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Abstract. We develop discrete W 2
p -norm error estimates for the Oliker-Prussner method applied to the

Monge-Ampère equation. This is obtained by extending discrete Alexandroff estimates and showing that
the contact set of a nodal function contains information on its second order difference. In addition, we show
that the size of the complement of the contact set is controlled by the consistency of the method. Combining
both observations, we show that the error estimate

‖u− uh‖W2
f,p

(NI
h

) ≤ C
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where ‖ · ‖W2
f,p

(NI
h

) is a weighted W 2
p -type norm, and the constant C > 0 depends on ‖u‖C3,1(Ω̄), the

dimension d, and the constant p. Numerical examples are given in two space dimensions and confirm that
the estimate is sharp in several cases.

1. Introduction. In this paper we develop discrete W 2
p error estimates for numerical

approximations of the Monge-Ampère equation with Dirichlet boundary conditions:

det(D2u) = f in Ω, (1.1a)

u = 0 on ∂Ω, (1.1b)

with given function f ∈ C(Ω̄) satisfying f ≤ f ≤ f̄ in Ω̄, for some positive constants f, f̄ .

Here, D2u denotes the Hessian matrix of u. The domain Ω ⊂ Rd is assumed to be bounded
and uniformly convex. We seek a solution to (1.1) in the class of convex functions, which
ensures ellipticity of the problem and its unique solvability [16].

Because of its wide array of applications in e.g., differential geometry, optimal mass
transport, and meteorology, several numerical methods have been developed for the Monge-
Ampère problem. These methods can be roughly divided into two categories, namely, mono-
tone methods and non-monotone methods. The monotone methods include finite difference
schemes [27, 15, 7, 22] and semi-Lagrangian schemes [14]. The convergence of this class of
methods requires minimal regularity of the true solution, and the theoretical tools are based
on discrete maximum/comparison principles and the theory developed in the foundational
work [4, 19]. On the other hand, while this framework is robust with respect to the (lack
of) smoothness of the solution, these convergence results often come without explicit rates,
and empirical evidence suggests that these methods are low-order. In addition to theoreti-
cal convergence results, nonlinear solvers (e.g., Picard, Perron, and Howard iterations) have
been constructed and analyzed which are robust with respect to the initial guess [26, 27, 14].

For the non-monotone methods, their convergence is proved provided that the exact
solution is sufficient regular (e.g., H2-regularity) and the mesh sufficiently fine; however,
numerical evidence suggests that this regularity restriction might not be needed in practice.
In addition, nonlinear solvers (e.g., Newton’s method) only converge provided the initial
guess is sufficiently close to the exact discrete solution. These methods are generally higher
order and relatively easy to implement on existing computing software. Examples of non-
monotone methods are finite element type methods such as the vanishing moment method
[13], C1 finite element methods [6, 3], and C0 penalty methods [8, 23, 2]. We also refer the
interested reader to a review of numerical methods for fully nonlinear elliptic equations [24].
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The method we analyze in this paper is due to Oliker and Prussner [28, 7, 22] for the
Monge-Ampère problem, and a variant of it is applied to the optimal transport problem in
[1, 21, 17]. The method falls into the category of monotone methods and it is based on a
geometric notion of generalized solutions called Alexandroff solutions. In this setting, the
determinant of the Hessian matrix of u in (1.1a) is interpreted as the measure of the sub-
differential of u; see [16]. The method proposed in [28] simply poses this solution concept
onto the space of nodal functions and enforces the geometric condition implicitly given in
(1.1a) at a finite number of points. Namely, the method seeks a nodal function uh satisfying
the Dirichlet boundary conditions on boundary nodes, and

|∂uh(xi)| = fi

at all interior grid points xi. Here, ∂uh(xi) denotes the sub-differential of uh at xi, | · | is
the d-dimensional Lebesgue measure, fi ≈ hdf(xi), and h is the mesh parameter. Existence
and uniqueness of the method, and convergence to the Alexandroff solution is shown in [28].

While the convergence of monotone methods are ensured under the framework in [4, 19],
the study of rate of convergence of these methods remains largely open for the Monge-
Ampère equation. Recently, a pointwise error estimates of the Oliker-Prussner scheme is
established in [26] and a coming paper [31]. There it is shown that, if the exact convex
solution to (1.1) is sufficiently smooth, and if the nodes are translation invariant, then
the error is of (optimal) order O(h2) in the L∞-norm. We note that standard scaling
arguments based on this estimate yields O(1) errors in W 2

p , i.e., no convergence. Generalities
of these L∞ estimates, depending on solution regularity, are also given in [26]. However,
in many applications, the variable of primary interest is the gradient map ∇u, instead the
scale function u. For example, for the optimal transport problems, the gradient ∇u yields
the optimal mapping which minimizes the L2-cost to transport one measure to another.
Therefore, it is desirable to get an error estimate for u in a W 1

p -norm. While one might derive
theW 1

p estimate for the L∞ error estimate by a inverse inequality and obtain ‖u−uh‖W 1
p (Ω) ≤

O(h), such an estimate is suboptimal as observed by numerical experiments; see section
6. Recently H1 error estimates with rate O(h1/2) have been established for the optimal
transport problem in [5]. The arguments given there are quite different from ours.

Our contribution in this paper is to develop a discrete W 2
p error estimates for all p ∈

[1,∞). The idea is inspired by the PDE work [10, 12]. Let

δev(xi) :=
v(xi + he)− 2v(xi) + v(xi − he)

|e|2h2
,

be the second-order difference operator of a nodal or continuous function v in the direction
e ∈ Zd at a node xi, where |e| denotes the Euclidean norm of e. The (weighted) W 2

p -norm
of a nodal function v with respect to direction e on a set of nodes S is given by

‖v‖W 2
f,p(S) :=

( ∑
xi∈S

fi|δev(xi)|p
)1/p

with fi given by (2.7). The main result of the paper, precisely given in Theorem 5.3, is the
estimate

‖u− uh‖W 2
f,p(NIh) ≤

{
Ch1/p if p > d,

Ch1/d ln
(

1
h

)1/d
if p ≤ d.

Similar to the arguments in [26], operator consistency of the method is one of the result we
use. However, as Alexandroff maximum principles are inherently restricted to the L∞-norm,
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there is no hope that the techniques given in [26] will yield error estimates in W 2
p . Instead, we

first make an observation that the contact set of a nodal function contains useful information
about its second-order difference, Lemma 4.1. Based on this observation, we establish the
key stability result in Proposition 4.1 and show that the size of the complement of the contact
set is controlled by the consistency error of the method. Along with a decomposition of nodal
functions in terms of its level sets (Lemma 5.1), we use these technical tools to construct
the W 2

p error estimates stated above.
Another application of our results is to combine the Oliker-Prussner method with a

higher-order scheme. The aforementioned convergence results of higher order scheme given
in [23] requires the initial guess and the exact solution are sufficiently close in a W 2

p -norm.
The Oliker-Prussner scheme, as we prove in this paper, can be used as a convergent initial
guess within a higher-order scheme. We will explore this idea in a coming paper. We
mention that the solution of the Oliker-Prussner method can be solved by introducing a
suitable triangulation of the nodal set and by applying Newton’s iteration. At each iteration
k ≥ 1, the triangulation may be altered to ensure that the piecewise linear interpolation of
the nodal solution ukh is convex. The procedure of changing triangulation is completely local
and can be efficiently implemented. We refer to [26] for these implementation details and
to [18] for alternative nonlinear solvers.

The organization of the paper is as follows. In the next section, we state the Oliker-
Prussner method and state some preliminary results. In Section 3 we give operator consis-
tency results of the scheme. Section 4 gives stability results with respect to the second-order
difference operators, and in Section 5 we provide W 2

p error estimates. Finally, we end the
paper with some numerical experiments in Section 6.

2. Preliminaries.

2.1. Nodal Set and Nodal Function. Let Nh be a set of nodes in the domain Ω̄.
We denote the set of interior nodes NI

h := Nh∩Ω, the set of boundary nodes NB
h := Nh∩∂Ω,

and the nodal set

Nh = NI
h ∪NB

h .

To ensure that the interior node is not too close to the boundary ∂Ω, we require that

dist(z, ∂Ω) ≥ h

2
for any nodes z ∈ NI

h. (2.1)

Such a nodal set can be obtained by removing the nodes whose distance to ∂Ω is less than
h/2. We assume that the nodal set is translation invariant, i.e., there exist a point b ∈ Rd
and a basis {ei}di=1 in Rd such that any interior node z ∈ NI

h can be written as

z = b+

d∑
i=1

hziei for some integers zi ∈ Z. (2.2)

Since the basis ei can be transformed into the canonical basis in Rd under a linear transfor-
mation, hereafter to simplify the presentation, we will assume that NI

h = b+ hZd. We also
make the following additional assumption on the boundary nodal set NB

h :

dist(x,NB
h ) ≤ h/2, ∀x ∈ ∂Ω. (2.3)

We say the nodal spacing of Nh is h. It is worth mentioning that one can construct a
translation invariant Nh on a curved domain Ω. In fact, for a nodal set Nh to be translation
invariant, we only require the interior nodal set NI

h satisfies (2.2), while no such requirement
is made on the boundary nodes.
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Fig. 2.1. Left: The graph of the convex envelope of a nodal function on a coarse (top) and fine (bottom)
grid. Right: The convex hulls of the piecewise gradients of the convex envelopes on the respective grids.
These polygonal cells characterize the subdifferential of the nodal function.

Associated with the nodes is a simplicial triangulation Th, with vertices Nh. We denote
by hT the diameter of T ∈ Th, and by ρT the diameter of the largest inscribed ball in T .
We assume that that the triangulation is shape-regular, i.e., there exists σ > 0 such that

hT
ρT
≤ σ ∀T ∈ Th.

We denote by {φi}ni=1, with n = #NI
h, the canonical piecewise linear hat functions

associated with Th. Namely, the function φi ∈ C(Ω̄) is a piecewise linear polynomial with
respect to Th, and is uniquely determined by the condition φi(xj) = δi,j (Kronecker delta)
for all xj ∈ NI

h and φi(xj) = 0 for all xj ∈ NB
h . We denote by ωi the support of φi, i.e., the

patch of elements in Th that have xi as a vertex.
A function defined on Nh is called a nodal function, and we denote the space of nodal

functions by Mh. For a nodal function g with values {gi}xi∈Nh , and for a subset of nodal
points C ⊂ Nh, we set the discrete `d norm as

‖g‖`d(C) :=
( ∑
xi∈C

|gi|d
)1/d

.

We say that a nodal function uh ∈Mh is convex if, for all xi ∈ NI
h, there exists a supporting

hyperplane L of uh, i.e.,

L(xj) ≤ uh(xj) ∀xj ∈ Nh and L(xi) = u(xi).

The convex envelope of uh is the function Γ(uh) ∈ C(Ω̄) given by

Γ(uh)(x) = sup
L
{L(x) is affine : L(xi) ≤ uh(xi) ∀xi ∈ Nh}.

Finally, we denote by Nh : C(Ω̄)→Mh the nodal interpolant satisfying Nhv(xi) = v(xi) for
all xi ∈ Nh. It is easy to see that if v is a convex function on Ω̄, then Nhv is a convex nodal
function.
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2.2. The Oliker-Prussner Method. To motivate the method introduced in [28], we
first introduce the notion of an Alexandroff solution to the Monge-Ampère equation (1.1).
To this end, note that if the solution to (1.1) is strictly convex, and if u ∈ C2(Ω), then a
change of variables reveals that∫

E

f dx =

∫
E

det(D2u) dx =

∫
∇u(E)

dx = |∇u(E)| for all Borel E ⊂ Ω,

where |∇u(E)| denote the d-dimensional Lebesgue measure of ∇u(E) = {∇u(x) : x ∈ E}.
To extend this identity to a larger class of functions, we introduce the subdifferential of the
function u at the point x0 as

∂u(x0) = {p ∈ Rd : u(x) ≥ u(x0) + p · (x− x0) ∀x ∈ Ω}.

Thus, ∂u(x0) is the set of supporting hyperplanes of the graph of u at x0. If u is strictly
convex and smooth then ∂u(x0) = {∇u(x0)}, and the same calculation as above shows that∫

E

f dx = |∂u(E)| for all Borel E ⊂ Ω. (2.4)

Definition 2.1. A convex function u ∈ C(Ω̄) is an Alexandroff solution to (1.1)
provided that u = 0 on ∂Ω and (2.4) is satisfied.

The method introduced in [28] simply poses this solution concept onto the space of
nodal functions. To do so, the definition of the subdifferential is extended to the spaces of
nodal functions in the natural way:

∂uh(xi) = {p ∈ Rd : u(xj) ≥ uh(xi) + p · (xj − xj) ∀xj ∈ Nh}. (2.5)

The subdifferential of a convex nodal function uh defined above is simple to characterize.
The convex function Γ(uh) is continuous and piecewise linear with respect to a simplicial
partition of Ω. The sub-differential ∂uh at a node z is just the convex hull of the piecewise
gradients ∇Γ(uh)|T for all simplices T that have z as a vertex; see Figure 2.1 for a pictorial
description and [25, 24] for further details. Thus, the subdifferential ∂uh can be viewed as
a map between the nodes and these polytopal cells.

The discrete method is to find a convex nodal function uh with uh = 0 on NB
h and

|∂uh(xi)| = fi ∀xi ∈ NI
h, (2.6)

where

fi =

∫
Ω

f(x)φi(x) dx =

∫
ωi

f(x)φi(x) dx. (2.7)

Remark 2.1. Existence and uniqueness of a solution to (2.6) is given in [28, 26].

2.3. Brunn Minkowski inequality and subdifferential of convex functions.
In this subsection, we develop a few techniques which will be useful in establishing the
error estimate. We start with the celebrated Brunn Minkowski inequality which relates the
volumes of compact sets of Rd.

Proposition 2.1 (Brunn Minkowski inequality). Let A and B be two nonempty
compact subsets of Rd for d ≥ 1. Then the following inequality holds:

|A+B|1/d ≥ |A|1/d + |B|1/d,

where A+B denotes the Minkowski sum:

A+B := {v + w ∈ Rd : v ∈ A and w ∈ B}.
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Next, we make the following observation on the sum of two subdifferential sets.
Lemma 2.2 (Lemma 2.3 in [26]). Let uh and vh be two convex nodal functions. Then

there holds

∂uh(xi) + ∂vh(xi) ⊂ ∂(uh + vh)(xi)

for all xi ∈ NI
h.

Proof. Let p1 and p2 be in ∂uh(xi) and ∂vh(xi), respectively. By the definition of
subdifferential (2.5), we have

p1 · (xj − xi) ≤uh(xj)− uh(xi) ∀xj ∈ Nh,

p2 · (xj − xi) ≤vh(xj)− vh(xi) ∀xj ∈ Nh.

Adding both inequalites, we obtain

(p1 + p2) · (xj − xi) ≤ (uh + vh)(xj)− (uh + vh)(xi) ∀xj ∈ Nh.

This shows that p1 + p2 ∈ ∂(uh + vh)(xi).
Combining both estimates, we derive the following result.
Lemma 2.3. Let uh and vh be two convex nodal functions defined on Nh and Ch be

the lower contact set of (uh − vh):

Ch :=
{
xi ∈ NI

h : Γ(uh − vh)(xi) = (uh − vh)(xi)
}
.

Then for any node xi ∈ Ch,

|∂Γ(uh − vh)(xi)|1/d ≤ |∂uh(xi)|1/d − |∂vh(xi)|1/d. (2.8)

Proof. The proof of this result is implicitly given in [26, Proposition 4.3], but we give it
here for completeness.

The definition of the convex envelope and the subdifferential shows that

∂Γ(uh − vh)(xi) ⊂ ∂(uh − vh)(xi)

for all xi ∈ Ch. Applying Lemma 2.2 then yields

∂vh(xi) + ∂Γ(uh − vh)(xi) ⊂ ∂vh(xi) + ∂(uh − vh)(xi) ⊂ ∂uh(xi).

An application of the Brunn-Minkowski inequality (cf. Lemma 2.1) gets

|∂vh(xi)|1/d + |∂Γ(uh − vh)(xi)|1/d ≤ |∂vh(xi) + ∂Γ(uh − vh)(xi)|1/d

≤ |∂uh(xi)|1/d.

Rearranging terms we obtain (2.8).
We also note that the numerical method (2.6) has a discrete comparison principle. Here,

we refer to [26] for a proof.
Lemma 2.4 (discrete comparison principle, Corollary 4.4 in [26]). Let vh, wh ∈ Mh

satisfy vh(xi) ≥ wh(xi) for all xi ∈ NB
h and |∂vh(xi)| ≤ |∂wh(xi)| for all xi ∈ NI

h. Then

vh(xi) ≥ wh(xi) ∀xi ∈ Nh.
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3. Consistency of the Oliker-Prussner method. In this section, we state the con-
sistency of the method (2.6) given in [31]. The result shows that the relative consistency
error is of order O(h2) away from the boundary and of order O(1) in a O(h) region of the
boundary.

Lemma 3.1. Let Nh be translation invariant nodal set defined on the domain Ω. If
u ∈ Ck,α(Ω̄) is a convex function with 0 < λI ≤ D2u ≤ ΛI and 2 ≤ k + α ≤ 4, there holds,
for dist(xi, ∂Ω) ≥ Rh, ∣∣|∂Nhu(xi)| − fi

∣∣ ≤ Chk+α+d−2, (3.1)

where R depends on λ and Λ. Moreover, there holds for dist(xi, ∂Ω) ≤ Rh,∣∣∂Nhu(xi)− fi
∣∣ ≤ Chd.

Remark 3.1. The regularity of f and ∂Ω, the strict convexity of Ω, and the positivity
of f guarantees that the convex solution to (1.1) enjoys the regularity u ∈ Ck,α(Ω̄). For
example, if f ∈ Ck−2,α(Ω̄) and Ω is smooth, then the solutions satisfies u ∈ Ck,α(Ω̄) [16, 9,
29]

Remark 3.2. We note that if the boundary nodes also form part of the regular lattice
(e.g., on a rectangular domain/lattice), then the consistency estimate could hold up to the
boundary, i.e., in this case estimate (3.1) holds for all xi ∈ Nh.

Thanks to the consistency error of the method, Lemma 3.1, an L∞-error estimate is
derived in [26, 11] which states

Proposition 3.2. Let Ω be uniformly convex and NI
h be translation invariant. Suppose

further that the boundary nodes satisfy (2.1), that f ≥ f > 0, and that the convex solution

to (1.1) satisfies u ∈ Ck,α(Ω̄) for some 2 ≤ k + α ≤ 4 and 0 < λI ≤ D2u ≤ ΛI. Then the
numerical solution to the discrete Monge-Ampère equation (2.6) satisfies

‖uh −Nhu‖L∞(Nh) ≤ Chk+α−2‖u‖Ck,α(Ω̄),

where ‖vh‖L∞(Nh) := maxxi∈Nh |vh(xi)|.
We note that if u ∈ C3,1(Ω̄), then the optimal order of the L∞ error is O(h2). By

this L∞ error estimate and the assumption (2.1) that the boundary node is at least h/2
away from the boundary, we immediately deduce that |δe(Nhu− uh)(xi)| is bounded. This
observation will be useful in the following sections when we investigate the discrete W 2

p error
estimate.

4. Stability of the second order difference of the Oliker-Prussner method.
Given two solutions uh and vh of the discrete Monge-Ampère equations

|∂uh(xi)| = fi and |∂vh(xi)| = gi with uh = vh = 0 on ∂Ω,

our goal in this section is to control the second order difference of the error function vh−uh
in terms of the consistency error f

1/d
i − g1/d

i . We define a set of relative error τ as

Eτ =
{
xi ∈ Nh, δe(vh − uh)(xi) ≥ τδevh(xi) for some vector e ∈ Zd

}
.

The main result of the section is to show that a measure of Eτ is controlled by the consistency

error f
1/d
i − g1/d

i in `d-norm for any τ > 0. The precise statement is in Proposition 4.1.
We start with an observation that the contact set of a nodal function contains interesting

information on its second order difference.
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Lemma 4.1 (estimate of second order difference). Given two convex nodal functions
vh and uh defined on the nodal set Nh, let

wε = uh − (1− ε)vh and wε = vh − (1− ε)uh

for some 0 < ε ≤ 1 and the contact sets

Cε := {xi ∈ Nh, wε(xi) = Γwε(xi)}, (4.1)

Cε := {xi ∈ Nh, wε(xi) = Γwε(xi)}. (4.2)

If a node xi ∈ Cε ∩ Cε, then

−εδevh(xi) ≤ δe(uh − vh)(xi) ≤
ε

1− ε
δevh(xi) (4.3)

for any vector e ∈ Zd.
Proof. We observe that if a node is in the contact set xi ∈ Cε, then the second order

difference of wε satisfies δewε(xi) ≥ δeΓwε(xi) ≥ 0 for any vector e ∈ Zd. Hence, for any
node xi ∈ Cε, we have

δe(uh − vh)(xi) ≥ −εδevh(xi). (4.4)

This inequality yields a lower bound of the second order difference.
To derive the upper bound, we apply a similar argument above to the function wε and

derive

δe(vh − uh)(xi) ≥ −εδeuh(xi)

for any node xi ∈ Cε. A simple algebraic manipulation yields

δe(uh − vh)(xi) ≤
ε

1− ε
δevh(xi). (4.5)

Combining both the lower bound (4.4) and upper bound (4.5), we obtain the desired esti-
mate.

Remark 4.1. The lemma above shows that we have control of the error δe(uh − vh)
on the contact sets Cε and Cε. Define the set Eτ to be

Eτ =
{
xi ∈ Nh, δe(vh − uh)(xi) ≥ τδevh(xi) for some vector e ∈ Zd

}
, (4.6)

where τ = ε/(1 − ε). Then the proof of Lemma 4.1 shows that Eτ is contained in the
non-contact set

Sε := Nh \ Cε. (4.7)

Analogously,

Eτ : =
{
xi ∈ Nh, δe(uh − vh)(xi) ≥ τδevh(xi) for some vector e ∈ Zd

}
⊂ Sε := Nh \ Cε.

In the next step, we estimate the cardinality of Sε. Heuristically, if ε = 1, then wε = uh
which is a convex nodal function, and so we have Sε = ∅. As ε decreases to zero, the function
wε becomes ‘less convex’, and the cardinality #(Sε) increases; see Figure 4.1. Therefore,
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wε = uh

ε = 1
wε = uh − 1

2vh

ε = 1
2

Fig. 4.1. A pictorial description of Remark 4.1 with wε = uh − (1− ε)vh. The graph of wε is depicted
in blue, and the graph of its convex envelope is given by the dashed black line. If ε = 1, then wε = uh is
convex, and the non-contact set is empty (left). Otherwise for ε ∈ [0, 1), wε is not necessarily convex, and
the non-contact set is nonempty (right).

our next goal is to estimate how fast #(Sε) increases as ε→ 0. The following lemma shows
that this is controlled by the consistency error of the method.

Proposition 4.1. Let uh and vh be two convex nodal functions satisfying uh = vh on
NB
h , uh ≤ vh in NI

h, and

|∂uh(xi)| = fi, and |∂vh(xi)| = gi (4.8)

for all xi ∈ NI
h. For any subset S ⊂ NI

h, let

µ(S) =
∑
xi∈S

fi and ντ (S) =
∑
xi∈S

(
f

1/d
i +

1

τ
e

1/d
i

)d
, (4.9)

where e
1/d
i = (f

1/d
i − g1/d

i . Then

µ(Eτ ) ≤ µ(Sε) ≤ ντ (Cε)− µ(Cε), (4.10)

where Cε is given by (4.1), Sε is given by (4.7), and τ = ε/(1− ε). Consequently, there holds

µ(Eτ ) ≤ µ(Sε) ≤ τ−1Cf‖e1/d‖`d(Cε), (4.11)

with Cf = d‖f1/d‖d−1
`d(NIh)

.

Proof. Since Eτ ⊂ Sε by Remark 4.1, we only need to show that

µ(Sε) ≤ ντ (Cε)− µ(Cε), and µ(Sε) ≤ τ−1Cf‖e1/d‖`d(Cε).

We first show that ∑
xi∈NIh

ε∂uh(xi) ⊂
∑
xi∈NIh

∂Γwε(xi), (4.12)

where wε = uh − (1− ε)vh. Since uh ≤ vh in NI
h and uh = vh on NB

h , we get

wε ≤ εuh in NI
h, and wε = εuh on NB

h .

Taking convex envelope on both side of the inequality, we obtain

Γwε(x) ≤ εΓuh(x) in Ω and Γwε(x) = εΓuh(x) on ∂Ω. (4.13)

Since uh = Γuh on Nh due to the convexity of uh, the inequality (4.13) implies (4.12).
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Taking measure on both sides of (4.12) and substituting (4.8) yields

εd
∑
xi∈NIh

fi = εd
∑
xi∈NIh

|∂uh(xi)| ≤
∑
xi∈Cε

|∂Γwε(xi)|.

In view of the convexity of the measure of the subidfferential (2.8),

|∂Γwε(xi)|1/d ≤ |f1/d
i − (1− ε)g1/d

i |.

Therefore, we infer that

εdµ(NI
h) = εd

∑
xi∈NIh

fi ≤
∑
xi∈Cε

|f1/d
i − (1− ε)g1/d

i |
d.

Thus, subtracting εdµ(Cε), we obtain

εdµ(Sε) = εd
∑
xi∈Sε

fi ≤
∑
xi∈Cε

(
|εf1/d

i + (1− ε)e1/d
i |

d − εdfi
)
.

Therefore, dividing εd, we obtain

µ(Sε) ≤ ντ (Cε)− µ(Cε).

To derive the estimate (4.11), we first see that (4.10) is equivalent to

‖f1/d‖`d(NIh) ≤ ‖f1/d + τ−1e1/d‖`d(Cε),

and therefore ‖f1/d‖`d(NIh) − ‖f1/d‖`d(Cε) ≤ τ−1‖e1/d‖`d(Cε) by the Minkowski inequality.

From this estimate and the inequality ad − bd ≤ dad−1(a− b) for a ≥ b, we derive

µ(Sε) = ‖f1/d‖d`d(NIh) − ‖f
1/d‖d`d(Cε)

≤ d‖f1/d‖d−1
`d(NIh)

(
‖f1/d‖`d(NIh) − ‖f1/d‖`d(Cε)

)
≤ Cfτ−1‖e1/d‖`d(Cε).

5. W 2
p -estimate of the method. To establish W 2

p -estimates of the method, we first
introduce an estimate of the discrete L1 norm of a nodal function in terms of its level sets.

Lemma 5.1. Let sh be a bounded nodal function with |sh(xi)| ≤ M for some M > 0.
Then, for any σ > 0,

∑
xi∈NIh

fi|sh(xi)| ≤ σ
N∑
k=0

µ(Ak), (5.1)

where

Ak := {xi ∈ NI
h : |sh(xi)| ≥ kσ},

µ(·) is given by (4.9), and N = dM/σe.
Remark 5.1. Roughly speaking, Lemma 5.1 gives a relation between Riemann and

Lebesgue sums. For example, if fi = hd for all i, then the left-hand side of (5.1) yields
a discrete Riemann integral of sh (“areas of vertical bars”), and the right-hand side is an
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A1

sh(x)

σ

2σ

M = Nσ

∑
xi∈NIh

fi|sh| ≤ σ
∑N
k=0 µ(Ak).

Fig. 5.1. A pictorial illustration of Lemma 5.1. Here, the measure µ(Ak) :=
∑
xi∈Ak fi. The summa-

tion
∑
xi∈NIh

fi|sh| can be viewed as the integral of |sh| with respect to measure the
∑
fiδxi (or the area

under the blue curve), and σµ(Ak) can be viewed as the area of rectangle with bases µ(Ak) and height σ.
The rectangles with base µ(A0) and µ(A1) are plotted in gray.

approximation of a discrete Lebesgue integral of sh (“areas of horizontal bars”); see Figure
5.

Proof. Set

Pk := {xi ∈ NI
h : kσ ≤ |sh(xi)| < (k + 1)σ}.

Then we clearly have

∑
xi∈NIh

fi|sh(xi)| =
N∑
k=0

∑
xi∈Pk

fi|sh(xi)| ≤
N∑
k=0

(k + 1)σµ(Pk).

We also have

Ak =

N⋃
m≥k

Pm,

and so, since the sets {Pk} are disjoint,

µ(Ak) =

N∑
m=k

µ(Pm).

Therefore

σ

N∑
k=0

µ(Ak) = σ

N∑
k=0

N∑
m=k

µ(Pm) = σ

N∑
k=0

(k + 1)µ(Pk) ≥
∑
xi∈NIh

fi|sh(xi)|.

5.1. Ideal Case. Now we are ready to prove the estimate in the case that the consis-
tency error (3.1) holds for all interior grid points.

Theorem 5.2. Let u be the solution of the Monge-Ampère equation (1.1). Assume
that ∣∣|∂Nhu(xi)| − fi

∣∣ ≤ Ch2+d for every node xi ∈ NI
h, (5.2)
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where Nhu is the interpolation of u on the nodal set Nh. Assume further that f is uniformly
positive on Ω. Then the error in the weighted W 2

p -norm satisfies

‖Nhu− uh‖W 2
f,p(NIh) ≤ C

{
h2| lnh| if p = 1,
h2/p if p > 1

provided that h is sufficiently small.
Proof. We start by setting vh = (1 − Ch2)1/dNhu, where the constant C > 0 is large

enough, but independent of h, to ensure that (cf. (5.2))

gi := |∂vh(xi)| = (1− Ch2)|∂Nhu(xi)| ≤ fi.

By a comparison principle (cf. Lemma 2.4), we have uh ≤ vh on NI
h, and we see that

|fi − gi| ≤ Ch2+d ∀xi ∈ NI
h (5.3)

due to the assumption (5.2). We also have gi ≥ Chd provided h is sufficiently small, and
|(vh −Nhu)(xi)| ≤ Ch2.

Note that

‖Nhu− uh‖W 2
f,p(NIh) ≤ ‖vh − uh‖W 2

f,p(NIh) + Ch2‖Nhu‖W 2
p (NIh)

Thus, to prove the theorem, it suffices to show that∑
xi∈NIh

fi|δe(vh − uh)(xi)|p ≤ C
{
h2| lnh| if p = 1,
h2 if p > 1.

Define the positive and negative parts of δe(vh − uh)(xi), respectively, as

δ+
e (vh − uh)(xi) = max{δe(vh − uh)(xi), 0},
δ−e (vh − uh)(xi) = max{−δe(vh − uh)(xi), 0}.

We shall prove ∑
xi∈NIh

fi|δ+
e (vh − uh)(xi)|p ≤ C

{
h2| lnh| if p = 1,
h2 if p > 1.

The estimate for the negative part can be proved in a similar fashion.
Due to the regularity assumption of u, a Taylor expansion shows that |δevh(xi)| ≤ C2

for all xi ∈ NI
h, where C2 > 0 depends on ‖u‖C1,1(Ω̄). Moreover, from the L∞ error estimate,

Proposition 3.2 and the assumption (2.1) that interior nodes are at least h/2 away from the
boundary, we deduce that

δ+
e (vh − uh)(xi) ≤ C∞ ∀xi ∈ NI

h,

where the constant C∞ > 0 depends on ‖u‖C3,1(Ω̄).

Let τk = C2k
1/ph2, and define the set

Ak := {xi ∈ NI
h, δ+

e (vh − uh)(xi) ≥ τk}.

By Lemma 5.1 with sh(xi) = |δ+
e (vh − uh)(xi)|p, σ = Cp2h

2p, and M = Cp∞, we obtain

∑
xi∈NIh

fi|δ+
e (vh − uh)(xi)|p ≤ Ch2p

µ(NI
h) +

Ch−2p∑
k=1

µ(Ak)

 . (5.4)
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We aim to estimate the measure of set µ(Ak). Due to the relations of the second order
difference and contact set given in Remark 4.1, we have Ak ⊂ Sεk = NI

h \Cεk with εk ∈ (0, 1)
satisfying τk = εk/(1− εk). Therefore, by the estimate (4.11) given in Proposition 4.1,

µ(Ak) ≤ µ(Sεk) ≤ Cf
τk
‖g1/d − f1/d‖`d(Cεk ) =

Cf
k1/ph2

‖g1/d − f1/d‖`d(Cεk ).

From the concavity of t → t1/d, we have (t + ε)1/d − t1/d ≤ d−1t1/d−1ε. Setting t = gi and
ε = fi − gi ≥ 0, we get

|f1/d
i − g1/d

i | = f
1/d
i − g1/d

i ≤ d−1g
1/d−1
i (fi − gi) ≤ Ch3

due to the consistency error (5.3) and the lower bound gi ≥ Chd. Consequently, we find
that

‖ f1/d − g1/d ‖`d(Cεk ) ≤ Ch2,

and therefore µ(Ak) ≤ C
k1/p

. Applying this bound in (5.4), we derive the estimate

∑
xi∈NIh

fi|δ+
e (uh − vh)(xi)|p ≤ Ch2p

Ch−2p∑
k=1

1

k1/p
≤ C

{
h2| lnh| if p = 1,
h2 if p > 1.

This completes the proof.
Remark 5.2. It is worth mentioning that the assumption on the consistency error (5.2)

holds for nodes bounded away from the boundary ∂Ω provided that u ∈ C3,1(Ω̄). However,
for nodes close to the boundary ∂Ω, such an estimate holds only for structured domain, such
as a rectangle domain; see Remark 3.2 and the first numerical experiment in Section 6. In
general, this estimate may not be true. In fact, Lemma 3.1 shows that the (relative) consis-
tency error, O(h) away from the boundary, is of order O(1). In the following subsection, we
take into account the lack of consistency in the boundary layer.

5.2. Estimate on general domain. We define the barrier nodal function

bh(xi) =

{
h2 if xi ∈ NI

h,

0 if xi ∈ NB
h ,

(5.5)

which will be used to “push down” the graph of the nodal interpolant of u and as such,
develop error estimates in a general setting.

Theorem 5.3. Let u ∈ C3,1(Ω̄) be the solution of the Monge-Ampère equation (1.1)
with 0 < λI ≤ D2u ≤ ΛI, and assume that the nodal set NI

h translation invariant and that
f is uniformly positive on Ω. Then the error in the weighted W 2,p-norm satisfies

‖Nhu− uh‖W 2
f,p(NIh) ≤ C

{
h1/p if p > d,

h1/d
(

ln
(

1
h

) )1/d
if p ≤ d,

where Nhu is the interpolation of u on the nodal set Nh and the constant C depends on
‖u‖C3,1(Ω̄), the dimension d, and the constant p.

Proof. We define the boundary layer:

Ωh := {xi ∈ NI
h,dist(xi, ∂Ω) ≤ Rh}, (5.6)
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where the constant R is the constant in the consistency error, Lemma 3.1, which depends
on the ellipticity constants λ and Λ of D2u. We set

vh = Nhu− Cbh, gi = |∂vh(xi)|, (5.7)

where the constant C > 0 is sufficiently large so that uh ≤ vh; see Proposition 3.2. It is
clear from the definition of bh that

|∂vh(xi)| = |∂Nhu(xi)| for any xi ∈ NI
h \ Ωh (5.8a)

and

|∂Nhu(xi)| ≥ |∂vh(xi)| ≥ 0 for any xi ∈ Ωh. (5.8b)

This implies that |fi − gi| ≤ Ch2+d in NI
h \ Ωh and |fi − gi| ≤ Chd in Ωh. We have that

|δevh(xi)| ≤ C2 and |δe(vh − uh)(xi)| ≤ C∞ for all xi ∈ NI
h. As in Theorem 5.2, we shall

prove the estimate for the positive part:∑
xi∈NIh

fi
(
δ+
e (vh − uh)(xi)

)p ≤ {Ch if p > d,

Ch ln
(

1
h

)
if p = d.

The estimate for the negative part can be proved in a similar fashion. Also note that the
estimate for p < d follows from the estimate of p = d and Hölder’s inequality:

‖Nhu− uh‖W 2
f,p(NIh) ≤ Cµ‖Nhu− uh‖W 2

d (NIh) where Cµ := µ(NI
h)1/p−1/d.

We set τk = C2k
1/ph and define the set

Ak := {xi ∈ NI
h,

(
δ+
e (vh − uh)(xi)

)
≥ τk}. (5.9)

Then, by similar arguments as in Theorem 5.2, we find by Lemma 5.1 that

∑
xi∈NIh

fi
(
δ+
e (vh − uh)(xi)

)p ≤ C2h
p

µ(NI
h) +

h−p∑
k=1

µ(Ak)

 . (5.10)

To estimate the measure of set µ(Ak), we note that Ak ⊂ Sεk = NI
h \ Cεk with τk =

εk/(1 − εk). Invoking the estimate of the measure of the non-contact set Sε stated in
Proposition 4.1, we obtain

µ(Ak) ≤ µ(Sεk) ≤ ντk(Cεk)− µ(Cεk).

We then divide the estimate of ντk(Cεk)− µ(Cεk) into two parts:

ντk(Cεk)− µ(Cεk) =
∑

xi∈Cεk

[(
f

1/d
i +

1

τk
e

1/d
i

)d
− fi

]

=

 ∑
xi∈Cεk∩Ωh

+
∑

xi∈Cεk\Ωh

[(f1/d
i +

1

τk
e

1/d
i

)d
− fi

]
,

where we recall that e
1/d
i = f

1/d
i − g1/d

i . Since f
1/d
i = O(h) and g

1/d
i = O(h), we have∣∣∣∣∣

(
f

1/d
i +

1

τk
e

1/d
i

)d
− fi

∣∣∣∣∣ ≤ d

τk
max{

∣∣f1/d
i +

1

τk
e

1/d
i

∣∣, f1/d
i }

d−1|e1/d
i |

≤ Chd−1

τdk
|e1/d
i |.
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In the set Cεk ∩Ωh, the consistency error satisfies |e1/d
i | = O(h); see Lemma 3.1. There-

fore, we have ∣∣∣∣∣
(
f

1/d
i +

1

τk
e

1/d
i

)d
− fi

∣∣∣∣∣ ≤ Chd

τdk
∀xi ∈ Cεk ∩ Ωh.

On the other hand, in the set Cεk \Ωh, we conclude as in Theorem 5.2, that |e1/d
i | = O(h3),

and ∣∣∣∣∣
(
f

1/d
i +

1

τk
e

1/d
i

)d
− fi

∣∣∣∣∣ ≤ Ch2+d

τdk
.

Combining both estimate and applying the fact that #(Cεk ∩Ωh) ≤ Ch1−d and #(Cεk \
Ωh) ≤ Ch−d, we obtain

ντk(Cε)− µ(Cε) ≤
Ch

τdk
+
Ch2

τdk
≤ Ch

τdk

because h ≤ 1. Hence, we conclude that

µ(Ak) ≤ Ch

τdk
.

Applying this estimate to (5.10), we arrive at

∑
xi∈NIh

fi|δ+
e (vh − uh)(xi)|p ≤ C2h

p
h−p∑
k=1

h

hdkd/p
.

Since

h−p∑
k=1

1

kd/p
≤

{
C(d, p)hd−p if p > d,

C ln
(

1
h

)
if p = d,

we conclude that ∑
xi∈NIh

fi|δ+
e (vh − uh)(xi)|p ≤

{
Ch if p > d,

Ch ln
(

1
h

)
if p = d.

This completes the proof.

5.3. Estimate for solutions with less regularity. In this subsection, we exploit
our stability estimate established in section 4 and show that it may be possible to apply the
arguments given in the previous sections to solutions with low regularity, in particular, with
regularity lower than C3,1(Ω̄). We show this by means of an example, which is a modification
of the test problem in the numerical experiments below.

Set the domain Ω to be a unit ball centered at 0 in R2, and define

p(x) = (|x| − 1/2)+, u(x) =
1

2
p(x)2 +

1

2
|x|2 − 5

8
. (5.11)

It is easy to see that u ∈W 2
∞(Ω), but u 6∈ C2(Ω), and therefore the hypotheses of Theorem

5.3 do not hold. Nonetheless, we are still able to prove a error estimate with the same rate
established in the theorem.
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Theorem 5.4. Let Ω ⊂ R2 be the unit ball, and let u ∈W 2
∞(Ω), defined by (5.11), be

the solution to the Monge-Ampère problem. Let uh be the solution of the Oliker-Prussner
method. Then there holds

‖Nhu− uh‖W 2
f,2(NIh) ≤ Ch1/2

(
ln(

1

h
)
)1/2

.

Proof. Our goal is to find a nodal function vh satisfying the following three conditions:

uh(xi) ≤ vh(xi) for all nodes xi ∈ Nh, (5.12a)

‖e‖d`d(NIh) = O(h), where e
1/2
i := (|∂vh(xi)|1/2 − |∂uh(xi)|1/2)+, (5.12b)

‖vh −Nhu‖2W 2
f,2(NIh) = O(h). (5.12c)

With such a function vh, we can show by the same arguments in the previous theorem that∑
xi∈NIh

fi
(
δ+
e (vh − uh)(xi)

)2 ≤ Ch(ln(
1

h
)

)
.

The bound for the negative component of the error can be proved in a similar way. We
construct the nodal function vh in three steps.

Step One. We define

ph(x) =
(
|x| − 1/2− 2Rh

)+
, and set uh(x) =

1

2
ph(x)2 +

1

2
|x|2 −

(
1

2
+

1

2
(
1

2
− 2Rh)2

)
,

where R > 0 is defined in Lemma 3.1. We assume that h is sufficiently small so that
1/2 − 2Rh ≥ 0, implying that ph = 1/2 − 2Rh on ∂Ω. It is then easy to check that
u = uh = 0 on ∂Ω.

We first show that D2uh ≤ D2u for all x ∈ Ω. To do so, we divide the unit ball into
three regions

{|x| ≤ 1/2}︸ ︷︷ ︸
=:D1

∪{1/2 ≤ |x| ≤ 1/2 + 2Rh}︸ ︷︷ ︸
=:D2

∪{1/2 + 2Rh ≤ |x| ≤ 1}︸ ︷︷ ︸
=:D3

.

By direct calculation, we immediately have

D2u = I in D1, and D2u = I +D2(p2) in D2 ∪D3,

while

D2uh = I in D1 ∪D2, and D2uh = I +D2
(
(ph)2

)
in D3.

Since p(x)2 is a convex function in Ω and D2(p2) ≥ 0, we obtain

D2uh ≤ D2u in D1 ∪D2.

Next, we show that D2uh ≤ D2u in D3. Since ∇|x| = x
|x| , we obtain for all |x| ≥ 1/2+2Rh,

∇u(x) = x+ (|x| − 1/2)
x

|x|
= 2x− 1

2

x

|x|
,

D2u(x) = 2I − |x|
2I − x⊗ x

2|x|3
.
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Similarly,

D2uh(x) = 2I −
(

1

2
+Rh

)
|x|2I − x⊗ x

|x|3
.

Hence, we get

D2u−D2uh = 2Rh
|x|2I − x⊗ x

|x|3︸ ︷︷ ︸
=:A(x)

≥ 0, and A(x) ≤ 2|x|−1RhI ≤ 4RhI in D3,

and thus, D2u ≥ D2uh in D3 as desired.
Moreover, a direct calculation shows that

‖D2(u− uh)‖2L2(Ω) =

∫
D2

|D2(p2)|2dx+

∫
D3

|(2Rh)A(x)|2dx = O(h). (5.13)

Step Two. Let bh be defined by (5.5), and set wh = Nhu
h−Cbh. Since uh is a quadratic

polynomial in D1∪D2, and the adjacent set of xi ∈ D1∩NI
h is contained in D1∪D2 (see [26,

Lemma 5.3] for details), and |∂uh(xi)| = fi =
∫

Ω
f(x)φi(x)dx =

∫
Ω

det(D2u(x))φi(x)dx, we
have for any xi ∈ D1 ∩Nh

|∂wh(xi)| =
∫

Ω

det(D2uh)(x)φi(x)dx =

∫
Ω

f(x)φi(x)dx = |∂uh(xi)|.

For nodes xi ∈ (D2 ∪D3) ∩Nh, we have

|∂wh(xi)| = |∂Nhuh(xi)| ≤ |∂Nhu(xi)|

because D2uh(x) ≤ D2u(x) for all x ∈ BRh(xi). By Lemma 3.1 (consistency error), we
obtain

|∂Nhu(xi)| = h2 det(D2u)(xi)± O(h4) = |∂uh(xi)| ± O(h4)

for all nodes xi ∈ (D2 ∪ D3) ∩ Nh and dist(xi, ∂Ω) ≥ Rh. To deal with the consistency
error at nodes dist(xi, ∂Ω) ≤ Rh, we note that for the constant C large enough, the second
difference

δewh(xi) = δeu
h(xi)− Cδebh(xi) ≤ 0

where e = ∇d(xi) and d(x) = dist(x, ∂Ω). This implies that |∂wh(xi)| = 0 at xi close to
the boundary (dist(xi, ∂Ω) ≥ Rh) with sufficiently large constant C.

Combining all these estimates, we get

r
1/2
i :=

(
|∂wh(xi)|1/2 − |∂uh(xi)|1/2

)+

= 0 for all xi ∈ D1 ∩Nh,

and

r
1/2
i =

|∂wh(xi)| − |∂uh(xi)|
|∂wh(xi)|1/2 + |∂uh(xi)|1/2

≤ O(h3) for all xi ∈ (D2 ∪D3) ∩Nh.

By a discrete Alexandroff estimate [26, Proposition 4.3], we have

sup(wh − uh)− ≤ C‖r‖`2(Nh) ≤ Ch2. (5.14)
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Let vh = wh − Cbh. From the estimate (5.14), there holds uh ≤ vh for all xi ∈ Nh, i.e., the
first condition (5.12a) is satisfied.

Step Three. To verify (5.12b), we set

fi =

∫
Ω

det(D2u)(x)φi(x)dx and fhi =

∫
Ω

det(D2uh)(x)φi(x)dx.

Since ‖D2(u− uh)‖2L2(Ω) = O(h), we have ‖f1/2
i − (fhi )1/2‖2

`2(NIh)
= O(h). On the other

hand, we have

‖ |∂wh(xi)|1/2 − (fhi )1/2 ‖2`2(NIh) = O(h)

by Lemma 3.1 (consistency error). It then follows that ‖e‖2
`2(NIh)

= O(h), i.e., (5.12b) is

satisfied.
Step Four. It remains to verify (5.12c). Since vh = Nhu

h − Cbh by definition,

‖vh −Nhu‖W 2
f,2(NIh) ≤ C‖bh‖Wf,2(NIh) + ‖Nhuh −Nhu‖W 2

f,2(NIh)

≤ C‖bh‖W 2
f,2(NIh) + C‖D2(uh − u)‖L2(Ω)

≤ O(h1/2) +O(h1/2)

where the estimate of ‖D2(uh − u)‖L2(Ω) follows from (5.13). This completes the proof.

6. Numerical experiments. In this section, we perform numerical examples to illus-
trate the accuracy of the method, and to compare the results with the theory. In the tests,
we replace the homogeneous boundary condition (1.1b) with u = g on ∂Ω. For simplicity,
we carry out numerical experiments on a box, instead of a strictly convex domain. The
theoretical results developed in the previous sections can be applied to this slightly more
general problem with minor modifications.

We consider three different test problems, each reflecting different scenarios of regularity.
Each set of problems is performed in two dimensions (d = 2), and errors are reported in the
(discrete) L∞, H1, W 2

1 , and W 2
2 norms. Here, a nine-point stencil is used in the definition

of the W 2
p norms with e1 = (1, 0), e2 = (0, 1), e3 = (1, 1) and e4 = (1,−1). That is, with an

abuse of notation, we set

‖v‖p
W 2
p (NIh)

=

4∑
j=1

∑
xi∈NIh

|δejv(xi)|p.

As explained in [26] and in Section 2.2, a convex nodal function induces a triangulation of
Ω whose set of vertices corresponds to Nh. For a computed solution uh, we associate with
it a piecewise linear polynomial on the induced mesh, which we still denote by uh, and use
the quantity ‖u− uh‖H1(Ω) to denote the H1 error in the experiments below.

A summary of the theoretical results in Sections 2.3 and 5 when d = 2 are

‖Nhu− uh‖L∞(NIh) = O(h2), ‖Nhu− uh‖W 2
p (NIh) = O(h1/2−ε), p = 1, 2

for any ε > 0, provided that u ∈ C3,1(Ω̄).

Example I: Smooth Solution u ∈ C∞(Ω̄). We consider the example

u(x, y) = e
x2+y2

2 , f(x, y) = (1 + x2 + y2)ex
2+y2 , and Ω = (−1, 1)2, (6.1)
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and list the resulting errors and rates of the scheme in Table 6. The Table clearly shows
that the errors decay with rate O(h2) in all norms. This behavior matches the theoretical
results of Proposition 3.2, but indicates that the W 2

2 estimates stated in Theorem 5.2 may
not be sharp. This numerical experiment is done on a laptop with a single core processor of
2.90 GHZ. To compute on the finest mesh in this table with approximately 16k degrees of
freedom, it takes approximately 85 seconds.

h L∞ rate H1 rate W 2
1 rate W 2

2 rate
1 1.12e-01 0.00 2.24e-01 4.49e-01 1.44e+01
1/2 4.78e-02 1.23 1.35e-01 0.73 6.02e-01 -0.42 4.24e-01 5.08
1/4 1.37e-02 1.80 4.35e-02 1.63 2.94e-01 1.03 1.93e-01 1.13
1/8 3.55e-03 1.95 1.16e-02 1.91 9.93e-02 1.57 6.34e-02 1.61
1/16 8.96e-04 1.99 2.94e-03 1.98 2.86e-02 1.80 1.80e-02 1.82
1/32 2.24e-04 2.00 7.39e-04 1.99 7.66e-03 1.90 4.79e-03 1.91
1/64 5.61e-05 2.00 1.85e-04 2.00 1.98e-03 1.95 1.24e-03 1.95

Table 6.1
Rate of convergence for a smooth solution (Example I).

Example II: Piecewise Smooth Solution u ∈W 2
∞. In this example, the domain is

Ω = (−1, 1)2, and the exact solution and data are taken to be

u(x) =

{
2|x|2 in |x| ≤ 1/2,
2(|x| − 1/2)2 + 2|x|2 in 1/2 ≤ |x|,

f(x) =

{
16 in |x| ≤ 1/2,
64− 16|x|−1 in 1/2 ≤ |x|.

This is essentially the example we consider in Theorem 5.4. A simple calculation shows that
u ∈ C1,1(Ω̄) and u ∈ C4(Ω \ ∂B1), but u 6∈ C2(Ω̄). The errors and rates of convergence are
given in Table 6. The table shows that, while all errors tend to zero as the mesh is refined,
the rates of convergence in the L∞ and W 2

1 norms are less obvious than the previous set of
experiments. Nonetheless, while Theorem 5.3 assumes more regularity of the exact solution,
we do observe a convergence rate of approximately O(h1/2) in the W 2

2 as stated in the
Theorem 5.4. It takes approximately 150 seconds to compute the solution on the finest
mesh with approximately 16k degrees of freedom.

h L∞ rate H1 rate W 2
1 rate W 2

2 rate
1 4.02e-01 0.00 8.04e-01 0.00 1.61 0.00 1.61 0.00
1/2 4.19e-02 3.26 1.30e-01 2.63 6.08e-01 1.40 5.39e-01 1.58
1/4 2.89e-02 0.53 6.84e-02 0.92 6.46e-01 -0.09 5.54e-01 -0.04
1/8 1.27e-02 1.18 3.50e-02 0.97 5.14e-01 0.33 4.54e-01 0.29
1/16 4.58e-03 1.47 1.38e-02 1.34 2.76e-01 0.90 3.15e-01 0.53
1/32 8.02e-04 2.51 3.59e-03 1.94 1.08e-01 1.35 2.08e-01 0.60
1/64 4.33e-04 0.89 1.50e-03 1.26 6.36e-02 0.77 1.56e-01 0.42

Table 6.2
Rate of convergence of piecewise smooth viscosity solution (Example II).
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Example III: Singular Solution u ∈ W 2
p with p < 2. In the last series of experi-

ments, the domain is Ω = (−1, 1)2, and the solution and data are

u(x) =

{
x4 + 3

2y
2/x2 in |y| ≤ |x|3,

1
2x

2y2/3 + 2y4/3 in |y| ≥ |x|3,

f(x) =

{
36− 9y2/x6 in |y| ≤ |x|3,
8
9 −

5
9x

2/y2/3 in |y| > |x|3.

This example is constructed in [30] to show that D2u(x) may not be in W 2
p for large p for

discontinuous f . The errors of the method for this problem are listed in Table 6. Because the
exact solution does not enjoy W 2

2 regularity, it is not expected that the discrete solution will
converge in the discrete W 2

2 norm, and this is observed in the table. However, we do observe
convergence in the L∞, H1, and W 2

1 norms with approximate rates ‖Nhu − uh‖L∞(NIh) =

O(h4/3), ‖Nhu− uh‖H1(NIh) = O(h), and ‖Nhu− uh‖W 2
f,1(NIh) = O(h1/2). Finally, we would

like to mention that it takes approximately 150 seconds to compute the solution on the finest
mesh with approximately 4k degrees of freedom.

h L∞ rate H1 rate W 2
1 rate W 2

2 rate
1 8.36e-01 0.00 1.67 0.00 3.35 0.00 3.35 0.00
1/2 2.34e-01 1.84 9.11e-01 0.88 5.48 -0.71 3.94 -0.24
1/4 1.86e-01 0.33 4.80e-01 0.92 4.90 0.16 4.02 -0.03
1/8 8.52e-02 1.13 2.41e-01 1.00 4.00 0.29 3.94 0.03
1/16 3.41e-02 1.32 1.02e-01 1.24 2.38 0.75 3.33 0.24
1/32 1.35e-02 1.34 4.79e-02 1.09 1.59 0.58 3.17 0.07

Table 6.3
Rate of convergence of W 2

p solution with p < 2 (Example III).
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[21] Q. Mérigot, A multiscale approach to optimal transport, Computer Graphics Forum, Wiley, 30(5):1584–
1592, 2011.

[22] J. M. Mirebeau, Discretization of the 3D Monge-Ampère operator, between wide stencils and power
diagrams, ESAIM Math. Model. Numer. Anal., 49(5):1511–1523, 2015.

[23] M. Neilan, Quadratic finite element approximations of the Monge-Ampère equation J. Sci. Comput.,
54(1):200–226, 2013.

[24] M. Neilan, A. Salgado and W. Zhang Numerical analysis of strongly nonlinear PDEs Acta Numer.,
26:137–303, 2017.

[25] R. H. Nochetto and W. Zhang, Discrete ABP estimate and convergence rates for linear elliptic equations
in non-divergence form, Found. Comput. Math., to appear.

[26] R. H. Nochetto and W. Zhang, Pointwise rates of convergence for the Oliker–Prussner method for the
Monge-Ampère equation, arXiv:1611.02786, 2017.

[27] A. M. Oberman, Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and
functions of the eigenvalues of the Hessian, Discrete Contin. Dyn. Syst. Ser. B, 10:221–238, 2008.

[28] V. I. Oliker and L. D. Prussner, On the numerical solution of the equation (∂2z/∂x2)(∂2z/∂y2) −
((∂2z/∂x∂y))2 = f and its discretizations. I. Numer. Math., 54:271–293, 1988.

[29] N. S. Trudinger, X.-J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface
equations, Ann. of Math., 2(167):993–1028, 2008.

[30] X.-J. Wang, Some counterexamples to the regularity of Monge-Ampère equations, Proceedings of the
American Mathematical Society, 123(3):841–845, 1995.

[31] W. Zhang, L∞-error estimate of a geometric method applied to the Monge-Ampère equations, In
preparation.


