
STATIONARY FREQUENCIES AND MIXING TIMES FOR NEUTRAL DRIFT PROCESSES WITH
SPATIAL STRUCTURE

ALEX MCAVOY1, BEN ADLAM1,2, BENJAMIN ALLEN1,3, MARTIN A. NOWAK1,4,5

1Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
2School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

3Department of Mathematics, Emmanuel College, Boston, MA 02115
4Department of Mathematics, Harvard University, Cambridge, MA 02138

5Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Abstract. We study a general setting of neutral evolution in which the population is of finite, constant size
and can have spatial structure. Mutation leads to different genetic types (“traits”), which can be discrete or
continuous. Under minimal assumptions, we show that the marginal trait distributions of the evolutionary
process, which specify the probability that any given individual has a certain trait, all converge to the stationary
distribution of the mutation process. In particular, the stationary frequencies of traits in the population are
independent of its size, spatial structure, and evolutionary update rule, and these frequencies can be calculated
by evaluating a simple stochastic process describing a population of size one (i.e. the mutation process itself).
We conclude by analyzing mixing times, which characterize rates of convergence of the mutation process along
the lineages, in terms of demographic variables of the evolutionary process.

1. Introduction

At the heart of evolutionary theory lies the question of how individual-level properties affect the long-
run composition of a population. Microscopic quantities including mutation rates, selective differences
between competing types, and number of interaction partners can have profound effects on the evolu-
tionary success of genetic types (“traits”) [1–12], but the precise relationship between local and global
properties is often difficult to quantify. Neutral drift, which involves no selective differences between the
traits, provides a natural setting in which to study this relationship [13–17]. Neutral population dynamics
are also important to the study of populations with selection because the latter can be viewed as a pertur-
bation of the former provided selection is sufficiently weak [18–28]. The purpose of this article is to study
the long-term distribution of traits arising along the lineages of a neutral population, as a function of the
population’s size, structure, evolutionary update rule, and underlying mutation process.

To motivate the discussion, let us first consider a population of size N of haploid organisms reproducing
asexually. Each organism has a type, which might indicate a particular trait. We assume that all types
are equivalent from a reproductive standpoint. Let S be the set of all possible types, which we initially
assume is finite (or at least discrete). In the Moran process [29], which is a simple example of a finite-
population evolutionary process, an individual is first chosen to reproduce. The offspring then replaces
another individual chosen for death. When an individual of type s reproduces in the population, mutation
is possible, and the offspring acquires type s′ with probability Ms,s′ ∈ [0, 1]. This procedure repeats ad
infinitum, and the resulting process can be used as a model to study evolution’s effects on the long-run
composition of the population.

Mutations can be represented by a stochastic matrix, M, which gives rise to a Markov chain on the
set of possible types, S. The resulting stochastic process is called “mutation process” [see 30]. In the
mutation process, a transition from s to s′ occurs with probability Ms,s′ . When evolution is neutral,
there is a meaningful comparison between the evolutionary process and the mutation process since then
neither one involves different types reproducing at different rates. In effect, the mutation process is just
an evolutionary process in a population of size N = 1. A natural question to ask is whether population
size, structure, or update rule affect average trait frequency relative to the mutation process. That is, is the
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average frequency of type s in a population of any size, N > 1, different from that of a population of size
N = 1?

Suppose that there are n possible types and that a mutation involves switching to a new type uniformly
at random. Specifically, with probability u, a mutation to a random type occurs, and with probability
1 − u, the offspring acquires the parental type. This kind of mutation, which is common in evolutionary
game theory, is symmetric in the sense that it acts on all competing types in the same way. With mutations
of this form, all types are all equally abundant in the stationary distribution [19, 20]. Stated differently,
in a neutral evolutionary process with symmetric mutations among n types in a population of size N,
the average frequency of each type (1/n) is the same as one would find in a population of size N =
1. We extend this result to any mutation process, showing that the average frequency of a type in a
population (actually, even along any lineage) of any size is the same as that in a population of size N = 1.
Consequently, dispersal patterns and population size have no effect on the average frequencies of the
traits.

In some ways, this result is not surprising, and special cases have indeed been known for some time
[31]. When there are no selective differences between the traits, there is evidently nothing in the pop-
ulation that drives one trait to a higher average frequency in a population than in the original mutation
process. However, this reasoning does not constitute a proof. Given the increasing interest in using neutral
frequency as a baseline measure to understand strategy selection, we provide a general proof here. An
interesting consequence of the proof is that it allows one to quantify the rate of convergence of the trait
distribution in terms of simple demographic variables of the process. This rate, which we characterize in
terms of mixing times, exhibits much more interesting behavior than the limit itself (which is not affected
by demographic components).

Our results apply to not only any population structure but also to any trait space, S. In other words,
a player’s trait could be an element of a finite set, a denumerable (countably infinite) set, or even an un-
countably infinite set. Finite sets, even those consisting of just two types, have traditionally been the focus
of many models in evolutionary game theory [32]. Other frameworks, such as adaptive dynamics [33–40]
and even some within evolutionary game theory [41–50], allow for continuous trait spaces. Accordingly,
we make no assumption that there are only finitely many traits.

2. Neutral evolution

Before treating stationary trait frequencies in neutral evolution, we first turn to a generic way of describ-
ing neutral evolution itself. Allen and Tarnita [26] provide a method for dealing with evolution in finite
populations of fixed size and structure. This general framework applies also to processes with selective
differences between the types, but here we recall just the portion that applies to neutral processes. For
simplicity, we introduce this framework in the context of haploid, asexually-reproducing populations, but
we also discuss how it can be extended to non-haploid populations with sexual reproduction.

The atom of the mathematical framework we consider is a “replacement event” [26]. A replacement
event is a pair, (R, α), where R ⊆ {1, . . . , N} is the set of individuals (or locations) to be replaced, and
α : R → {1, . . . , N} is a map where α (i) indicates that individual i is replaced by the offspring of individual
α (i). A neutral evolutionary process may then be described by a probability distribution over all possible
replacement events,

{
p(R,α)

}
(R,α)

. The probabilities
{

p(R,α)

}
(R,α)

encode both the population structure and

the demographic update rule (Fig. 1). This process is neutral because the distribution over replacement
events is the same at each time step, regardless of the state [51]. The population structure and update
rule are fixed, in that the replacement events at different points in time are chosen independently from
the same distribution. While this framework describes a broad variety of neutral evolutionary processes,
there is one further “unity” assumption that must be made, which we recall in slightly modified form
from [26]:

(unity) for each i = 1, . . . , N, there exists a sequence of replacement events, {(Rk, αk)}ℓk=1, such that (i)
p(Rk ,αk)

> 0 for each k = 1, . . . , ℓ and (ii) for each j, we have α̃1 ◦ · · · ◦ α̃ℓ (j) = i, where the mapping
α̃k : {1, . . . , N} → {1, . . . , N} is defined by α̃k (m) = αk (m) for m ∈ Rk and α̃k (m) = m for m ̸∈ Rk.
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(a) (b)

(c) (d)

Figure 1. Four examples of evolving populations, ordered by increasing complexity of
the spatial structure. In (a), the population is unstructured. (b) depicts a subdivided (or
“deme-structured”) population that consists of unstructured subpopulations (blue) with
migration between them (red arrows). (c) shows a regular grid (square lattice) in which
all players have exactly four neighbors. (d) illustrates a heterogeneous graph-structured
population. Each individual resides on the vertex of a graph, and links indicate who is
a neighbor of whom. The number of neighbors can vary from individual to individual,
which results in structural asymmetries. In general, if the graph indicates an offspring-
dispersal structure, then p(R,α) > 0 only if α (i) is a neighbor of i whenever i ∈ R.

This assumption formalizes the notion that the population evolves as a coherent unit, and that every
individual can produce a lineage that takes over the entire population. Importantly, it does not imply
that the population structure is trivial. Many interesting population structures, including heterogeneous
graphs, sets, and subdivided populations with migration, satisfy the unity condition; we refer the reader
to [26] for further examples. In Example 1 below, we give an example of a population that does not satisfy
the unity condition.

At each point in time, every individual, i = 1, . . . , N, has a genetic type, si ∈ S. For the moment, we
assume that S is finite, but in the next section this assumption is relaxed. The current population state
is given by the vector s = (s1, . . . , sN) ∈ SN . Let M be the transition matrix for a mutation process on
S. Transitions from a given population state s ∈ SNoccur as follows: First a replacement event (R, α) is
chosen from the distribution

{
p(R,α)

}
(R,α)

. The probability that individual i ∈ R is of type s after this

update is Msα(i),s. If i ̸∈ R, the probability that individual i is of type s is δsi ,s (that is, individuals who
are not replaced retain their type). This process defines a Markov chain on SN , which we denote by
{S (T)}∞

T=0 = {(S1 (T) , . . . , SN (T))}∞
T=0. Note that we use t to indicate time in the underlying mutation

process, {X (t)}∞
t=0, and T to denote time (i.e. number of update steps) in the evolutionary process,

{S (T)}∞
T=0; both t and T are discrete. The number of updates in the mutation process along a lineage
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is bounded from above by the number of update steps in the overall process, but in general these two
measures of time need not necessarily coincide.

The distribution
{

p(R,α)

}
(R,α)

gives rise to several useful demographic variables [26], namely

eij := ∑
(R,α)

j∈R, α(j)=i

p(R,α); bi :=
N

∑
j=1

eij; di :=
N

∑
j=1

eji. (1)

eij is the probability that i transmits its offspring to j; bi is the birth rate of i; and di is the death rate of i.
The way in which mutations are incorporated is essentially the same as they are in [26], except that

here M and S can be arbitrary and mutations need not be symmetric with respect to the traits.

Theorem 1. If the unity condition holds, then {S (T)}∞
T=0 is ergodic whenever {X (t)}∞

t=0 is ergodic.

Proof. Consider two states, s, s′ ∈ SN . If {X (t)}∞
t=0 is ergodic, then there exists m0 such that (Mm)r,s > 0

whenever r, s ∈ S and m ⩾ m0. If m0 = 1, then T is positive. Otherwise, by the unity condition, we can
find an ordered sequence, (R1, α1) , . . . , (Rm0 , αm0) with p(Rk ,αk)

> 0 for each k, together with a collection
(i0, i1, . . . , im0) such that αk (ik−1) = ik for each k = 1, . . . , m0. After starting in state s, and given this
sequence of replacement events, the probability that player i0 has type s is Mm0

si0 ,s > 0. By the unity
condition, i0 can propagate its offspring to all other nodes in a finite number of steps; together with the
fact that Mm is positive whenever m ⩾ m0, we see that there is a positive probability of reaching state s′.
Thus, {S (T)}∞

T=0 is irreducible. Aperiodicity of {S (T)}∞
T=0 follows from essentially the same argument

because, after a similarly chosen sequence of replacements, the probability of staying in the state in which
the chain started is positive. □

If the unity condition is not satisfied, then Theorem 1 need not necessarily hold, as the following
example illustrates:

Example 1 (Line graph). As an example of a process that does not satisfy the unity condition, consider
a population arranged on a line. If reproduction and replacement flow in only one direction, then player
“1,” i.e. the player at the “beginning” of the line, is never replaced. Therefore, for each k ∈ S, there exists
a stationary distribution, µ(k), for {S (T)}∞

T=0 with µ(k) (s1 = k) = 1. In particular, there is more than one
stationary distribution even when {X (t)}∞

t=0 is ergodic, so Theorem 1 does not hold in this case.

When the unity condition holds and {X (t)}∞
t=0 is ergodic, Theorem 1 implies that {S (T)}∞

T=0 has a
unique stationary distribution, µ. The next section establishes the simple fact that, if π is the stationary
distribution of the mutation process, M, then µ (si = k) = πk for every k ∈ S. When {S (T)}∞

T=0 has more
than one stationary distribution, it need not be the case that every such distribution satisfies µ (si = k) =
πk for every k ∈ S, which we illustrate using an irreducible mutation chain that is not ergodic:

Example 2 (Mutation process is irreducible but not ergodic). Suppose that S = {1, 2} and let M be the
matrix

M :=
(

0 1
1 0

)
. (2)

{X (t)}∞
t=0 is irreducible but periodic, with period 2, and its (unique) stationary distribution is (1/2, 1/2).

Consider a birth-death process on a star graph. Each player is chosen uniformly-at-random to reproduce.
If a peripheral player reproduces, their offspring is subjected to the mutation operator and propagated to
the central node. If the player at the central node reproduces, then this player propagates an offspring to
every peripheral location (and, again, each offspring is subjected to the mutation operator). It is easy to
see that the state with type 1 at the central node and type 2 at all of the peripheral nodes is stationary (see
Fig. 2). For this stationary distribution, 1

N ∑N
i=1 µ (si = 1) = 1/N, which is not equal to π1 = 1/2 when

N > 2.

The following result is the main tool we need to show that population size and structure do not influ-
ence stationary trait frequencies. The essence of this result is that for any t ⩾ 0, if one looks sufficiently
far into the future, then every individual in the population will have a lineage of length at least t:
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(a) (b)

Figure 2. A birth-death process on a star graph of size N = 5. When a player reproduces,
the offspring has the opposite type of the parent (i.e. if the parent is blue, the child is red;
if the parent is red, the child is blue). When a peripheral individual reproduces, the central
individual dies and is replaced by the offspring. If the central individual reproduces, then
all four peripheral players die and are replaced by offspring of the central player. (a) and
(b) both give stationary states, which are unaffected by the evolutionary process. The
frequency of blue is 1/5 in (a) and 4/5 in (b), while the frequency of blue in the stationary
distribution of the mutation process (i.e. in a population of size N = 1) is 1/2. Therefore,
even though {X (t)}∞

t=0 is irreducible, the evolutionary process has multiple stationary
distributions due to the periodicity of M, and these stationary distributions need not all
exhibit the same trait frequencies as the original mutation process. However, there does
exist a stationary distribution for the birth-death process with trait frequency 1/2 for each
of blue and red, namely the distribution that assigns probability 1/2 to state (a) and 1/2
to state (b).

Lemma 1. Let BT
i be the number of birth events after T updates in the lineage leading to individual i (a

random variable). Then, for any i = 1, . . . , N and any t ⩾ 0, we have limT→∞ P
[
BT

i ⩾ t
]
= 1.

Proof. The probability that i is replaced in any given update step (i.e. the death rate of i) is di (Eq. 1), which
is the same at every update since the process is neutral. Let d∗ := min1⩽i⩽N di and d∗ := max1⩽i⩽N di.
Since an individual is replaced with probability at most d∗ and not replaced with probability at most
1 − d∗ in each step, the probability that there are exactly t birth events by time T on the lineage leading to
i satisfies

P
[

BT
i = t

]
⩽

(
T
t

)
(1 − d∗)

T−t (d∗)t . (3)

Therefore, provided d∗ > 0, we see that limT→∞ P
[
BT

i ⩾ t
]
= 1 for any t ⩾ 0. □

In the next section, we use this simple fact to derive the long-run trait frequencies.

3. Marginal distributions and stationary frequencies

Although the assumption that S is finite is reasonable in many cases, there are also scenarios in which
one would like to consider continuous trait spaces. To capture a general notion of a trait, we let S be
a measurable space, which contains as special cases finite, denumerable, and uncountably infinite trait
spaces.

In what follows, we denote by Pν and Eν the distribution and expectation, respectively, of a random
variable that depends on another distribution, ν. Such is the case when ν is the initial distribution of a
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Markov chain and the random variable under consideration is the time-t state of the chain. An element
s ∈ S in place of ν (e.g. Ps or Es) indicates that the starting point of the Markov chain is at s.

When dealing with a general trait space, we can no longer necessarily represent a mutation chain by
a transition matrix. Instead, such a mutation process is described by a transition kernel. Let F (S) be a
σ-algebra of subsets on S and denote by ∆ (S) the space of probability measures on S. A mutation process
on S, {X (t)}∞

t=0, is then defined by a Markov kernel, κ : S → ∆ (S), where for s ∈ S and E ∈ F (S), κ (s, E)
is the probability that the chain is in E after being in state s. If S is finite and the transition matrix for the
mutation process is M, then Ms,s′ = κ (s, {s′}) for each s, s′ ∈ S. To extend the notion of ergodicity to a
Markov chain on a general state space, one needs the notion of a Harris chain, which we recall from [52]:

Definition 1. A Markov chain, {X (t)}∞
t=0, on S with kernel κ is a Harris chain if there exist A, B ∈ F (S),

ε > 0, a function q : A × B → R with q (s, s′) ⩾ ε for every s ∈ A and s′ ∈ B, and ρ ∈ ∆ (B) such that
(i) Ps [τA < ∞] > 0 for every s ∈ S, where τA = inf {t ∈ {0, 1, 2, . . . } | X (t) ∈ A};

(ii) κ (s, C) ⩾
∫

s′∈C q (s, s′) dρ (s′) for every s ∈ A and C ∈ F (B).

Furthermore, recurrence and aperiodicity for Harris chains are defined as follows [53]:

Definition 2. A Harris chain on S, {X (t)}∞
t=0, is recurrent if Ps [τA < ∞] = 1 for every s ∈ A. A recurrent

Harris chain is aperiodic if for every s ∈ S, there exists t0 such that Ps [X (t) ∈ A] > 0 whenever t ⩾ t0.

We refer to a recurrent, aperiodic Harris chain as ergodic. The key result we need is the following,
which can be found in [53]: if κ defines an ergodic Harris chain with stationary distribution π ∈ ∆ (S),
then

lim
t→∞

sup
E∈F (S)

⏐⏐κt (s, E)− π (E)
⏐⏐ = 0 (4)

whenever s ∈ S satisfies Ps [RA < ∞] = 1, where RA = inf {t ∈ {1, 2, . . . } | X (t) ∈ A}. In other words,
the t-step transition kernel when starting from s, κt (s,−), converges in total variation to π as t → ∞.

Our main result with respect to marginal trait distributions can be stated succinctly as follows:

Theorem 2. limT→∞ Pµ0 [Si (T) ∈ E] = π (E) for every i = 1, . . . , N; initial distribution, µ0 ∈ ∆
(
SN)

; and
E ∈ F (S).

Proof. Since {X (t)}∞
t=0 is ergodic, for each s ∈ S and ε > 0, there exists t0 ⩾ 0 such that whenever t ⩾ t0,

sup
E∈F (S)

|Ps [X (t) ∈ E]− π (E)| < ε. (5)

Thus, for each E ∈ F (S) and t ⩾ t0, we have π (E)− ε < Ps [X (t) ∈ E] < π (E) + ε, which gives

(π (E)− ε) P
[

BT
i ⩾ t0

]
<

T

∑
t=t0

Ps [X (t) ∈ E] P
[

BT
i = t

]
< (π (E) + ε) P

[
BT

i ⩾ t0

]
. (6)

Since limT→∞ P
[
BT

i ⩾ t0
]
= 1 for any t0 ⩾ 0, we have

lim
T→∞

T

∑
t=0

Ps [X (t) ∈ E] P
[

BT
i = t

]
=

t0−1

∑
t=0

Ps [X (t) ∈ E] lim
T→∞

P
[

BT
i = t

]
+ lim

T→∞

T

∑
t=t0

Ps [X (t) ∈ E] P
[

BT
i = t

]
= lim

T→∞

T

∑
t=t0

Ps [X (t) ∈ E] P
[

BT
i = t

]
∈ (π (E)− ε, π (E) + ε) . (7)

Since Eq. 7 holds for every s ∈ S, and since ε > 0 was arbitrary, it follows that limT→∞ Pµ0 [Si (T) ∈ E] =
π (E) for every µ0 ∈ ∆

(
SN)

. □
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Let δs denote the Dirac measure on S centered at s ∈ S. The frequency of players whose type lies in
E ∈ F (S) at time T is

Eµ0

[
1
N

N

∑
i=1

δSi(T) (E)

]
=

1
N

N

∑
i=1

Pµ0 [Si (T) ∈ E] , (8)

which approaches π (E) as t → ∞ by Theorem 2; therefore, π gives the long-term trait frequencies. In the
setting of Theorem 1, if {S (T)}∞

T=0 has a unique stationary distribution, µ, then µ (si = k) = πk for every
i = 1, . . . , N and k ∈ S, i.e. the marginal distribution of each individual is exactly π.

Although our focus has been on haploid individuals, we note that Theorem 2 can be extended to popu-
lations with diploid, haplodiploid, or polyploid genetics, with either sexual or asexual reproduction (or a
combination of both) as long as (i) only a single genetic locus is considered, (ii) there is no recombination
within this locus, and (iii) the theorem is understood to apply at the level of alleles, rather than allele
combinations or traits. The idea of this extension is to treat the alleles at this locus as asexual replicators,
and let i = 1, . . . , N index genetic sites rather than individuals [54]. These genetic sites are distributed
among individuals, so that each individual has a number of genetic sites equal to its ploidy. Each genetic
site i contains a single allele si ∈ S, where S represents the set of possible alleles at this locus. During
transitions, the alleles in a subset R of genetic sites are replaced by (possibly mutated) copies of the alleles
in other genetic sites, as determined by the chosen replacement event, (R, α). The probability distribution
over replacement events,

{
p(R,α)

}
(R,α)

, encodes all necessary information about ploidy, sexes, and mating.

Formally, this gene’s-eye framework is mathematically equivalent to the framework based on haploid
individuals [54]. All of our results therefore carry over to sexually-reproducing populations without
any additional mathematical assumptions. In applying these results to sexually-reproducing populations,
there is, however, an implicit biological assumption that there is no recombination within the locus in question.
That is, each allele in a new offspring is a copy of a single allele in one parent, not a mixture of two (or
more) alleles, which is reasonable if the locus represented by S is small enough that linkage within the
locus can be assumed complete. We also emphasize that Theorem 2 characterizes the limiting frequencies
of alleles but not of allele combinations in individuals. For example, in a diploid population with alleles A
and a, Theorem 2 characterizes the limiting frequencies of A and a, but not of AA, Aa, and aa. If different
allele combinations correspond to different traits, Theorem 2 does not characterize the trait distribution
in this case. The limiting frequencies of allele combinations in individuals depend on the population
structure, i.e. on the replacement rule.

Even if the mutation process does not have a unique stationary distribution (such as when there are
multiple absorbing states), the proof of Theorem 2 can still be used to derive the marginal distributions
of every individual when the starting condition is monomorphic. Suppose that every individual in the
population initially has trait s ∈ S. There will eventually be enough births along every lineage for the
mutation process to reach its limiting distribution (provided the limit exists). Moreover, since the lineage
leading to i at time T can start at any j ∈ {1, . . . , N} at time 0, we know the initial condition of this chain,
s, provided the population starts out monomorphic. We state this observation as a proposition:

Proposition 1. If s ∈ S, E ∈ F (S), and i ∈ {1, . . . , N}, then, provided the limits exist,

lim
T→∞

P(s,...,s) [Si (T) ∈ E] = lim
t→∞

Ps [X (t) ∈ E] . (9)

Example 3 (Regeneration process). Suppose that each individual in a population is a (bacterial) cell divid-
ing at a constant rate, and mutations occur during cell division. We denote by A0 the “wild type” cells,
which mutate to A1 cells with probability w. A1 cells contain the starting condition for the search process
(for example, the duplicated gene). For k > 0, mutation with probability u leads from an Ak cell to an Ak+1
cell. These steps are the forward mutations in the search process toward the new function. The search is
lost with probability v, i.e. each Ak cell (with k > 0) mutates back to an A0 cell with probability v. v can
represent the rate of deletion events, nonsense mutations, or any missense mutation that leads away from
the target because then the search is essentially lost. It is natural to assume that v > u, meaning that at
each step, it is more likely that the search is lost than that a mutation is made in the direction of the target.
This mutation scheme, which was introduced by Knoll and Nowak [55], is known as the “regeneration
process.”
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Consider a Wright-Fisher process in a population of size N. Generations are non-overlapping, and at
each time step the current generation is sampled (with replacement) from the previous generation [56–58].
In other words, every individual in the current generation is the offspring of individual i in the previous
generation with probability 1/N for i = 1, . . . , N. The total population size is strictly constant, and all cells
have the same reproductive rate. In other words, evolution is neutral. On each birth event, the offspring
mutates from the parent’s type according to the regeneration process. We are interested in the stationary
distribution of this stochastic process, and, in particular, the probability that a randomly-drawn cell is of
type Ak. Denote by πk this probability and suppose first that N = 1. By the definition of a stationary
distribution and the mutational scheme for the regeneration process, we have the recurrence relations

π0 = π0 (1 − w) + (1 − π0) v; (10a)

π1 = π0w + π1 (1 − u − v) ; (10b)

πk = πk−1u + πk (1 − u − v) ; (1 < k < m) (10c)

πm = πm−1u + πm (1 − v) . (10d)

The solution to this system of equations is given explicitly by

π0 =
v

v + w
; (11a)

πk =

(
u

u + v

)k−1 ( w
u + v

)(
v

v + w

)
; (0 < k < m) (11b)

πm =
(u

v

)(
u

u + v

)m−2 ( w
u + v

)(
v

v + w

)
. (11c)

For simplicity, we assume that u and v do not depend on Ak. However, one can similarly calculate π when
uk is the probability of going from Ak to Ak+1 and vk is the probability of going from Ak to A0.

Determining the equilibrium frequency of Ak in a population of any size, N, is actually quite simple: it
is still just πk and can be calculated by considering a stochastic process that follows a single lineage. That
is, the frequencies of the cell types are the same for a population of size N = 1 as it is for a population
of any size. Furthermore, the probability that individual i has type Ak is πk (which is independent of i).
Fig. 3 shows that heterogeneity induced by population structure can, however, strongly influence a type’s
fluctuation around its mean frequency.

Example 4 (One-dimensional Markov chain). Another simple example is when the mutation process,
defined by transition matrix M, is one-dimensional. In this case, the state space is S = {0, 1, . . . , m} for
some m ⩾ 0, and transitions from a given state are at most one step in either direction. In other words,
Ms,s′ = 0 whenever |s − s′| > 1. One can easily check that the stationary distribution for M is given by

πs =
∏s−1

k=0
Mk,k+1
Mk+1,k

1 + ∑m
s=1 ∏s−1

k=0
Mk,k+1
Mk+1,k

. (12)

Eq. 12 gives a simple expression for the long-run probability of finding an individual in type s, both in
the mutation process itself and in any evolving population in which mutations are neutral and governed
by M.

4. Intra-lineage mixing times

So far, we have focused on neutral trait frequencies, which are not affected by the distribution over
replacement events,

{
p(R,α)

}
(R,α)

. We now turn to rate of convergence to these equilibrium frequencies

along the lineages, characterized in terms of mixing times. The proof of Theorem 2 is based on the fact
that, eventually, all lineages will contain sufficiently many birth events for the mutation process to mix.
Here, we consider the amount of time–measured in update steps–for this mixing to occur along a given
lineage. Since both the mutation processes and evolutionary update rules we consider are discrete in time,
all references to time shall indicate non-negative integers.

8
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Figure 3. The frequency of three cell types in a population of size N = 104. Mutations
in both panels are governed by the regeneration process with m = 103 and mutation rates
w = 0.01, u = 0.02, and v = 0.03. The mean abundance of each type in this mutation
process is indicated by a dashed line. In (a), the population is updated according to
a Wright-Fisher rule. (b) illustrates a modified (and asymmetric) Wright-Fisher rule in
which there exists a single cell in every generation that is more likely to reproduce than
the others (independent of cell type). In (a), each offspring chooses a parent uniformly-
at-random from the previous generation (i.e. each with probability 1/N = 10−4). In (b),
one marked individual is chosen as the parent with probability 0.05 and each of the N − 1
remaining individuals is chosen with probability (1 − 0.05) / (N − 1) ≪ 0.05. Despite the
heterogeneity in (b), the mean trait abundances are the same; only the fluctuations around
these means change.

Let π ∈ ∆ (S) be the stationary distribution for the mutation process. For t ∈ {1, 2, . . . }, let

ψ (t) := sup
s∈S

sup
E∈F (S)

|Ps [X (t) ∈ E]− π (E)| . (13)

The ε-mixing time of the mutation process is then τ (ε) := min {t ∈ {1, 2, . . . } : ψ (t) < ε}. (We use the
symbol ψ to denote this distance rather than the usual d in order to avoid confusion with death rates.)

At the population level, we can consider an analogue of mixing time along lineages. Recall that BT
i is

the number of birth events in the lineage leading to individual i after T update steps. Since the marginal
distributions all converge to π, the distance between i’s trait at time T ∈ {1, 2, . . . } and the stationary
distribution is

Ψi (T) = sup
s∈SN

sup
E∈F (S)

|Ps [Si (T) ∈ E]− π (E)| . (14)

The analogue of τ (ε) in this case is Ti (ε) := min {T ∈ {1, 2, . . . } : Ψi (T) < ε}, which is the ε-mixing time
of the process along the lineage leading to individual i. We have the trivial lower bound Ti (ε) ⩾ τ (ε) for
all i = 1, . . . , N.

Example 5 (Non-overlapping generations). If generations do not overlap, then P
[
BT

i = T
]
= 1. Trivially,

then, we have Ψi (T) = ψ (T) and Ti (ε) = τ (ε) for every i = 1, . . . , N.
9
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Figure 4. Intra-lineage mixing time, T (ε), relative to the mixing time of the underly-
ing mutation process, τ (ε), for death-birth updating (shown here for ε = 10−3). Every
individual has one of two types, A or B, and upon reproduction A mutates to B with
probability uAB and B mutates to A with probability uBA. The stationary distribution
of this process puts probability uBA

uAB+uBA
on state A and probability uAB

uAB+uBA
on state B.

Since the death rate is constant and equal to 1/N (regardless of the population’s spatial
structure), each individual is updated every N steps (on average). However, T (ε) differs
significantly from the rescaled mixing time of the mutation process, Nτ (ε). In fact, Nτ (ε)
neither a general upper nor lower bound on T (ε), which can be seen by simply varying
uAB and uBA.

Suppose, for instance, that the death rate is constant and equal to d ∈ (0, 1), so that each individual
is updated every 1/d update steps (on average). Since all individuals have the same probability of being
replaced, Ti (ε) is independent of i, and we call this mixing time simply T (ε). If τ is the mixing time of the
mutation chain, then a natural guess for T is simply τ/d because, on average, the lineage experiences a
mutation (i.e. a step in the mutation chain) every 1/d updates. However, it turns out that τ/d is generally
a bad approximation of T because it doesn’t take into account enough information about the distribution
of lineage length. In fact, one cannot even use τ/d to establish a general upper or lower bound on Ti.
Fig. 4 illustrates this comparison for death-birth updating with d = 1/N, where N is the population size.

Instead, we can bound Ψi (T) by the average of ψ
(

BT
i
)
, which we state as a simple lemma:

Lemma 2. Ψi (T) ⩽ E
[
ψ
(

BT
i
)]

for every i = 1, . . . , N and T ∈ {1, 2, . . . }.

Proof. Fix i = 1, . . . , N and T ∈ {1, 2, . . . }. Straightforward manipulations give

Ψi (T) = sup
s∈SN

sup
E∈F (S)

|Ps [Si (T) ∈ E]− π (E)|

⩽
T

∑
t=0

sup
s∈S

sup
E∈F (S)

|Ps [X (t) ∈ E]− π (E)| P
[

BT
i = t

]
= E

[
sup
s∈S

sup
E∈F (S)

⏐⏐⏐Ps

[
X
(

BT
i

)
∈ E

]
− π (E)

⏐⏐⏐]
= E

[
ψ
(

BT
i

)]
, (15)

10



as desired. □

To calculate E
[
ψ
(

BT
i
)]

, we note that P
[
BT

i = t
]

satisfies the multivariate recurrence relation,

P
[

BT
i = t

]
= P

[
BT−1

i = t
]
(1 − di) +

N

∑
j=1

P
[

BT−1
j = t − 1

]
eji, (16)

with boundary conditions P
[
BT

i = 0
]
= (1 − di)

T for i = 1, . . . , N. Explicitly, for 1 < t ⩽ T, we have

P
[

BT
i = t

]
= ∑

k0,...,kt⩾1
k0+···+kt=T

(1 − di)
kt−1

N

∑
jt−1=1

(
1 − djt−1

)kt−1−1 ejt−1,jt · · ·
N

∑
j0=1

(
1 − dj0

)k0−1 ej0,j1 . (17)

While the general expression for P
[
BT

i = t
]

(Eq. 17) can appear complicated (depending on the replace-

ment rule,
{

p(R,α)

}
(R,α)

, and the resulting demographic variables), we can further simplify the bound

given by Lemma 2 if some additional properties hold. We consider two cases in which one can be more
explicit.

4.1. Finite, ergodic mutation chains. If S is finite and {X (t)}∞
t=0 is an irreducible and aperiodic, then

there exist C > 0 and α ∈ (0, 1) such that ψ (t) ⩽ Cαt for every t ⩾ 1 [52, 59]. From Lemma 2,

Ψi (T) ⩽ CE
[
αBT

i

]
. (18)

Example 6 (Constant death rate). If the death rate is constant, meaning there exists d with di = d for
i = 1, . . . , N, then P

[
BT

i = t
]
= (T

t ) (1 − d)T−t dt. From Eq. 18, we have the upper bound

Ψi (T) ⩽ C (1 − d (1 − α))T (19)

Under death-birth updating, for example, the death rate is constant and equal to 1/N. The death rate
is also clearly constant when generations are non-overlapping, and in this case 1 − d (1 − α) = α, which
gives back the same upper bound of CαT . On the other hand, when d < 1 we have 1 − d (1 − α) > α.

4.2. Reversible mutation chains and spectral theory. Suppose that the mutation process, M, is reversible
with respect to π, meaning πs Ms,s′ = πs′ Ms′ ,s for every s, s′ ∈ S. The matrix Λ defined by Λs,s′ =

π1/2
s Ms,s′π

−1/2
s′ is then symmetric with all of its eigenvalues real, 1 = λ1 > λ2 ⩾ · · · ⩾ λ|S| ⩾ −1. These

eigenvalues are the same as those of M since M and Λ represent the same linear transformation. Let
π∗ := min1⩽i⩽|S| πsi . By standard results on mixing times in reversible Markov chains [see 60], we have

ψ (T) ⩽
1
2

√
1 − π∗

π∗
max

{
|λ2| ,

⏐⏐⏐λ|S|

⏐⏐⏐}T
, (20)

To see how the evolutionary process affects mixing along its lineages, we can again consider the case
of a constant death rate for simplicity. If d is the death rate for every individual, i, then the mutation
process along any lineage is a Markov chain with transition matrix M (d) := (1 − d) I + dM. Moreover,
M (d) is reversible with respect to π since M is. Letting Λ (d) = (1 − d) I + dΛ, we see that if Λv = λv,
then Λ (d) v = (1 − d (1 − λ)) v. Since the map λ ↦→ 1 − d (1 − λ) sends eigenvalues of Λ to eigenvalues
of Λ (d), and since max2⩽i⩽|S| |1 − d (1 − λi)| = max

{
|1 − d (1 − λ2)| ,

⏐⏐⏐1 − d
(

1 − λ|S|

)⏐⏐⏐}, we have

Ψ (T) ⩽
1
2

√
1 − π∗

π∗
max

{
|1 − d (1 − λ2)| ,

⏐⏐⏐1 − d
(

1 − λ|S|

)⏐⏐⏐}T
. (21)

Fig. 5 gives an example of this mixing time bound for the reversible chain with |S| = 3 and transition
matrix

M =

⎛⎝0.9429 0.0284 0.0287
0.0250 0.9638 0.0112
0.0360 0.0159 0.9481

⎞⎠ . (22)
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Figure 5. The distance between individual i’s trait and the stationary distribution after
T update steps, Ψ (T), under death-birth updating. All of the marginal distributions
converge to π as T → ∞, but the rates at which they do so depend on the population
size, structure, and update rule. A population of size N = 1 is the same as the underlying
mutation process itself, and in this case Ψ (T) = ψ (T) ⩽ CαT for some C > 0 and
α ∈ (0, 1). The mutation process depicted here is reversible with |S| = 3 traits and

transition matrix Eq. 22, so we can set C = 1
2

√
1−π∗

π∗
and α = max {|λ2| , |λ3|} (see Eq. 20).

If the population has size N, then Ψ (T) ⩽ C
(

1 − 1
N (1 − α)

)T
since death rate for all

individuals is 1/N under death-birth updating. Since Ψ (T) converges rapidly to 0 in all
cases, we show both the predicted upper bounds (solid lines) and the actual values of
Ψ (T) (dots) on a logarithmic scale.

On the other hand, if the death rate depends on i, we cannot necessarily transform the mutation process
into one whose transition matrix is M (d) = (1 − d) I + dM for some d. Instead, starting at location i, one
needs to keep track of where in the population each ancestor arises. Since M is reversible, its time-reversal,
M̃, is again just M. Consider the Markov chain on {1, . . . , N} × S, {Y (T)}∞

T=0, with transitions given by

P(i,s),(j,s′) =

{
eji Ms,s′ i ̸= j or s ̸= s′,
eii Ms,s + 1 − di i = j and s = s′.

(23)

Starting at location i, one can then ask how many steps is required for the marginal trait distribution to
be close to π (in total variation). From the definition of Ψi (T), it is easily seen that

Ψi (T) = sup
s∈S

sup
E∈F (S)

⏐⏐⏐P(i,s) [Y (T) ∈ {1, . . . , N} × E]− π (E)
⏐⏐⏐ . (24)

12



As a result, the mixing time of the marginal trait distribution of {Y (T)}∞
T=0 starting from i is Ti (ε).

4.3. Mutations induced by group actions. One way to represent mutation is as a group action. Let S be
a finite set representing a collection of heritable traits, and let G be a group (in the mathematical sense
[e.g., see 61]) representing the possible effects of mutation. Suppose that G acts on S, meaning there exists
a map G × S → S sending (g, s) to gs ∈ S that satisfies the following properties: (i) if e is the identity
element of G, then es = s for every s ∈ S; and (ii) if g, h ∈ G and s ∈ S, then (gh) s = g (hs). A special case
is when S = G and the action is the same as the binary operation in G.

For example, G might be a group of three-dimensional rotations (a subgroup of SO(3)), acting on a
set S of possible orientations of some aspect of an organism’s morphology. Or G might be the group of
permutations on n elements, Sn, acting on the set S of possible arrangements of n transposable elements
in a genome. An especially relevant example is G = S = (Z/2Z)m; here S can be understood as the group
of binary strings (idealized genomes) of length m.

If ν ∈ ∆ (G) is a probability distribution on G, then one can define a Markov chain on S with transitions

Ms,s′ := ∑
g∈G
gs=s′

ν (g) . (25)

In order to ensure that this chain has a unique stationary distribution, we need to assume that the group
action is transitive; that is, for any s, s′ ∈ S, there exists g ∈ G with gs = s′. For practical reasons, we make
at least one of two other assumptions on the group action when considering the mixing times of M:

4.3.1. Free group actions. If the action of G on S is free, then gs = hs implies that g = h. If the action of G
is on itself via its binary operation (in which case Eq. 25 defines a random walk on G), then the action is
free because every element of G has an inverse. In other words, the only element of G that sends g ∈ G to
itself is the identity element. A free action generalizes this property to actions of G on another set, S.

For a free action, Ms,gs := ν (g) for every s ∈ S and g ∈ G. The distribution π defined by πg = |G|−1 for
g ∈ G (i.e. the uniform distribution on G) is the stationary distribution for both M and its time-reversal,
M̃, which satisfies M̃s,gs = ν

(
g−1). A standard result on mixing times for random walks on groups [see

59, Lemma 4.13 and Corollary 4.14] is then easily seen to imply that M and M̃ have the same mixing time.

4.3.2. Abelian group actions. Let G be an abelian group, meaning gh = hg for every g, h ∈ G. An example
of an abelian group is the set of binary strings of length m, (Z/2Z)m, with the operation of addition. (The
group of permutations on n > 2 letters, Sn, is an example of a group that is not abelian.) If s ∈ S and
g, h ∈ G satisfy gs = hs, then g−1s = h−1s. The time-reversal of M then satisfies

M̃s,s′ = ∑
g∈G
gs=s′

ν
(

g−1
)

. (26)

Again, both M and M̃ have the uniform stationary distribution, and straightforward modifications of the
arguments presented in [59, Lemma 4.13] show that M and M̃ have the same mixing time.

If the group action is transitive and either free or abelian, it follows that one can obtain Ti (ε) from the
time-reversed Markov chain on {1, . . . , N} × S, {Y (T)}∞

T=0, whose transitions are defined by

P(i,s),(j,s′) =

{
eji M̃s,s′ i ̸= j or s ̸= s′,
eii M̃s,s + 1 − di i = j and s = s′.

(27)

In particular, Eq. 24 holds even though the mutation chain, {X (t)}∞
t=0, is not necessarily reversible.

Remark 1. Although one can define a time-reversal of any mutation chain (not just one on a group or
one that is reversible), the mixing time of the reversed chain need not coincide with the original chain.
Therefore, the utility of reversing a chain and studying it along lineages is limited, as least for the purpose
of analyzing mixing times.
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5. Discussion

The result on stationary trait frequencies is well-established in the special case of two competing types
on a homogeneous population structure [62, 63]. Similarly, in population genetics, it has been noted
that the so-called “common ancestor” process is the same as the mutation process when there is no
selection [30, 31, 64]. Comparisons between neutrally-evolving populations and their mutation processes
have also been used to show that evolution favors types that are robust against mutation [65]. Given
the coupling of birth and mutation, how neutral evolution affects trait frequencies (allele frequencies, in
the sexually-reproducing case) is a natural question to ask. Under mild assumptions, we have seen that
neutral evolution results in the same trait frequencies as the mutation process.

This method can also be used to characterize convergence to the stationary distribution along the
lineages. Since each lineage can contain at most one birth event per update step, the lineages mix at least
as slowly as does the original mutation process. In general, if Ψi (T) is the distance between the stationary
distribution and the lineage leading to individual i, then Ψi (T) ⩽ E

[
ψ
(

BT
i
)]

, where ψ (t) is the distance
between the mutation process and the stationary distribution after t steps and BT

i is a random variable
giving the number of birth events along the lineage leading to i at time T. The distribution of BT

i can be
given explicitly in terms of the demographic variables of the update rule (Eq. 17), which gives a bound on
Ψi (T) that is straightforward to calculate (although the expression itself is not necessarily succinct).

Matrix games, as well as the regeneration process, have finitely many possible types, but the main
result on long-term trait frequency holds for mutation processes with continuous state spaces as well. A
genetic type of this form could be an element of an interval such as [0, 1], for example, representing partial
expression of a trait or the tendency to be of a particular binary type. Mutations can also be supported on
uncountably infinitely many points in the trait space, one example being when an individual with type
x ∈ [0, 1] mutates to a nearby type with probability determined by a Gaussian distribution centered at x
[66, 67]. On a generic state space, the technical condition we require is that the mutation process be an
ergodic Harris chain [52].

Our focus here has been on evolving populations of fixed size and structure. These assumptions
are not strictly necessary, but they do make the notation more convenient since an evolutionary process
can then be described by a probability distribution over simple replacement events [26]. Extinction also
becomes a possibility when the population size fluctuates, which can make analyzing such a process more
complicated [68–73]. Nonetheless, the intuition from our analysis here carries over to other situations: as
long as an individual arises on a lineage with sufficiently many prior birth events, the mutation process
along this lineage will converge to its stationary distribution, π. If all individuals in the population have
this property sufficiently far into the future, then π must give the long-term average trait frequencies in
the population.

The study of trait dynamics along lineages leads to an interesting question: how does selection change
the stationary trait distribution of individual i? This question, of course, is not new and has been studied
in constant-fitness models over the past two decades via the so-called “ancestral selection graph” [74–76],
which is a version of Kingman’s coalescent [77] that allows for selective differences between the types. In
populations with heterogeneous structure, selection can affect the marginal trait distributions in different
ways at different locations, and there are still many open questions in this area, particularly with respect
to frequency-dependent selection (games). For example, in an evolutionary game, the standard method
of measuring the influence of selection is through its effects on average trait frequency in the population
[21]. However, this type of averaging over the population does not provide a description of the locations
at which a given trait is more likely to be found in a population, and it says nothing about selection’s
effects on mixing times.

Here, we have studied the individual lineages generated by neutral evolution. The trait distributions
along those lineages are given by that of the mutation process. Therefore, the trait frequencies do not
depend on population size, structure, and update rule. The mixing times of neutral evolution, however,
do depend on these demographic components. Selection can perturb neutral evolutionary dynamics in
complicated ways, and how it changes both marginal distributions and mixing times, especially within the
realm of evolutionary game theory, is a more complicated question but nonetheless a natural extension of
the one considered here.
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