FINITE ELEMENT APPROXIMATION OF THE ISAACS EQUATION*

ABNER J. SALGADOT AND WUJUN ZHANGH

Abstract. We propose and analyze a two-scale finite element method for the Isaacs equation.
The fine scale is given by the mesh size h whereas the coarse scale ¢ is dictated by an integro-
differential approximation of the partial differential equation. We show that the method satisfies the
discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak
operator consistency of the finite element method, allows us to establish convergence of the numerical
solution to the viscosity solution as e, h — 0, and € > (h|logh|)'/2. In addition, using a discrete
Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness
assumptions on the exact solution.
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1. Introduction. Fully nonlinear elliptic partial differential equations (PDE)
arise naturally from differential geometry, optimal mass transportation, stochastic
optimal control and other fields of science and engineering. In spite of their wide
range of applications, the numerical methods for this type of PDEs is still under
development and this is particularly the case if one wants to apply the finite element
method (FEM). A major difficulty in their numerical approximation is that, for fully
nonlinear PDEs, the correct notion of solution is the so-called viscosity solution, which
is based on the maximum principle instead of a variational one. This is reflected in the
fact that, in contrast to an extensive literature for linear and quasilinear elliptic PDEs
in divergence form, the numerical approximation via finite elements of fully nonlinear
PDEs reduces to a few papers; we refer the reader to [14, 31] for an overview. The
situation is somewhat more satisfactory for finite difference approximations, where
convergence to the viscosity solution without rates was studied in the early works
[2, 24]. Rates of convergence for convex/concave fully nonlinear elliptic equations
have been established, e.g. by Krylov [21, 22]; Barles and Jakobsen [1] and Debrabant
and Jakobsen [12]. However, rates of convergence for the nonconvex/nonconcave
case remained an open problem as the techniques used in the convex case could
not be generalized to this scenario. For many years the existing results were rather
specialized. For instance, [17] considered a one dimensional problem and obtained
rates of convergence but its arguments do not extend to more dimensions. A particular
nonconvex equation: an obstacle problem for a Hamilton Jacobi Bellman equation
was studied in [18], where this particular structure is exploited to obtain convergence
rates. This changed when, in 2008, Caffarelli and Souganidis [9] established a rate of
convergence for finite difference approximations of elliptic equations of the form

F[D*u)(z) = f(2),

with Dirichlet boundary conditions. This result was extended by Turanova [37] to
the case where F' is also dependent on x and by Krylov [23] to the Isaacs equation,
where he allows the operator F' to depend on x, Vu and uw. We finally comment that,
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to our knowledge, no rates of convergence are available for semi-Lagrangian schemes.
Reference [12] provides convergence, but no rates are available for nonconvex operators
of order two. It is remarkable, however, to note that explicit rates of convergence for
nonlocal operators of order u € (1,2) are known. Namely, [3] shows that the rate of

convergence is O(hrzl;u) Note that this rate degenerates as the order of the operators
approaches two and that the authors of this work state that this is optimal and
expected.

In all the works mentioned above, convergence hinges on operator consistency and
monotonicity, which are nontrivial properties to be satisfied, especially in the FEM.
To overcome this, the recent work [32] introduced a two scale FEM for linear elliptic
PDEs in nondivergence form and, on the basis of monotonicity and weak operator
consistency, the authors were able to prove convergence of the method with rates.
The purpose of this work is to extend these ideas to a particular kind of uniformly
elliptic Isaacs equations on convex domains, namely,

Slul(z) := ian sup [A“’B(x) : Dzu(x)] =f(z) in Q, u=0on 99, (1.1)
aE BEB

where Q C R? (d > 2) is an open, bounded and convex domain, f € C%!(Q), the
sets A and B are arbitrary finite sets and the matrices A%# € C%1(Q, GL4(R)) are
symmetric and uniformly elliptic, in the sense that there are constants A\, A € R, with
0 < A < A, such that

M < AP < AI Vae A eB. (1.2)

We will introduce, following [32], a two-scale FEM, show its convergence to the
viscosity solution of (1.1) and provide rates of convergence. The method is based on
the approximation of (1.1) proposed by Caffarelli and Silvestre in [8]: we formally
rewrite

lul(z) = %Au(w) + inf sup KAM (z) - ;1> : D2u(x)}

a€Agep

and we approximate the operator above by the integro-differential operator

Flul(x) == éAu(:v) + inf sup I*P[u](z) (1.3)
2 acAgeB
where
1 MeB(z) "y
a,B —
T T e ] G K
with

M*P(z) = (Ao"ﬂ(x) — ;I>1/2.

Hereafter, ¢ is a radially symmetric function with support in the unit ball By of R?,
where d > 1 is the dimension, that verifies

/ lyl?e(y)dy =d
Rd
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and
du(z,y) == u(x +y) — 2u(x) + u(z — y) (1.4)

is the centered second difference operator. The operator I?[-] is a consistent approx-
imation of (A% (x) — 31) : D*u(x) in the sense that if u is a quadratic polynomial,
then

1P ) (z) = (Aa’ﬁ(x) - ;I) : D?u(x) Ve >0, Vu &Py, (1.5)

see Lemma 2.1.

We discretize (1.1) by using this approximation as follows: Introduce a triangu-
lation 9}, of Q and let .4, be the set of internal nodes. We introduce a finite element
space consisting of piecewise linear functions and denote by {¢,}.c.;, its Lagrange
nodal basis. Now, multiply (1.3) by ¢, and integrate over Q). Integrate the first term
by parts and apply mass lumping to the second to finally obtain that the finite element
approximation, uj, satisfies

Biluil(2) = 2 /Q Vui(x) - Vo () dz + in, sup 1 [u / ool

acA BEB

= /Qgéz(x)f(:r) dx Yz € M,

We show that the FEM is monotone provided that meshes are weakly acute. To show
existence and uniqueness, we employ a discrete version of Perron’s method, which
seems to not have been considered before, especially in the finite element literature.
Exploiting monotonicity, and using the notion of weak consistency introduced by
Jensen and Smears in [19] we show convergence to the viscosity solution following
(2, 24].

We also derive rates of convergence for the method. The main difficulty to derive
a rate of convergence is to establish a suitable notion of stability for the FEM applied
to this fully nonlinear PDE. To address this issue, we resort to the discrete Alexandrov
Bakelman Pucci (ABP) estimate of [32], which reads

1/d

SUP(UZ)7 5 Z ‘fz‘dwz . (1'6)

@ {ze Mg (2)=T(5)(2)}

Here {z € A}, : uj (2) = '(uf)(2)} denotes the (lower) nodal contact set, I'(uf) is the
convex envelope of u5, (see (3.17)),

f= ( | f@e.@) dx) ( [ 6.(0) da:)

and, for each node z € .4},, we set w, = fQ ¢.(x) dx. Note that the nodal contact set
is just a finite collection of nodes. With (1.6) we obtain control of the negative part
of u§. If we consider the concave envelope and corresponding (upper) contact set, we
can estimate the positive part. A combination of these bounds yields stability, in the
L*°-norm, of uj, in terms of the L%norm of the right hand side f. Suitable notions
of consistency, monotonicity and stability yield rates of convergence. Moreover, by



4 A.J. SALGADO AND W. ZHANG

combining them with the regularity estimates for the Isaacs equation of [8], we show
that, for some o € (0, 1],

lu =l L~ (@) S h72 | log A7 [If| con o),

which, at best, gives us a O(h'/3|1logh|'/3) error estimate.

We also discuss how to practically realize the method in question. We study,
following [6], a variant of Howard’s algorithm to solve the ensuing discrete (nonlinear)
systems.

Before proceeding any further, we must also comment that our ideas and methods
also apply to a version of the Hamilton Jacobi Bellman equation. Namely, setting
#A =1 or #B = 1 we arrive at a convex or concave operator. In this case much more
could be said for this problem, and it is possible that our analysis yields suboptimal
error estimates. In particular, the rate of convergence o, which comes form (2.6)
below, might be known. Since our main interest here is to deal with the Isaacs
equation, we will not explore this refinement any further.

We must also mention that the linear case, i.e., #4 = #B = 1, was already
treated in [32]. Our analysis, however, departs from theirs in several respects:

e To apply the regularity and approximation results of [8], as opposed to [32], the
second difference operator d must be of the form (1.4), and should not be modified
near the boundary. This forces us to consider extensions of functions outside the
domain ), and our analysis must take this into account.

e Since our problem is nonlinear existence is not guaranteed by uniqueness, as it is the
case in [32]. Thus, although uniqueness is obtained by similar (monotonicity and
maximum principle based) arguments, we must develop a discrete Perron’s method
to assert existence of solutions.

e Due to the fact that solutions to the Isaacs equation (1.1) exhibit very low reg-
ularity, the convergence arguments that we employ must take this into account.
In particular this means that the relation between the two scales, € and h, of our
method must be modified, and that suitable barrier functions must be constructed.

The rest of this paper is organized as follows. In Section 2, we recall the approx-
imation of elliptic problems by integro-differential equations and the main regularity
results that follow from it. Section 3 presents our discretization and proves conver-
gence to the viscosity solution. We recall the discrete ABP estimate for finite element
methods in Section 4. The discrete ABP estimate allows us to show stability and
rates of convergence for our discretization. We discuss some implementation details
in Section 5, where we present a convergent iterative scheme.

We will follow standard notation concerning differential operators and function
spaces. The relation A < B means that there is a nonessential constant C' such that
A < CB. The value of this constant might change at each occurrence. By A 2> B we
mean B < A.

2. Approximation of elliptic problems by integro-differential operators.
Let us review the approximation, proposed by Caffarelli and Silvestre in [8], of fully
nonlinear elliptic PDEs by an integro-differential equation and the convergent finite
element scheme of [32] for the approximation of elliptic problems in nondivergence
form based on this idea. In this work, we exploit this approximation to discretize the
fully nonlinear problem (1.1).

2.1. Integral operator. Let us begin by fixing some notation. Recall that,
owing to (1.2), for all z € Q the matrices A%#(z) are uniformly positive definite.
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Thus, we can define

MP(z) = (Aaﬂ(x) - ;1> 1/2.

Let € > 0 and ¢ be a radially symmetric function with compact support in the unit
ball By and such that [ |z|?¢(z)dz = d. Let @ = y/2/X and notice that, again
because of (1.2), for all « € A and 8 € B we have that if

1 _
Wil iym e <€M°"ﬂ(x) 1y) :
then supp gogf C Bge. For this reason, we define
(09). = {z € R*\ Q : dist(z, 0Q)<Qe} . (2.1)
a Qe-neighborhood of 02 and
Q. := QU (09Q)c. (2.2)

Given a function w € C(Q.) we define, for each a and 3 the function 12w :
QR by

« 1 (o7
1 l(0) = ey [, 2 e ) (23)

where we denoted by dw(z, y) the second order difference of the function w at the point
2 in the direction y which is given in (1.4). Notice that, for z € Q and y € supp w?f ,
we have that z &y € Q. so that (2.3) is well defined. It is easy to check that if w is
a quadratic polynomial, then we have dw(z,y) = D*w(z) : (y ® y) for all z € Q.

The integral operator I°[w] is a consistent approximation of the differential
operator (A% — 31T) : D?w in the following sense [32, §].

LEMMA 2.1 (approximation properties of I1%#[-]). Let I®f[.] be the integral op-
erator defined by (2.3) and assume that € > 0 and x € Q. Then,
1. If p € Py, i.e., it is a quadratic polynomial, then

I%Pp)(z) = (Ao"ﬂ(x) — 2[) : D?p(z).
2. Let g > 0 be fized. If w € C?(Q,) then, as € — 0, we have that
18 w](z) — (Ao"ﬁ(ac) - ;1> : D2w(z).

Let us, from now on, assume that the matrices M®? have a uniform modulus
of continuity w. In other words, there is a nondecreasing function w such that
limg o w(t) = w(0) = 0 and

sup | M (21) — MP(25)|| < w(t), VaeApeB. (2.4)

®1,02€Q, |z —22|<t

Under this assumption, we can show that, for every € > 0, the integral operator maps
continuously C%1(Q.) into C°(Q).

LEMMA 2.2 (continuity of I&A[]). If w € C%Y(Q.), then, for all « € A and
BeBand all x,z € Q

[z =2 | ==

2 ule) - 12l $ (5 4 ZEZD o,
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where the hidden constant is independent of «, 3, x, z, € and w.
Proof. By definition of integral operator (2.3) and a change of variable y :=
eM*P(x)§, we obtain

127uw) = 5 [ oule M@)oy
By the radial symmetry of ¢
1270ue) = 5 [ (ol 2 )~ i) o(0) dy
Thus,
127 w](@) — 127 ful(2)] < T+11,

with

(=5 [ fte+ M @) (e + <M )] () .

=25 [ o) w(e)l )y
Evidently,

|z —

2|
II 5 2 |’UJ|CO,1(Q).

It remains then to estimate the first term. To do so we, again, use that w € C%(Q,)
to obtain

|w|coyl(gT€)

I< sup x—z—&—E(MO"B(x)—M“’B(z))y‘.

2
€ yEB,

an application of the triangle inequality, together with (2.4) imply

xr—z wl|\r—z
15(' X |>>|wCM(QE)’

€2 €

where the hidden constant is uniform in a and 5. Gathering the obtained bounds for
I and II allows us to conclude. O

In [8] Caffarelli and Silvestre proposed an approximation of the Isaacs equation
(1.1) by the following integro-differential problem

“lu® '*é u®(x inf sup I*?[u](z) = f(z) in
F](w) 1= 500 (a) + fnf sup 2 [u)) = F(w) s

uF =0 in (9Q)..

Notice that, for x € Q, the definition of F[u](x) requires values of u® in Q.. Thus
in (2.5) the boundary condition has been replaced by a so-called volume constraint
over (09).. To define this volume constraint, the function that defines the boundary

condition in (1.1) (in this case g = 0) has been extended in a way that its extension
belongs to C%1((99).).
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The approximation property of the integral operator I%#[] given in Lemma 2.1,
allows us to relate u® and u, which solve (2.5) and (1.1), respectively, as follows [8].

PROPOSITION 2.3 (approximation of the Isaacs equation). Let Q C R be convex
and bounded, and f € C%*(Q) for some s € [0,1). There exists a unique function
u® € C%%(Q) that solves (2.5). Moreover, if f € C%1(Q), this solution satisfies

||u6||Cl>S(U) + ”uE”CO:l(Q) S Hu€||L°°(Q) + ”fHL‘”(Q)a

where U is any open set compactly contained in Q) and the hidden constant depends
on the distance between U and OX). In addition, there is a o > 0 such that

lu— UEHL‘X’(Q) < €U||f||coyl((z)’ (2.6)

where u is the (unique) viscosity solution to (1.1).

An important consequence of Proposition 2.3 is that, in the case when the coeffi-
cient matrices A% are independent of x, we have the following regularity result for
the function u, see Theorem 4.8 of [8] and the comments at the beginning of Section 4,
for the C'** estimate and Theorem 5.2 and the comment at the beginning of Section
5 for the C%! estimate up to the boundary.

COROLLARY 2.4 (regularity of u). Assume that, for all « € A and § € B
A*B(z) = A%P | that Q is convex and that f € COL(Q). If u is the viscosity solution
of (1.1) then there is a s > 0 such that u € C+*(Q) N C%L(Q).

The importance of this result lies in the fact that § is not convex nor concave
and, for that reason, the maximal regularity we can assert for u is C'**(Q), for some
s > 0. We refer the reader, for instance, to the works by Nadirashvili and Vladut
[29, 30, 28], who have constructed viscosity solutions to nonconvex fully nonlinear
elliptic equations whose Hessian is not bounded. This is in sharp contrast with,
for instance, the uniformly elliptic Hamilton Jacobi Bellman equation where, under
suitable assumptions on 2 and the “coefficients” of the equation, it can be shown that
the solution belongs to C*#(Q) for some s > 0. Let us, finally, comment that the rate
of convergence given in (2.6) cannot be improved; see the last paragraph of [8].

In this paper, based on the idea of an integro-differential approximation, we pro-
pose a finite element method for Isaacs equation (1.1).

2.2. Numerical quadrature to compute I%?[]. The approximation proper-
ties of the integral operator in Lemma 2.1 and 2.2 are essential to ensure the con-
sistency of the method. Let us briefly discuss here the use of numerical quadrature
rules that preserve these properties. For each fixed @ € A and § € B, we aim to
design a quadrature and choice of ¢ to approximate I%#[w]. The change of variable
y = eM*P(x)¢ reveals that we must approximate

(6% 1 «
1)) = ey L, P e ) dy

1

J
;z/Rd dw(a, eM(2)*7¢)p(¢) d¢ =~ 6%ijﬂw(;mEM“’B(x)qj)(p(qj),

j=1

This shows that, to preserve the consistency and convergence properties of the integral
operator, we must require the quadrature to satisfy the following three conditions:

e Forall j =1,...,J, the quadrature points ¢; must satisfy g; € supp(¢p).

e The weights must be positive: w; >0 forall j=1,...,J.
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e The quadrature must be exact for all quadratic polynomials, i.e., for a given kernel
function ¢ with fRd ly|2¢(y) dy = d we must have that, if p € Ps, then

J
> witp(a, eM*P (2)q;)0(aj) = A*P (2) : D*p(a).

Jj=1

The construction of quadrature formulas of this form which are of maximal degree of
precision can be found in classical references like [27], see also [4, 5, 33]. For instance,
for dimension d = 2, given ¢(y) = 4/7 in the unit ball and ¢(y) = 0 outside the unit
ball, reference [36] shows that the following collection of weights and nodes has the
requisite properties:

T V2 p g
6’ P = 9 iT g
where the weights ¢; = (p;, 0;) are given in polar coordinates. Indeed, since ¢(g;) =
4/m, this formula is exact for quadratic polynomials and it preserves the consistency
in Lemma 2.1 and Lemma 2.2.

wj = Qj:(pjvaj) j:13-~'a63

3. Finite element discretization and convergence. Here we describe the
scheme we use to approximate (1.1) and show that it converges to the viscosity so-
lution. To keep technicalities to a minimum, in what follows we assume that € is a
convex polytope.

3.1. Description of the scheme. Let {7,},~0 be a quasi-uniform, in the
classical sense for finite elements [13, 11, 7], family of triangulations of size h of the
domain . We denote by .4}, and JV,f the collection of interior and boundary nodes
of F,, respectively. We define the finite element space

Vyi={veCQ):vreP, VITeH},

where we denoted by Py the space of polynomials of degree one.

We also need to introduce a triangulation of 2.. Since this may not be a poly-
tope we proceed in a standard way, namely, we introduce a triangulation Z° of the
polytopal domain Qg C Q¢ in such a way that:

e On Q it coincides with .7j,.

e If we denote by .#;° the nodes of .7;¢ that are not in .4, then .4, N 9N C 99..
° |QE\QE‘9| §h2.

Notice also that J%LB C A;f. We then define

Vi ={vec@?):vreb vrez},
VO :={veVs:vk) =0 Vze N},

and, as Q and ). are convex, we have that Q C ng C Q. and we can extend
continuously functions in these spaces from Qf to 2. by a constant in the direction
normal to 097 .

We denote by {¢.}.c.4,0.° the Lagrange nodal basis of Vj. Notice that, by
restriction, we can consider Vj to be continuously embedded in V.

Below we will require .7, to be weakly acute, i.e., for all z1, 2o € A}, with 21 # 25
we must have

/QV¢Z1 (2) -V, (x)dx <0. (3.1)
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It is known, see [10, Section II1.20] and [31, Lemma 3.42], that this is a sufficient
condition for the discrete Laplacian, defined below, to be a monotone operator.
Let z € A}, we set

w, = / ¢.(x) da.
Q
For wy, € Vy, and z € 44, we define the discrete Laplacian of wy, at z by

Apwp(z) = fwi ; Vuwp(z) - Vo, (z)de. (3.2)

Finally, for z € A7, we set

1
fo=o /Q ()2 (z) da.

With this notation at hand, we now define our scheme. We seek a function
u§, € V9 such that, for every z € A4, satisfies

A
Biluil(2) 1= SAwui(2) + inf sup [7[u5])(2) = f.. (3.3)
a€AgeB

3.2. Galerkin projection. In the analysis that follows we will make repeated
use of the Galerkin projection and its properties. The Galerkin projection is the map

G - {w € LN(Q:) : wig € W(Q), wignq € C(% \ Q)} -V
that verifies Gpw(z) = w(z) for z € A7 and

VGrw(z) Vo (x)de = / Vw(z)-Vup(z)de Vo, € V9. (3.4)
Q Q

Notice that, if wjq € C*(2), setting v, = ¢. with z € .4} in (3.4) and integrating by
parts we get

ApGrw(z) = wiZ/QAw<LL‘)¢Z(.’L‘) dz,

that is, the discrete Laplacian of the Galerkin projection at a node is a weighted
average of the Laplacian of the original function around this node.

Combining the well known near optimal approximation properties [34, 25|, in
the L*°-norm, of the Galerkin projection with a standard interpolation estimate over
Q. \ Q we conclude that if w € C%1(Q,), then we have

1 — Gt £ ey S Pl Tog bl 10l sy (3.5)
Owing to (3.5), for every z € .4}, we obtain
0Gtw(z, ) — dw(z,y)| S hllog hllwllgor -

By definition (2.3) of the integral operator I¢+?[-], we deduce that for all nodes z € .44,
we have

h
122Gl (2) — 12 P[] ()] £ S5 log bl lwllcos oy (3.6)

uniformly in A and B.
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3.3. Existence and uniqueness of the numerical solution. Based on the
notions of monotonicity and weak consistency advanced in [2, 19, 32], we show ex-
istence and uniqueness of solutions to (3.3). Moreover, the family {uf}n>0,e50 of
solutions to (3.3) converges to u, the unique viscosity solution of (1.1), provided the
mesh size h and e satisfy a suitable relation.

We begin with two elementary properties, namely monotonicity and continuity,
of the inf-sup operator.

LEMMA 3.1 (monotonicity and continuity of inf-sup). Let {X*f :a € A, B¢
B} CR and {Y*? :a € A, B € B} CR be two families parametrized by two index
sets A and B. If for every fived o € A and 8 € B we have that X*P < Y*# then

inf sup X*# < inf sup Y*P. (3.7)
a€Agep a€Agep

Moreover, if there is a constant C' such that for all o and B we have |X°"5 — Yo‘*ﬁ| <
C, then

inf sup X*? — inf supY*#| < C. (3.8)
a€Agen a€AgeR

Proof. If X®8 < Y*P for all fixed o and 3, taking supremum on Y *? with
respect to 3 first, we have

X <supY*? —  supX*P <supY*~.
peB peB peB

Taking infimum on supgc X*# with respect to a, we get

inf sup X*? <supV*?¥ — inf sup X*? < inf sup Y*P.
a€AgeB BeB a€AgeR a€A gep

This proves the first inequality (3.7).
To prove the second inequality, we only need to note that if X*# < Y*# 4 C for
all a and f3, then by (3.7)

inf sup X*? < inf supY*? + C.
a€Agep a€AgeR

Similarly, if Y8 < X*# 4 C for all o and 3, then

inf sup Y% < inf sup X*7 + C.
QGA[gEg aGABeB

This proves the second inequality (3.8). O
We now establish the monotonicity and weak consistency of the proposed scheme.
LEMMA 3.2 (monotonicity of the numerical scheme). Assume that for every
discretization parameter h > 0 the mesh 9} is weakly acute. Then the family of
operators §5 is monotone in the sense that if vy, wn, € V5 with vy, < wy, in 5 and
equality holds at some node z € N, then

Silon)(2) < §[wn](2).
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Proof. Let v, wy, € V5 be as indicated. Since .7, is weakly acute, the operator
Ay, is monotone, i.e.,

Ahvh(z) < Ahwh(z).

It remains then to deal with the inf-sup over the approximating integral operators.
Since, over 7;¢, we have that v, < wy, and equality holds at z € 44, we can conclude
that, whenever y € Bg., the second order differences verify dv,(z,y) < dwi(z,y).
Therefore, for fixed a € A and 8 € B, we get I&P[vp](2) < IP[wp](2). Using the
monotonicity of the inf-sup operator (3.7), we obtain

inf sup 1%8 < inf sup I®” .
i Aﬁgg : [vh](Z)_;Iel A,;ég &P [wn](2)

Combining both inequalities, we then deduce that
B [vnl(2) < & lwn](2).

This completes the proof. 0

As a consequence, we obtain a discrete maximum principle for our numerical
scheme.

COROLLARY 3.3 (discrete maximum principle). Assume that J, is weakly acute.
If v, wy, € V5, are such that vy, < wyp, in NF and, for all z € A, we have

Silonl(2) = Silwnl(2),

then vy, < wy in 5F.

Proof. We argue by contradiction by assuming that v, — wj, attains a positive
value. We then necessarily have that there is zg € 4, for which vy, (z0) — wp(z0) > 0.

We now set p(x) = |x|?> — C, where the constant C'is so large that, for all = € €,
we have p(z) < 0. Let p, € V5 be the Lagrange interpolant of p and, for § > 0, we
define e, = v, — wp + dpy, € V5. By construction we have that e, < 0in 4,7, In
addition, for 6 > 0 sufficiently small, e} (z9) > 0. Consequently, there is z; € A},
where e, attains a, necessarily positive, maximum. At this node we must have, for
all « € A and 3 € B that

I%Plen)(z1) < 0.
The weak acuteness of the mesh .7}, allows us to conclude also that
Apep(z1) <0.
Adding these two inequalities yields that, for all « € A and 8 € B we have
A A
5 An(vn +0pn)(21) + 127 [ + 6pn(z1) < 5 Anwp(21) + I2P[wp)(z1). (3.9)
Notice that since p is convex and pj, is its piecewise linear interpolant we have

that, for all y € Bge, 0pn(2z1,y) > 0p(21,y). This, in conjunction with Lemma 2.1,
implies that

12 0lp(e) 2 120l(n) = (A7) = 51) D) 24 (10)
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Observe now that the linear function ¢ (x) = —2x-21 + |21]* € V§ is such that
p(z) + ¢(z) = |x — 21> — C and Apip(z1) = 0. Consequently, by definition (3.2), we
have that

—wz Anpn(21) = —we, Anlpn + ) (21) = /QV(ph +9)(2) Vo2, () de

= Y 0+ [ Vo) @) da

zE./VhUJVha

> ksl [ Ve.@ Vo @ d

2ENMUNO\{z1}

where, to get rid of the constant term —C', we used the partition of unity property of
the Lagrange basis functions {¢.} . 4 . VaE Finally, we recall that the weak acuteness

of .7, implies that, for z # 21, [, V¢.(x)- V., (x)dr < 0 to obtain
Ahph(zl) > 0. (311)

Inserting (3.10) and (3.11) in (3.9) yields

A A
§Ahvh(z1) + 1P o) (21) + A6 < §Ahwh(z1) + I8P Twp)(21).
Applying Lemma 3.1 to this inequality we deduce that

Silon)(z1) < §[vn](21) + A0 < §j [wa](21),

which is a contradiction. O

The analysis of our scheme is based on a careful estimation of the consistency
error, which we define as the difference between the result of applying the operator to
the Galerkin projection of the solution to (2.5) and the approximate right hand side,
ie., §5[Gnru®](z) — f.. The critical step in this analysis is to understand what happens
with the integral operators. With this in mind, and for future use, for a function
w € C() and 2 € A}, we denote

Rielw)(z) = wi /Q [523222 127 1Gpw](2) *gggggg 10 [w](w)l ¢z(x)dz.  (3.12)

The following result bounds Rp, c[w](z) uniformly in z € .4, when w € C%'(Q;).
LEMMA 3.4 (Galerkin projection vs. integral operator). Let w € C%(Q.). If the
coefficient matrices are such that (2.4) holds then, for every z € A}, we have

h w(h
Raul(2) % (Sownl + T ) ol (313)

where the hidden constant is independent of h, € and w.
Proof. Let z € A}, and consider, for x € supp ¢,

riPlw)(z) = 12 [Ghw)(z) — I8P [w](x)
= (I2P[Ghu](2) — I2P[w](2)) + (1P [w](2) — 1P [w]())

=) w)(z) + 5 w] (2).
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Estimate (3.6) immediately yields

o h
e [wl(2)] S 2 lloghlllwlicos -
On the other hand, Lemma 2.2 implies

. b w(h)
Ll S (5 + )l

where we used that |z — z| < h.
We now invoke Lemma 3.1 with X% = %8[G, w](2) and Y*# = I2P[w](z) to
conclude, using (3.8), that

h h
inf sup I*?[G,w](z) — inf sup I*P[w](x)| < (gzlogh + w()) lwll o @y

a€AgeB a€Agen £

which immediately implies (3.13). O

The monotonicity property given in Lemma 3.2 ensures that, for every € > 0 and
h > 0, the scheme (3.3) has a unique solution. The main idea behind the the existence
and uniqueness of the numerical solution is a discrete variant of Perron’s method [15,
§6.1].

THEOREM 3.5 (existence and uniqueness). Let the family of meshes { T, }n~o be
weakly acute. For every h > 0 and e > 0 the finite element scheme (3.3) has a unique
solution.

Proof. We begin by proving existence in several steps. First, we define the set of
discrete super-solutions

Sk ={vn € V5, : Filvn](z) < foVz € My, vp(2) > 0Vz € M7}

We claim that the set Sy is nonempty. Set

e =€ (Slown + =)

€ €

where C' > 0 is a constant to be chosen later. Let F = min{0, mingf} — d5,. and
let R > 0 be so large that, for some ¢ € Q the ball ¢ + Br contains Q.. Define
p(x) = %)\*IF(M —&]2 — R?), which is a nonnegative quadratic polynomial in & + Bg,
p(z) >0 on (89Q)., and D*p = A"'FI < 0. Owing to the uniform ellipticity condition
(1.2), for each o and 3, we obtain

A“’ﬁ(x) : D2p(m) < AR < f(x) — e = Fhl(z) <f(x)—dne.

We now claim that Gpp € Sy. To see this, first notice that for every z € 4;° we have
Grp(z) > 0. Now, for z € A4, consider

A
§alGnp)(2) = SAnGnp(2) + inf sup 27 (Gyp](2)
a€AgeR

_1 (;\Ap(x) + inf sup I?B[p](l“)) ¢ () dx

Wz Ja O‘GABEB

+ Rh@[p](z).
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Using the consistency of 129[.] for quadratics, see Lemma 2.1, we conclude that

_ JoSbl(2)¢:(z) da

Lemma 3.4 and the fact that ||p||co..@o) S [Ifll= (o), show that we can choose C' > 0
sufficiently large so that Ry ¢[p](z) — dne <0 for all z € A4. Therefore,

Sn[9npl(2) T Ruelpl(z) < fz = One + Ruelpl(z).  (3.14)

S5(Gnpl(2) < f. = Gup € Sh.

Thus, Sy is nonempty.
We now show that the minimum between two super-solutions is a super-solution.
Given vy, wp, € Sy, we define (v A w), € V5 by

(v Aw)p(z) = min{vp(2), wp(2)} Vz € A U M.
Since, for every z € A7, we have vp(z) > 0 and wp(z) > 0, then
(vAw)p(z) >0, Vze M.
Notice that, if for zo € A7, we have (v A w)p(20) = wp(z0) then
(v Aw)p < wp, and (v Aw)p(20) = wi(z0)-
The monotonicity result of Lemma 3.2 implies then that

Sil(v Aw)nl(20) < Filwnl(z0) < fzo-

Since for every z € A}, we either have that (vAw),(2) = vp(2) or (VAW)(2) = wi(2),
we conclude that (v A w)p, € Sp,.

Finally, we show that the smallest super-solution is a solution. Let uj € Vj be
defined by

up(z) = inf wp(z) Vz € A UM

The reasoning given above shows that u; € Sj,. We claim that uj is a solution, for if
that is not the case, then either:

Case I: There is a node zy € 4;° such that u}(z) > 0. Define, for § > 0, v} =
u} — d¢,, and notice that for § sufficiently small, we have v} (z9) > 0. Consequently,
this function verifies

vp(2) <wup(z), YVzeMUMT, 0<wvp(z), Vze . (3.15)

In addition, for all 2’ € .44, we have v} (z') = u}(2’). The monotonicity of the scheme
shown in Lemma 3.2 implies then that

Sulval(z) < Srlupl(z'), V2" € A,

so that v; € Sp. However, this contradicts the fact that uj is the smallest super-
solution of (3.3). Consequently, u} € V9.
Case II: There exists an interior node zg € .4}, such that

Siluil(20) < fz-
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We, again, define v} = u} — d¢,,. Obviously v}(20) < u}(20) and, v, (z) = up(z) for
all z # zp. Invoking Lemma 3.2 we see that

Snlvpl(2) < Splupl(z),  Vz € M\ {20}

In addition, since ¢,, attains its absolute strict maximum at zp we must have

A
5 Bndz(20) + 12P[62,](20) < 0.
This, in conjunction with Lemma 3.1 yields that, for ¢ sufficiently small,
Snlval(z0) < [z

so that v}, € Sp,. In this case, we also obtain a contradiction. This proves the existence
of a solution.

Uniqueness immediately follows from Corollary 3.3. O

REMARK 3.6 (alternative proof of existence). An alternative proof of existence
of solutions will be given in Theorem 5.2 via the convergence of Howard’s algorithm.

3.4. The discrete Alexandrov Bakelman Pucci estimate. The next step
towards proving convergence of the discrete solutions to the viscosity solution is to
show that solutions of (3.3) are bounded uniformly with respect to h and €. To achieve
this, we will employ the discrete ABP maximum principle of [32, Theorem 5.1], which
will also be our main tool to derive a rate of convergence. As Lemma 3.2 shows,
weak acuteness of the mesh is sufficient to ensure the monotonicity of the numerical
scheme. However, the discrete ABP maximum principle requires a slightly stronger
assumption on the mesh, which we state below. We say that the mesh .7, is weakly
acute with respect to faces if for every face F' and z1, zo € A} with 21 # zo we have

/ V., () V., (x)dx <0, (3.16)

where wp = U{K* € J, : F C K*}. This condition must be compared with
weak acuteness as expressed in (3.1). In two dimensions (d = 2), condition (3.16) is
equivalent to (3.1) and is valid if and only if the sum of two angles opposite to a face
is not greater than m. However, condition (3.16) is stronger than weak acuteness for
d > 2. We refer the reader to [32, Section 3.3] for further details and references on
this condition.

To state the discrete ABP estimate, we also introduce the following notation. Let
Bpr be a ball of radius R which contains the domain €2. We define the convex envelope
of a function vy, € V}, such that v, > 0 over L/Vha by

L(vp)(z) :=sup{L(z) : L€ Py, L < —v; in Bgr}, (3.17)

where we denote by v, the negative part of v, in @ and v, := 0 in Bg \ Q. We also
define the (lower) nodal contact set

C, (vp) ={z € M :T'(vn)(2) =vn(2)}. (3.18)

LEMMA 3.7 (discrete ABP estimate). Let the family of meshes {7, } 10 be quasi-
uniform and satisfy (3.16). If v, € V), is such that vy, > 0 over Jljla and satisfies

Apvn(2) < f2 Vz € M,
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then

1/d

Sup vy, < Z WZ|fZ|d )

@ z€C~ (vp)

where the hidden constant is independent of h.

This inequality gives us an estimate on the negative part of vy, while a bound for
its positive part can be derived in the same fashion by considering a concave envelope
and the corresponding (upper) contact set. Combining these bounds yields that the
L>-norm of vy, is controlled by a discrete L%-like norm of {f.}.c s, . We make this
idea rigorous below.

PROPOSITION 3.8 (uniform boundedness). Let the family of meshes { I} h>0
be quasi-uniform and satisfy (3.16). Then, the family {u5, € V9 },>0 of solutions of
(3.3) is uniformly bounded with respect to h and €, i.e.,

s, |l o) < Ifllzace),

where the hidden constant is independent of h and €.

Proof. Notice that, by construction uj = 0 on </Vh8 and, consequently (u7)~ # 0
only in the interior of (2.

Now, by definition of the convex envelope (3.17) we have that

uj (x) > T(uj)(x), VeeQ,

and that, if z € C, (uj) we have uj(2) = I'(uj)(2). Since I'(uj)(z) is convex, we
obtain that, for every z € C, (uf) and y € Bg. we have du®(z,y) > dl'(uf)(2,y) > 0.
Consequently,

12°Wu3) (2) = ISP [D(up))(2) = 0, Vz €C, (uf)
and

inf I8 > inf supl®?[T(us > 0.
JEA,S;;E &P upl(2) —JEAZ?; 2P0 (up)](2) >

In conclusion, for every z € C, (uj,), the scheme (3.3) reduces to

A
A (2) < Bilil(2) = £
The previous inequality, together with the discrete ABP estimate of Lemma 3.7 then

yields
1/d

SISCAREN IS DERTAL I e
z€C;, (uf)

where the last inequality follows from the shape regularity of 7.

We have obtained a lower bound for uj. By considering the positive part, and
the corresponding concave envelope, we can obtain an upper bound on uj and this
yields its uniform boundedness. O
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3.5. Convergence to the viscosity solution. Combining the discrete maxi-
mum principle of Corollary 3.3 and the consistency estimate encoded in Lemma 3.4
it is now possible, following the guidelines established in [2, 24], to prove convergence
of our scheme (3.3). We begin by recalling the essence of the convergence results
established in [2, 24]:

If (1.1) has a strong comparison principle, then uniformly bounded
solutions of a consistent, monotone, stable scheme converge to the
viscosity solution of (1.1).
To be able to assert consistency, we must guarantee that the right hand side of (3.13)
tends to zero as we refine the mesh and let ¢ — 0. This imposes a relation between
the parameter € and the mesh size h of the form

5:0(max{(huogm)w,w(h)}), and h — 0 = £ — 0. (3.19)

which from now on we assume. At this point the reason why we call our scheme a
two-scale one becomes evident. The fine scale is given by the mesh size h and provides
a scale for the discretization of functions. On the other hand, the coarse scale ¢ can
be understood as a stencil width that, as is well known [26, 20], must be large enough
to be able to guarantee monotonicity of a scheme. In this regard, our method bears
resemblance to semi-Lagrangian schemes [12] in that functions are approximated with
piecewise linears, but their derivatives are approximated at a coarser scale.

To establish convergence, we begin by constructing boundary barrier functions,
which will be essential to show that the boundary conditions are attained in a classical
sense.

LEMMA 3.9 (barrier functions). Assume that ) is convex and xg € 9. Let h
and £ be small enough and satisfy (3.19). With these assumptions, for every positive
constant E > 0 there ezist finite element functions p;cto,h € V5, such that:

1. for all z € (0Q). we have

Paon(®) S0 <pp (@), (3.20)

2. for all z € M, they satisfy

, (3.21)

and, o
3. for all x € xo + Bg: NS,

P34 ()] S EQe, (3.22)

where the hidden constant depends only on the domain §2.

Proof. Let z§ € 0f). be the closest point in 02, to zo. Without loss of generality
we may assume that xf is the origin. Now, since €2 is convex, it is not difficult to see
that €2 is convex as well. Consequently, it has a supporting hyperplane at z§ which,
again without losing generality, we may assume is given by x4 = 0. Finally, since €.
is bounded, there is L > 0 such that

QEC{xERd:OSdeL}.
With this notation at hand we define the functions

1
Py, () = iiExd(xd - L),
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and the discrete barriers are
+ +
Py = GnPay-

Let us now show that these functions satisfy the claimed properties.
1. To show this we recall that, if z € A7,

1
p‘,jo’h(z) = p;*'o (z) = §Ezd(zd —L)<0.

Similarly, we have
_ _ 1
pwo,h(z) =p,,(2) = —§Ezd(zd —L)>0.

2. To show (3.21) we begin by noticing that DprO = tFey ® ey, where e4 is the
d-th canonical basis vector. Therefore, we have that F[pJ ] > AE. Moreover, since
Lemma 2.1 shows that 12#[-] is exact for quadratics, proceeding as in (3.14) yields,
for every z € A},

Salpd, nl(2) = AE + R [pf,)(2)-

—2E. Similarly, we have that §[pz,] < —AE and we can choose ¢ and h so that
Rielpr,)(2) < 3 E.
3. It remains to establish the growth bound (3.22), but this is an easy consequence
of the fact that p£ (0) = 0 and estimate (3.5) for the Galerkin projection.
The functions p;tm ;, have thus been constructed. O
We are now in position to establish convergence of our scheme.
THEOREM 3.10 (convergence). Assume that f € C%Y(Q), that the matrices
{A%P € A, B € B} are uniformly elliptic (1.2) and satisfy

For ¢ and h small enough, assumption (3.19) allows us to estimate Ry, c[p} ](2) >

sup [M*F(21) = M®P(25)|| < w(t), Vo€ ABEB,

@1,02€Q, |z —m2| <t

where M8 = (A8 — 21)Y/2. For h > 0 and e > 0 let u§, € V9 be the solution to the
numerical scheme (3.3), obtained over a mesh 9, that is weakly acute with respect

to faces, and belongs to a quasi-uniform family. Assume also that (3.19) holds. For
x € Q define

u*(z) = limsup wuj(z), ur(x) = liminf wuf(2). (3.23)
e,h—0,z—x e,h—0,z—x

Then the upper semi-continuous function u* is a viscosity subsolution of (1.1) with
uw* <0 on O and the lower semi-continuous function uy s a viscosity supersolution
of (1.1) with uy >0 on ON.

Proof. We begin by remarking that, in light of the uniform boundedness shown
in Proposition 3.8, the functions uv* and u, are bounded.

Let us now show that u* is a subsolution. Let p be a quadratic polynomial such
that u* — p has a local maximum at xy € 2. We need to show that

§[pl(zo) > (o).

Without loss of generality we can assume that this is a strict maximum.
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Let us now show that there are {2z, € A% }r>0 such that uf — G,p attains its
maximum at zp and, as h — 0, we have z;, — xg. If that is not the case, for any
{#n}n>0, there is a subsequence {zp, } C {zn}n>0 that converges to some yo # xo. By
definition (3.23) we have

(" =p)(yo) = lim uj, (z1,) = P(v0) (uf, — Gnop) (2h,,)-

= lim
hr—0
On the other hand, since uj, — Gy, p attains its maximum at zp,, (uf, —Gn,p)(w0) <
u$ — Gp,p)(zn, ). Passing to the limit, we have
hg k k

(u* = p)(z0) < i, uf, (2h,) — P(Y0) < (W' —p)(yo),

which contradicts that u* — p attains a strict maximum at zq.

In what follows we consider this sequence of nodes and, for simplicity, we suppress
the subindex h. As in Corollary 3.3, the fact that uj, — G,p attains its maximum at
z yields

A
5 An(uf, = Gnp)(2) + 1P [uf, — Grpl(2) <0,

which combined with Lemma 3.1 allows us to conclude that
f2 = Fnluzl(z) < §3[9np)(2).

Since f is continuous f, — f(xg) and so it remains to study the behavior of the right
hand side in this inequality.

Repeating the computations in the proof of Theorem 3.5 that led to (3.14) allows
us to obtain

_ fQ Spl(z)d. (z) dw
fQ d)z(x) dx

where Ry, . [p](z) is defined in (3.12). Consequently, if we are able to show that, for
every z € M, Ru[p](2) = 0as h — 0, ¢ = 0 we would get that

$3lGnpl(2) + Re[pl(2),

f(zo) < lirfjgpgi[ghp](Z) < Flpl(zo),

which is what we need to prove. The bound on Ry c[p](z), obtained in Lemma 3.4,
and the choice of ¢ allow us to conclude.

We now show that if zg € 992, then we must have u*(xg) < 0. To do so, let € and
h be small enough and set E = 2 ||f[| () in the barrier function Py, of Lemma 3.9.
Property (3.21) yields that, for every z € 4},

BilPa 0l (2) < =llfllLe (@) < f2 = T [ui] (2)-

Moreover, by (3.20), we have p, , > 0 = uj, in (0R).. Consequently, invoking the
discrete maximum principle of Corollary 3.3 we obtain

uj,(z) < p,, p(x) <Ce, Vr € 29+ Boe N1,

where the upper bound follows from (3.22). Letting e — 0 and = — x9 we conclude
that u*(z¢) <0.
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Finally, the fact that u, is a super-solution can be shown in a similar fashion. For
brevity, we skip the details. O

COROLLARY 3.11 (convergence). Let the family of triangulations {J}nso be
quasi-uniform and assume that, for every h > 0, T}, is weakly acute with respect
to faces (3.16), and that, as e,h — 0, we have (3.19). In this setting the family
{u§ }n>0,e>0 of solutions to (3.3) converges pointwise to u, the viscosity solution of
the uniformly elliptic Isaacs equation (1.1).

Proof. Using the notation of Theorem 3.10, we observe that u, > 0 > u* on
09} and that u* and wu, are viscosity sub and super solutions, respectively. By a
comparison principle for (1.1); see [31, Theorem 2.52(b)], we then must have

w(x) <wu,(x) Vee.

On the other hand, by definition (3.23), u, < u*. Both inequalities readily imply that
u* = u, = u, the viscosity solution of (1.1). This proves convergence of u§ to u. O

REMARK 3.12 (nonhomogeneous boundary conditions). All the considerations
given above can be extended to the case of nonhomogeneous boundary conditions, i.e.,
when in (1.1) the boundary condition reads u = g. For that we need to assume that
g = troq G for some G € C?(Q), and a suitable extension of g to (0). must be
provided in the second equation of (2.5). As described in [8], this can be achieved by
using the so-called sup-convolution:

g(x) = sup [g(z*) = [z —2*°], Ve ¢Q,
z* €00

which given the smoothness of g and Q satisfies g € C*(Q.). The discrete solution

u§ € V& then, satisfies u5(z) = g(z) for z € °. Let us now briefly indicate the

modifications that need to be made to our arguments:

e Existence: To show existence we need to redefine the set of super-solutions. We
now require that vp(z) > Grg(z) for z € 7. We need to show that this set is
nonempty, and for that it suffices to show Gpp € Sy, with

1
= - \N1F(|lz —¢* — R? - - = i(z).
p(z) =5 (e =& =R )+g, g xér(lgg)sg(x)

e Uniform boundedness: We consider the function wy = uj + M where M is suffi-
ciently large so that wy, > 0 on Jljf’. This is possible because g is bounded. Notice
that, for all z € Ny, I&P[u5](2) = I&P[wp](2) and Apup(z) = Apwy(2). Therefore

A
§Ahwh(z) < f., VzeC(, (wp).
and by ABP

llus L) S fllza) + lgllze=a0)-

e Barrier functions: When proving convergence, we must be able to assert that the
boundary conditions are attained in a classical sense. For that it suffices to show
that u*(z) > g(x) for x € OQ and this is achieved by constructing suitable barrier
functions (cf. Lemma 3.9). In this case, the barrier functions will be defined as

+ _ .+ + + . min A
Gooh =Pagp t97, g7 = min g().

We leave the details of this program to the reader.
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4. Rate of convergence. Let us now study the rate of convergence of uj to
u, under the smoothness assumptions of Corollary 2.4. We will achieve this by com-
paring the solution of the discrete scheme (3.3) with the solution of the integrod-
ifferential approximation (2.5). In light of the technique that we are adopting, we
must immediately note that since the approximation results of Proposition 2.3 and,
as a consequence, the regularity obtained in Corollary 2.4 only apply in the case of
constant coefficients, A%%(x) = A*? in what follows we must assume this. In this
setting (2.4) is trivially satisfied with w = 0. It is possible that the results of [37] can
be used to extend Proposition 2.3 to variable coefficients and if that is the case, our
results will immediately follow as well.

The main technical tool we will employ to obtain rates of convergence in the L>-
norm will be the discrete ABP estimate of Lemma 3.7. Thus, we must require that
the mesh is weakly acute with respect to faces, as defined in (3.16). We finally remark
that since the relation (3.19) is required for convergence of our method we will study
the rate of convergence under this assumption.

4.1. The error equation. We now derive an equation to determine the error.
Multiply the integro-differential approximation to the Isaacs equation (2.5) by a test
function ¢, with z € .4}, integrate over ) and divide by w,. In view of the definition
of the discrete Laplacian (3.2) and of the Galerkin projection (3.4), we obtain

A

ZARGHuS (2) + inf sup I*P[GLuf)(2) = f. + Rhe[uf](2).
2 ac€Agep

Subtract from this equation the scheme (3.3) to obtain, for all z € 47,

A
580 (Gru® —uj) (2) + inf sup 127G, ] (2)
2 a€Agep (4-1)

— inf sup I*P[uf](z) = R, e[u](2).
acA peB

Notice, finally, that Gpu® — u§ = 0 over A;°.

4.2. Rate of convergence. With the error equation (4.1) at hand, we now
readily obtain an error estimate. This is the content of the next result.

THEOREM 4.1 (rate of convergence). Let u € C1*(Q) N C%(Q) be the viscosity
solution of the Isaacs equation (1.1) and u§ € V5, be the solution of (3.3). Choose ¢
so that (3.19) holds with w = 0. Then, there is 0 > 0 such that

, h
o= vl (= + 5110zl ) Iflovs o

where the hidden constant depends on A\ and A, but is independent of € and h.
Proof. We write

Ju = @y < llu = ullzoe o + 10 = Gl ) + 1Ghu® — u =),

and we examine each term separately.
By Proposition 2.3, there is o > 0 such that

Ju—u[lLe @) S €7 lIfllco.r -
Estimate (3.5) on the Galerkin projection immediately yields

[0 = Gnu[lLoe ) S Pl log Al[Ifllcon ey,
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where, using Proposition 2.3, we bounded [|u®||co.1(q) by [[fllco1(q)-

Let us denote ej, = Gpu® —uj, € V?L. Using the convex envelope I'(ep,) of the error
we can, as in the proof of Proposition 3.8, conclude that for every o € A and 8 € B
we have

12P[Ghuf](2) = IPug] (2), Yz € C (en),
so that using the monotonicity property of the inf-sup operator (3.7), we have

inf sup I2PGpuf(2) > inf sup I®Pu§(2), Vz € C (en).
a€AgeR a€Agep

In conclusion, at the nodal contact set C~(e;) equation (4.1) reduces to
>\ €
§Aheh(z) < Rpe[uf](2).

An application of the discrete ABP estimate of Lemma 3.7 then yields
1/d

supe, S| waRaelu] ()] S max (R e[u](2)].
@ zeC~(en) "

This yields a lower bound for e;. An upper bound can be derived in a similar fashion
by considering —e;. Hence, we infer

1Ghu® — uj |l Lo () S Imax [Rh.e[u®](2)].

Using the fact that v € C%!(Q) uniformly in ¢ we can invoke the bounds on
Rh,e[uf](2) obtained in Lemma 3.4 which, recalling that w = 0, can be combined
with the estimate of Proposition 2.3 to yield

h
max (R c[u7)(2) S S| g hlIfllcos .

Notice now that (3.19) implies that h|loghle™2 — 0 as h — 0 and & — 0. Therefore,
we obtain

h
1Gru® — ujll Lo () S ;2| log 2| [|f[| co.1 (-

Combining the estimates of these three steps yields the result. O
REMARK 4.2 (choice of ). If one knows the value of o in Proposition 2.3, setting
e°t2 = h|log h| yields an error estimate of the form

lu = wf | = (2) S h77= | log h|7F [f] co.1 ().

Notice that in the best case scenario, that is 0 = 1, we would obtain a rate of conver-
gence of order O(hY/3|log h|'/3).

REMARK 4.3 (explicit rate of convergence). The rate of convergence in The-
orem 4.1 is given rather implicitly. It seems that this is a recurring feature in the
literature; see for instance the main result in [25].
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5. Implementation details. Let us discuss how to obtain a solution to the
nonlinear problem that scheme (3.3) entails. The main difficulty in devising a conver-
gent algorithm for the solution of (3.3) is the fact that, due to the inf-sup operations,
the underlying operator is neither convex nor concave. This is in sharp contrast with,
for instance, the interpretation of Howard’s algorithm [16] as a semi-smooth Newton
method described in [19, 35] for the Hamilton-Jacobi-Bellman equation since, as it is
shown in [6, Remark 5.3] such a method may not converge.

On the other hand, [6, Section 5] presents a convergent generalization of Howard’s
algorithm for max-min problems, which we readily adapt here. We will present an
algorithm which requires the solution, at every iteration step, of a Hamilton Jacobi
Bellman equation, which can be realized via a semi-smooth Newton method. We will
also comment on an algorithm with inexact solves.

For a given wy, € V?L and z € A, define a(wy, z) € A as the element that infimizes
the supremum of the integral operators when applied to wy at the point z, that is

inf sup I [wp,)(z) = sup 12w, ](2).
acA BEB BeEB

Set a(wy) = {a(wp, 2) : 2 € M }. For v, € VO and z € A, define

(v )\ &\ Vh 2
Siee ™ lunl (2) 1= G Anwn () + sup 1209y ) (2). (5.1)
S

Our algorithm can then be described as follows:
e Initialization: Choose w; ' € V9 and set ag = ax(w; ).
e Iteration: For k£ > 0 find w} € V9 that solves

Shelwil(z) = fo, Vze M, (5.2)
and set
a1 = a(wy). (5.3)

e Convergence test: If 35 [wF](2) = f. for all z € A stop.
Notice that (5.3) is equivalent to
Filwil(2) = Tt [whl(2), V2 € M.
The analysis of the algorithm (5.2)—(5.3) relies on the following properties of the
operators ..
LEMMA 5.1 (monotonicity and comparison). For every a € A% the operator

Sh. s monotone and satisfies a comparison principle, i.e., if vy, wy € V?L are such
that

%g,a[vh](z) S S%,a[wh}(z)v vz € </Vh7

then vy, > wy, over Nj,.

Proof. The proof repeats the arguments of Lemma 3.2 and Corollary 3.3. For
brevity, we skip details. O

The comparison principle will allow us to obtain convergence.

THEOREM 5.2 (convergence). The sequence {w¥}i>0 C V9 obtained by algorithm
(5.2)~(5.3) converges in a finite number of steps to u§, € V9, solution of (3.3).
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Proof. We proceed in two steps:
First, we show that the sequence is monotone, i.e., for every z € A4, w}j(z) >

wy ™ (2). By construction:

Sne whl(2) = Falwpl(2) < Fklwp] (2).
Subtracting f, from this inequality we realize that

Fhe wil(2) = 2 < Fpklwp](2) = f2 = 0=F et [wyp™](2) — [,

which by the comparison principle established in Lemma 5.1 implies wh > wlCJrl over
.

Next, since the set A is finite, there are at most (#A)#‘/V” different variables
and there must be two indices k > ¢ for which (5.3) yields o, = ay. This implies
that wy = wa and by monotonicity w,’i = wﬁ for all £k > [. But then, by uniqueness
wﬁ = uj,.

This concludes the proof. O

Notice that (5.2) requires the exact solution of a discrete version of a Hamilton
Jacobi Bellman problem, which can be achieved by Howard’s algorithm. We also
propose a scheme with inexact solves in this step:

e Initialization: Choose uz,?l € VY and set ap = a(w;l).
e Iteration: For k > 0 find wﬁ € V% such that

max [§2: k] (2) - .| < . (5.4)

Set
a1 = awy). (5.5)

e Convergence test: If §5[wF](z) = f. for all z € 4, stop.

The convergence of this algorithm follows mutatis mutandis the proof of Theo-
rem 5.4 of [6].

THEOREM 5.3 (convergence with inexact solves). Assume that the sequence of
errors {ni }ren € £1. Then the sequence {w}i>0 C VY, obtained by algorithm (5.4)—
(5.5), converges to u5 € V9, solution of (3.3).
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