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ABSTRACT. In this paper we continue the analysis of the two-scale method
for the Monge-Ampéere equation for dimension d > 2 introduced in [12]. We
prove continuous dependence of discrete solutions on data that in turn hinges
on a discrete version of the Alexandroff estimate. They are both instrumen-
tal to prove pointwise error estimates for classical solutions with Hoélder and
Sobolev regularity. We also derive convergence rates for viscosity solutions
with bounded Hessians which may be piecewise smooth or degenerate.

Key words. Monge-Ampere, two-scale method, monotone, continuous depen-
dence, error estimates, classical and viscosity solutions, degenerate.

AMS subject classifications. 65N30, 656N15, 65N12, 65N06, 35J96

1. INTRODUCTION
We consider the Monge-Ampere equation with Dirichlet boundary condition

det D*u=f in QcCRY

1.1
(L.1) u=g on Jf,

where f > 0 is uniformly continuous, 2 is a uniformly convex domain and g is a
continuous function. We seek a conver solution u of (1.1), which is critical for (1.1)
to be elliptic and have a unique viscosity solution [8].

The Monge-Ampere equation has a wide spectrum of applications, which has
led to an increasing interest in the investigation of efficient numerical methods.
There are several existing methods for the Monge-Ampere equation, as described
n [12]. Error estimates in H'({) are established in [3, 4] for solutions with H?3({2)
regularity or more. Awanou [1] also proved a linear rate of convergence for classical
solutions for the wide-stencil method, when applied to a perturbed Monge-Ampere
equation with an extra lower order term Jdu; the parameter § > 0 is independent of
the mesh and appears in reciprocal form in the rate.

On the other hand, Nochetto and Zhang followed an approach based on the
discrete Alexandroff estimate developed in [13] and established pointwise error es-
timates in [14] for the method of Oliker and Prussner [15]. In this paper we follow
a similar approach and derive pointwise rates of convergence for classical solutions
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of (1.1) that have Holder or Sobolev regularity and for viscosity solutions with
bounded Hessians which may be piecewise smooth or degenerate.

It is worth mentioning a rather strong connection between the semi-Lagrangian
method of Feng and Jensen [5] and our two-scale approach introduced in [12]. In
a forthcoming paper we explore this connection and derive optimal error estimates
in special cases via enhanced techniques for pointwise error analysis.

1.1. Our contribution. The two-scale method was introduced in [12] and hinges
on the following formula for the determinant of the semi-positive Hessian D?w of
a smooth function w, first suggested by Froese and Oberman [6]:

(1.2) det D*w(x) = min H UTD2 ) v},

(v1,-.-,v4) ESL

where S* is the set of all d—orthonormal bases in R?. To discretize this expression,
we impose our discrete solutions to lie on a space of continuous piecewise linear
functions over an unstructured quasi-uniform mesh 7;, of size h; this defines the fine
scale. The mesh also defines the computational domain €2, which we describe in
more detail in Section 2. The coarser scale § corresponds to the length of directions
used to approximate the directional derivatives that appear in (1.2), namely

w(z + 0v) — 2w(z) + w(r — dv)
52

for any w € C°(Q); To render the method practical, we introduce a discretization

Sg- of the set S governed by the parameter 6 and denote our discrete solution by

ue, where € = (h, d, ) represents the scales of the method and the parameter §. We
define the discrete Monge-Ampere operator to be

Viw(z;v) :=

and |v| =1,

d
T.[ue](z;) := min HV5 Ue (450 —ZV?’_ug(xi;vj) ,

VESL

where Vg’i are the positive and negative parts of V3. In Section 2 we review briefly
the role of each term in the operator T, and recall some key properties of 7.

The merit of this definition of T is that it leads to a clear separation of scales,
which is a key theoretical advantage over the original wide stencil method of [6].
This also yields continuous dependence of discrete solutions on data, namely Propo-
sition 4.6, which allows us to prove rates of convergence in L>(2) for our method
depending on the regularity of u; this is not clear for the wide stencil method of [6].
Moreover, the two-scale method is formulated over unstructured meshes 7;,, which
adds flexibility to partition arbitrary uniformly convex domains 2. This is achieved
at the expense of points z; + dv; no longer being nodes of 7, which is responsible
for an additional interpolation error in the consistency estimate of T.. To locate
such points and evaluate Viu.(z;;v;), we resort to fast search techniques within
[16, 17] and thus render the two-scale method practical. Compared with the error
analysis of the Oliker-Prussner method [13], we do not require 7, to be cartesian.

In [12] we prove existence and uniqueness of a discrete solution for our method,
and convergence to the viscosity solution of (1.1), using the discrete comparison
principle. In this paper we prove rates of convergence for classical solutions with
either Holder or Sobolev regularity and for a special class of viscosity solutions.
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The first important tool for proving pointwise rates of convergence is the discrete
Alexandroff estimate introduced in [13]: if wy, is an arbitrary continuous piecewise
linear function, wy > 0 on 0€);, and T'wy, stands for its convex envelope, then

1/d

max w, (z;) < C Y. [T wp ()]
2, €C_ (wp)

where OT'wy, is the subdifferential of T'wy, and C_ (wy,) represents the lower contact
set of wp, i.e. the set of interior nodes z; € N} such that Twy(z;) = wp(z;);
hereafter we write w,, (z;) := —min{wyp(x;),0}. To control the measure of the
subdifferential at each node, we show the following estimate
d
|owy, (2;)] < 6¢  min H Viwp(zi;v;) Ya; € N,
(vl,..,,vd)GSJ- j=1
such that the ball centered at z; and of radius ¢ is contained in €2;,. Combining
both estimates, we derive the following continuous dependence estimate
1/d
d
max (uy, — wy,)” < 6 > (Tl = Tfwa)@) )

Qp
z; €C_ (up—wp)

for all continuous piecewise linear functions uj and wy, such that T.[up](xz;) > 0
and T.[wp](x;) > 0 for all z; € NP. This result is instrumental and, combined
with operator consistency and a discrete barrier argument close to the boundary,
eventually leads to the following pointwise error estimates

e — ull L~ (o, < C(d,Q, f,u) hatis
provided u € C?t%2(Q) with 0 < a < 1 and k = 0,1, as well as
|ue — ul| o0,y < C(d,Q, f,u) pi—3

provided u € W;(Q) with 2 +d/p < s <4 and p > d, and ¢ is suitably chosen in
terms of h; see Theorems 5.3 and 5.4. We also consider a special case of viscosity
solutions with bounded but discontinuous Hessians, and manage to prove a rate of
convergence (see Theorem 5.5). Since these theorems are proven under the nonde-
generacy assumption f > 0, we examine in Theorem 5.6 the effect of degeneracy
f > 0. In [12] we explore numerically both classical and viscosity solutions and ob-
serve linear rates with respect to h for both cases, which are better than predicted
by this theory.

1.2. Outline. We start by briefly presenting the operator 7. in Section 2 and re-
calling some important results from [12]. In Section 3 we mention the discrete
Alexandroff estimate and combine it in Section 4 with some geometric estimates to
obtain the continuous dependence of the discrete solution on data. This is much
stronger than stability, and is critical to prove rates of convergence for fully non-
linear PDEs. Lastly, in Section 5 we combine this result with operator consistency
and a discrete barrier argument close to the boundary to derive rates of convergence
upon making judicious choices of ¢ and 6 in terms of h.

2. KEY PROPERTIES OF THE DISCRETE OPERATOR

We recall briefly some of the key properties of operator T¢, as proven in [12].
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2.1. Definition of T.. Let T; be a shape-regular and quasi-uniform triangulation
with meshsize h. The computational domain €2, is the union of elements of 7j
and ), # Q. If A}, denotes the nodes of Ty, then N := {z; € N}, : 2; € 90}
are the boundary nodes and NP = N}, \/\f,’,’ are the interior nodes. We require
that N} C 99, which in view of the convexity of {2 implies that €2, is also convex
and €, C 2. We denote by V}, the space of continuous piecewise linear functions
over T,. We let ST be the collection of all d-tuples of orthonormal bases and
v := (v1,...,v4) € St be a generic element, whence each component v; € S, the
unit sphere S of R%. We next introduce a finite subset Sg of S governed by the
angular parameter 6 > 0: given v € S, there exists v/ € Sy such that
lv — | < 6.

Likewise, we let S5 C S? be a finite approximation of S*: for any v = (v;)%_, € S+
there exists v? = (U?)?:l € Sy such that ”U? € Sp and |v; — fu?| <fforalll <j<d
and conversely. Note that Sy is not a subset of S*, which means that the vectors
(U?)?:1 may not be orthogonal.

For z; € N}, we use centered second differences with a coarse scale &
(2.1) Viw(zs;v)) = wiwi +0vy) = QM;;i) (@ = ov;)
where § := pd with 0 < p < 1 the biggest number such that the ball centered at z;
of radius 4 is contained in . This is well defined for any w € C° (ﬁ), in particular
for w € Vy,. We define € := (h, 4, 0) and we seek u. € Vj, such that u®(z;) = g(x;)
for z; € N} and for z; € N}

d d
(22)  Tefu(w:) == min | [ V5 uc(@isvg) =Y Ve uc(wisvy) | = fla),
j=1 j=1

veSy

where we use the notation
V§’+'(LE(:L'7-; v;) = max (Viue (75 v5),0), Vg’fug(;lri; v;) = —min (Viue(zi;v5),0)
to indicate positive and negative parts of the centered second differences.

2.2. Key Properties of T.. One of the critical properties of the Monge-Ampere
equation is the convexity of the solution u. The following notion mimics this at the
discrete level.

Definition 2.1 (discrete convexity). We say that wy, € V), is discretely convex if
Viwp(zi;vj) >0 Vo, €N, Vuj € Sg.

The following lemma guarantees the discrete convexity of subsolutions of (2.2)
[12, Lemma 2.2].

Lemma 2.2 (discrete convexity). If wy € Vy, satisfies

(2.3) T.[wp](z;) >0 Va; € N,
then wy, is discretely convex and as a consequence
d
N — mi 2 oy
(24) Tefun](z:) = min 11 Viwn(wi;v9),

Jj=1
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namely
V§’+wh(mi;vj) = ngh(xi;vj), V?’_wh(xi;vj) =0 Vz; €N, Vu; € Sp.
Conversely, if wy, is discretely convex, then (2.3) is valid.

Another important property of operator T, that relies on its monotonicity is the
following discrete comparison principle [12, Lemma 2.4].

Lemma 2.3 (discrete comparison principle). Let up,wp € V, with u, < wp, on
the discrete boundary 0S), be such that

(2.5) T.[up) () > Tefwp)(xz:) >0 Va; € N,
Then, up, < wy, everywhere.

We now state a consistency estimate, proved in [12, Lemma 4.1], that leads to
pointwise rates of convergence. To this end, given a node z; € N, ,?7 we denote by

(2.6) B :=U{T : T €Ty, dist (;,T) < 6}
where § is defined in (2.1). We also define the d-interior region
(2.7) Qs ={T €Ty : dist(z,00,) > Ve € T},

and the d-boundary region:
Wh,s = Q \ Qh.&

Lemma 2.4 (consistency of T.[Znul]). Let z; € NP N Q5 and B; be defined as in
(2.6). If u € C?***(B;) with 0 < a < 1 and k = 0,1 is convez, and Tyu is its
piecewise linear interpolant, then

2
(2.8) |det D%u(z;) — TE[Ihu](xi)| < Ci(d, Q,u)é’”o‘ + Co(d, Q,u) <Z2 + 92) ,

where
(2.9) Ci(d,Q,u) = C|U|c2+k,a(3,i)|U|€1731(Bi)a Ca(d, Q,u) = Clulfyz g,)-
If z; € N? and uw € WZ(B;), then (2.8) remains valid with « = k = 0 and
C?*tR(B;) replaced by W2 (B;).
3. DISCRETE ALEXANDROFF ESTIMATE

In this section, we review several concepts related to convexity as well as the
discrete Alexandroff estimate of [13]. We first recall several definitions.

Definition 3.1 (subdifferential).

(i) The subdifferential of a function w at a point zg € €, is the set
ow(zg) == {p e R": w(x) > w(xo) +p- (z —x0), Vo€ U}.
(#i) The subdifferential of a function w on set E C €, is Qu(E) := UzegOw(x).

Definition 3.2 (convex envelope and discrete lower contact set).

(i) The convex envelope I'u of a function w is defined to be

Tw(x) :=sup{L(z), L(y) < w(y) for all y € Q;, and L is affine}.
L
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(ii) The discrete lower contact set C_(wy,) of a function wy, € Vj, is the set of
nodes where the function coincides with its convex envelope, i.e.

C_(wp) := {xl e NP : Twy,(z;) = wh(xi)}.

Remark 3.3 (w;, dominates T'wy,). Since wy, > T'wy, at a contact node x; € C_(wy,)
we have
Vil wp (zi5v5) < Viwp (zi;05)(24) Yv; € Sp.

Remark 3.4 (minima of wy, and T'wp). A consequence of Definition 3.2 (convex
envelope and discrete lower contact set) is that the minima of wy, € V), and T'wy,
are attained at the same contact nodes and are equal.

We can now present the discrete Alexandroff estimate from [13], which states
that the minimum of a discrete function is controlled by the measure of the subd-
ifferential of its convex envelope in the discrete contact set.

Proposition 3.5 (discrete Alexandroff estimate [13]). Let vy, be a continuous piece-
wise linear function that satisfies vy, > 0 on 08),. Then,
1/d

max vp(x;)” < C Z |OT vp, ()]

N0
i €N} 21€C_(vn)

where C = C(d, Q) depends only on the dimension d and the domain Q.

4. CONTINUOUS DEPENDENCE ON DATA

We derive the continuous dependence of the discrete solution on data in Section
4.3, which is essential to prove rates of convergence. To this end, we first prove a
stability estimate in the max norm in Section 4.1 and the concavity of the discrete
operator in Section 4.2.

4.1. Stability of the Two-Scale Method. We start with some geometric esti-
mates. The first and second lemmas connect the discrete Alexandroff estimate with
the 2-scale method. They allow us to estimate the measure of the subdifferential
of a discrete function wy, in terms of our discrete operator T [wy,], defined in (2.2).

Lemma 4.1 (subdifferential vs hyper-rectangle). Let w € C%(€,) be convexr and
T; € N,? be so that x; £0v € Q, for allv € Sg with § < 6. Ifv = (%‘)?:1 € Sj- and

+  w(x £ 51}{) — w(x;)

0J " 5

V1<j<d,
then

8w(xi)c{p€Rd: a;jgp-ngaij 1<j<d}.
Proof. Take p € Ow(z;) and write

w(z) > w(z;) +p-(r—1z;) Yo € Q.
Consequently, for any 1 < j < d we infer that
w(x; + Svj) > w(x;) + 5 p-vj, w(z;— Svj) > w(x;) — 5 DV,

or equivalently

w(z;) — wg(acl — bvj) <peuvs < w(z; + Svg) - w(a:z)
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This implies that p belongs to the desired set. O

Lemma 4.2 (hyper-rectangle volume). For any d-tuple v = (v;)}_, € S* the vol-
ume of the set

K:{pGRd: a; <p-vj < by, jzl,...,d}

is given by
d
K| = H(bi —a;).
j=1
Proof. Let V = [v1,--- ,v4] € R¥? be the orthogonal matrix whose columns are

the elements of v; hence v; = Ve, where {e; }?:1 is the canonical basis in R%. We
now seek a more convenient representation of K
K={peR': a;<p-(Ve;)<b;, j=1,...,d}
=V T {zeR?: aj<z-e;<b;, j=1,....,d} =V TK,

whence
d

K| =[det V| |K| = |K| = [[(6; - ay),
j=1
because K is an orthogonal hyper-rectangle. O

The following result is an immediate consequence of Lemma 4.1 for v € Sj-.

Corollary 4.1 (approximate hyper-rectangle volume). For any d-tuple v = (vj)?:l
€ Sy the volume of the set

K&:{pERd: a; Sp.ngbj7 j:l’_._’d}

is given by
d

Kol =[] (b — ai) + O(6%).

j=1

Remark 4.3 (lack of orthogonality of Sj;). Since the extra term in Corollary 4.1

is of order 2, which already occurs in Lemma 2.4 (consistency of T.[Z,u.]), it does

not affect the error estimates of Theorems 5.3-5.6 and it will be ignored from now

on. Therefore, we will invoke Lemma 4.2 (hyper-rectangle volume) for v € Si- for
d

simplicity, even though v = (v;) =1 might not be an orthogonal basis.

Combining Lemmas 4.1 and 4.2 with Remark 4.3, we get the following corollary.
Corollary 4.2 (subdifferential vs discrete operator). For every x; € N}?OQ}L_g and
a convex function w we have that

d
Oow(x;)| < | min Viw(zi;v;) | 6%
ute)| < | min T Vo)
j=1
Lemma 4.4 (stability). If wy € Vy, is wp > 0 on 09y, then
1/d

max, wp(x;)” < CH Z T [wp](x;)
z; ENY) z; €C_ (wp)
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Proof. Since the function w; > 0 on 0€),, we invoke Proposition 3.5 (discrete
Alexandroff estimate) for wy, to obtain

1/d
max wp(z;)” <C Z |OTwp, ()|
&Ny z,€C_ (wp)

Applying Corollary 4.2 (subdifferential vs discrete operator) to the convex function
T'wp,(z;) at a contact point x; € C_(wy,) and recalling Remark 3.3, we have

d d
AT wp, (x;)] < 8¢ min V2T wp, (z;v;) < 6% min Viwp(xiiv;) = 6T [wi)(x;),
T ) < 6 i [T V3 (o) < 6 iy [ Von(a ) = 6T
where the last equality follows from Lemma 2.2 (discrete convexity). O

4.2. Concavity of the Discrete Operator. We recall concavity properties of
(det A)'/¢ for symmetric positive semi-definite matrices A and extend them to 7.
The results can be traced back to [9, 11], but we present them here for completeness.

Lemma 4.5 (concavity of determinant). The following two statements are valid.

(1) For every symmetric positive semi-definite (SPSD) matriz A we have that
1
(det A)Y/4 = p inf {tr(AB) ‘ B is SPD and det B = 1}

(ii) The function A+ (det A)'/¢ is concave on SPSD matrices.

Proof. We proceed in three steps.

Step 1: Proof of (i) for A invertible. Let B be SPD with det B = 1. Then B'/?
is well defined, det(B'/?) = 1 and we obtain

det A = det(B'/2ABY?).

Let P be an orthogonal matrix that converts B/2AB'/? into a diagonal matrix D,
namely D = PBY2ABY?PT. Applying the geometric mean inequality yields

1 1 1
det(BY2ABY/?)1/4 = (det D)}/ < StrD = gtr(Bl/QABl/Q) = ~tr(AB),

where we have used the invariance of the trace under cyclic permutations of the
factor to write the last two equalities. This shows that

(det A)V/4 < %inf {tr(AB) ’ B is SPD and det B = 1}

This inequality is actually equality provided A is invertible. In fact, we can take
B = (det A)'/4A~! which is SPD and det B = 1. This proves (i) for A nonsingular.

Step 2: Proof of (i) for A singular. Given the singular value decomposition of A
d
A:Z)\ivi(@vi, M > X > Mg = =Ag =0,
i=1

with orthogonal vectors (v;)¢_;, we can assume that k > 0 for otherwise A = 0 and
the assertion is trivial. Given a parameter o > 0, let B be defined by

k d
BI:ZO"UZ'®1)¢+ Z 0’75"01‘@1}1'
i=1 i=k+1
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and 8 = k/(d — k) because then det B = ¢*o—P(4=%) = 1. Therefore,

k k
AB:JZAiv¢®vi = tr(AB):JZAiHO as o — 0,
i=1 i=1
which proves (i) for A singular since B is SPD.

Step 3: Proof of (ii). Let A and B be SPSD matrices and 0 < A < 1. Then
AA + (1 — M) B is also SPSD and we can apply (i) to

(det M + (1 — \)B)) /4 = éinf [6l(A + (1 = N)B)C]| € s SPD anddet € =1}

> %inf {tr(AC) ‘ Cis SPD and detC = 1}
+ ! ;)\ inf {tr(BC’) ‘ C is SPD and detC = 1}
= A(det A)4 + (1 — M)(det B)'/.
This completes the proof. O

Upon relabeling A=)Aand B = (1 — X\)B, which are still SPSD, we can write
Lemma 4.5 (ii) as follows:

(4.1) (det A)'/? 4 (det B)'/* < (det(A + B))"/".

We now show that our discrete operator T.[-] possesses a similar property.

Corollary 4.3 (concavity of discrete operator). Given two functions up,wp € Vp,
we have

(Tefun) (@) + (Tewn) (@) '™ < (Telun + wnl (),
for all nodes x; € ./\/',? such that V(quh(xi; vj) >0, ngh(xi;vj) >0 for allv; € Sy.

Proof. We argue in two steps.
Step 1. For a = (%‘)?:1 € R with a; >0, j =1,...,d we consider the function
1/d

d
[Io]
=1

which can be conceived as the determinant of a diagonal (and thus symmetric)

positive semi-definite matrix with diagonal elements (aj)?_l, ie.

. 1/d
f(a) = (detdiag{as,...,aq}) /
Applying (4.1) to A= diag{a,...,aq}, B= diag{b1,...,bq} with a = (a j)fjl:l., b=
(bj)ff:1 > 0 componentise, we deduce
fla) + f(b) < fla+D).
Step 2. We now apply this formula to the discrete operator. Since both uy,wp,

are discretely convex at x; € N}, so is up, + wp, and we can apply Lemma 2.2
(discrete convexity) to write

:&

Te[up + wp)(z 3[un + wn] (25 0;)

Jj=1
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for a suitable v = (v;)9_; € Sy. Making use again of (2.4), this time for u;, and
wp, and for the specific set of directions v just found, we obtain

4 a 4 F
(Telun](:))* + (Te[wn](z:)* < H Viun(zsv) |+ H Viwn (x4 v))
d % .
< | I Viun(zisvg) + Viwn(wisvg) | = (Te[un + wa](z:)) 7,

j=1

where the second inequality is given by Step 1 for a = (Viup (2; "Uj));l:] and b =
(V3w (5;05))9—,. This is the asserted estimate. O
4.3. Continuous Dependence of the Two-Scale Method on Data. We are

now ready to prove the continuous dependence of discrete solutions on data. This
will be instrumental later for deriving rates of convergence for the two-scale method.

Proposition 4.6 (continuous dependence on data). Given two functions up,,wp, €
Vi such that up, > wp, on 08)), and

Telup)(zi) = fi(z;) 20 and T:fwp](z;) = f2(xi) >0
at all interior nodes x; € N, we have that
1/d

max(up —wp)” < C § Z (fl(l‘i)l/d - f2($i)1/d)d

Qp,
z;€C_ (up—wp)

Proof. Since up, —wy, € Vy, and up, — wy, > 0 on 02, Lemma 4.4 (stability) yields
1/d

max (up — wp)(z;)” < C6 Z Telun — wn](x:)

z, NP
° h z; €C_ (up—wp)

Since z; € C_(uy, — wy,), we have that VZ(u, — wp)(zi;v;) > 0, whence
V?;uh(zi;vj) > V?gwh(xi;vj) >0 Vv; €8S,

where we have made use of Lemma 2.2 (discrete convexity). Invoking Corollary 4.3
(concavity of discrete operator) for u; — wy, and wy,, we deduce

(Tefun —wn) ()" < (Tefun) (@) = (Tefwn) (@),
whence
1/d
d
Jmax (un — wy)(w)” < O S (Tlunla) Y = Tefwn) (@) )

x;,€C_ (uhfwh)

1/d

—oi| X (A )

2; €C— (up—wnp)

This completes the proof. ([
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5. RATES OF CONVERGENCE

We now combine the preceding estimates to prove pointwise convergence rates
for solutions with continuous Hessians, and either Holder or Sobolev regularity,
and later for a special case of viscosity solutions with discontinuous Hessians; these
results require the nondegeneracy assumption f > fo > 0. We also deal with the
degenerate case f > 0 and derive error estimates of reduced order. We state all
error estimates over the computational domain €2, C €.

5.1. Barrier Function. We recall here the two discrete barrier functions intro-
duced in [12, Lemmas 5.1, 5.2]. The first one is critical in order to control the
behavior of u. close to the boundary of €2, and prove the convergence to the unique
viscosity solution u of (1.1). We now use the same barrier function to control the
pointwise error of u. and u close to the boundary. The second barrier allows us to
treat the degenerate case f > 0, using techniques similar to the case f > 0.

Lemma 5.1 (discrete boundary barrier). Let Q be uniformly conver and E > 0
be arbitrary. For each node z € N}? with dist(z,0Q) < 6§, there exists a function
pr € Vy, such that T:[pp)(xi) > E for all z; € N, p, <0 on 0Q), and

[pr(2)| < CEY4
with C' depending on 2.

Lemma 5.2 (discrete interior barrier). Let Q be contained in the ball B(xg, R) of
center zo and radius R. If q(x) := 5 (| — xo* — R?), then its interpolant qp, :=
Ihq € Vy, satisfies

T.(qn)(x;) > 1 Vo, € NP, qn(z;) <0 Va; € NP,

5.2. Error Estimates for Solutions with Hoélder Regularity. We now deal
with classical solutions u of (1.1) of class C**%%(Q), with k = 0,1 and 0 < o < 1,
and derive pointwise error estimates. We proceed as follows. We first use Lemma 5.1
(discrete boundary barrier) to control u. — Zpu in the d-neighborhood wy, 5 of 082y,
where the consistency error of T.[Zju] is of order one according to Lemma 2.4 (con-
sistency of T;[Zpu]). In the d-interior region €, 5 we combine the interior consis-
tency error of T.[Zpu] from Lemma 2.4 and Proposition 4.6 (continuous dependence
on data). Judicious choices of ¢ and € in terms of i conclude the argument.

Theorem 5.3 (rates of convergence for classical solutions). Let f(x) > fo > 0 for
all z € Q. Let u be the classical solution of (1.1) and ue be the discrete solution of
(2.2). If u € C?>%(Q) for0 < a <1 and

1 1
e O\ 7ta
5— |u|wgo(Q) hﬂ%7 0— |u|02,a(Q) hots
Ul 2.0 @) lulwz (o)
2d—14da

1 2d—1tda o
s = el ey < O, fo) JulZ3 ) Nl iy hEE

then

Otherwise, if u € C>*(Q) for 0 < a <1 and

_1 _1
5 lulwz (@) | ™ pets, g ulgsamy ) ° nEE
ulos.o @) lulwz (o)



12 R. H. NOCHETTO, D. NTOGKAS, AND W. ZHANG

then

3d—1+4da 14a

Hu — UEHLOO(Q]I) < C(Q,d, fo) |u|g+30; @ |u|W§'+?2) h3ta

Proof. Since the interpolation error |[u — Tpul|p(q,) < Ch*|ulwz2 o) is of higher
order than the asserted rates, we replace v by Z,u and limit ourselves to proving
the asserted estimates for Zpu — u.. In fact, we only prove
2d—1+d(k+a) ki
HSlla;:X( — Zhu) < C(Q d fo) |u é;i:aa Q) |u|W22(+S§)+a h2+k+a
depending on the regularity C2+%*(Q) of u, k = 0,1, because the estimates for
maxg, (Znu — u.) are similar. We proceed in three steps.

Step 1: Boundary estimate. We show that for z € N so that dist(z, 9,) < §

Let pp, be the function of Lemma 5.1 (discrete boundary barrier), for z fixed, and
examine the behavior of u. + pj,. For any interior node x; € N, }?7 we have

d
1T V5 ue + o) (@i; 05) (Viue(wi3v5) + Vipn(@isv;))

|
.E&

Jj=1 j=1
d d
> H Viue(zi;v) + H Vipn(ziv;) Vv = ('Uj)?zl €Sy,
j=1 j=1

because V2u.(z;;v;) > 0 and VZpy(2i;v;) > 0. We apply Lemma 2.4 (consistency
of T.[Zhu]) to obtain

Telue + p)(xi) = Telue)(zi) + Telpn) (z:)
> f(xi) + E
> Te[Zpul(z;) — C|U|CVIV§Q(Q) + B > T [Zpul(zi),

provided E > C’|u|€V2 Q- Since Zpu = u. and pp, < 0 on 0f);,, we deduce from
Lemma 2.3 (discrete comparison principle) that

ue(2) + pr(z) < Zhu(z),
whence,
ue(2) = Zpu(z) < Clulwz (o).

Step 2: Interior estimate. We show that for all x; € N;? so that dist(z;, 92) > 6
Tofue) (i) — Te[Zpul(z;) < Ch(w)d*TF + Co(u) (h + 92)
52
with £ = 0,1 and
Ci(u) = Clulgayr. () |U|W2 Q) Ca(u) = C|“‘€V§O(Q)

dictated by Lemma 2.4. Step 1 guarantees that

— Thu < Clulwz ()6 on 9y, 5,
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where (), 5 is defined in (2.7). Let de := Zpu — ue + Clulwz ()9 and note that

d. > 0 on 09y, 5. We then apply Proposition 4.6 (continuous dependence on data)

to de in (25, in conjunction with Lemma 2.4 (consistency of T.[Z,u]), to obtain
1/d

maxd; <94 Z ((f(l‘z) + 6)1/d _ f(xi)l/d>d

Qs
e zi€C_(d2)

with e := Oy (u)5*T* + Cy(u) (g—j + 92). We now use that the function ¢ — ¢'/7 is
concave with derivative L¢1/971 and f(z;) > fo > 0 to estimate
e

(f(zi) + )/ = fz)/4 < —=
dfy *
whence
1/d

_ o h? I
Iggfds <) Z <C’1(u)5 R4 Oy (u) (62 + 92>>
: z;€C_ (dg)
Since the cardinality of C_(d.) is bounded by that of NV}, which in turn is bounded
by Ch~¢ with C depending on shape regularity, we end up with
5 h?
max (ue — Zpu) < Clulwz ()6 + CE (Cl(u)5a+k + Cs(u) ( + 92>> .

Qn 02

Step 8: Choice of § and 0. To find an optimal choice of § and 6 in terms of h,
2
we minimize the right-hand side of the preceding estimate. We first set 62 = 2—2

and realize that the error is smallest when

sltk+a h Ca(u) T
Gl —=Caw)s = b= (Cl<u)h>

Consequently,

C FiTa .
HslzaX (us - Ihu) < C|U|W§O(Q) (CTEZ; h2> + (02(u)1+k+a 4 (u) hk+a) TkTa

and we see that the boundary term is always of higher order, since £+« < 2. This
leads readily to the desired estimate upon writing the constants C;(u) and Ca(u)
in terms of |u[coir.a ) and [ulwz (o), and completes the proof. O

5.3. Error Estimates for Solutions with Sobolev Regularity. We now derive
error estimates for solutions v € W;(Q2) with s > 2 + % so that W3 (Q) c C*(Q).
We exploit the structure of the estimate of Proposition 4.6 (continuous dependence
on data) which shows that its right-hand side accumulates in {4 rather than [*°.

Theorem 5.4 (convergence rate for Wy solutions). Let f > fo > 0 in Q and let
the viscosity solution u of (1.1) be of class W () with % <s5—-2—-k<1, k=0,1.
If u is the discrete solution of (2.2),

_ P _ R
0 = (|U|W§Q(Q)|U|VV1;(Q)) h=, 0= (|U|W3C(Q)|U|W1;(Q)) htes,
then

1 d—1 2
flu — UEHL‘X’(Q;.) < C(d,Q, fo) |U|5Vg(g) |U|W§j(g) h' )
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where the constant C(d, <, fo) depends only on d,Q and fy.

Proof. We proceed as in Theorem 5.3. The boundary estimate of Step 1 remains
intact, namely

us(z) — Ipu(z) < C |ulwz @) 0

for all z € N} such that dist(z,9€2;,) < §. On the other hand, Step 2 yields

1/d

d s(k+a)d h? ‘
I(IZI}E%X( e — Thu) S Olulwz (o) + 96 Z Oy (u)da*+d 4 Oy (u)? <52 +6 ) ,
xiGN,?

where C(u) and Cs(u) are defined in Lemma 2.4 (consistency of T.[Zpu]) and 0 <
a=s5-2-k f% < 1 corresponds to the Sobolev embedding W (B;) C C*TH(B;).
In the following calculations we resort to the Sobolev inequality [7, Theorem 2.9]

|U‘C2+k.a(Bi) < C|U‘W;(Bi)v

involving only semi-norms. We stress that C' > 0 depends on the Lipschitz constant
of B; but not on its size. The latter is due to the fact that the Sobolev numbers
of W5=27%(B;) and C%*(B;) coincide: 0 < s —k —2—d/p = a < 1. We refer to
[7, Theorem 2.9] for a proof for 0 < s < 1. We now use the Holder inequality with
exponent £ > 1 to obtain

1

d

-

Yooawt ] S| ull sl
IieN}? ZENU
éi ép;d
P P
de d(d—1)=-LE—
S| 2 s, > lulwzz) "
z; €N} z; €N}

Since the cardinality of the set of balls B; containing an arbitrarily given = € (Q is
d . . . .
proportional to (%) , while the cardinality of N, ,? is proportional to h~%, we get

1

> aw?] £(3) e (i)

T; EN,?

d

or
5 |u|W&(Q |U‘W2 Q)"

Exploiting that o + k + % + 1 =s—1, we readily arrive at

N 5571 B
5| X aiw® s ) S fulwye [l o
Tz ENY

In addition, we have

=

1
Z Cow) | < lulfyz o 7
$16N;(,)
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whence

A NI N

Tz ENY

Collecting the previous estimates, we end up with

LS . B2
max (ue — Znu) S Ofulwz o) + |U|§V3i(g)ﬁ (|UW;(9)5 o Julwez o) <52 + 92)) :

To find an optimal relation among h,§ and 6, we first choose 62 = g—; and next
equate the two terms in the second summand, which we call I,. We obtain

1 _1
5o (lwa@ " ye [ lHlwa@) 7 pe
[ulw: (o) [ulw: ()

I S

whence . ot ,
fubivs o lulwe o) B
Since 0|ulw2 (o) S hi < h'=% for the range 2 < s < 4, we conclude that
1 d—1 1-2
n_(lﬁx (ue = Zpu) S |u|§V;(Q) |U|W§j(g) h* s,
which is the asserted estimate. 0

The error estimate of Theorem 5.4 (convergence rate for W5-solutions) is of order
% for s=4and u € W;}(Q) with p > d. This rate requires much weaker regularity
than the corresponding error estimate in Theorem 5.3, namely u € C*1(Q) =
W2 (). In both cases, the relation between & and h is § ~ hz.

5.4. Error Estimates for Piecewise Smooth Solutions. We now derive point-
wise rates of convergence for a larger class of solutions than in Section 5.3. These
are viscosity solutions which are piecewise W but have discontinuous Hessians
across a Lipschitz (d — 1)-dimensional manifold S; we refer to the second numerical
example in [12]. Since T.[Zpu] has a consistency error of order one in a d-region
around S, due to the discontinuity of D?u, we exploit the fact that the measure
of this region is proportional to §|S|. We are thus able to adapt the argument of
Theorem 5.4 (convergence rate for W, solutions), and accumulate such consistency

17, at the expense of an extra additive term of order h=1§1+a. This yields

a convergence rate depending on the dimension d.

error in

Theorem 5.5 (convergence rate for piecewise smooth solutions). Let S denote a
(d —1)-dimensional Lipschitz manifold that divides Q into two disjoint subdomains
01,09 so that S = QN Qy Let f> fo >0 inQ and let u € W, (i) N W2 (Q),
fori=1,2 and % < s—2<1, be the viscosity solution of (1.1). If u. denotes the
discrete solution of (2.2), then for f = min (s,2 + %) we have

1 d—1 12
flu— UEHL""(Q;J <C(d,Q) ‘u|5vs(g\s) |“|ng(g) h*®
with \u|1,1,r;(9\3) ‘= max; ‘U‘[,V;(Qi>, provided
1

1
_ 7oz . B ,1-2
0= (|“|W§O(Q)|“|Vl/1;(g\5)> he, 0= <|U|W§Q(Q)|u‘wl;(sz\s)> h'E.
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Proof. We proceed as in Theorems 5.3 and 5.4. The boundary layer estimate relies
on the regularity u € W2 (2) which is still valid, whence for all = € (), such that
dist(x, 09p,) < ¢ we obtain
ue(z) — Trhu(z) < Clulwz (o).
Consider now the internal layer
Sy i={x e, : dist(z,S) <4},

which is the region affected by the discontinuity of the Hessian D?u. Recall the
auxiliary function d. = Zpu —u. +C|U|W§O(Q)(S of Theorem 5.3 (rates of convergence
for classical solutions) and split the contact set C° (d.) := C_(dc) N, 5 as follows:

Spy=C0de)NS), Spo=Cl(de)\Sp.

An argument similar to Step 2 (interior estimate) of Theorem 5.3, based on combin-
ing Proposition 4.6 (continuous dependence on data) and Lemma 2.4 (consistency
of T.[Zpu]) with assumption f > fo > 0, yields

1/d
— d
max d; <96 Z Co(u)
' IEZ‘GS;EVJ
1/d
h? ¢
+6 | D Crlw)st T 4 Cy(u)? (5—2 + 92> = I+ Iy,
Eiesiﬂ

because the consistency error in 82,1 is bounded by Cy(u) = C|u|€vz\(31). As in
Theorem 5.4 (convergence rate for Wy solutions), Cy(u) satisfies

Cl(u) 5 |u‘WZ;(Bl> u|(é{7§i(31)'

Since the number of nodes x; € ) | is bounded by C|S|6h~%, we deduce

1/d .
§itia
d d
L <6 Z Ca(u) S Julwz @)=~
xieS,‘j‘l
For I we distinguish whether x; belongs to 1 or Qs and accumulate Cy(u) in (P,
exactly as in Theorem 5.4, to obtain
s—1

< d—1 d d h2 2
Iy 5 |U|Wgo(g) |U|W;(Q\5) h +|U|W§O(Q)E 5—2+9 :

Collecting the previous estimates yields

max(ue = Tpu) S Julwz ©)9

_ (5 _ h2 N
+ [z @ <|“|W;<ﬂ\s>5s 2+ Julwz o) (5—2+92+5é>).

We finally realize that this estimate is similar to that in the proof of Theorem 5.4
except for the extra additive term |u|§v2‘(9)(51+§h*1, which dominates for é <
s — 2. Therefore, upon setting 5 = min(s, 2+ %) the desired estimate and relations
between 6,60 and h follow as in Theorem 5.4. This concludes the proof. (]
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5.5. Error Estimates for Piecewise Smooth Solutions with Degenerate f.
We observe that in all three preceding theorems we assume that f > fo > 0. This
is an important assumption in the proofs, since it allows us to use the concavity of
t — t*/4 and Proposition 4.6 (continuous dependence on data) to obtain

(5.1) )+ = ) < —or,

df,

where e is related to the consistency of the operator in Lemma 2.4 (consistency of
T.[Znu]). We see that this is only possible if fo > 0. If we allow f to touch zero,
then (5.1) reduces to

(5:2) (f (i) +e)/4 = fla) /4 < et/

with equality for f(x;) = 0. This leads to a rate of order (%)lf% > 1 for d > 2.
To circumvent this obstruction, we use Lemma 5.2 (interior barrier function) which
allows us to introduce an extra parameter o > 0 that compensates for the lack of
lower bound fy > 0 and yields pointwise error estimates of reduced order.

Theorem 5.6 (degenerate forcing f > 0). Let S denote a (d—1)-dimensional Lip-
schitz manifold that divides 2 into two disjoint subdomains 21, such that S =
QiNQy. Let f > 0inQ and let u € W’;(Qi)ﬂW’fc(Q), fori=1,2 and% <s—2<1,
be the viscosity solution of (1.1). If u. denotes the discrete solution of (2.2), then
for B =min (s,2+ 1) we have

5 1-g5  ,1(1-2
Hu_uEHLOO(Qh) < C(dv Q) |u|5[fp5(9\5) |’U,‘W°2:€Q) hd(l /3)

with \u|W;(Q\S) ‘= max; ‘U‘V[/;(Qi)/. provided
-1/8

_ 1/8 _ _2
0= (‘U|W§6(52)|U|WI;(Q\3)> hQ/Ba 0= <|U|W§O(Q)"u‘w};(sz\s)) R,

Proof. We employ the interior barrier function ¢g; of Lemma 5.2 scaled by a param-
eter o > 0 to control u. — Zpu and Zpu — u. in two steps. The parameter o allows
us to mimic the calculation in (5.1). In the third step we choose ¢ optimally with
respect to the scales of our scheme.

Step 1: Upper bound for u-—Zpu. Let wp, := u.+oqp and vy, 1= Ihu+C|u|Wgo(Q)(5
and for z € N such that dist(z,9%,) < 4, let pj, be the discrete barrier function
of Lemma 5.1 associated with z. We show that

wp(2) < vp(z2).

Since, pp,qn < 0 on 09, we have wy + pr, < Zpu on 0€),. Using Lemma 2.4
(consistency of T.[Z,u]) we also see that

Telwp + ppl(zi) > f(2;) + o+ E
> Te[Zpul(w;) — C|“‘€V§Q(Q) +o'+ E > T[Tyul(z;) Vx; €Ny
for B = Clu|w:z (q), whence Lemma 2.3 (discrete comparison principle) yields
wp(2) — Clulwz )0 < wn(2) +pr(2) < Thu(z) = win(z) < val2).
We now focus on (), 5 and consider the internal layer

S)i={x e, dist(z,S) < 6},
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which is the region affected by the discontinuity of the Hessian D?u. We also define

the auxiliary function d. := v, — wy, and split C° (d.) = C_(d.) N 2, 5 as follows:
Spy=C{de)NS), Spo=Cl(de)\Sp.

Since the previous argument guarantees that d. > 0 on 09, 5, Proposition 4.6
(continuous dependence on data) gives

1/d
_ 1/d d\ @
waxd: <5 (> ((Tll@a) " = (Tfwil @)
e Iieci(ds)
In order to split the right-hand side, we further note that
Tefwp](:) > Teluc](x:) + Te[ogn)(xi) > f(z) + 0%,
whence
1/d
_ 1/d an1/d\ 4
maxdz <6 | 3 ((F(an) +e(@) " = (Fla) +0))
Jéiesz‘l
1/d
1/d 1/d\ %
o[ 3 () +e@) = () +o)") | =n+D,
miGS,‘j_Q

where e(x;) stands for an appropriate local bound for the consistency error of
Lemma 2.4. We now observe that e(z;) > o? for all z;’s that belong to the contact
set C® (d.) of d. because all terms in the above sum are non-negative. If there
is no such z;, then the above bound implies that d_ = 0 and wj, < vy, whence
ue < Thu + Co + Clulwz (9)d. Otherwise, the above observation and f(z;) > 0
imply that, for both I; and I, we can use the bound

(f (@) + ele)" = (f(x:) + oM
(f(x;) + ot 4 (e(z;) — gd>1/d — (f(x:) + Ud)l/d
T dotTT

We now examine the two terms I; and I, separately. In the set S}fﬁ], e(x;) is

<d tolde(x;).

bounded by Cs(u) = Clul,, (o) according to Lemma 2.4 (consistency T.[Znu]).
We combine this with the fact that the number of nodes x; that belong to 82,1 is
bounded by C|S|6h~¢ to deduce that
1/d
L=C5f > Cou) St uliye o

:v-;GSil

1

gita
h )

this resembles a similar bound in Theorem 5.5 (convergence rate for piecewise
smooth solutions) except for the factor o'~ In the set 52_27 the same bound
derived in Theorem 5.5 holds for each €2; again with the additional factor o'=¢

s—1

_ _ 0 § (h?
I, <Co'™? |U|€V§1(Q) <U|W;(Q\S) noT lulwz (o) 7 (52 +92>) :
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Combining the bounds of I; and Is with the definition of d., we obtain

1) h?
ue < Iput+C <|U|W§O(Q)5 +otot 7 (Cl(u)582 + Ca(u) <5l/d Tt 92))) ;

where C (u) = C|U|W;(Q\8)|U|C‘£[721(Q) and Ca(u) = Clul{y ) as in Theorem 5.5.

Step 2: Lower bound for u. — Zpu. To prove the reverse inequality, we proceed
as in Step 1, except that this time we define vy := u. + Clulwz ()0 and wy, =
Zhu+ 0qp. An argument similar to Step 1 yields wy, < v, in wy, s which, combined
with Proposition 4.6 (continuous dependence on data) in €2y, s, gives

2
Zhu < u.+C <|U|W30(Q)6 +o 4ot % (C’l(u)és_2 + Ca(u) <5l/d + 2—2 + 92>)> .

Step 8: Choice of 9,0 and o. Combining Steps 1 and 2 yields

Hue - IhUHLoc(sz,,,) < |U\Wgo(sz)5 +o

2
+ o' % (Cl(u)(552 + Cy(u) ((51/0[ + ;L—Z + 92>) .

We now minimize the right-hand side upon choosing d, § and o suitably with respect
to h. We see that for s < 2+ é, we obtain, similarly to Theorem 5.5

1
5= [ulw2 (o) Sh%'
|U\W;(Q\s)

At this stage it remains to optimize o, namely

_ _1-d), |t d—3 1-2
o =0 Yuliy, s thwz@) b
which leads to ) )
— |y|ds -3 3(1-2
7 = ulfzans) [y H077),
For any higher value of s the rate is dictated by the limiting case s = 2 + é. Since
|u— Zhull L (a,) < Clulwz @)h? is of higher order, the proof is complete. O

Theorem 5.6 is an extension of Theorem 5.5 to the degenerate case f > 0, but
the same techniques and estimates extend as well to Theorems 5.3 and 5.4.

6. CONCLUSIONS

In this paper we extend the analysis of the two-scale method introduced in [12].
We derive continuous dependence of discrete solutions on data and use it to prove
rates of convergence in the L°° norm in the computational domain € for four
different cases. We first prove rates of order up to h'/2 for smooth classical solutions
with Holder regularity. We then exploit the structure of the continuous dependence
estimate of discrete solutions on data to derive error estimates for classical solutions
with Sobolev regularity, thereby achieving the same rates under weaker regularity
assumptions. In a more general scenario, we derive error estimates for viscosity
solutions with discontinuous Hessian across a surface with appropriate smoothness,
but otherwise possessing piecewise Sobolev regularity. Lastly, we use an interior
barrier function that allows us to remove the nondegeneracy assumption f > 0 at
the cost of a reduced rate that depends on dimension. Our theoretical predictions
are sub-optimal with respect to the linear rates observed experimentally in [12] for a
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smooth classical solution and a piecewise smooth viscosity solution with degenerate
right-hand side f > 0. This can be attributed to the fact that the continuous
dependence estimate of discrete solutions on data introduces a factor % > 1 in the
error estimates. This feature is similar to the discrete ABP estimate developed in
[10] and is the result of using sets of measure ~ §¢ instead of ~ h¢ to approximate
subdifferentials. In a forthcoming paper we will tackle this issue and connect our
two-scale method with that of Feng and Jensen [5].
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