RATES OF CONVERGENCE IN WE-NORM FOR THE MONGE-AMPERE
EQUATION
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Abstract. We develop discrete Wg—norm error estimates for the Oliker-Prussner method applied to the
Monge-Ampere equation. This is obtained by extending discrete Alexandroff estimates and showing that
the contact set of a nodal function contains information on its second order difference. In addition, we show
that the size of the complement of the contact set is controlled by the consistency of the method. Combining
both observations, we show that the error estimate
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where || - ||Wf2.p(N£) is a weighted W2-type norm, and the constant C' > 0 depends on llullgs.i(q), the

dimension d, and the constant p. Numerical examples are given in two space dimensions and confirm that
the estimate is sharp in several cases.

1. Introduction. In this paper we develop discrete VVp2 error estimates for numerical
approximations of the Monge-Ampeére equation with Dirichlet boundary conditions:

det(D*u) = f  inQ, (1.1a)
u=0 on 012, (1.1b)

with given function f € C(Q) satisfying f < f < f in €, for some positive constants f, f.
Here, D?u denotes the Hessian matrix of . The domain  C R? is assumed to be bounded
and uniformly convex. We seek a solution to (1.1) in the class of convex functions, which
ensures ellipticity of the problem and its unique solvability [16].

Because of its wide array of applications in e.g., differential geometry, optimal mass
transport, and meteorology, several numerical methods have been developed for the Monge-
Ampere problem. These methods can be roughly divided into two categories, namely, mono-
tone methods and non-monotone methods. The monotone methods include finite difference
schemes [27, 15, 7, 22] and semi-Lagrangian schemes [14]. The convergence of this class of
methods requires minimal regularity of the true solution, and the theoretical tools are based
on discrete maximum/comparison principles and the theory developed in the foundational
work [4, 19]. On the other hand, while this framework is robust with respect to the (lack
of) smoothness of the solution, these convergence results often come without explicit rates,
and empirical evidence suggests that these methods are low-order. In addition to theoreti-
cal convergence results, nonlinear solvers (e.g., Picard, Perron, and Howard iterations) have
been constructed and analyzed which are robust with respect to the initial guess [26, 27, 14].

For the non-monotone methods, their convergence is proved provided that the exact
solution is sufficient regular (e.g., H?-regularity) and the mesh sufficiently fine; however,
numerical evidence suggests that this regularity restriction might not be needed in practice.
In addition, nonlinear solvers (e.g., Newton’s method) only converge provided the initial
guess is sufficiently close to the exact discrete solution. These methods are generally higher
order and relatively easy to implement on existing computing software. Examples of non-
monotone methods are finite element type methods such as the vanishing moment method
[13], C* finite element methods [6, 3], and C° penalty methods [8, 23, 2]. We also refer the
interested reader to a review of numerical methods for fully nonlinear elliptic equations [24].
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The method we analyze in this paper is due to Oliker and Prussner [28, 7, 22] for the
Monge-Ampere problem, and a variant of it is applied to the optimal transport problem in
[1, 21, 17]. The method falls into the category of monotone methods and it is based on a
geometric notion of generalized solutions called Alexandroff solutions. In this setting, the
determinant of the Hessian matrix of w in (1.1a) is interpreted as the measure of the sub-
differential of u; see [16]. The method proposed in [28] simply poses this solution concept
onto the space of nodal functions and enforces the geometric condition implicitly given in
(1.1a) at a finite number of points. Namely, the method seeks a nodal function u;, satisfying
the Dirichlet boundary conditions on boundary nodes, and

|Oup (z3)| = fi

at all interior grid points x;. Here, Oup(x;) denotes the sub-differential of uy at x;, |- | is
the d-dimensional Lebesgue measure, f; ~ h?f(x;), and h is the mesh parameter. Existence
and uniqueness of the method, and convergence to the Alexandroff solution is shown in [28].

While the convergence of monotone methods are ensured under the framework in [4, 19],
the study of rate of convergence of these methods remains largely open for the Monge-
Ampere equation. Recently, a pointwise error estimates of the Oliker-Prussner scheme is
established in [26] and a coming paper [31]. There it is shown that, if the exact convex
solution to (1.1) is sufficiently smooth, and if the nodes are translation invariant, then
the error is of (optimal) order O(h?) in the L..-norm. We note that standard scaling
arguments based on this estimate yields O(1) errors in Wg, i.e., no convergence. Generalities
of these L., estimates, depending on solution regularity, are also given in [26]. However,
in many applications, the variable of primary interest is the gradient map Vu, instead the
scale function u. For example, for the optimal transport problems, the gradient Vu yields
the optimal mapping which minimizes the La-cost to transport one measure to another.
Therefore, it is desirable to get an error estimate for w in a W;—norm. While one might derive
the W, estimate for the Lo error estimate by a inverse inequality and obtain ||u—uy, Wi <
O(h), such an estimate is suboptimal as observed by numerical experiments; see section
6. Recently H' error estimates with rate O(h'/?) have been established for the optimal
transport problem in [5]. The arguments given there are quite different from ours.

Our contribution in this paper is to develop a discrete Wg error estimates for all p €
[1,00). The idea is inspired by the PDE work [10, 12]. Let

v(x; + he) — 2v(z;) + v(z; — he)
le]2h2 ’

dev(xm;) :=

be the second-order difference operator of a nodal or continuous function v in the direction
e € Z* at a node z;, where |e| denotes the Euclidean norm of e. The (weighted) W 2-norm
of a nodal function v with respect to direction e on a set of nodes S is given by

1/p
. , [P
lellws ) = (D Fildeo(z)l)
z, €S
with f; given by (2.7). The main result of the paper, precisely given in Theorem 5.3, is the
estimate
| I - Chl/p if p>d,

u—u 2 1
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Similar to the arguments in [26], operator consistency of the method is one of the result we
use. However, as Alexandroff maximum principles are inherently restricted to the L..-norm,



VVP2 estimate of the Monge-Ampére equation 3
there is no hope that the techniques given in [26] will yield error estimates in W7. Instead, we
first make an observation that the contact set of a nodal function contains useful information
about its second-order difference, Lemma 4.1. Based on this observation, we establish the
key stability result in Proposition 4.1 and show that the size of the complement of the contact
set is controlled by the consistency error of the method. Along with a decomposition of nodal
functions in terms of its level sets (Lemma 5.1), we use these technical tools to construct
the W[? error estimates stated above.

Another application of our results is to combine the Oliker-Prussner method with a
higher-order scheme. The aforementioned convergence results of higher order scheme given
in [23] requires the initial guess and the exact solution are sufficiently close in a sz—norm.
The Oliker-Prussner scheme, as we prove in this paper, can be used as a convergent initial
guess within a higher-order scheme. We will explore this idea in a coming paper. We
mention that the solution of the Oliker-Prussner method can be solved by introducing a
suitable triangulation of the nodal set and by applying Newton’s iteration. At each iteration
k > 1, the triangulation may be altered to ensure that the piecewise linear interpolation of
the nodal solution u} is convex. The procedure of changing triangulation is completely local
and can be efficiently implemented. We refer to [26] for these implementation details and
to [18] for alternative nonlinear solvers.

The organization of the paper is as follows. In the next section, we state the Oliker-
Prussner method and state some preliminary results. In Section 3 we give operator consis-
tency results of the scheme. Section 4 gives stability results with respect to the second-order
difference operators, and in Section 5 we provide Wp2 error estimates. Finally, we end the
paper with some numerical experiments in Section 6.

2. Preliminaries.

2.1. Nodal Set and Nodal Function. Let N, be a set of nodes in the domain .
We denote the set of interior nodes NI := Nj, N, the set of boundary nodes .’Nf = N, NN,
and the nodal set

N, = NLUNB,

To ensure that the interior node is not too close to the boundary 02, we require that
: h 1
dist(z, 082) > B for any nodes z € Nj. (2.1)

Such a nodal set can be obtained by removing the nodes whose distance to 0 is less than
h/2. We assume that the nodal set is translation invariant, i.e., there exist a point b € R4
and a basis {e;}¢_; in R? such that any interior node 2z € N} can be written as

d
z=0b+ Z hz;e; for some integers z; € Z. (2.2)
i=1

Since the basis e; can be transformed into the canonical basis in R? under a linear transfor-
mation, hereafter to simplify the presentation, we will assume that N7 = b+ hZ?. We also
make the following additional assumption on the boundary nodal set NZ:

dist(z, NPy < h/2,  Vz €. (2.3)

We say the nodal spacing of Ny is h. It is worth mentioning that one can construct a
translation invariant Ny, on a curved domain €. In fact, for a nodal set N}, to be translation
invariant, we only require the interior nodal set NI satisfies (2.2), while no such requirement
is made on the boundary nodes.
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Fic. 2.1. Left: The graph of the convex envelope of a nodal function on a coarse (top) and fine (bottom)
grid. Right: The convex hulls of the piecewise gradients of the convex envelopes on the respective grids.
These polygonal cells characterize the subdifferential of the nodal function.

Associated with the nodes is a simplicial triangulation T}, with vertices Nj,. We denote
by hr the diameter of T' € T}, and by pr the diameter of the largest inscribed ball in T'.
We assume that that the triangulation is shape-regular, i.e., there exists ¢ > 0 such that
hr

— <o VT € Ty,.
%

We denote by {¢;}7,, with n = #N}IL, the canonical piecewise linear hat functions
associated with T;,. Namely, the function ¢; € C(Q) is a piecewise linear polynomial with
respect to T, and is uniquely determined by the condition ¢;(z;) = J; ; (Kronecker delta)
for all z; € N and ¢;(z;) = 0 for all z; € NP. We denote by w; the support of ¢;, i.e., the
patch of elements in Tj, that have z; as a vertex.

A function defined on Ny, is called a nodal function, and we denote the space of nodal
functions by M. For a nodal function g with values {g;}.,en,, and for a subset of nodal
points € C Ny, we set the discrete ¢¢ norm as

1/d
lgllescey == (D laal”)

x,€C

We say that a nodal function uj, € M, is convex if, for all z; € N1, there exists a supporting
hyperplane L of uy, i.e.,

L(z;) <up(z;) Vo € Ny and L(z;) = u(x;).
The convex envelope of uy, is the function T'(uy) € C(Q) given by

[(up)(z) = s%p{L(x) is affine : L(z;) < up(z;) Ya; € Np}.

Finally, we denote by Nj, : C(Q) — M, the nodal interpolant satisfying Npv(z;) = v(;) for
all x; € Nj,. It is easy to see that if v is a convex function on 2, then Njv is a convex nodal
function.
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2.2. The Oliker-Prussner Method. To motivate the method introduced in [28], we
first introduce the notion of an Alexandroff solution to the Monge-Ampeére equation (1.1).
To this end, note that if the solution to (1.1) is strictly convex, and if u € C?(Q), then a
change of variables reveals that

/ fdx = / det(D*u) dx = / dx = |Vu(E)| for all Borel E C Q,
E E Vu(E)

where |Vu(FE)| denote the d-dimensional Lebesgue measure of Vu(E) = {Vu(x) : z € E}.
To extend this identity to a larger class of functions, we introduce the subdifferential of the
function u at the point zg as

ou(xo) = {p € RY: wu(x) > u(wo) +p- (x — o) VoeQl

Thus, Ou(zo) is the set of supporting hyperplanes of the graph of u at xg. If u is strictly
convex and smooth then du(zg) = {Vu(zg)}, and the same calculation as above shows that

/ fdz =|0u(E)| for all Borel E C Q. (2.4)
E

DEFINITION 2.1. A conver function u € C(f) is an Alexandroff solution to (1.1)
provided that uw =0 on 0Q and (2.4) is satisfied.

The method introduced in [28] simply poses this solution concept onto the space of
nodal functions. To do so, the definition of the subdifferential is extended to the spaces of
nodal functions in the natural way:

Qup(z;) = {p € R : w(w;) > up(z;) +p- (x; — x;) Vo; € Ny} (2.5)

The subdifferential of a convex nodal function u;, defined above is simple to characterize.
The convex function I'(up) is continuous and piecewise linear with respect to a simplicial
partition of 2. The sub-differential Ju;, at a node z is just the convex hull of the piecewise
gradients VI'(uy)|r for all simplices T that have z as a vertex; see Figure 2.1 for a pictorial
description and [25, 24] for further details. Thus, the subdifferential du; can be viewed as
a map between the nodes and these polytopal cells.

The discrete method is to find a convex nodal function u; with u;, = 0 on Nf and

|Oup ()| = fi Va; € Nj, (2.6)

where
fi= /Q F(@)i(x) da = / Fwyota) de (2.7)

REMARK 2.1. Existence and uniqueness of a solution to (2.6) is given in [28, 26].

2.3. Brunn Minkowski inequality and subdifferential of convex functions.
In this subsection, we develop a few techniques which will be useful in establishing the
error estimate. We start with the celebrated Brunn Minkowski inequality which relates the
volumes of compact sets of R%.

PROPOSITION 2.1 (Brunn Minkowski inequality).  Let A and B be two nonempty
compact subsets of R¢ for d > 1. Then the following inequality holds:

|A+ B[ > [A]Y 4 | B,
where A + B denotes the Minkowski sum:
A+B:={v+wecR:veAandwc B}
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Next, we make the following observation on the sum of two subdifferential sets.
LEMMA 2.2 (Lemma 2.3 in [26]). Let uj, and vy, be two convex nodal functions. Then
there holds

Oup (x;) + Ovp (i) C Oup + vp)(x;)

for all x; € N,Il.
Proof. Let p; and ps be in Qup(x;) and Ovp(x;), respectively. By the definition of
subdifferential (2.5), we have

up(z;) —up(z;) Vr; € Np,
vh(wj) — Uh(xi) VLL'j € Np.
Adding both inequalites, we obtain
(p1+p2) - (xj — @) < (un + vn)(@;) — (un +on)(@:) Va; € Np.

This shows that p1 + pa € O(up, + vp)(x;). O

Combining both estimates, we derive the following result.

LEMMA 2.3.  Let up and vy be two conver nodal functions defined on Ny, and Cp, be
the lower contact set of (up, — vp):

Cp = {x; € Nj + T(up —vp)(@i) = (up — v) (i)}
Then for any node x; € Cy,,

0T (un — o) (@) /4 < |Oup (i)Y — |Oop ()| /. (2.8)

Proof. The proof of this result is implicitly given in [26, Proposition 4.3], but we give it
here for completeness.
The definition of the convex envelope and the subdifferential shows that

Ol (up, — vp)(x;) C O(up — vp)(x;)
for all z; € C;,. Applying Lemma 2.2 then yields
Ovp(x;) + 0T (up, — vp)(z;) C Oup(x;) + O(up — vp) () C Qup ().
An application of the Brunn-Minkowski inequality (cf. Lemma 2.1) gets
|Oun (i) V4 + 10T (up, — vn) ()| < |00 (2:) + OT (wp, — vn) (w:)]
< [Qun ().

Rearranging terms we obtain (2.8). O

We also note that the numerical method (2.6) has a discrete comparison principle. Here,
we refer to [26] for a proof.

LEMMA 2.4 (discrete comparison principle, Corollary 4.4 in [26]).  Let vy, wp € My,
satisfy vp(z;) > wp(z;) for all x; € NP and |0vy ()| < |Owp ()| for all z; € NI. Then

vp(x;) > wp(z;) V; € Np.
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3. Consistency of the Oliker-Prussner method. In this section, we state the con-
sistency of the method (2.6) given in [31]. The result shows that the relative consistency
error is of order O(h?) away from the boundary and of order O(1) in a O(h) region of the
boundary.

LeEmMMA 3.1.  Let Ny be translation invariant nodal set defined on the domain Q. If
u e Ck’a(Q) is a convex function with 0 < A\ < D?u < AT and 2 < k + o < 4, there holds,
for dist(z;,00) > Rh,

[[ONpu(;)| — f;| < CRFFotd=2) (3.1)
where R depends on X\ and A. Moreover, there holds for dist(x;,0Q) < Rh,

|ONpu(z;) — fi| < Che.

REMARK 3.1. The regularity of f and 0X), the strict convexity of ), and the positivity
of f guarantees that the convex solution to (1.1) enjoys the regularity u € C**(Q). For
example, if f € C*=2%(Q) and Q is smooth, then the solutions satisfies u € C**(Q) [16, 9,
29]

REMARK 3.2. We note that if the boundary nodes also form part of the reqular lattice
(e.g., on a rectangular domain/lattice), then the consistency estimate could hold up to the
boundary, i.e., in this case estimate (3.1) holds for all x; € Ny,.

Thanks to the consistency error of the method, Lemma 3.1, an L,-error estimate is
derived in [26, 11] which states

PROPOSITION 3.2.  Let Q be uniformly convex and N} be translation invariant. Suppose
further that the boundary nodes satisfy (2.1), that f > f > 0, and that the convex solution
to (1.1) satisfies u € C**(Q) for some 2 < k+a <4 and 0 < \I < D?>u < AI. Then the
numerical solution to the discrete Monge-Ampére equation (2.6) satisfies

[un — Nuullz o0, < CPFF72 [l ore g

where ||vp L (N,) = Maxe,en, [vn(z)].

We note that if u € C31(Q), then the optimal order of the L., error is O(h?). By
this L, error estimate and the assumption (2.1) that the boundary node is at least h/2
away from the boundary, we immediately deduce that |6 (Npu — up)(z;)| is bounded. This
observation will be useful in the following sections when we investigate the discrete Wg error
estimate.

4. Stability of the second order difference of the Oliker-Prussner method.
Given two solutions w, and vy, of the discrete Monge-Ampere equations

|Oup(z;)] = fi and |Ovp(x;)| =¢; with up =v, =0 on 99,

our goal in this section is to control the second order difference of the error function vy, —up,

in terms of the consistency error fil/ 4_ gi1 /? We define a set of relative error 7 as

E. = {a:z € Ny, de(vp — up)(x;) > 7é.vp(x;) for some vector e € Zd} .

The main result of the section is to show that a measure of E; is controlled by the consistency
error il/d — gil/d in ¢%-norm for any 7 > 0. The precise statement is in Proposition 4.1.
We start with an observation that the contact set of a nodal function contains interesting

information on its second order difference.
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LEMMA 4.1 (estimate of second order difference). Given two conver nodal functions
v, and up, defined on the nodal set Ny, let

we =up — (1 —€)v, and w*=wvp — (1 —€)uy

for some 0 < e <1 and the contact sets

Ce = {x’L € Np, ws(xz) = Fwé(ml)}7 (4 )
C = {z; €Np, w(x;) =Tw(z:)}. (4.2)

If a node x; € C. N CE, then
—edevn () < 0w — o)) < T— - ~dcun (1) (4.3)

for any vector e € Z%.

Proof. We observe that if a node is in the contact set x; € C, then the second order
difference of w, satisfies dowe(x;) > d.T'we(x;) > 0 for any vector e € Z?. Hence, for any
node x; € C., we have

de(up — vp)(x;) > —€devp (). (4.4)

This inequality yields a lower bound of the second order difference.
To derive the upper bound, we apply a similar argument above to the function w® and
derive

de(vp, — up)(x;) > —€deup (x;)

for any node z; € C¢. A simple algebraic manipulation yields
€
Oc(up, — vp)(z;) < 1—_65€vh(xi). (4.5)

Combining both the lower bound (4.4) and upper bound (4.5), we obtain the desired esti-
mate. O

REMARK 4.1. The lemma above shows that we have control of the error §e(un — vp,)
on the contact sets C. and C°. Define the set E., to be

E. = {xl € Np, bo(vp — up)(x;) > 7éevp(x;)  for some vector e € Zd} , (4.6)

where 7 = ¢/(1 — €). Then the proof of Lemma 4.1 shows that E. is contained in the
non-contact set

Se = Nh \ ee~ (47)
Analogously,

E™ ;= {‘T’L € Ny, Ocl(up —vp)(x;) > 10vp(x;)  for some vector e € Zd}
C 8 =Ny \ e

In the next step, we estimate the cardinality of S.. Heuristically, if ¢ = 1, then w. = uy,
which is a convex nodal function, and so we have S, = (). As € decreases to zero, the function
we becomes ‘less convex’, and the cardinality #(S¢) increases; see Figure 4.1. Therefore,
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=1
e=1 €=13
We = Up, We = U

Fic. 4.1. A pictorial description of Remark 4.1 with we = up, — (1 — €)vy,. The graph of we is depicted
in blue, and the graph of its convex envelope is given by the dashed black line. If e = 1, then we = uyp, is
convez, and the non-contact set is empty (left). Otherwise for € € [0,1), we is not necessarily convez, and
the non-contact set is nonempty (right).

our next goal is to estimate how fast #(S.) increases as e — 0. The following lemma shows
that this is controlled by the consistency error of the method.

PROPOSITION 4.1. Let up and vy be two convex nodal functions satisfying up = vy on
NE up, <wp in NI, and

[Qup(xi)| = fi, and |Ovp(x;)| = g4 (4.8)
for all z; € Ni. For any subset S C N}, let
1/d , 1 174 ¢
wu(S) = Z fi and v (9)= Z (fl +;€¢ ) ) (4.9)
z; €S z, €S
where ei/d = (fil/d — gil/d, Then
,U(ET) < ,U(Se) < VT(GG) - M(ee)a (410)
where C. is given by (4.1), Se is given by (4.7), and 7 = ¢/(1 —¢€). Consequently, there holds
W(E;) < u(Se) < 771 Crlle | page. (4.11)

with Cf = d||f1/d||j;(§w.

Proof. Since E. C S, by Remark 4.1, we only need to show that
p(Se) <vr(€) — u(€e), and p(Se) < T_lcf”el/dnzd(&)'
We first show that

> edup(zi) € Y Olwe(xy), (4.12)

z, €N}, z;, €N},
where w. = up, — (1 — €)vp,. Since up, < vy in N,Il and uy = vy, on Nﬁ we get
we < €Uy, in N,Il, and w. = euy, on N,Ef.
Taking convex envelope on both side of the inequality, we obtain
Twe(z) < eTup(x) in Qand Tw(z) = elup(z) on IN. (4.13)

Since up, = lup, on Ny, due to the convexity of up, the inequality (4.13) implies (4.12).
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Taking measure on both sides of (4.12) and substituting (4.8) yields

e Z fi = ¢ Z |Oup (x;)] < Z |OTwe ()]

:E,LGJ\I{ IIGN{L z; €C,
In view of the convexity of the measure of the subidfferential (2.8),
O we(a) 4 < |7 = (1= )gi )

Therefore, we infer that

pOND) =t ST f< ST - (1 - gl

wzeNh z,€C.

Thus, subtracting € (C.), we obtain
= ¢ Z fi < Z (|efi1/d+(l—e)ej/d\d—edfi).
;€8S z;€Ce

Therefore, dividing €?, we obtain
p(Se) < vr(€e) — p(Co).
To derive the estimate (4.11), we first see that (4.10) is equivalent to
Hfl/ded(N,{) <N+ 7 e Y| page,,

and therefore ||f1/d||¢d,(N}11) — 1YY gage.y < 7€M 4|gage,) by the Minkowski inequality.
From this estimate and the inequality a? — b% < da?~1(a — b) for a > b, we derive
w(Se) = Y Nganery = 1 e,
< d”fl/ngd NI) (||f1/d\|ed(N£) — 1 ace.)
< Cpr e page, -
|

5. Wg-estimate of the method. To establish Wg—estimates of the method, we first
introduce an estimate of the discrete L; norm of a nodal function in terms of its level sets.

LEMMA 5.1.  Let s, be a bounded nodal function with |sp(x;)] < M for some M > 0.
Then, for any o > 0,

Z filsn(x)| < O'Zp, (Ag), (5.1)

T; GN
where
Ay o= {x; € NL 2 [sp(23)| > ko),

u(+) is given by (4.9), and N = [M/co].

REMARK 5.1. Roughly speaking, Lemma 5.1 gives a relation between Riemann and
Lebesque sums. For evample, if f; = h? for all i, then the left-hand side of (5.1) yields
a discrete Riemann integral of sy, (“areas of vertical bars”), and the right-hand side is an
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Ay

Fi1G. 5.1. A pictorial illustration of Lemma 5.1. Here, the measure u(Ag) := ZIiEAk fi- The summa-
tion ZI_GNI filsn| can be viewed as the integral of |sp| with respect to measure the Y fid., (or the area
&Ny,

under the blue curve), and ou(Ay) can be viewed as the area of rectangle with bases p(Ax) and height o.
The rectangles with base u(Ao) and u(A1) are plotted in gray.

approzimation of a discrete Lebesgue integral of s (“areas of horizontal bars”); see Figure
5.
Proof. Set

P, = {,TZ S N{L : ko < |Sh($z)‘ < (k‘—l— 1)0’}.
Then we clearly have
N N
Z filsn(z:)] Z Z ilsk(z;)] Z k+ 1)ou(Py).
z, N} k=0x,EP) k=0

We also have
A= P,
and so, since the sets { Py} are disjoint,

WA =Y 1wl(Pr)

Therefore

UZM(Ak)ZUZZM(Pm):UZ(k"'l Z filsn ()]

k=0 k=0 m=k k=0 2, €N
a

5.1. Ideal Case. Now we are ready to prove the estimate in the case that the consis-
tency error (3.1) holds for all interior grid points.

THEOREM 5.2.  Let u be the solution of the Monge-Ampére equation (1.1). Assume
that

||8Nhu(:17,;)| — fl’ < Ch**Y  for every node z; € N,Il, (5.2)
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where Npu is the interpolation of u on the nodal set Ny,. Assume further that f is uniformly
positive on . Then the error in the weighted sz—norm satisfies

h?|Inh| ifp=1,
¥ = g, oy < € { o™ A2

provided that h is sufficiently small.
Proof. We start by setting v, = (1 — Ch?)/¢N,u, where the constant C' > 0 is large
enough, but independent of h, to ensure that (cf. (5.2))

gi = |0vn(z:)| = (1 = Ch?)[ONyu(zs)| < fi-
By a comparison principle (cf. Lemma 2.4), we have u; < v;, on N and we see that
\fi —gil <CR** v e Nj, (5.3)

due to the assumption (5.2). We also have g; > Ch? provided h is sufficiently small, and
|(vh, — Npu)(z;)| < Ch2.
Note that

INww = unllwz iy < llon = unllwz o) + CR* [ Nnullwz o)

Thus, to prove the theorem, it suffices to show that

{ h?|Inh| ifp=1,
2

Y filde(on —un) @) <C§ if p>1.

Z; EN{L
Define the positive and negative parts of d.(v, — up)(x;), respectively, as

5:(1);,, — up)(x;) = max{d.(vy, —up)(x;),0},

0. (vp, — up)(x;) = max{—d.(vp — up)(z;),0}.

We shall prove

D fildd (o —un)(@)lP < C©

I,EN}IL

R?|Inh| ifp=1,
h? ifp>1.

The estimate for the negative part can be proved in a similar fashion.

Due to the regularity assumption of u, a Taylor expansion shows that |0.vp(x;)| < Ca
for all z; € N7, where Cy > 0 depends on |ullc11(q)- Moreover, from the L, error estimate,
Proposition 3.2 and the assumption (2.1) that interior nodes are at least h/2 away from the
boundary, we deduce that

(52—(’Uh — uh)(l'i) < Cy Va; € Ni,

where the constant Coe > 0 depends on [[ul|¢s.1(q)-
Let 7, = Cok'/Ph2, and define the set

Ay = {x; €NL, 65 (v — up) () > 73}
By Lemma 5.1 with sp,(z;) = |67 (vn, — up)(2:)|P, 0 = CEh?P, and M = CZ,, we obtain

Ch™2P

Y filod (on —un)(@)lP < OB | w(NL) + D p(Aw) | - (5-4)

:L’iEN}IL k=1
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We aim to estimate the measure of set u(Ag). Due to the relations of the second order

difference and contact set given in Remark 4.1, we have A, C S, = N{L \ C¢, with e; € (0,1)

satisfying 7, = €, /(1 — €x). Therefore, by the estimate (4.11) given in Proposition 4.1,

C C
plA) < u(Se) < g = £ ey = 1z lle = £ Nesce,:

From the concavity of t — t'/¢, we have (t + €)'/¢ — /4 < d=1¢t'/4=1¢, Setting t = g; and
ezfi_gi Zoa Weget

=g = 1 =g < a7 g T - ) < o0

due to the consistency error (5.3) and the lower bound g; > Ch?. Consequently, we find
that

|| f1/4 — g/ leace,,) < Ch?,

and therefore p(Ag) < k8p~ Applying this bound in (5.4), we derive the estimate

Ch™?P
1 2 if p=
> SO (wn — o) @)l <CRP YT o < C{ oy
wiej\f}fl k=1
This completes the proof. O

REMARK 5.2. It is worth mentioning that the assumption on the consistency error (5.2)
holds for nodes bounded away from the boundary 0 provided that u € C*'(Q). However,
for nodes close to the boundary 02, such an estimate holds only for structured domain, such
as a rectangle domain; see Remark 3.2 and the first numerical experiment in Section 6. In
general, this estimate may not be true. In fact, Lemma 3.1 shows that the (relative) consis-
tency error, O(h) away from the boundary, is of order O(1). In the following subsection, we
take into account the lack of consistency in the boundary layer.

5.2. Estimate on general domain. We define the barrier nodal function

bh((EZ) = (55)

h2 if x; € Ni,
0 if ; € NB
which will be used to “push down” the graph of the nodal interpolant of u and as such,
develop error estimates in a general setting.
THEOREM 5.3. Let u € C*Y(Q) be the solution of the Monge-Ampére equation (1.1)
with 0 < M < D?u < AI, and assume that the nodal set N,Il translation invariant and that
f is uniformly positive on Q. Then the error in the weighted W2P-norm satisfies

hl/p if p>d,

N = unlhz gy < © {hl/dmn D™ ip<d,

where Npu is the interpolation of u on the nodal set Ny and the constant C' depends on
llullcs. 1y, the dimension d, and the constant p.
Proof. We define the boundary layer:

Q= {x; € NI dist(x;,00) < Rh}, (5.6)
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where the constant R is the constant in the consistency error, Lemma 3.1, which depends
on the ellipticity constants A and A of D?u. We set

vp, = Npu — Cby, gi = |Ovp ()], (5.7)

where the constant C' > 0 is sufficiently large so that u; < vp; see Proposition 3.2. It is
clear from the definition of by, that

|0vp(z:)| = |ONpu(x;)| for any z; € N} \ (5.8a)
and
|ONpu(z;)| > |0vp(z;)] >0 for any x; € Q. (5.8b)

This implies that |f; — g;| < Ch?**4 in N,Il \ Qp, and |f; — g;] < Ch? in Q). We have that
|6cvn ()] < Co and |6 (v, — up)(2;)| < Coo for all x; € Ni. As in Theorem 5.2, we shall
prove the estimate for the positive part:

Ch if p>d,
§ fz Uh - Uh)( z))p < { .
=it Chln (%) if p=d.

The estimate for the negative part can be proved in a similar fashion. Also note that the
estimate for p < d follows from the estimate of p = d and Holder’s inequality:

[INnu = unllwz vty < CulNnu = unllwz vy where G := p(NEyL/p=1/d,

We set 7, = Cok/Ph and define the set

Ay = {ZL’Z S N}Im (5:(”Uh — uh)(xl)) > Tk}. (59)
Then, by similar arguments as in Theorem 5.2, we find by Lemma 5.1 that
h_p
D fi (0 (on —un)(@:)” < Cob? | n(ONG) + D u(Ak) |- (5.10)
z; €NT k=1

To estimate the measure of set u(Ay), we note that Ay C S, = NI \ €., with 7, =
ex/(1 — €x). Invoking the estimate of the measure of the non-contact set S. stated in
Proposition 4.1, we obtain

:LL(Ak) < /L(Sék) < I/Tk(eek) - :u(eék)
We then divide the estimate of v, (C, ) — p(C,, ) into two parts:

Ve (Co) = n(Ce) = Y [(fl/d+ 1/d>d—f¢]

x;€Ce,,
g, 1 14\’
1 1
IR I CER =0
2 €Ce N 2,€C, \Qp k

where we recall that eg/d = f-l/d - g-l/d. Since f-l/d = O(h) and gl/d O(h), we have

1
’ (fil/d + 6;”) — fi
Tk

d
S 7max{|f1/d+ 1/d| fl/d}d 1| 1/d|

Chi=1 14
< 77_[1 ‘e /

= il
k
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In the set C, Ny, the consistency error satisfies |e;/d\ = O(h); see Lemma 3.1. There-
fore, we have

Ch?
< —a Vx; € (‘Zek N Qy,.
Tk

1/d . 1 174 ¢
fi + —e; — fi
Tk

On the other hand, in the set C., \ 2, we conclude as in Theorem 5.2, that |el/d| = O(h?),

%

and
d
‘(ff/ﬁ 163/d> A cions
Tk Tk

Combining both estimate and applying the fact that #(C,, N Q) < Ch~¢ and #(C, \
Q) < Ch~?, we obtain

Ch Ch? Ch
Ve (Co) —p(Ce) < — +— < —

Tk Tk Tk
because h < 1. Hence, we conclude that

Ch
p(Ag) < TT?'

Applying this estimate to (5.10), we arrive at

h*P
h
S 162 = )l < Ok 3 o

$1€N£

Since

(]

R C(d,p)hd?  ifp>d,
kd/p —

<
Pt C'ln (%) if p=d,

we conclude that

Z filod (vn —up) ()P <

{Ch if p > d,
zENT,

Chln (%) ifp=d.

This completes the proof. O

5.3. Estimate for solutions with less regularity. In this subsection, we exploit
our stability estimate established in section 4 and show that it may be possible to apply the
arguments given in the previous sections to solutions with low regularity, in particular, with
regularity lower than C%1(Q2). We show this by means of an example, which is a modification
of the test problem in the numerical experiments below.

Set the domain €2 to be a unit ball centered at 0 in R?, and define

p(@) = (lz] = 1/2)%,  u(@) = Sp(@)® + S|z - . (5.11)
It is easy to see that u € W2 (Q), but u ¢ C%(£2), and therefore the hypotheses of Theorem

5.3 do not hold. Nonetheless, we are still able to prove a error estimate with the same rate
established in the theorem.
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THEOREM 5.4. Let Q C R? be the unit ball, and let w € W2 (Q), defined by (5.11), be
the solution to the Monge-Ampére problem. Let uy be the solution of the Oliker-Prussner

method. Then there holds

1.\1/2
INwu = unllwsz gy < €AY (In(3))

Proof. Our goal is to find a nodal function vy, satisfying the following three conditions:

up(z;) < wp(x;) for all nodes x; € Ny, (5.12a)
lellfansy = O(h),  where er/? = (|0vn ()2 — |Oun (2:)|V2)F,  (5.12b)
|vn — NhUH%V;,Q(:N;) = O(h). (5.12¢)

With such a function vy, we can show by the same arguments in the previous theorem that

S g6t @) < O ()

alriEN}IL

The bound for the negative component of the error can be proved in a similar way. We
construct the nodal function vy, in three steps.
Step One. We define

p(z) = (Jz| —1/2 - 2Rh)+, and set u"(z) = %ph(x)Q + %|x\2 - (1 + %(% — 2Rh)2) :
where R > 0 is defined in Lemma 3.1. We assume that h is sufficiently small so that
1/2 — 2Rh > 0, implying that p" = 1/2 — 2Rh on 9Q. It is then easy to check that
u =u" =0 on 0.

We first show that D?u" < D?u for all z € Q. To do so, we divide the unit ball into
three regions

{lz| <1/2}U{1/2 < |2| <1/2+2Rh}U{1/2+2Rh < |z| < 1}.

=:D; =:D> =:D3

By direct calculation, we immediately have
D?*uw=1 in Dy, and D?u=1I+ D?*(p?) in DyU Ds,
while
D> =1 in DyUD,, and D*."=TI+D*((p")?) in Ds.
Since p(z)? is a convex function in  and D?(p?) > 0, we obtain
D*u" < D*>u in Dy U Ds.
Next, we show that D?u” < D?u in Ds. Since V|z| = 77> We obtain for all |z| > 1/2+2Rh,

T 1z
Vu(z) =z + (|z| —1/2)— =2z — 2Tl

e
|z*T —r @«

D? =92] —
u(x) EE
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Similarly,

|z —r®x
|z[?

Hence, we get

22 >0, and A(z) < 2|z|"'RhI < 4RhI in Ds,

and thus, D?u > D?u” in D3 as desired.
Moreover, a direct calculation shows that

||D2(U—“h)||2L2(Q) :/132 |D2(p2)|2dx+/D3 |(2Rh)A(z)|*dz = O(h). (5.13)

Step Two. Let by, be defined by (5.5), and set wy, = Npuh—Cby,. Since u” is a quadratic
polynomial in D; U D5, and the adjacent set of x; € D1 ﬂN is contained in Dy U D5y (see [26,
Lemma 5.3] for details), and [Quy ()| = fi = [, f( dx = [, det(D?*u(x))¢;(x)dz, we
have for any z; € D1y NNy,

un(e:)| = | det(DPu)(w)os(a)de = [ fa)on(o)ds = [Oun ().
Q Q
For nodes x; € (D2 U D3) NNy, we have

|0wn (2;)| = [ONpu" ;)| < |ONpu(a;)]

because D?*u”(z) < D?u(z) for all x € Bgp(z;). By Lemma 3.1 (consistency error), we
obtain

|ONpu(z;)| = h? det(D?u)(z;) & O(h*) = [Qup (z;)| £ O(h*)

for all nodes z; € (Dy U D3) NN}, and dist(z;,02) > Rh. To deal with the consistency
error at nodes dist(z;, 02) < Rh, we note that for the constant C' large enough, the second
difference

Sewp (1) = 5euh($i) = Cécbp(zi) <0

where e = Vd(z;) and d(z) = dist(x,09Q). This implies that |dwp(z;)| = 0 at z; close to
the boundary (dist(x;,9Q) > Rh) with sufficiently large constant C.
Combining all these estimates, we get

1/2 (\awh( )\ — |Oup(z )|1/2> =0 forall z; € D; NNy,
and
vz _NOwn(@o)l = Oun(x)l 548y gl gy € (D
i U D3) N Np,.
" Bun(@) 2+ (a2 = O forall i € (D20 Ds) 0

By a discrete Alexandroff estimate [26, Proposition 4.3], we have

Sup(wh — uh)7 S C||7’||g2(3\[h) S Ch2 (514)
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Let v, = wy, — Cby. From the estimate (5.14), there holds uy, < v, for all z; € Ny, i.e., the
first condition (5.12a) is satisfied.
Step Three. To verify (5.12b), we set

;= e 2U.’If A\ X an h: e 2Uh$ A\ XT.
5 LdND)(MAM a4 fl lfWD ) (@)bi(a)d

Since | D?(u—u")|[221q) = O(h), we have ||f;/* — (2122 001) = O(h). On the other

hand, we have
Hown (@) = (FI)Y2 1oty = O(R)

by Lemma 3.1 (consistency error). It then follows that [le||?,

satisfied.
Step Four. It remains to verify (5.12c¢). Since vy, = Npu” — Cby, by definition,

(1) = O(h), ie., (5.12Db) is

lon = Nuullwz oty < Cllballw, ooy + [New" = Noullwz, o)
< Cllballwz (i) + CID*(u" = w20
< O(h'/?) + O(n'/?)

where the estimate of || D?(u" — u)||2(q) follows from (5.13). This completes the proof. O

6. Numerical experiments. In this section, we perform numerical examples to illus-
trate the accuracy of the method, and to compare the results with the theory. In the tests,
we replace the homogeneous boundary condition (1.1b) with u = g on 9. For simplicity,
we carry out numerical experiments on a box, instead of a strictly convex domain. The
theoretical results developed in the previous sections can be applied to this slightly more
general problem with minor modifications.

We consider three different test problems, each reflecting different scenarios of regularity.
Each set of problems is performed in two dimensions (d = 2), and errors are reported in the
(discrete) Loo, H', W2, and W3 norms. Here, a nine-point stencil is used in the definition
of the W2 norms with e; = (1,0), e2 = (0,1), e3 = (1,1) and e4 = (1,—1). That is, with an
abuse of notation, we set

4

||v||€V3(N£):Z D 18, vl

j=1 ZE,LGN}IL

As explained in [26] and in Section 2.2, a convex nodal function induces a triangulation of
Q) whose set of vertices corresponds to Nj,. For a computed solution u;, we associate with
it a piecewise linear polynomial on the induced mesh, which we still denote by uy, and use
the quantity ||u — up||g1(q) to denote the H! error in the experiments below.

A summary of the theoretical results in Sections 2.3 and 5 when d = 2 are

[N = un[L oty = 0(h?), | Nou — Uh||wg(3\f,{) =0(h'/?79), p=1,2
for any € > 0, provided that u € C31(Q).

Example I: Smooth Solution u € C>(Q). We consider the example

w2+y2

u(e,y) =e 27, flay) =1+ +5e” T, and Q= (-1,1)%,  (6.1)
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and list the resulting errors and rates of the scheme in Table 6. The Table clearly shows
that the errors decay with rate O(h?) in all norms. This behavior matches the theoretical
results of Proposition 3.2, but indicates that the W3 estimates stated in Theorem 5.2 may
not be sharp. This numerical experiment is done on a laptop with a single core processor of
2.90 GHZ. To compute on the finest mesh in this table with approximately 16k degrees of
freedom, it takes approximately 85 seconds.

h L rate H! rate Wi rate W3 rate
1 1.12e-01 | 0.00 | 2.24e-01 4.49e-01 1.44e+01
1/2 | 4.78¢-02 | 1.23 | 1.35e-01 | 0.73 | 6.02e-01 | -0.42 | 4.24e-01 | 5.08
1/4 | 1.37e-02 | 1.80 | 4.35e-02 | 1.63 | 2.94e-01 | 1.03 | 1.93e-01 | 1.13
1/8 | 3.55e-03 | 1.95 | 1.16e-02 | 1.91 | 9.93e-02 | 1.57 | 6.34e-02 | 1.61
1/16 | 8.96e-04 | 1.99 | 2.94e-03 | 1.98 | 2.86e-02 | 1.80 | 1.80e-02 | 1.82
1/32 | 2.24e-04 | 2.00 | 7.39e-04 | 1.99 | 7.66e-03 | 1.90 | 4.79e-03 | 1.91

1/64 | 5.61e-05 | 2.00 | 1.85e-04 | 2.00 | 1.98e-03 | 1.95 1.24e-03 | 1.95
TABLE 6.1
Rate of convergence for a smooth solution (Ezample I).

Example II: Piecewise Smooth Solution u € W2. In this example, the domain is
Q= (—1,1)?, and the exact solution and data are taken to be

() = 2|z|? in |z| <1/2,
EIZ 212 = 1/2)2 + 2022 in1/2< |q],

] 16 in |z| <1/2,
f(x)_{ 64 — 16]z| in1/2 < |z|.

This is essentially the example we consider in Theorem 5.4. A simple calculation shows that
u € CHH(Q) and u € C*(Q\ 0By), but u € C%(Q). The errors and rates of convergence are
given in Table 6. The table shows that, while all errors tend to zero as the mesh is refined,
the rates of convergence in the L., and W2 norms are less obvious than the previous set of
experiments. Nonetheless, while Theorem 5.3 assumes more regularity of the exact solution,
we do observe a convergence rate of approximately O(hl/ 2) in the W3 as stated in the
Theorem 5.4. It takes approximately 150 seconds to compute the solution on the finest
mesh with approximately 16k degrees of freedom.

h Lo rate H! rate Wi rate W3 rate
1 4.02e-01 | 0.00 | 8.04e-01 | 0.00 1.61 0.00 1.61 0.00
1/2 | 4.19¢-02 | 3.26 | 1.30e-01 | 2.63 | 6.08¢-01 | 1.40 | 5.39e-01 | 1.58
1/4 | 2.89e-02 | 0.53 | 6.84e-02 | 0.92 | 6.46e-01 | -0.09 | 5.54e-01 | -0.04
1/8 | 1.27e-02 | 1.18 | 3.50e-02 | 0.97 | 5.14e-01 | 0.33 | 4.54e-01 | 0.29
1/16 | 4.58e-03 | 1.47 | 1.38¢-02 | 1.34 | 2.76e-01 | 0.90 | 3.15e-01 | 0.53
1/32 | 8.02e-04 | 2.51 | 3.59e-03 | 1.94 | 1.08¢-01 | 1.35 | 2.08¢-01 | 0.60

1/64 | 4.33e-04 | 0.89 | 1.50e-03 | 1.26 | 6.36e-02 | 0.77 | 1.56e-01 | 0.42
TABLE 6.2
Rate of convergence of piecewise smooth viscosity solution (Ezample II).
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Example III: Singular Solution u € Wp2 with p < 2. In the last series of experi-
ments, the domain is Q = (—1,1)2, and the solution and data are

4 8,2/.2 i 3
Tt + 5y /x in [y[ < [z[°,

u\xr) = 1
@) { sa%y?3 + 243 i fy| > |2f?,
36 — 9y /a® in |y| < |z,

x) = i
s ={ i ol > o

This example is constructed in [30] to show that D?u(x) may not be in W for large p for
discontinuous f. The errors of the method for this problem are listed in Table 6. Because the
exact solution does not enjoy W2 regularity, it is not expected that the discrete solution will
converge in the discrete W2 norm, and this is observed in the table. However, we do observe
convergence in the Lo, H', and W# norms with approximate rates | Nju — “h”Loo(N{L) =

O(h3), || Nju — unll gy = O(h), and || Npu — “h”Wfl(Ng) = O(h'/?). Finally, we would
like to mention that it takes approximately 150 seconds to compute the solution on the finest
mesh with approximately 4k degrees of freedom.

h L rate HT rate | W2 | rate | W2 | rate
1 8.36e-01 | 0.00 1.67 0.00 | 3.35 | 0.00 | 3.35 | 0.00
1/2 | 2.34e-01 | 1.84 | 9.11e-01 | 0.88 | 5.48 | -0.71 | 3.94 | -0.24
1/4 | 1.86e-01 | 0.33 | 4.80e-01 | 0.92 | 4.90 | 0.16 | 4.02 | -0.03
1/8 | 8.52e-02 | 1.13 | 2.41e-01 | 1.00 | 4.00 | 0.29 | 3.94 | 0.03
1/16 | 3.41e-02 | 1.32 | 1.02e-01 | 1.24 | 2.38 | 0.75 | 3.33 | 0.24

1/32 | 1.35e-02 | 1.34 | 4.79e-02 | 1.09 | 1.59 | 0.58 | 3.17 | 0.07
TABLE 6.3
Rate of convergence of Wg solution with p < 2 (Example III).
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