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STEENROD PROBLEM AND THE DOMINATION RELATION

JEAN-FRANÇOIS LAFONT AND CHRISTOFOROS NEOFYTIDIS

ABSTRACT. We indicate how to combine some classical topology (Thom’s work on the Steenrod

problem) with some modern topology (simplicial volume) to show that every map between certain

manifolds must have degree zero. We furthermore discuss a homotopy theoretic interpretation of

parts of our proof, using Thom spaces and Steenrod powers.

1. INTRODUCTION

Gromov introduced the domination relation on closed oriented n-dimensional manifolds [3, pg.

173]. Given two closed oriented n-dimensional manifolds M and N , we say M dominates N if

there is a map f : M → N of degree deg(f) 6= 0. In this short note, we add to the known list of

obstructions by showing the relevance of Thom’s work [21] on the Steenrod problem [7].

Theorem 1.1. LetM0,N0, M
′, andN ′ be closed oriented n-dimensional manifolds, 7 ≤ k ≤ n−3

an integer, and having the following properties:

(a) Assume N0 has a k-dimensional homology class that is not representable by manifolds;

(b) Every k-dimensional homology class of M0 is representable by manifolds;

(c) N ′ has positive simplicial volume;

(d) M ′ is a product of closed oriented manifolds of dimensions ≤ 9, where all factors have

positive simplicial volume and torsion-free homology in degrees ≤ k.

Then there are infinitely many pairs of positive integers (s, t) with the property that ||M0#sM
′|| ≥

||N0#tN
′||, but nevertheless every continuous map f : M0#sM

′ → N0#tN
′ has deg(f) = 0.

In general, it is a difficult question to determine whether there is a non-zero degree map between

two manifolds. Obstructions to the existence of a map of non-zero degree have been developed

using a variety of tools from algebraic topology; we refer to [10] for a recent survey on related

results. One of the most basic methods comes from comparing the cohomology of M and N .

Some known obstructions arising from cohomology include: (i) inequalities on the ranks of the

(co)homology groups, (ii) injectivity of induced homomorphisms in cohomology, (iii) (sub)ring

structures of the cohomology ring, and (iv) structure of the cohomology ring as a module over the

Steenrod algebra; see [6, 18, 13, 12] for various results that involve the aforementioned techniques.

However, when the cohomology rings of the manifolds are not a priori known, such as in Theorem

1.1, then these basic obstructions cannot be directly used.
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Another approach to obstructing a non-zero degree map comes from semi-norms on homology,

such as the simplicial volume ||M ||. Recall that the simplicial volume ||M || is a non-negative real

number (introduced by Gromov [8]) that roughly measures how efficiently M can be “triangulated

over R”. This invariant has the so-called functorial property that, if f : M → N is a continuous

map, then ||M || ≥ | deg(f)| · ||N ||. While the simplicial volume cannot be used by itself to

establish Theorem 1.1, it will feature prominently in the proof.

In fact, the key idea of our proof is to use the Steenrod problem as a bridge between these

two main tools – cohomology obstructions, and simplicial volume. This allows us to use both

techniques together in a situation where neither one individually is strong enough to work.

Outline. In Section 2 we prove Theorem 1.1 and in Section 3 we give examples of manifolds

satisfying the assumptions of that theorem. Finally, in Section 4 we discuss alterations of our

hypotheses, as well as alternative arguments and approaches for parts of our proofs.
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2. PROOF OF THE MAIN THEOREM

In order to establish Theorem 1.1, we proceed by contradiction. Assuming that there is a non-

zero degree map f : M0#sM
′ −→ N0#tN

′, we will see that this forces certain constraints on the

integers s and t, and that there are infinitely many pairs of integers for which these constraints fail

to hold. To simplify notation, let us denote by

Ms :=M0#sM
′ and Nt := N0#tN

′,

and assume we have a non-zero degree map f : Ms → Nt.

We recall that a degree k homology class x ∈ Hk(X ;Z) is representable (by manifolds) if there

exists a closed oriented k-manifold Y and a map φ : Y → X with the property that φ∗([Y ]) = x,

where [Y ] ∈ Hk(Y ;Z) denotes the fundamental class of Y . Thom [21] proved that, when X is

an n-manifold, homology classes are always representable in degrees 1 ≤ k ≤ 6 and degrees

n − 2 ≤ k ≤ n. Thus one can only have non-representable classes in degrees 7 ≤ k ≤ n − 3.

In view of hypothesis (a), we will henceforth focus on a degree k within that range (in particular,

n ≥ 10). In the context of connected sums of manifoldsX = X1# · · ·#Xm, Mayer-Vietoris gives

us a splitting

Hk(X ;Z) =

m
⊕

i=1

Hk(Xi;Z).

Let us denote by ρi : Hk(Xi;Z) → Hk(X ;Z) the injective homomorphism induced from the

Mayer-Vietoris sequence. We will need the following elementary result.
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Lemma 2.1. For a connect sum X = X1# · · ·#Xm of closed n-manifolds, and 7 ≤ k ≤ n − 3,

the following two statements are equivalent:

(1) every homology class α ∈ Hk(X ;Z) is representable;

(2) for every i, every homology class β ∈ Hk(Xi;Z) is representable.

Proof. To see that (1) implies (2), let β ∈ Hk(Xi;Z) be a homology class in one of the sum-

mands. Then via the Mayer-Vietoris splitting, we can consider the homology class (−1)i+1ρi(β) ∈

Hk(X ;Z). From (1), we can represent this homology class, so there is a map from a closed oriented

k-manifold φ : Y k → X with (−1)i+1ρi(β) = φ∗([Y ]). Let qi : X → Xi be the map that collapses

all the other summands to points. Then it is easy to see that the composite (qi)∗ ◦ (−1)i+1ρi is

the identity map on Hk(Xi;Z). So by taking the composite qi ◦ φ : Y → X → Xi, we obtain a

continuous map from a closed oriented k-manifold having the property that

(qi ◦ φ)∗([Y ]) = (qi)∗ (φ∗([Y ])) = (qi)∗
(

(−1)i+1ρi(β)
)

= β.

Since β and i were arbitrary, this establishes (2).

To see that (2) implies (1), let α ∈ Hk(X ;Z) be an arbitrary homology class. Using the

Mayer-Vietoris splitting, we can write α =
∑

i ρi(αi), where each αi ∈ Hk(Xi;Z). From (2),

we have for each i a closed oriented k-manifold Yi and a map φi : Yi → Xi having the property

that (φi)∗([Yi]) = αi. Let now Y := Y1# · · ·#Ym and define the following composite map

Y
q

−→ Y1 ∨ · · · ∨ Ym
∨
m

i=1
φi

−−−−→ X1 ∨ · · · ∨Xm
ρ

−→ X,

where q is the quotient map pinching to a point the essential sphere that defines the connected sum

Y , ∨m
i=1φi restricts to φi on each Yi, and ρ restricts to the inclusion of each Xi in X . Then

(ρ ◦ (∨m
i=1)φi ◦ q)∗([Y ]) = (ρ ◦ (∨m

i=1φi))∗([Y1 ∨ · · · ∨ Ym])

= ρ∗

(

m
∑

i=1

φ∗([Yi])

)

= ρ∗

(

m
∑

i=1

αi

)

=

m
∑

i=1

ρi(αi) = α,

and this completes the proof. �

An immediate consequence of Lemma 2.1 is that, in view of hypothesis (a), every Nt has some

non-representable degree k homology class. We would now like to consider the corresponding

question for the source manifolds Ms. There is the following elementary

Lemma 2.2. For a productX = X1×· · ·×Xm of closed manifolds and a given integer k, assume

that for every factor Xi we have

(1) every homology class α ∈ Hj(Xi;Z), j ≤ k, is representable, and

(2) the homology groups Hj(Xi;Z) are torsion-free for j ≤ k.

Then every homology class α ∈ Hj(X ;Z) is representable.



4 JEAN-FRANÇOIS LAFONT AND CHRISTOFOROS NEOFYTIDIS

Proof. It is sufficient to show that an additive basis for the homology Hj(X ;Z) (j ≤ k) is rep-

resentable. Note that from hypothesis (2), a simple induction shows there is no Tor term in the

Künneth formula for Hj(X ;Z). Thus Hj(X ;Z) is generated by cohomology classes of the form

α1 ⊗ · · · ⊗ αm, where αi ∈ Hji(Xi;Z) and j =
∑

ji. Note that each ji ≤ j ≤ k, so from

hypothesis (1), we have closed oriented manifolds Yi with dim(Yi) = ji, and a map φi : Yi → Xi

satisfying (φi)∗([Yi]) = αi. Then forming the product map

m
∏

i=1

φi :

m
∏

i=1

Yi →

m
∏

i=1

Xi = X,

we have that

(

m
∏

i=1

φi)∗

([

m
∏

i=1

Yi

])

=

m
⊗

i=1

((φi)∗([Yi])) = α1 ⊗ . . .⊗ αm = α.

This completes the proof of the lemma. �

Remark 2.3. As we shall see in Section 4.1, Lemma 2.2 does not hold if we remove the torsion-free

assumption (2).

Now from hypotheses (b) and (d), it follows that for all of the Ms, every degree k homology

class is representable. Indeed, Thom showed that for manifolds of dimension ≤ 9, every homology

class is representable. Applying Lemma 2.2, we see M ′ has every homology class representable.

Lemma 2.1 then tells us that every degree k homology class of Ms is representable.

Next, we claim that if f : Ms → Nt has non-zero degree, then | deg(f)| ≥ 2. To see this,

let us assume | deg(f)| = 1 and argue by contradiction. Since f has degree one, we know that

f∗ : Hk(Ms;Z) → Hk(Nt;Z) is surjective. So pick a class y ∈ Hk(Ms;Z) with the property that

f∗(y) = x, where x is the non-representable class (recall that such class exists by assumption

(a) and Lemma 2.1). Then since every class in Ms is representable, there is a closed oriented

k-manifold Y and a map φ : Y → Ms with φ∗([Y ]) = y. Composing with f , we obtain a map

f ◦ φ : Y → Nt, and

(f ◦ φ)∗([Y ]) = f∗ (φ∗([Y ])) = f∗(y) = x,

which contradicts the fact that x was non-representable. Thus we see that the Steenrod problem

yields a lower bound on the degree of our hypothetical map.

Finally, to complete the proof, let us make use of the simplicial volume to obtain an incompatible

inequality. Recall that, for manifolds of dimension > 2, the simplicial volume is additive under

connected sums. From our discussion above, if f is a non-zero degree map, then | deg(f)| ≥ 2.

Noting that our manifolds have dimension n ≥ 10, we obtain

2 ≤ | deg(f)| ≤
||M0#sM

′||

||N0#tN ′||
=

||M0||+ s||M ′||

||N0||+ t||N ′||

Solving, we see that t has to satisfy the linear upper bound

t ≤ s

(

||M ′||

2||N ′||

)

+

(

||M0|| − 2||N0||

2||N ′||

)

.
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Note that, by hypothesis (c), we have ||N ′|| > 0, so the expression above is indeed well defined.

On the other hand, the condition ||Ms|| ≥ ||Nt|| translates to the inequality

t ≤ s

(

||M ′||

||N ′||

)

+

(

||M0|| − ||N0||

||N ′||

)

.

We conclude that, as long as the integer t satisfies the inequality

s

(

||M ′||

2||N ′||

)

+

(

||M0|| − 2||N0||

2||N ′||

)

< t ≤ s

(

||M ′||

||N ′||

)

+

(

||M0|| − ||N0||

||N ′||

)

there are no non-zero degree maps f : Ms → Nt, even though ||Ms|| ≥ ||Nt||. By hypothesis (d),

the simplicial volume of the factors of M ′ is positive, and since positivity of simplicial volume is

inherited by products [8], we conclude that ||M ′|| > 0. Thus the linear bounds above both have

(different) positive slopes. Comparing these slopes, it immediately follows that there are infinitely

many pairs of positive integers s, t which satisfy the inequality above, concluding the proof of

Theorem 1.1.

3. EXAMPLES

In this section we give examples of manifolds that fulfill the hypotheses of Theorem 1.1.

3.1. Examples ofN0, N
′. ConcerningN0, Thom’s work [21] already featured examples of spaces

with some non-representable homology class. For instance, he shows that one can take the product

of two 7-dimensional Lens spaces L(7, 3)×L(7, 3), resulting in a closed 14-dimensional manifold

containing an explicit 7-dimensional homology class which is not representable (see [21, pgs. 62-

63]). Another explicit example can be found in a paper of Bohr–Hanke–Kotschick, who consider

the 10-dimensional compact Lie group Sp(2), and give an explicit 7-dimensional homology class

which is not representable (see [1, pgs. 484-485]). Taking products with spheres yields higher

dimensional examples with not representable classes.

If the reader so desires, one can even arrange for N0 to be aspherical. Indeed, one can apply

the hyperbolization technique of Charney–Davis [4] to an n-manifold X with a not representable

homology class. The resulting n-manifold h(X) will be aspherical, and it is easy to check that it

will also have a not representable homology class. Iterating this, one can obtain infinitely many

distinct n-manifolds, all of which have a not representable homology class. The cohomology rings

of these manifolds are hard to explicitly compute.

Manifolds N ′ are much easier to produce. Indeed, examples of manifolds with non-zero simpli-

cial volume include

• closed aspherical manifolds with non-cyclic hyperbolic fundamental groups [16, 17, 9],

such as closed negatively curved manifolds [11], and

• closed locally symmetric manifolds of non-compact type [2, 14].

Moreover, if X is any n-manifold, then applying the Charney–Davis hyperbolization produces an

h(X) with the property that ||h(X)|| > 0. Taking products and connected sums preserves the

positivity of simplicial volume, giving rise to many possibilities for N ′.
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3.2. Examples of M0, M ′. Concerning M0, we need to identify manifolds with all degree k ho-

mology classes representable by manifolds. It is easier to seek manifolds with all homology classes

(of any degree) representable by manifolds – call this property (R). There are a few basic examples

and constructions that one can use. First of all, tori always have property (R). Also, if follows from

work of Thom [21] that any closed manifold of dimension ≤ 9 has property (R).

In addition, one can use Lemma 2.2 to produce higher dimensional examples with property (R).

In order to do this, one needs low dimensional examples which also have torsion-free homology

groups (see our condition (d) for M ′). In general, it seems difficult to produce negatively curved

manifolds with no torsion in their homology groups. Examples are known in dimension n = 3,

where one can use Dehn surgery to construct infinitely many closed hyperbolic 3-manifolds which

are (integral) homology 3-spheres (see [20, pgs. 341-342]). This was extended to dimension

n = 4 by Ratcliffe–Tschantz [20], who constructed infinitely many aspherical homology 4-spheres.

Taking products of surfaces with these 3- and 4-dimensional examples, our Lemma 2.2 yields

examples in all higher dimensions. The authors do not know of any non-product examples in

dimensions ≥ 5.

Concerning M ′, one wants to additionally ensure that the factors have positive simplicial vol-

ume. This is immediate for surfaces and for the hyperbolic 3-manifolds. While the 4-dimensional

examples of Ratcliffe–Tschantz are no longer hyperbolic, one can still show that the examples have

positive simplicial volume. Thus any product of such manifolds would produce a valid M ′.

4. CONCLUDING REMARKS

We finish our discussion with a few remarks on the hypotheses of our main result, as well as

with a homotopy theoretic viewpoint of parts of its proof.

4.1. On the product lemma. We note that part of the difficulty in finding examples of M0, M ′

for our main theorem is linked with the “torsion-free homology” hypothesis in our product Lemma

2.2. We note however that Lemma 2.2 is false if one removes hypothesis (2): Thom’s example

discussed above provides a counterexample. In Thom’s example, M := L(7, 3) × L(7, 3) is a

product of 7-dimensional manifolds, so both factors have property (R). Nevertheless, Thom shows

the product M does not have property (R), as there is an explicit class in H7(M ;Z) which is non-

representable. This is directly linked to the fact that, in the Künneth formula for the homology of

M , the Tor term is non-zero (due to torsion in the homology of L(7, 3)). Thus the collection of

homology classes that are “obviously” representable only form a finite index subgroup (of index

9) inside H7(M ;Z).

4.2. The range of slopes. Given any class x ∈ Hk(Nt;Z), Poincaré duality implies that, if

f : Ms → Nt has non-zero degree, then there exists y ∈ Hk(Ms;Z) such that f∗(y) = deg(f) · x.

Since every class in Ms is representable by manifolds, we conclude as in the proof of Theorem

1.1 that deg(f) · x is representable. Thus, if the class x in item (a) has the property that the mul-

tiples x, 2 · x, ..., (d − 1) · x are not representable, then this immediately yields the lower bound
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| deg(f)| ≥ d. Repeating the last calculation of the proof of our main theorem, which involves the

simplicial volume, we conclude that as long as t satisfies the inequality

s

(

||M ′||

d||N ′||

)

+

(

||M0|| − d||N0||

d||N ′||

)

< t ≤ s

(

||M ′||

||N ′||

)

+

(

||M0|| − ||N0||

||N ′||

)

,

there are no maps f : Ms → Nt of non-zero degree, even though ‖Ms‖ ≥ ‖Nt‖. Therefore, the

integer d on the left-hand side of the above inequality which reflects the minimum number for

which d · x is representable by manifolds, determines the range where we can find pairs (s, t)

satisfying Theorem 1.1.

4.3. Using mapping degree sets and other semi-norms. In hypotheses (c) and (d) of Theorem

1.1, the manifolds N ′ and M ′ have positive simplicial volume. For M ′ this is due to positivity of

simplicial volume being preserved under products. Also, both Ms and Nt have positive simplicial

volume because of the additivity of the simplicial volume under taking connected sums (recall that

their dimension is n ≥ 10). It would be interesting to replace N ′ and M ′ with manifolds whose

simplicial volume is zero, but which have another non-vanishing semi-norm ν so that ν(Ms) ≥

ν(Nt) but Ms does not dominate Nt. One major difficulty is that not many examples of ν seems to

be known with well-understood behaviour under taking products or connected sums. Furthermore,

in order to apply Theorem 1.1, one would need all assumptions of item (d) to be satisfied (or just

find a single M ′ with every degree k homology class representable). It is natural to believe that

(non virtually trivial) circle bundles over negatively curved manifolds, certain hypertori bundles

over locally symmetric manifolds of non-compact type, and products of such spaces are good

candidates for such new N ′ and M ′. Indeed, for many of those manifolds it is known that they can

be dominated by another manifold with only finitely many different degrees, see [19, 5, 18].

4.4. Homotopy theoretic viewpoint. We used the representable versus non-representable classes

to argue that the induced map f∗ on integral homology could not be surjective, and hence gave

the lower bound | deg(f)| ≥ 2. We now indicate how Thom’s work on the Steenrod problem [21]

gives a homotopical viewpoint on that portion of our proof.

Thom showed that x ∈ Hk(X ;Z) is representable if and only if the Poincaré dual PD(x) ∈

Hn−k(X ;Z) can be realized as a pullback PD(x) = ψ∗(τ), where ψ : X → MSO(n − k) is a

continuous map, and τ ∈ MSO(n − k) is the Thom class in the Thom space MSO(n − k). Of

course, from the homotopical viewpoint, we can also view the Thom class as a map

τ : MSO(n− k) → K(Z, n− k),

well-defined up to homotopy. Post-composing with τ then induces, for any space X , a map

[X,MSO(n− k)]
τ◦−

// [X,K(Z, n− k)].

The target space is just Hn−k(X ;Z), and stating that a manifold X has every degree k homology

class representable is equivalent to stating that the map above is surjective, i.e. that every map
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g : X → K(Z, n− k) factors, up to homotopy, through τ : MSO(n− k) → K(Z, n− k),

MSO(n− k)

τ

��

X

g̃
99

g
// K(Z, n− k)

With this in hand, we can interpret the inequality | deg(f)| ≥ 2 in our proof homotopically as

follows. If | deg(f)| = 1, then the induced map f ∗ on cohomology is injective. We can now

consider the following commutative diagram

[Nt,MSO(n− k)]

τ◦−

��

[Ms,MSO(n− k)]

τ◦−
��
��

PT
oo

[Nt, K(Z, n− k)] �
�

−◦f
// [Ms, K(Z, n− k)]

Indeed, Thom’s work, our hypotheses (b) and (d), and Lemmas 2.1, 2.2 allows us to see that the

right hand vertical map is surjective. On the other hand, our hypothesis (a) and Lemma 2.1 implies

that the left hand vertical map is not surjective. Finally, the existence of the top map, which

is guaranteed from the Pontrjagin-Thom construction, along with commutativity of the diagram,

yields a contradiction. Thus, from this viewpoint, our argument is making use of whether or not

maps to the classifying space K(Z, n − k) can factor through MSO(n − k). It is tempting to

wonder if one could similarly obtain lower bounds on the degree by considering whether or not

maps factor through other canonical spaces.

4.5. Relation with Steenrod powers. In both of the examples ofN0 mentioned in Section 3.1, the

non-representability of the homology class is detected via a suitable Steenrod power. It is natural

to ask whether our main theorem could also be established purely by considering the cohomology

structure as a module over the Steenrod algebra (by arguments similar to those in [13]). This is

closed related to the problem of understanding the homotopy type of the spaces MSO(n − k),

which generally seems to be a difficult problem.

In contrast, it is worth noting that the unoriented version of Steenrod’s problem, corresponding

to maps into MO(n − k), is indeed completely detectable in terms of Steenrod squares (see [21,

Section 6, pgs. 36-43]). From the homotopy theoretic viewpoint, the key difference is that MO(r)

has the 2r-homotopy type of a product of Eilenberg-MacLane spaces, i.e. the first 2r stages of the

Postnikov tower are just an iterated product. In contrast, the Postnikov tower for MSO(n− k) has

non-trivial fiber bundles appearing at early stages. This opens up the possibility of having some

higher cohomology operations appearing as obstructions (see [12] for an illustration of these sorts

of phenomena).
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