Q»|s) is uniformly bounded below, and the theorem
holds (since the eigenvalues of Qi|s are all < 1). So we will henceforth assume £ > 1. We denote the
corresponding unit eigenvectors by vy, ..., v (so that v; has eigenvalue L;). Although V = span{vy,...v;}
might not have small angle with 7, it is shown in [7, Section 3] that there is a kg € K so that Z(kov;, F) <
263/4 for each i.

Let € be a constant small enough so that € < §, where 6 is from Theorem 3.3, and also 7 := C’e satisfies
the condition of Lemma 3.6 (where C” is obtained from Theorem 3.3). Hence the choice of € only depends
on X. We now make a choice of ¢ such that 263/ 4 < €, and hence Z(koV,F) < €. (Note again the choice of
€ only depends on X.)

Apply Theorem 3.3 to the frame {kovi, ..., kovi}, and translate the obtained (C’¢€)-orthonormal frame by

(r)
1 b

ko . This gives us a (C’€)-orthonormal (2k + r — 2)-frame {v’l,v’l’, vy V v’z,v’z’, ...,v;c, vl’c’}, such that for
i=1,..,k,and j = 1,...r, we have
LW, FY) < CLhvi, F)
LW F) < CLlhvi, F)
L, FH) < Crlhvy, F)
for all & € K (note that we have absorbed the kg-translation into the element £).
We notice £(hv!,F+) < Cz(hv;, F) implies sinz(z(hv;, FLY) < Cosin®(L(hv;, F)) for some Cy depending

on C. For convenience, we still use C for this new constant. Hence, we obtain

Ql(v;,v;)sf sinz(z(Ogv;,?'L))du(G)
arX
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< Cf sinz(z(OZVi,T))du(O) =CQ(v;,v)) =CL;
ArX

An identical estimate gives us Q1(v/’,v)") < CL;, and Q; ( (]) (J)) <CL;.
We rearrange the (C’e€)-orthonormal (2k + r — 2)-frame as {“1’ u1 - u(lr), uz, u2 s uk, uk} so that it has

increasing order when applying Q;. Then the inequalities still hold for this new frame:

O1(uj,u;) < CL;

O1(u],u}) < CL,

Ql (u(lj)’ (j)) < CLl

Since the choice of € makes C’e satisfy the condition of Lemma 3.6, we apply the lemma to this C’e-
o

”1 e Uy ’”2’“2’" ,ul’c, u,’{’}, such

orthonormal frame. This gives us an orthonormal (2k + r — 2)-frame {u 1°

that
O1(u!,u)) <201 (u;, up) < 2CL;
01} uf) < 201 u) < 2CL;
0 (“(1]) (])) <20, (,)) <2CL,
Again, we can rearrange the orthonormal basis to have increasing order when applying Q1, and it is easy to
check that, for the resulting rearranged orthonormal basis, the same inequalities still hold.
We denote the first (2k + r — 2) eigenvalues of Q) by 4] < A} < ... < /1({) <A <A< <A <A/, and
the first 2k eigenvalues of Qy |s by | < u{ < ... < < /. Applying Lemma 3.5, we have
AL < nQ (), u)) < 2nCL;
A <nQ () u)) < 2nCL;
/l(lj) <nQ (u(lj),u(lj)) <2nCL;
forl<i<kand1<j<L
Notice dim(S') > n — r + 2. We apply Lemma 3.4 and obtain
wy < AUV <o2ncL,
) <AV < 2nCLy
Ui < A7 <2nCL;
u < A7 <2nCL;

for 2 < i < k. The eigenvalues of Qi|s are bounded above by 1, and Ly, ..., L; are the only eigenvalues of
0> |s that are below € (and recall the choice of € only depends on X). Therefore,

2
det(Q, |s)]
dim(S)—k

€

k

k
det(Qils) < | [uimy < | [@nCL? < @nC)*
i=1 i=1

< Cdet(0s Is)*




12 JEAN-FRANCOIS LAFONT AND SHI WANG

where C only depends on X. This completes the proof of Theorem 3.1. O

4. RepucTioN TO THE COMBINATORIAL PROBLEM

In this section, we will prove the “weak eigenvalue matching” Theorem 3.3, which was introduced in
Section 3.2. The approach is to follow [7], and reduce the theorem to a combinatorial problem. Then we
apply Hall’s Marriage theorem to solve it.

4.1. Hall’s Marriage Theorem. We introduce the classic Hall’s Marriage Theorem, and later on we will
apply a slightly stronger version (Corollary 4.3 below) in the proof of Lemma 4.5.

Theorem 4.1 (Hall’s Marriage Theorem). Suppose we have a set of m different species A = {ay, .., an}, and
a set of n different planets B = {by, ...,b,}. Let ¢ : A — P(B) be a map which sends a species to the set of
all suitable planets for its survival. Then we can arrange for each species a different planet to survive if and
only if for any subset Ay C A, we have the cardinality inequality |¢p(Ag)| > |Ag|.

Corollary 4.2. Under the assumption of Theorem 4.1, we can arrange for each species two different planets
if and only if for any subset Ay C A, we have the cardinality inequality |p(Ag)| > 2|Ag|.

Proof. Assume there exists such arrangement, the cardinality condition holds obviously. On the other hand,
assume we have the cardinality condition, we want to show there is an arrangement. We make an identical
copy on each species and form the set A" = {a, ...,a,,}. We apply the Hall’s Marriage Theorem to the set
A U A’ relative to B. Then for each i, both species a; and a; have its own planet, and that means there are
two planets for the original species a;.

To see why the cardinality condition holds, we choose an arbitrary subset H U K’ C A UA’ where H C A
and K’ C A’. Let K be the corresponding identical copy of K’ in A. We have ¢(H U K’) = ¢(H U K) >
2|H U K| > |H| + |K| = |H U K’|. This completes the proof. O

Corollary 4.3. Suppose we have a set of vectors V = {vy, ..., v,}, and for each v;, the selectable set is denoted
by B; C B. If for any subset Vo = {v;,,...,vi} €V, we have |B;, U ... U B;| > 2k + r — 2, then we can pick

(3r — 2) distinct element {b’l, o b(lr), b,bY (2<i< r)} in B such that b, ...,b(lr) € By and b,b! € B;.

Proof. First we choose V| the singleton set that consists of only v;. By hypothesis, we have |B{| > r > (r—2),
hence we are able to choose (r — 2) elements b(3), - b(lr) for v;. Next we can easily check the cardinality
condition and apply Corollary 4.2 to the set V with respect to B \ {b(13), es b(lr)} to obtain the pairs {b, b}'}
(for each 1 < i < r). This completes the proof of this corollary. O

4.2. Angle inequality. Throughout this section, we will work exclusively with unit vectors in T, X =~ p.
We embed the point stabilizer K, into Isom(7,X) =~ O(n), and endow it with the induced metric. This
gives rise to a norm on K, defined by ||kl = max,er x £(v,kv), Yk € K. We denote the Lie algebra of
K, =~ K by t, which has root space decomposition = fy ® P wep+ Le- For each small element k € K, the
action on a vector v can be approximated by the Lie algebra action, that is, if & = exp(u) is small, then
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[I[u, ]Il = |lkv = V|| ~ £(v, kv), where we write A ~ B if A/B and B/A are both universally bounded. By abuse
of notation, we do not distinguish between ||k|| and ||u|| inside a very small neighborhood U of 0 inside f.
Although || - || is not linear on U, it is linear up to a universal constant, that is, ||tu|| ~ #||ul|, for all u € U and
t such that fu € U. We now show the following lemmas.

Lemma 4.4. (Compare [7, Lemma 1.1]) Let X = G/K be a rank r > 2 irreducible symmetric space of
non-compact type, and fix a flat ¥ C T, X at x. Then for any small p > 0, there is a constant C(p) with the
following property. If v € F is arbitrary, and v* € F is a maximally singular vector in the p-neighborhood

of v (in the sense that the dimension of K,~ is as large as possible), then
L(hu, F+) < CL(hv,F)

forany h € K, and u € (K,»F)* ~ B
have

aeA*a(v)20 P where A" is the set of all positive roots. Moreover, we
L(hu, F+) < C(hkgv, K,»F)
forany h € K, u € (K»F)*, and ky € K,+.

Proof. We only need to verify the inequality when Z(hv, ) is small. Notice for any vector v € ¥, and any
small element w € f, = (I + 0)a, = (I + 0)(I — )~'p,, the Lie algebra action (see Proposition 2.2) has norm

4.1) w, VIl = || = @) - (I = )T + 6)"'wll ~ ()] - [Iwll.

This is due to the fact that (I + 6)(/ — 6)~! is a linear isomorphism between f, and p, (see Proposition 2.1),
and when restricted to f, N U, it preserves the norms up to a uniform multiplicative constant.

Infinitesimally speaking, for # = exp(w), we have that 4v — v = [w, v], so the estimate on the Lie algebra
action tells us about the infinitesimal growth of ||hv — v||. We also see that, since [w, V] € p,, h moves the
vector v in the direction p, (which we recall is orthogonal to the flat ¥, see Proposition 2.1). Now v* is a
maximally singular vector in the p-neighborhood of the unit vector v, so once p is small enough, if @ is any
root with a(v*) # 0, then a(v) will be uniformly bounded away from zero (depending only on the choice of
p). This shows that if a root « satisfies a(v*) # 0, then Z(hv, ) ~ ||kl for all h € exp(t, N U).

Now we move to analyzing the general case 1 = exp(w), where w € t is arbitrary. If Z(hv, ) is small,
then it follows that the components of 4v on each p, must be small. From the discussion above, this implies
that the component of w in each f, |o+)z0 is small, i.e. w almost lies in f,» = fp @ @Q(V*):o t,. Since h
almost lies in K-, there exists an element /19 € K+ such that A 5 is close to the identity. We write h = hohy,
where 11 = exp(wy) € exp(f) = exp ( + f ), and observe that the analysis in the previous paragraph

a(v)#0 @

applies to the element s;. Now observe that, infinitesimally, ~;v — v = [u1,v] € EB 120 Pa> 5O hy moves

a(v
v in a direction lying in EB“(V*) 40 Pa- On the other hand, infinitesimally, K,- moves the entire flat # in
the directions @af(v*)=0 po (corresponding to the action of its Lie algebra f,,). But these two directions are
orthogonal, which means that ;v leaves not just ¥ orthogonally, but actually leaves orthogonally to the

entire orbit K,~% . This allows us to estimate

(4.2) L, F) = Ly, by F) = 2, Ko F) ~
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where at the last step, we use that #; moves v orthogonally off the K+ orbit of 7. On the other hand, we are

assuming that the vector u lies in (K,+7)*, hence also in 17+, So we have the sequence of inequalities
(4.3) Lhu, FrY = 2(hu, hy ' F) < 2(hu,u) < (1 l.

Combining equations (4.2) and (4.3) gives us the first inequality.

Similarly, Z(hkov, K,+¥) being small also implies that the component of & on each ¥, |20 1S small.
So by writing 4 = hoh; in the same manner, we get Z(hkov, K,»F) = Z(hikov, K, F) = A(kalhlkov, KF).
Notice that K, conjugates f. to itself, so kj "hiko is an element in exp(t:). In view of equation (4.1)
and the fact that kalhlkov leaves orthogonally to K-, we obtain A(kalhlkov, K»F) ~ ||k61h1k0|| = ||Aql].
Combining this estimate with equation (4.3) gives the second inequality. O

Lemma 4.5. Let X = G/K be a rank r > 2 irreducible symmetric space of non-compact type excluding
SL(3,R)/SO@3) and SL(4,R)/SO4), and fix a flat ¥ C T, X at x. Then there exists a constant C > 0
that only depends on X, such that for any %-orthonormal r-frame {vy, ..., v;} in F, there is an orthonormal
Br — 2)-frame {v’l, v, v(lr), V(2 <i< r)} in F+ such that

LV, F+) < CL(hv, F)

(!, FH) < CL(hvi, F)

L, FH) < Colhvy, F)
forallheK,i=2,..,r,j=1,..,r.

Proof. Once we have chosen a parameter p, we will denote by v; a maximally singular vector in ¥ that is
p-close to v;, and we will let Q; = (Kv;«?')L ~ EB deA* a(v)£0 Pe- We now fix an p small enough so that,
for every %—orthonormal r-frame {vy,...,v,} C F, the corresponding {v;}|._, are distinct. For each v;, the
vectors in Q; are the possible choice of vectors that satisfy the angle inequality provided by Lemma 4.4. So
it suffices to find r vectors in Q, and two vectors in each Q; (i # 1), such that the chosen (37 — 2) vectors
form an orthonormal frame.

Now for each root a, we pick an orthonormal frame {b,,} on p,, we collect them into the set B := {b;}['"],
which forms an orthonormal frame on F+. We will pick the (3r — 2)-frame from the vectors in B. For
instance, vector v; has selectable set By := Q; N B, in which we want to choose r elements, while for
i = 2,...,r, vector v; has selectable set B; := Q; N B, from which we want to choose two elements. Most
importantly, the (37 — 2) chosen vectors have to be distinct from each other. This is a purely combinatorial
problem, and can be solved by using Hall’s Marriage theorem. In view of Corollary 4.3, we only need to
check the cardinality condition. We notice the selectable set of v; is B; which spans Q;, so |B;| = dim(Q;).

The next lemma will estimate the dimension of the Q;, and hence will complete the proof of Lemma4.5. O

Lemma 4.6. Let X = G/K be a rank r > 2 irreducible symmetric space of non-compact type, excluding
SL(3,R)/SO(3) and SL(4,R)/SO(4), and fix a flat . Assume {v}, ..., v;} spans F, and let Q; = KV;T. Then
for any subcollection of vectors {v:.‘1 e v;.*k}, we have dim(Q;, + ... + Q;,) > 2k +r - 2).
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Proof. Since Q; = (Kv:f?")L ~ EB%N’“(V%)#O Po, We obtain Q;, + ... + Q;, = EB%N’“(V#O Pa, Where V =
Span(v;‘1 s ees v;.kk). We can estimate

dim(Q;, +...+ Q) = Z dim(py) > |{a/ eAN (V) # 0}| = %(IAI - |{a/ €A\, H, € VL}D’
aeA*,a(V)20
where V* is the orthogonal complement of V in F, and H, is the vector in ¥ that represents a.
Now we denote t; = % maxycr dimw)=i {a € A, H, € U}|, the number of positive roots in the maximally
rooted i-dimensional subspace. We use the following result that appears in the proof of [6, Lemma 5.2]. For
completeness, we also add their proof here.

Claim 4.7. [6, Lemma 5.2]t; —t;-; > i, for 1 <i<r-1.

Proof. This is proved by induction on i. For i = 1, the inequality holds since #p = 0 and #; = 1. Assuming
ti-1 — tiep > 1 — 1 holds, we let V;_; be an (i — 1)-dimensional maximally rooted subspace. By definition,
the number of roots that lie in V,_; is 2t,_;. There exists a root « so that H, does not lie in V,_;, and also
does not lie on its orthogonal complement (by irreducibility of the root system). So Hy N V- := Zis a
codimension one subspace in V;_;. By the induction hypothesis, there are at least i — 1 pairs of root vectors
that lie in V;_; — Z, call them +H,,, ..., £H,, ,. Hence by properties of root system [11, Proposition 2.9.3],
either +(H, + H,,) or £(H, — H,,) is a pair of root vectors, for each 1 <[/ <i- 1. Along with +H,, these
pairs of vectors lie in (V,_; & (H,)) — V;—1. We have now found 2i root vectors in the i-dimensional subspace
Vi1 ® (H,), which do not lie on the maximally rooted subspace V;_;. This shows t; — t;_; > i, proving the
claim. O

Finally, we can estimate dim(Q;, + ... + Q;,) > % (|A| - |{a/ €N H, € VL}|) > 1, — t,_. Using the Claim,
a telescoping sum givesus t, — t,—y =2 r+ (r—1)+ ..+ (r -k + 1) = k2r — k + 1)/2, whence the lower
bound dim(Q;, + ... + Q) > k2r —k+1)/2. Whenr > 4,ork <r =3 ,ork <r =2, itis easy to check
that k2r — k + 1)/2 > 2k + r — 2. This leaves the case when r =k =3,orr =k =2. Whenr =k = 3, we
can instead estimate dim(Q; + Q> + Q3) = dim(F+) =n—3 > 7 = 2k + r — 2, provided n > 10, which only
excludes the rank three symmetric space SL(4,R)/SO(4). A similar analysis when r = k = 2 only excludes
the rank two symmetric space S L(3,RR)/S O(3). This completes the proof of Lemma 4.6, hence completing
the proof of Lemma 4.5. O

Remark. In the rank two case, both Theorem 3.3 and Theorem 3.1 only give you statements about degree
= n. Our Main Theorem then only gives surjectivity of comparison maps in top degree, which agrees with
the result of [16], and the corresponding Jacobian estimate is consistent with [6] [7].

4.3. Proof of Theorem 3.3. We assume k = r without loss of generality since otherwise we can always
extend the k-frame to an r-frame that has small angle to 7. Our first step is to move the frame so as to lie
in 7, while controlling the angles between the resulting vectors (so that we can apply Lemma 4.5). This is
done by first moving the vectors to the respective K,+#, and then moving to ¥
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As in the proof of Lemma 4.4, /(v;, ¥ ) being small implies that the components of v; on each p, is small.
The K-orbit of v; intersects ¥ finitely many times (exactly once in each Weyl chamber), and if each of these
intersections is p-close to a maximally singular vector, choose v to be the one closest to v;. The element in
K moving v; to # will almost lie in K, (by an argument similar to the one in Lemma 4.4). By decomposing
this element as a product IAcik,-, we obtain a small k; which sends v; to Kvlﬂ: (and IA<,~ € Kv:f). If ki‘1 = exp(u;),
we have u; € @aeAta(v*);&o t,.

We now estimate the norm ||%;||. From the identification of norms in a small neighborhood of the identity,
we have ||k;|| = ||u;||. Since lAcl- is an element in K, that sends k;v; to ¥, an argument similar to the proof of

second inequality in Lemma 4.4 gives us
Lviy K F) = £(Ckik; 'k Y ikivi), K F) ~p ki 1 = ikl

(where the constant will depend on the choice of p). On the other hand, since ¥ C Kvlﬂ: , we obtain
L(vi, Ky F) < £(vi, ). But by hypothesis, Z(v;, ) < €. Putting all this together, we see that, for each fixed
p, there exists a constant C” that only depends on X, so that each of the ||k;|| is bounded above by %C ’e. In
particular, any {k;}’_, perturbation of an orthonormal frame gives rise to a C’e-orthonormal frame, and hence
the collection {kyvq, ...,k v,} forms a C’e-orthonormal frame.

Next, since k; is an element in K, it leaves v; fixed. From triangle inequality we obtain

A(lAc,-kiv,-,kiv,-) < 2/(k;v;, V;k) < 2p.

It follows that the collection of vectors {kikiv1, ..., kk.v,} C F is obtained from the C’e-orthonormal frame
{k1vi,...,kv,} by rotating each of the various vectors by an angle of at most 2p hence forms a (C’e + 4p)-
orthonormal basis in ¥ . In particular, once p and ¢ are chosen small enough, it gives us a 1/2-orthonormal
basis inside ¥ .

Applying Lemma 4.5 to the 1/2-orthonormal frame tkikivi, ... kkv,) € F gives us an orthonormal
Br — 2)-frame {v’l, e v(lr), viovi(2<i< r)} such that the angle inequalities hold. Now by the second in-
equality of Lemma 4.4, we have the following inequalities:

LW}, F+) < CL(hkivi, K2 F) < C(hkivi, F)
L(hv F) < Culhkvi, Ky F) < CL(hkivi, F)
L), F) < Culhkyvy, K F) < CL(hkyvi, F)

for2<i<r, 1< j<randanyh € K. Finally we translate each of the vectors v/, v’ by kl.‘l, and each
v(lj ) by kl_l, producing a C’e-orthonormal (37 — 2)-frame that satisfies the inequalities in Theorem 3.3, hence
completing the proof.

5. SURJECTIVITY OF THE COMPARISON MAP IN BOUNDED COHOMOLOGY

In this Section, we provide some background on cohomology (see Section 5.1), establish the Main The-
orem (Section 5.2), establish some limitations on our technique of proof (Section 5.3), and work out a
detailed class of examples (Section 5.4).
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5.1. Bounded cohomology. Let X = G/K be a symmetric space of non-compact type, and I" be a cocom-
pact lattice in G. We recall the definition of group cohomology, working with R coefficients (so that we can
relate these to the de Rham cohomology). Let C"(I',R) = {f : [ — R} be the space of n-cochains. Then
the coboundary map d : C(T',R) — C"*!(T', R) is defined by

n

AfV1s s Yns1) = FD2s s Yis1) + ) (D FO 1y oo ¥inds YiVie1s Vieds s Yns1)

i=1

=D, s V)

The homology of this chain complex is H*(I',R), the group cohomology of I" with R coefficients. More-
over, if we restrict the cochains above to bounded functions, we obtain the space of bounded n-cochains
CyIR) = {f : I" = R | fis bounded} and the corresponding bounded cohomology H,(I',R) of I'. The
inclusion of the bounded cochains into the ordinary cochains induces the comparison map H,(I',R) —
H*(T,R).

Similarly, we can define the (bounded) continuous cohomology of G, by taking the space of continuous
n-cochains C(G,R) = {f : G" — R | fiscontinuous} or the space of bounded continuous cochains
C:f’ »(G, R) = {f : G" — R | fis continuous and bounded}. With the same coboundary maps as above, this
gives two new chain complexes, whose homology will be denoted by H;(G,R) and H’ , (G, R) respectively.
Again, one has a naturally induced comparison map H:’ »(G,R) = H/(G,R). ,

Now let M = X/I be the closed locally symmetric space covered by X. Note that M is a K(T', 1), so

HW(M,R) ~ H

ing(M5 R) = H*(ra R)

The isomorphism between the de Rham cohomology and group cohomology is explicitly given by
¢ : Hyp(M,R) — HY(I\R)

W fo

where f,(y1,...,Y) = fA(yl ..... 0 w. Here, w is a lift of w to X, and A(y1, ..., y) is any natural C! k-filling
with ordered vertices {x, y1x, (y1¥2)X, ..., (¥1y2 - --yr)x} for some fixed basepoint x € X (for instance, one
can choose A(y1,...,7¥x) to be the geodesic coning simplex, see Dupont [9]). Alternatively, we can use the
barycentric straightened C' simplex s#(A(y1, ..., 7)) (which we defined in Section 2.3). That is to say, if
we define f,(y1,..., ) = ﬁ A7) @, then £, represents the same cohomology class as f,,. This is
due to the fact that the barycentric straightening is I'-equivariant (see [16, Section 3.2]). We call f;, the
barycentrically straightened cocycle.

On the other hand, there is a theorem of van Est [18] which gives the isomorphism between the relative Lie
algebra cohomology H*(g,,R) and the continuous bounded cohomology H;(G,R). A class in H*(g,1,R)
can be expressed by an alternating k-form ¢ on g/t ~ T, X. By left translation, it gives a closed C* k-form

¢ on X = G/K. In [9], this isomorphism is explicitly given by

¢ : H'(3,t,R) —» H*(G,R)



18 JEAN-FRANCOIS LAFONT AND SHI WANG

Q= ftp
where f,(g1,...,8) = fA(gl 2 @, and A(gy,...,gr) is the geodesic simplex with ordered vertices con-
sisting of {x,g1x,(g182)x,...,(g1g2 - gr)x} for some fixed basepoint x € X. Again, we can replace

A(g1,...,gr) by the barycentric straightened C ! simplex st#(A(g1,.-..,&k)), and the resulting barycentrically

.....

straightened function Tso(gl’ ey 8K) = fs HAG1 ) ¢ is in the same cohomology class as f,,.

5.2. Proof of the Main Theorem. In this section, we use Theorem 3.1 to establish the Main Theorem.
We need to show both comparison maps 1 and n" are surjective. Let us start with . We use the van Est
isomorphism (see Section 5.1) to identify H;(G,R) with H*(g,f,R). For any class [f,] € H’C‘(G, R) where
Jo(g1, .., 8k) = fA(gl 20 ¢, we instead choose the barycentrically straightened representative E, Then for

ﬁ ) sty

where dpg is the standard volume form of AX. But from Proposition 2.3 and Theorem 3.1, the expression

any (g1,...,8k) € G*, we have

(5.1) [Feter, .. 80] = 7|<

< f Wactsty)l - Iy
A

|Jac(sty)| is uniformly bounded above by a constant (independent of the choice of vertices V and the point
0 € A’;), while the form ¢ is invariant under the G-action, hence bounded in norm. It follows that the last
expression above is less than some constant C that depends only on the choice of alternating form ¢. We
have thus produced, for each class [f,] in Hif(G, R), a bounded representative E. So the comparison map
n is surjective. The argument for surjectivity of 1" is virtually identical, using the explicit isomorphism
between H*(T',R) and HSR(M, R) discussed in Section 5.1. For any class [f,] € H*T,R), we choose the
barycentrically straightened representative f,,. The differential form @ has bounded norm, as it is the I'-
invariant lift of the smooth differential form w on the compact manifold M. So again, the estimate in
Equation (5.1) shows the representative f,, is bounded, completing the proof.

5.3. Obstruction to Straightening Methods. In this section, we give a general obstruction to the straight-
ening method that is applied in section 5.2. In the next section, we will use this to give some concrete
examples showing that Theorem 3.1 is not true when dim(S) < n — r. Throughout this section, we let
X = G/K be an n-dimensional symmetric space of non-compact type, and we give the following definitions.

Definition 5.1. Ler CO(AX, X) be the set of singular k-simplices in X, where A* is assumed to be equipped
with a fixed Riemannian metric. Assume that we are given a collection of maps sty : COUAK, X) = COAK, X).
We say this collection of maps forms a straightening if it satisfies the following properties:

(a) the maps induces a chain map, that is, it commutes with the boundary operators.

(b) st, is C' smooth, that is, the image of sty lies in C LA, X).
For a subgroup H < G, we say the straightening is H-equivariant if the maps sty all commute with the
H-action.

Since X is simply connected, property (a) of Definition 5.1 implies that the chain map sz, is actually
chain homotopic to the identity. Also, property (b) of Definition 5.1 implies the image of any straightened
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k-simplex is C'-smooth, i.e. Im(st;) c C'(A¥, X). The barycentric straightening introduced in Section 2.3
is a G-equivariant straightening. As we saw in Section 5.2, obtaining a uniform control on the Jacobian of
the straightened k-simplices immediately implies a surjectivity result for the comparison map from bounded
cohomology to ordinary cohomology. This motivates the following:

Definition 5.2. We say the straightening is k-bounded, if there exists a constant C > 0, depending only on
X and the chosen Riemannian metric on A, with the following property. For any k-dimensional singular
simplex f € CO(AX, X), and corresponding straightened simplex sty(f) : A — X, the Jacobian of sti(f)
satisfies:

[Jac(st ()] < C

where 6 € A is arbitrary (and the Jacobian is computed relative to the fixed Riemannian metric on A¥).

Our Theorem 3.1 and Proposition 2.3 then tells us that, when r = R-rank(G) > 2 (excluding the two cases
SL(3,R)/SO(3) and SL(4,R)/SO(4)), our barycentric straightening is k-bounded for all k > n — r + 2. One
can wonder whether this range can be improved. In order to obtain obstructions, we recall [16, Theorem
2.4]. Restricting to the case of locally symmetric spaces of non-compact type, the theorem says:

Theorem 5.3. [16, Theorem 2.4] Let M be an n-dimensional locally symmetric space of non-compact type,
with universal cover X, and U be the fundamental group of M. If X admits an n-bounded, T'-equivariant

straightening, then the simplicial volume of M is positive.

Corollary 5.4. If X splits off an isometric R-factor, then X does not admit an n-bounded, G-equivariant
straightening.

Proof. Let X ~ Xy xR for some symmetric space Xy. If X admits an n-bounded, G-equivariant straightening,
then consider a closed manifold M ~ My x S, where ]’\‘/Iio ~ Xy. According to Theorem 5.3, the simplicial
volume ||M|| is positive. But on the other hand || M|| = ||My x S'|| < C - |Mol| - IS '] = 0. This contradiction

completes the proof. O

We will use subspaces satisfying Corollary 5.4 to obstruct bounded straightenings.

Definition 5.5. For X a symmetric space of non-compact type, we define the splitting rank of X, denoted
srk(X), to be the maximal dimension of a totally geodesic submanifold Y C X which splits off an isometric
R-factor.

For the irreducible symmetric spaces of non-compact type, computations of the splitting rank can be
found in a recent paper by the second author [19] (see also Berndt and Olmos [2] for some related work).

Theorem 5.6. If k = srk(X), then X does not admit any k-bounded, G-equivariant straightening.

Proof. We show this by contradiction. Assume X = G/K admits a k-bounded, G-equivariant straightening
st;, and let Y C X be a k-dimensional totally geodesic subspace which splits isometrically as ¥’ X R. Denote
by p : X — Y the orthogonal projection from X to Y, and note that the composition p o st, is a straightening
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on Y, which we denote by sz.. Notice Y is also a symmetric space and can be identified with Go/Kj, for
some Gy < G, and Ky < K. Then the straightening sz, is certainly Go-equivariant. We claim it is also
k-bounded. This is because the projection map p is volume-decreasing, hence

[acGa ()| = [Jac(pste(£)| < [ac(su )| < €

for any f € C%AF, X). Therefore, we conclude that ¥ admits a Go-equivariant, k-bounded straightening.
This contradicts Corollary 5.4. O

Remark. In view of Proposition 2.3 and the arguments in Section 5.2, we can view Theorem 5.6 as obstruct-
ing the bounded ratio Theorem 3.1. Specifically, if & = srk(X), then Theorem 5.6 tells us that one has a
sequence f; : Ak — X with the property that the Jacobian of st(f;) is unbounded. From the definition of

our straightening maps st, this means one has a sequence V; = {vg), . vg)} C X of (k + 1)-tuples of points

(the vertices of the singular simplices f;), and a sequence of points §; = (ag), ey a,(:)) inside the spherical
simplex A¥ ¢ R¥! satisfying the following property. If one looks at the corresponding sequence of points
k
pi = (si(f) (6) = Bar[z aj.”u(vﬁ-‘))],
j=0
one has a sequence of k-dimensional subspace S; C T, X (given by the tangent spaces D(stvl.)(T(;iAlg) to
the straightened simplex sf;(f;) at the point p;), and the sequence of ratios det(Q; |s,~)l/ 2/ det(Qls,) tends to
infinity. It is not too hard to see that, for each dimension k* < k, one can find a k’-dimensional subspace
S; c S, such that the sequence of ratios of determinants, for the quadratic forms restricted to the S, must

also tend to infinity. Thus the bounded ratio Theorem 3.1 fails whenever k" < srk(X).

5.4. The case of S L(m,R). We conclude our paper with a detailed discussion of the special case of the Lie
group G = S L(m,R), m > 5. The continuous cohomology has been computed (see e.g. [12, pg. 299]) and
can be described as follows. If m = 2k is even, then H (S L(2k,R)) is an exterior algebra in k generators
in degrees 5,9,...,4k — 3,2k. If m = 2k + 1 is even, then H (SL(2k + 1,R)) is an exterior algebra in k
generators in degrees 5,9, ...,4k + 1.

The associated symmetric space is X = S L(m,R)/S O(m), and we have that

n = dim(X) = dim (S L(m, R)) — dim (S O(m)) = (m* — 1) - %’"(’" - (m; 1) b

while the rank of the symmetric space is clearly r = m — 1. Thus, our Main Theorem tells us that, for these
Lie groups, the comparison map

H;b(S L(m,R)) — H:(S L(m,R))

is surjective within the range of degrees * > (m2+ 1) -m+2.

Observe that the exterior product of all the generators H;(S L(m,R)) yields the generator for the top-

dimensional cohomology, which lies in degree ("’; 1) — 1. Dropping off the 5-dimensional generator in the

exterior product yields a non-trivial class in degree (m2+ 1) — 6. Comparing with the surjectivity range in



BARYCENTRIC STRAIGHTENING AND BOUNDED COHOMOLOGY 21

our Main Theorem, we see that the first interesting example occurs in the case of S L(8,R), where our
results imply that Hg”%(S L(S,R)) # 0 (as well as Hg”sb(S L(S,R)) # 0, which was previously known). Of
course, as m increases, our method provides more and more non-trivial bounded cohomology classes. For
example, once we reach S L(12,R), we get new non-trivial bounded cohomology classes in Hf’%(S L(12, R))
and H7(SL(12, R)).

Finally, let us consider Theorem 5.6 in the special case of X = S L(m,R)/S O(m). Choose a maximally
singular direction in the symmetric space X, and let X, be the set of geodesics that are parallel to that
direction. Without loss of generality, we can take Xy = Go/Kp, where

Goz{[A Ol | det(A)-azl,a>0}
0 a

and Ky = SO(m) N Gy. Moreover, X, clearly splits off an isometric R-factor, and can be isometrically

identified with SL(m — 1,R)/SO(m — 1) x R. This is the maximal dimensional subspace of S L(m, R) that

splits off an isometric R-factor (see [2, Table 3]), and the splitting rank is just dim(Xp) = (’g) So in this

special case, Theorem 5.6 tells us that our method for obtaining bounded cohomology classes fails once we

reach degrees < (';’) Comparing this to the range where our method works, we see that, in the special case
m

where G = S L(m,R), the only degree which remains unclear is (2) + 1. This example shows our Main
Theorem is very close to the optimal possible.

6. CONCLUDING REMARKS

As we have seen, the technique used in our Main Theorem seems close to optimal, at least when re-
stricted to the Lie groups S L(m, R). Nevertheless, the authors believe that for other families of symmetric
spaces, there are likely to be improvements on the range of dimensions in which a barycentric straightening
is bounded.

We also note that it might still be possible to bypass the limitations provided by the splitting rank. Indeed,
the splitting rank arguments show that the barycentric straightening is not k-bounded, when k = srk(X). But
the barycentric straightening might still be k’-bounded for some k£’ < srk(X) (even though the bounded
Jacobian Theorem 3.1 must fail for k’-dimensional subspaces).
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