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Abstract. We propose and analyze a two-scale finite element method for the Isaacs equation.
The fine scale is given by the mesh size h whereas the coarse scale ε is dictated by an integro-
differential approximation of the partial differential equation. We show that the method satisfies the
discrete maximum principle provided that the mesh is weakly acute. This, in conjunction with weak
operator consistency of the finite element method, allows us to establish convergence of the numerical
solution to the viscosity solution as ε, h → 0, and ε & (h| log h|)1/2. In addition, using a discrete
Alexandrov Bakelman Pucci estimate we deduce rates of convergence, under suitable smoothness
assumptions on the exact solution.
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1. Introduction. Fully nonlinear elliptic partial differential equations (PDE)
arise naturally from differential geometry, optimal mass transportation, stochastic
optimal control and other fields of science and engineering. In spite of their wide
range of applications, the numerical methods for this type of PDEs is still under
development and this is particularly the case if one wants to apply the finite element
method (FEM). A major difficulty in their numerical approximation is that, for fully
nonlinear PDEs, the correct notion of solution is the so-called viscosity solution, which
is based on the maximum principle instead of a variational one. This is reflected in the
fact that, in contrast to an extensive literature for linear and quasilinear elliptic PDEs
in divergence form, the numerical approximation via finite elements of fully nonlinear
PDEs reduces to a few papers; we refer the reader to [14, 31] for an overview. The
situation is somewhat more satisfactory for finite difference approximations, where
convergence to the viscosity solution without rates was studied in the early works
[2, 24]. Rates of convergence for convex/concave fully nonlinear elliptic equations
have been established, e.g. by Krylov [21, 22]; Barles and Jakobsen [1] and Debrabant
and Jakobsen [12]. However, rates of convergence for the nonconvex/nonconcave
case remained an open problem as the techniques used in the convex case could
not be generalized to this scenario. For many years the existing results were rather
specialized. For instance, [17] considered a one dimensional problem and obtained
rates of convergence but its arguments do not extend to more dimensions. A particular
nonconvex equation: an obstacle problem for a Hamilton Jacobi Bellman equation
was studied in [18], where this particular structure is exploited to obtain convergence
rates. This changed when, in 2008, Caffarelli and Souganidis [9] established a rate of
convergence for finite difference approximations of elliptic equations of the form

F [D2u](x) = f(x),

with Dirichlet boundary conditions. This result was extended by Turanova [37] to
the case where F is also dependent on x and by Krylov [23] to the Isaacs equation,
where he allows the operator F to depend on x, ∇u and u. We finally comment that,
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to our knowledge, no rates of convergence are available for semi-Lagrangian schemes.
Reference [12] provides convergence, but no rates are available for nonconvex operators
of order two. It is remarkable, however, to note that explicit rates of convergence for
nonlocal operators of order µ ∈ (1, 2) are known. Namely, [3] shows that the rate of

convergence is O(h
2−µ
µ ). Note that this rate degenerates as the order of the operators

approaches two and that the authors of this work state that this is optimal and
expected.

In all the works mentioned above, convergence hinges on operator consistency and
monotonicity, which are nontrivial properties to be satisfied, especially in the FEM.
To overcome this, the recent work [32] introduced a two scale FEM for linear elliptic
PDEs in nondivergence form and, on the basis of monotonicity and weak operator
consistency, the authors were able to prove convergence of the method with rates.
The purpose of this work is to extend these ideas to a particular kind of uniformly
elliptic Isaacs equations on convex domains, namely,

F[u](x) := inf
α∈A

sup
β∈B

[
Aα,β(x) : D2u(x)

]
= f(x) in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ Rd (d ≥ 2) is an open, bounded and convex domain, f ∈ C0,1(Ω̄), the
sets A and B are arbitrary finite sets and the matrices Aα,β ∈ C0,1(Ω̄,GLd(R)) are
symmetric and uniformly elliptic, in the sense that there are constants λ,Λ ∈ R, with
0 < λ ≤ Λ, such that

λI ≤ Aα,β ≤ ΛI ∀α ∈ A, β ∈ B. (1.2)

We will introduce, following [32], a two-scale FEM, show its convergence to the
viscosity solution of (1.1) and provide rates of convergence. The method is based on
the approximation of (1.1) proposed by Caffarelli and Silvestre in [8]: we formally
rewrite

F[u](x) =
λ

2
∆u(x) + inf

α∈A
sup
β∈B

[(
Aα,β(x)− λ

2
I

)
: D2u(x)

]
and we approximate the operator above by the integro-differential operator

Fε[u](x) :=
λ

2
∆u(x) + inf

α∈A
sup
β∈B

Iα,βε [u](x) (1.3)

where

Iα,βε [u](x) =
1

εd+2 detMα,β(x)

ˆ
Rd

du(x, y)ϕ

(
Mα,β(x)−1y

ε

)
dy,

with

Mα,β(x) :=

(
Aα,β(x)− λ

2
I

)1/2

.

Hereafter, ϕ is a radially symmetric function with support in the unit ball B1 of Rd,
where d ≥ 1 is the dimension, that verifies

ˆ
Rd
|y|2ϕ(y) dy = d



Isaacs equation 3

and

du(x, y) := u(x+ y)− 2u(x) + u(x− y) (1.4)

is the centered second difference operator. The operator Iα,βε [·] is a consistent approx-
imation of

(
Aα,β(x)− λ

2 I
)

: D2u(x) in the sense that if u is a quadratic polynomial,
then

Iα,βε [u](x) =

(
Aα,β(x)− λ

2
I

)
: D2u(x) ∀ε > 0, ∀u ∈ P2, (1.5)

see Lemma 2.1.
We discretize (1.1) by using this approximation as follows: Introduce a triangu-

lation Th of Ω and let Nh be the set of internal nodes. We introduce a finite element
space consisting of piecewise linear functions and denote by {φz}z∈Nh

its Lagrange
nodal basis. Now, multiply (1.3) by φz and integrate over Ω. Integrate the first term
by parts and apply mass lumping to the second to finally obtain that the finite element
approximation, uεh, satisfies

Fεh[uεh](z) := −λ
2

ˆ
Ω

∇uεh(x) · ∇φz(x) dx+ inf
α∈A

sup
β∈B

Iα,βε [uεh](z)

ˆ
Ω

φz(x) dx

=

ˆ
Ω

φz(x)f(x) dx ∀z ∈ Nh,

We show that the FEM is monotone provided that meshes are weakly acute. To show
existence and uniqueness, we employ a discrete version of Perron’s method, which
seems to not have been considered before, especially in the finite element literature.
Exploiting monotonicity, and using the notion of weak consistency introduced by
Jensen and Smears in [19] we show convergence to the viscosity solution following
[2, 24].

We also derive rates of convergence for the method. The main difficulty to derive
a rate of convergence is to establish a suitable notion of stability for the FEM applied
to this fully nonlinear PDE. To address this issue, we resort to the discrete Alexandrov
Bakelman Pucci (ABP) estimate of [32], which reads

sup
Ω

(uεh)− .

 ∑
{z∈Nh:uεh(z)=Γ(uεh)(z)}

|fz|dωz


1/d

. (1.6)

Here {z ∈ Nh : uεh(z) = Γ(uεh)(z)} denotes the (lower) nodal contact set, Γ(uεh) is the
convex envelope of uεh (see (3.17)),

fz =

(ˆ
Ω

f(x)φz(x) dx

)(ˆ
Ω

φz(x) dx

)−1

,

and, for each node z ∈ Nh, we set ωz =
´

Ω
φz(x) dx. Note that the nodal contact set

is just a finite collection of nodes. With (1.6) we obtain control of the negative part
of uεh. If we consider the concave envelope and corresponding (upper) contact set, we
can estimate the positive part. A combination of these bounds yields stability, in the
L∞-norm, of uεh in terms of the Ld-norm of the right hand side f. Suitable notions
of consistency, monotonicity and stability yield rates of convergence. Moreover, by
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combining them with the regularity estimates for the Isaacs equation of [8], we show
that, for some σ ∈ (0, 1],

‖u− uεh‖L∞(Ω) . h
σ
σ+2 | log h|

σ
σ+2 ‖f‖C0,1(Ω̄),

which, at best, gives us a O(h1/3| log h|1/3) error estimate.
We also discuss how to practically realize the method in question. We study,

following [6], a variant of Howard’s algorithm to solve the ensuing discrete (nonlinear)
systems.

Before proceeding any further, we must also comment that our ideas and methods
also apply to a version of the Hamilton Jacobi Bellman equation. Namely, setting
#A = 1 or #B = 1 we arrive at a convex or concave operator. In this case much more
could be said for this problem, and it is possible that our analysis yields suboptimal
error estimates. In particular, the rate of convergence σ, which comes form (2.6)
below, might be known. Since our main interest here is to deal with the Isaacs
equation, we will not explore this refinement any further.

We must also mention that the linear case, i.e., #A = #B = 1, was already
treated in [32]. Our analysis, however, departs from theirs in several respects:
• To apply the regularity and approximation results of [8], as opposed to [32], the

second difference operator d must be of the form (1.4), and should not be modified
near the boundary. This forces us to consider extensions of functions outside the
domain Ω, and our analysis must take this into account.

• Since our problem is nonlinear existence is not guaranteed by uniqueness, as it is the
case in [32]. Thus, although uniqueness is obtained by similar (monotonicity and
maximum principle based) arguments, we must develop a discrete Perron’s method
to assert existence of solutions.

• Due to the fact that solutions to the Isaacs equation (1.1) exhibit very low reg-
ularity, the convergence arguments that we employ must take this into account.
In particular this means that the relation between the two scales, ε and h, of our
method must be modified, and that suitable barrier functions must be constructed.

The rest of this paper is organized as follows. In Section 2, we recall the approx-
imation of elliptic problems by integro-differential equations and the main regularity
results that follow from it. Section 3 presents our discretization and proves conver-
gence to the viscosity solution. We recall the discrete ABP estimate for finite element
methods in Section 4. The discrete ABP estimate allows us to show stability and
rates of convergence for our discretization. We discuss some implementation details
in Section 5, where we present a convergent iterative scheme.

We will follow standard notation concerning differential operators and function
spaces. The relation A . B means that there is a nonessential constant C such that
A ≤ CB. The value of this constant might change at each occurrence. By A & B we
mean B . A.

2. Approximation of elliptic problems by integro-differential operators.
Let us review the approximation, proposed by Caffarelli and Silvestre in [8], of fully
nonlinear elliptic PDEs by an integro-differential equation and the convergent finite
element scheme of [32] for the approximation of elliptic problems in nondivergence
form based on this idea. In this work, we exploit this approximation to discretize the
fully nonlinear problem (1.1).

2.1. Integral operator. Let us begin by fixing some notation. Recall that,
owing to (1.2), for all x ∈ Ω the matrices Aα,β(x) are uniformly positive definite.
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Thus, we can define

Mα,β(x) :=

(
Aα,β(x)− λ

2
I

)1/2

.

Let ε > 0 and ϕ be a radially symmetric function with compact support in the unit
ball B1 and such that

´
|x|2ϕ(x) dx = d. Let Q =

√
2/λ and notice that, again

because of (1.2), for all α ∈ A and β ∈ B we have that if

ϕα,βx,ε : y 7→ ϕ

(
1

ε
Mα,β(x)−1y

)
,

then suppϕα,βx,ε ⊂ BQε. For this reason, we define

(∂Ω)ε =
{
x ∈ Rd \ Ω : dist(x, ∂Ω)<Qε

}
. (2.1)

a Qε-neighborhood of ∂Ω and

Ωε := Ω ∪ (∂Ω)ε. (2.2)

Given a function w ∈ C(Ωε) we define, for each α and β the function Iα,βε [w] :
Ω→ R by

Iα,βε [w](x) =
1

εd+2 detMα,β(x)

ˆ
Rd

dw(x, y)ϕα,βx,ε (y) dy, (2.3)

where we denoted by dw(x, y) the second order difference of the function w at the point
x in the direction y which is given in (1.4). Notice that, for x ∈ Ω and y ∈ suppϕα,βx,ε ,

we have that x± y ∈ Ωε so that (2.3) is well defined. It is easy to check that if w is
a quadratic polynomial, then we have dw(x, y) = D2w(x) : (y ⊗ y) for all x ∈ Ω.

The integral operator Iα,βε [w] is a consistent approximation of the differential
operator

(
Aα,β − λ

2 I
)

: D2w in the following sense [32, 8].
Lemma 2.1 (approximation properties of Iα,βε [·]). Let Iα,βε [·] be the integral op-

erator defined by (2.3) and assume that ε > 0 and x ∈ Ω. Then,
1. If p ∈ P2, i.e., it is a quadratic polynomial, then

Iα,βε [p](x) =

(
Aα,β(x)− λ

2
I

)
: D2p(x).

2. Let ε0 > 0 be fixed. If w ∈ C2(Ωε0) then, as ε→ 0, we have that

Iα,βε [w](x)→
(
Aα,β(x)− λ

2
I

)
: D2w(x).

Let us, from now on, assume that the matrices Mα,β have a uniform modulus
of continuity $. In other words, there is a nondecreasing function $ such that
limt↓0$(t) = $(0) = 0 and

sup
x1,x2∈Ω̄,|x1−x2|≤t

‖Mα,β(x1)−Mα,β(x2)‖ ≤ $(t), ∀α ∈ A, β ∈ B. (2.4)

Under this assumption, we can show that, for every ε > 0, the integral operator maps
continuously C0,1(Ωε) into C0(Ω̄).

Lemma 2.2 (continuity of Iα,βε [·]). If w ∈ C0,1(Ωε), then, for all α ∈ A and
β ∈ B and all x, z ∈ Ω̄∣∣Iα,βε [w](x)− Iα,βε [w](z)

∣∣ . ( |x− z|
ε2

+
$(|x− z|)

ε

)
|w|C0,1(Ωε)

,
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where the hidden constant is independent of α, β, x, z, ε and w.
Proof. By definition of integral operator (2.3) and a change of variable y :=

εMα,β(x)ỹ, we obtain

Iα,βε [w](x) =
1

ε2

ˆ
B1

dw(x, εMα,β(x)y)ϕ(y) dy.

By the radial symmetry of ϕ

Iα,βε [w](x) =
2

ε2

ˆ
B1

(
w(x+ εMα,β(x)y)− w(x)

)
ϕ(y) dy.

Thus, ∣∣Iα,βε [w](x)− Iα,βε [w](z)
∣∣ ≤ I + II,

with

I =
2

ε2

ˆ
B1

∣∣w(x+ εMα,β(x)y)− w(z + εMα,β(z)y)
∣∣ϕ(y) dy,

II =
2

ε2

ˆ
B1

|w(x)− w(z)|ϕ(y) dy.

Evidently,

II .
|x− z|
ε2

|w|C0,1(Ω̄).

It remains then to estimate the first term. To do so we, again, use that w ∈ C0,1(Ωε)
to obtain

I .
|w|C0,1(Ωε)

ε2
sup
y∈B1

∣∣x− z + ε
(
Mα,β(x)−Mα,β(z)

)
y
∣∣ .

an application of the triangle inequality, together with (2.4) imply

I .

(
|x− z|
ε2

+
$(|x− z|)

ε

)
|w|C0,1(Ωε)

,

where the hidden constant is uniform in α and β. Gathering the obtained bounds for
I and II allows us to conclude.

In [8] Caffarelli and Silvestre proposed an approximation of the Isaacs equation
(1.1) by the following integro-differential problemFε[uε](x) :=

λ

2
∆uε(x) + inf

α∈A
sup
β∈B

Iα,βε [uε](x) = f(x) in Ω,

uε = 0 in (∂Ω)ε.

(2.5)

Notice that, for x ∈ Ω, the definition of Fε[uε](x) requires values of uε in Ωε. Thus
in (2.5) the boundary condition has been replaced by a so-called volume constraint
over (∂Ω)ε. To define this volume constraint, the function that defines the boundary
condition in (1.1) (in this case g ≡ 0) has been extended in a way that its extension
belongs to C0,1((∂Ω)ε).
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The approximation property of the integral operator Iα,βε [·] given in Lemma 2.1,
allows us to relate uε and u, which solve (2.5) and (1.1), respectively, as follows [8].

Proposition 2.3 (approximation of the Isaacs equation). Let Ω ⊂ Rd be convex
and bounded, and f ∈ C0,s(Ω̄) for some s ∈ [0, 1). There exists a unique function
uε ∈ C2,s(Ω) that solves (2.5). Moreover, if f ∈ C0,1(Ω̄), this solution satisfies

‖uε‖C1,s(U) + ‖uε‖C0,1(Ω̄) . ‖uε‖L∞(Ω) + ‖f‖L∞(Ω),

where U is any open set compactly contained in Ω and the hidden constant depends
on the distance between U and ∂Ω. In addition, there is a σ > 0 such that

‖u− uε‖L∞(Ω) . εσ‖f‖C0,1(Ω̄), (2.6)

where u is the (unique) viscosity solution to (1.1).
An important consequence of Proposition 2.3 is that, in the case when the coeffi-

cient matrices Aα,β are independent of x, we have the following regularity result for
the function u, see Theorem 4.8 of [8] and the comments at the beginning of Section 4,
for the C1,s estimate and Theorem 5.2 and the comment at the beginning of Section
5 for the C0,1 estimate up to the boundary.

Corollary 2.4 (regularity of u). Assume that, for all α ∈ A and β ∈ B
Aα,β(x) = Aα,β, that Ω is convex and that f ∈ C0,1(Ω̄). If u is the viscosity solution
of (1.1) then there is a s > 0 such that u ∈ C1,s(Ω) ∩ C0,1(Ω̄).

The importance of this result lies in the fact that F is not convex nor concave
and, for that reason, the maximal regularity we can assert for u is C1,s(Ω), for some
s > 0. We refer the reader, for instance, to the works by Nadirashvili and Vlăduţ
[29, 30, 28], who have constructed viscosity solutions to nonconvex fully nonlinear
elliptic equations whose Hessian is not bounded. This is in sharp contrast with,
for instance, the uniformly elliptic Hamilton Jacobi Bellman equation where, under
suitable assumptions on Ω and the “coefficients” of the equation, it can be shown that
the solution belongs to C2,s(Ω) for some s > 0. Let us, finally, comment that the rate
of convergence given in (2.6) cannot be improved; see the last paragraph of [8].

In this paper, based on the idea of an integro-differential approximation, we pro-
pose a finite element method for Isaacs equation (1.1).

2.2. Numerical quadrature to compute Iα,βε [·]. The approximation proper-
ties of the integral operator in Lemma 2.1 and 2.2 are essential to ensure the con-
sistency of the method. Let us briefly discuss here the use of numerical quadrature
rules that preserve these properties. For each fixed α ∈ A and β ∈ B, we aim to
design a quadrature and choice of ϕ to approximate Iα,βε [w]. The change of variable
y = εMα,β(x)ζ reveals that we must approximate

Iα,βε [w](x) =
1

εd+2 detMα,β(x)

ˆ
Rd

dw(x, y)ϕα,βx,ε (y) dy

=
1

ε2

ˆ
Rd

dw(x, εM(x)α,βζ)ϕ(ζ) dζ ≈ 1

ε2

J∑
j=1

ωjdw(x, εMα,β(x)qj)ϕ(qj).

This shows that, to preserve the consistency and convergence properties of the integral
operator, we must require the quadrature to satisfy the following three conditions:
• For all j = 1, . . . , J , the quadrature points qj must satisfy qj ∈ supp(ϕ).
• The weights must be positive: ωj > 0 for all j = 1, . . . , J .
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• The quadrature must be exact for all quadratic polynomials, i.e., for a given kernel
function ϕ with

´
Rd |y|

2ϕ(y) dy = d we must have that, if p ∈ P2, then

J∑
j=1

ωjdp(x, εM
α,β(x)qj)ϕ(qj) = Aα,β(x) : D2p(x).

The construction of quadrature formulas of this form which are of maximal degree of
precision can be found in classical references like [27], see also [4, 5, 33]. For instance,
for dimension d = 2, given ϕ(y) = 4/π in the unit ball and ϕ(y) = 0 outside the unit
ball, reference [36] shows that the following collection of weights and nodes has the
requisite properties:

ωj =
π

6
, ρj =

√
2

2
, θj =

jπ

3
, qj = (ρj , θj) j = 1, . . . , 6,

where the weights qj = (ρj , θj) are given in polar coordinates. Indeed, since ϕ(qj) =
4/π, this formula is exact for quadratic polynomials and it preserves the consistency
in Lemma 2.1 and Lemma 2.2.

3. Finite element discretization and convergence. Here we describe the
scheme we use to approximate (1.1) and show that it converges to the viscosity so-
lution. To keep technicalities to a minimum, in what follows we assume that Ω is a
convex polytope.

3.1. Description of the scheme. Let {Th}h>0 be a quasi-uniform, in the
classical sense for finite elements [13, 11, 7], family of triangulations of size h of the
domain Ω. We denote by Nh and N ∂

h the collection of interior and boundary nodes
of Th, respectively. We define the finite element space

Vh :=
{
v ∈ C(Ω̄) : v|T ∈ P1, ∀T ∈ Th

}
,

where we denoted by P1 the space of polynomials of degree one.
We also need to introduce a triangulation of Ωε. Since this may not be a poly-

tope we proceed in a standard way, namely, we introduce a triangulation T ε
h of the

polytopal domain ΩT
ε ⊂ Ωε in such a way that:

• On Ω it coincides with Th.
• If we denote by N ε

h the nodes of T ε
h that are not in Nh, then N ε

h ∩ ∂ΩT
ε ⊂ ∂Ωε.

• |Ωε \ ΩT
ε | . h2.

Notice also that N ∂
h ⊂ N ε

h . We then define

Vεh :=
{
v ∈ C(ΩT

ε ) : v|T ∈ P1 ∀T ∈ T ε
h

}
,

V0
h := {v ∈ Vεh : v(z) = 0, ∀z ∈ N ε

h } ,

and, as Ω and Ωε are convex, we have that Ω ⊂ ΩT
ε ⊂ Ωε and we can extend

continuously functions in these spaces from ΩT
ε to Ωε by a constant in the direction

normal to ∂ΩT
ε .

We denote by {φz}z∈Nh∪N ε
h

the Lagrange nodal basis of Vεh. Notice that, by
restriction, we can consider Vεh to be continuously embedded in Vh.

Below we will require Th to be weakly acute, i.e., for all z1, z2 ∈ Nh with z1 6= z2

we must have ˆ
Ω

∇φz1(x) · ∇φz2(x) dx ≤ 0. (3.1)
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It is known, see [10, Section III.20] and [31, Lemma 3.42], that this is a sufficient
condition for the discrete Laplacian, defined below, to be a monotone operator.

Let z ∈ Nh, we set

ωz =

ˆ
Ω

φz(x) dx.

For wh ∈ Vh and z ∈ Nh, we define the discrete Laplacian of wh at z by

∆hwh(z) = − 1

ωz

ˆ
Ω

∇wh(x) · ∇φz(x) dx. (3.2)

Finally, for z ∈ Nh, we set

fz =
1

ωz

ˆ
Ω

f(x)φz(x) dx.

With this notation at hand, we now define our scheme. We seek a function
uεh ∈ V0

h such that, for every z ∈ Nh, satisfies

Fεh[uεh](z) :=
λ

2
∆hu

ε
h(z) + inf

α∈A
sup
β∈B

Iα,βε [uεh](z) = fz. (3.3)

3.2. Galerkin projection. In the analysis that follows we will make repeated
use of the Galerkin projection and its properties. The Galerkin projection is the map

Gh :
{
w ∈ L1(Ωε) : w|Ω ∈W 1

1 (Ω), w|Ωε\Ω ∈ C(Ωε \ Ω)
}
→ Vεh

that verifies Ghw(z) = w(z) for z ∈ N ε
h and

ˆ
Ω

∇Ghw(x)·∇vh(x) dx =

ˆ
Ω

∇w(x)·∇vh(x) dx ∀vh ∈ V0
h. (3.4)

Notice that, if w|Ω ∈ C2(Ω), setting vh = φz with z ∈ Nh in (3.4) and integrating by
parts we get

∆hGhw(z) =
1

ωz

ˆ
Ω

∆w(x)φz(x) dx,

that is, the discrete Laplacian of the Galerkin projection at a node is a weighted
average of the Laplacian of the original function around this node.

Combining the well known near optimal approximation properties [34, 25], in
the L∞-norm, of the Galerkin projection with a standard interpolation estimate over
Ωε \ Ω we conclude that if w ∈ C0,1(Ωε), then we have

‖w − Ghw‖L∞(Ωε) . h| log h|‖w‖C0,1(Ωε)
. (3.5)

Owing to (3.5), for every z ∈ Nh we obtain

|dGhw(z, y)− dw(z, y)| . h| log h|‖w‖C0,1(Ωε)
.

By definition (2.3) of the integral operator Iα,βε [·], we deduce that for all nodes z ∈ Nh

we have ∣∣Iα,βε [Ghw](z)− Iα,βε [w](z)
∣∣ . h

ε2
| log h|‖w‖C0,1(Ωε)

(3.6)

uniformly in A and B.
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3.3. Existence and uniqueness of the numerical solution. Based on the
notions of monotonicity and weak consistency advanced in [2, 19, 32], we show ex-
istence and uniqueness of solutions to (3.3). Moreover, the family {uεh}h>0,ε>0 of
solutions to (3.3) converges to u, the unique viscosity solution of (1.1), provided the
mesh size h and ε satisfy a suitable relation.

We begin with two elementary properties, namely monotonicity and continuity,
of the inf-sup operator.

Lemma 3.1 (monotonicity and continuity of inf-sup). Let {Xα,β : α ∈ A, β ∈
B} ⊂ R and {Y α,β : α ∈ A, β ∈ B} ⊂ R be two families parametrized by two index
sets A and B. If for every fixed α ∈ A and β ∈ B we have that Xα,β ≤ Y α,β , then

inf
α∈A

sup
β∈B

Xα,β ≤ inf
α∈A

sup
β∈B

Y α,β . (3.7)

Moreover, if there is a constant C such that for all α and β we have
∣∣Xα,β − Y α,β

∣∣ ≤
C, then ∣∣∣∣∣ inf

α∈A
sup
β∈B

Xα,β − inf
α∈A

sup
β∈B

Y α,β

∣∣∣∣∣ ≤ C. (3.8)

Proof. If Xα,β ≤ Y α,β for all fixed α and β, taking supremum on Y α,β with
respect to β first, we have

Xα,β ≤ sup
β∈B

Y α,β =⇒ sup
β∈B

Xα,β ≤ sup
β∈B

Y α,β .

Taking infimum on supβ∈BX
α,β with respect to α, we get

inf
α∈A

sup
β∈B

Xα,β ≤ sup
β∈B

Y α,β =⇒ inf
α∈A

sup
β∈B

Xα,β ≤ inf
α∈A

sup
β∈B

Y α,β .

This proves the first inequality (3.7).
To prove the second inequality, we only need to note that if Xα,β ≤ Y α,β +C for

all α and β, then by (3.7)

inf
α∈A

sup
β∈B

Xα,β ≤ inf
α∈A

sup
β∈B

Y α,β + C.

Similarly, if Y α,β ≤ Xα,β + C for all α and β, then

inf
α∈A

sup
β∈B

Y α,β ≤ inf
α∈A

sup
β∈B

Xα,β + C.

This proves the second inequality (3.8).
We now establish the monotonicity and weak consistency of the proposed scheme.
Lemma 3.2 (monotonicity of the numerical scheme). Assume that for every

discretization parameter h > 0 the mesh Th is weakly acute. Then the family of
operators Fεh is monotone in the sense that if vh, wh ∈ Vεh with vh ≤ wh in T ε

h and
equality holds at some node z ∈ Nh, then

Fεh[vh](z) ≤ Fεh[wh](z).
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Proof. Let vh, wh ∈ Vεh be as indicated. Since Th is weakly acute, the operator
∆h is monotone, i.e.,

∆hvh(z) ≤ ∆hwh(z).

It remains then to deal with the inf-sup over the approximating integral operators.
Since, over T ε

h , we have that vh ≤ wh and equality holds at z ∈ Nh, we can conclude
that, whenever y ∈ BQε, the second order differences verify dvh(z, y) ≤ dwh(z, y).
Therefore, for fixed α ∈ A and β ∈ B, we get Iα,βε [vh](z) ≤ Iα,βε [wh](z). Using the
monotonicity of the inf-sup operator (3.7), we obtain

inf
α∈A

sup
β∈B

Iα,βε [vh](z) ≤ inf
α∈A

sup
β∈B

Iα,βε [wh](z).

Combining both inequalities, we then deduce that

Fεh[vh](z) ≤ Fεh[wh](z).

This completes the proof.
As a consequence, we obtain a discrete maximum principle for our numerical

scheme.
Corollary 3.3 (discrete maximum principle). Assume that Th is weakly acute.

If vh, wh ∈ Vεh are such that vh ≤ wh in N ε
h and, for all z ∈ Nh, we have

Fεh[vh](z) ≥ Fεh[wh](z),

then vh ≤ wh in T ε
h .

Proof. We argue by contradiction by assuming that vh − wh attains a positive
value. We then necessarily have that there is z0 ∈ Nh for which vh(z0)−wh(z0) > 0.

We now set p(x) = |x|2−C, where the constant C is so large that, for all x ∈ Ωε,
we have p(x) ≤ 0. Let ph ∈ Vεh be the Lagrange interpolant of p and, for δ > 0, we
define eh = vh − wh + δph ∈ Vεh. By construction we have that eh ≤ 0 in N ε

h . In
addition, for δ > 0 sufficiently small, eh(z0) > 0. Consequently, there is z1 ∈ Nh

where eh attains a, necessarily positive, maximum. At this node we must have, for
all α ∈ A and β ∈ B that

Iα,βε [eh](z1) ≤ 0.

The weak acuteness of the mesh Th allows us to conclude also that

∆heh(z1) ≤ 0.

Adding these two inequalities yields that, for all α ∈ A and β ∈ B we have

λ

2
∆h(vh + δph)(z1) + Iα,βε [vh + δph](z1) ≤ λ

2
∆hwh(z1) + Iα,βε [wh](z1). (3.9)

Notice that since p is convex and ph is its piecewise linear interpolant we have
that, for all y ∈ BQε, dph(z1, y) ≥ dp(z1, y). This, in conjunction with Lemma 2.1,
implies that

Iα,βε [ph](z1) ≥ Iα,βε [p](z1) =

(
Aα,β(z1)− λ

2
I

)
: D2p(z1) ≥ λ. (3.10)
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Observe now that the linear function ψ(x) = −2x·z1 + |z1|2 ∈ Vεh is such that
p(x) + ψ(x) = |x− z1|2 − C and ∆hψ(z1) = 0. Consequently, by definition (3.2), we
have that

−ωz1∆hph(z1) = −ωz1∆h(ph + ψ)(z1) =

ˆ
Ω

∇(ph + ψ)(x)·∇φz1(x) dx

=
∑

z∈Nh∪N ∂
h

(p+ ψ)(z)

ˆ
Ω

∇φz(x)·∇φz1(x) dx

=
∑

z∈Nh∪N ∂
h \{z1}

|z − z1|2
ˆ

Ω

∇φz(x)·∇φz1(x) dx,

where, to get rid of the constant term −C, we used the partition of unity property of
the Lagrange basis functions {φz}z∈Nh∪N ∂

h
. Finally, we recall that the weak acuteness

of Th implies that, for z 6= z1,
´

Ω
∇φz(x)·∇φz1(x) dx ≤ 0 to obtain

∆hph(z1) ≥ 0. (3.11)

Inserting (3.10) and (3.11) in (3.9) yields

λ

2
∆hvh(z1) + Iα,βε [vh](z1) + λδ ≤ λ

2
∆hwh(z1) + Iα,βε [wh](z1).

Applying Lemma 3.1 to this inequality we deduce that

Fεh[vh](z1) < Fεh[vh](z1) + λδ ≤ Fεh[wh](z1),

which is a contradiction.
The analysis of our scheme is based on a careful estimation of the consistency

error, which we define as the difference between the result of applying the operator to
the Galerkin projection of the solution to (2.5) and the approximate right hand side,
i.e., Fεh[Ghuε](z)−fz. The critical step in this analysis is to understand what happens
with the integral operators. With this in mind, and for future use, for a function
w ∈ C(Ωε) and z ∈ Nh we denote

Rh,ε[w](z) =
1

ωz

ˆ
Ω

[
inf
α∈A

sup
β∈B

Iα,βε [Ghw](z)− inf
α∈A

sup
β∈B

Iα,βε [w](x)

]
φz(x) dx. (3.12)

The following result bounds Rh,ε[w](z) uniformly in z ∈ Nh when w ∈ C0,1(Ωε).
Lemma 3.4 (Galerkin projection vs. integral operator). Let w ∈ C0,1(Ωε). If the

coefficient matrices are such that (2.4) holds then, for every z ∈ Nh, we have

|Rh,ε[w](z)| .
(
h

ε2
| log h|+ $(h)

ε

)
‖w‖C0,1(Ωε)

, (3.13)

where the hidden constant is independent of h, ε and w.
Proof. Let z ∈ Nh and consider, for x ∈ suppφz,

rα,βh,ε [w](z) = Iα,βε [Ghw](z)− Iα,βε [w](x)

=
(
Iα,βε [Ghw](z)− Iα,βε [w](z)

)
+
(
Iα,βε [w](z)− Iα,βε [w](x)

)
= rα,β1,h,ε[w](z) + rα,β2,h,ε[w](z).
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Estimate (3.6) immediately yields

|rα,β1,h,ε[w](z)| . h

ε2
| log h|‖w‖C0,1(Ωε)

.

On the other hand, Lemma 2.2 implies

|rα,β2,h,ε[w](z)| .
(
h

ε2
+
$(h)

ε

)
‖w‖C0,1(Ωε)

,

where we used that |x− z| . h.
We now invoke Lemma 3.1 with Xα,β = Iα,βε [Ghw](z) and Y α,β = Iα,βε [w](x) to

conclude, using (3.8), that∣∣∣∣∣ inf
α∈A

sup
β∈B

Iα,βε [Ghw](z)− inf
α∈A

sup
β∈B

Iα,βε [w](x)

∣∣∣∣∣ .
(
h

ε2
| log h|+ $(h)

ε

)
‖w‖C0,1(Ωε)

,

which immediately implies (3.13).
The monotonicity property given in Lemma 3.2 ensures that, for every ε > 0 and

h > 0, the scheme (3.3) has a unique solution. The main idea behind the the existence
and uniqueness of the numerical solution is a discrete variant of Perron’s method [15,
§6.1].

Theorem 3.5 (existence and uniqueness). Let the family of meshes {Th}h>0 be
weakly acute. For every h > 0 and ε > 0 the finite element scheme (3.3) has a unique
solution.

Proof. We begin by proving existence in several steps. First, we define the set of
discrete super-solutions

Sh = {vh ∈ Vεh : Fεh[vh](z) ≤ fz ∀z ∈ Nh, vh(z) ≥ 0 ∀z ∈ N ε
h } .

We claim that the set Sh is nonempty. Set

δh,ε = C

(
h

ε2
| log h|+ $(h)

ε

)
,

where C > 0 is a constant to be chosen later. Let F = min{0,minΩ̄ f} − δh,ε and
let R > 0 be so large that, for some ξ ∈ Ω the ball ξ + BR contains Ωε. Define
p(x) = 1

2λ
−1F (|x− ξ|2−R2), which is a nonnegative quadratic polynomial in ξ+BR,

p(x) ≥ 0 on (∂Ω)ε, and D2p = λ−1FI ≤ 0. Owing to the uniform ellipticity condition
(1.2), for each α and β, we obtain

Aα,β(x) : D2p(x) ≤ λ(λ−1F ) ≤ f(x)− δh,ε =⇒ F[p](x) ≤ f(x)− δh,ε.

We now claim that Ghp ∈ Sh. To see this, first notice that for every z ∈ N ε
h we have

Ghp(z) ≥ 0. Now, for z ∈ Nh, consider

Fεh[Ghp](z) =
λ

2
∆hGhp(z) + inf

α∈A
sup
β∈B

Iα,βε [Ghp](z)

=
1

ωz

ˆ
Ω

(
λ

2
∆p(x) + inf

α∈A
sup
β∈B

Iα,βε [p](x)

)
φz(x) dx

+Rh,ε[p](z).
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Using the consistency of Iα,βε [·] for quadratics, see Lemma 2.1, we conclude that

Fεh[Ghp](z) =

´
Ω
F[p](x)φz(x) dx´

Ω
φz(x) dx

+Rh,ε[p](z) ≤ fz − δh,ε +Rh,ε[p](z). (3.14)

Lemma 3.4 and the fact that ‖p‖C0,1(Ωε)
. ‖f‖L∞(Ω), show that we can choose C > 0

sufficiently large so that Rh,ε[p](z)− δh,ε ≤ 0 for all z ∈ Nh. Therefore,

Fεh[Ghp](z) ≤ fz =⇒ Ghp ∈ Sh.

Thus, Sh is nonempty.
We now show that the minimum between two super-solutions is a super-solution.

Given vh, wh ∈ Sh, we define (v ∧ w)h ∈ Vεh by

(v ∧ w)h(z) = min{vh(z), wh(z)} ∀z ∈ Nh ∪N ε
h .

Since, for every z ∈ N ε
h , we have vh(z) ≥ 0 and wh(z) ≥ 0, then

(v ∧ w)h(z) ≥ 0, ∀z ∈ N ε
h .

Notice that, if for z0 ∈ Nh we have (v ∧ w)h(z0) = wh(z0) then

(v ∧ w)h ≤ wh and (v ∧ w)h(z0) = wh(z0).

The monotonicity result of Lemma 3.2 implies then that

Fεh[(v ∧ w)h](z0) ≤ Fεh[wh](z0) ≤ fz0 .

Since for every z ∈ Nh we either have that (v∧w)h(z) = vh(z) or (v∧w)h(z) = wh(z),
we conclude that (v ∧ w)h ∈ Sh.

Finally, we show that the smallest super-solution is a solution. Let u?h ∈ Vεh be
defined by

u?h(z) = inf
vh∈Sh

vh(z) ∀z ∈ Nh ∪N ε
h .

The reasoning given above shows that u?h ∈ Sh. We claim that u?h is a solution, for if
that is not the case, then either:
Case I: There is a node z0 ∈ N ε

h such that u?h(z0) > 0. Define, for δ > 0, v?h =
u?h − δφz0 and notice that for δ sufficiently small, we have v?h(z0) ≥ 0. Consequently,
this function verifies

v?h(z) ≤ u?h(z), ∀z ∈ Nh ∪N ε
h , 0 ≤ v?h(z), ∀z ∈ N ε

h . (3.15)

In addition, for all z′ ∈ Nh, we have v?h(z′) = u?h(z′). The monotonicity of the scheme
shown in Lemma 3.2 implies then that

Fεh[v?h](z′) ≤ Fεh[u?h](z′), ∀z′ ∈ Nh,

so that v?h ∈ Sh. However, this contradicts the fact that u?h is the smallest super-
solution of (3.3). Consequently, u?h ∈ V0

h.
Case II: There exists an interior node z0 ∈ Nh such that

Fεh[u?h](z0) < fz0 .
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We, again, define v?h = u?h − δφz0 . Obviously v?h(z0) ≤ u?h(z0) and, vh(z) = uh(z) for
all z 6= z0. Invoking Lemma 3.2 we see that

Fεh[v?h](z) ≤ Fεh[u?h](z), ∀z ∈ Nh \ {z0}.

In addition, since φz0 attains its absolute strict maximum at z0 we must have

λ

2
∆hφz0(z0) + Iα,βε [φz0 ](z0) ≤ 0.

This, in conjunction with Lemma 3.1 yields that, for δ sufficiently small,

Fεh[v?h](z0) ≤ fz0

so that v?h ∈ Sh. In this case, we also obtain a contradiction. This proves the existence
of a solution.

Uniqueness immediately follows from Corollary 3.3.
Remark 3.6 (alternative proof of existence). An alternative proof of existence

of solutions will be given in Theorem 5.2 via the convergence of Howard’s algorithm.

3.4. The discrete Alexandrov Bakelman Pucci estimate. The next step
towards proving convergence of the discrete solutions to the viscosity solution is to
show that solutions of (3.3) are bounded uniformly with respect to h and ε. To achieve
this, we will employ the discrete ABP maximum principle of [32, Theorem 5.1], which
will also be our main tool to derive a rate of convergence. As Lemma 3.2 shows,
weak acuteness of the mesh is sufficient to ensure the monotonicity of the numerical
scheme. However, the discrete ABP maximum principle requires a slightly stronger
assumption on the mesh, which we state below. We say that the mesh Th is weakly
acute with respect to faces if for every face F and z1, z2 ∈ Nh with z1 6= z2 we have

ˆ
ωF

∇φz1(x) · ∇φz2(x) dx ≤ 0, (3.16)

where ωF = ∪{K± ∈ Th : F ⊂ K±}. This condition must be compared with
weak acuteness as expressed in (3.1). In two dimensions (d = 2), condition (3.16) is
equivalent to (3.1) and is valid if and only if the sum of two angles opposite to a face
is not greater than π. However, condition (3.16) is stronger than weak acuteness for
d > 2. We refer the reader to [32, Section 3.3] for further details and references on
this condition.

To state the discrete ABP estimate, we also introduce the following notation. Let
BR be a ball of radius R which contains the domain Ω. We define the convex envelope
of a function vh ∈ Vh such that vh ≥ 0 over N ∂

h by

Γ(vh)(x) := sup
{
L(x) : L ∈ P1, L ≤ −v−h in BR

}
, (3.17)

where we denote by v−h the negative part of vh in Ω and v−h := 0 in BR \ Ω. We also
define the (lower) nodal contact set

C−h (vh) = {z ∈ Nh : Γ(vh)(z) = vh(z)} . (3.18)

Lemma 3.7 (discrete ABP estimate). Let the family of meshes {Th}h>0 be quasi-
uniform and satisfy (3.16). If vh ∈ Vh is such that vh ≥ 0 over N ∂

h and satisfies

∆hvh(z) ≤ fz ∀z ∈ Nh,
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then

sup
Ω
v−h .

 ∑
z∈C−(vh)

ωz|fz|d
1/d

,

where the hidden constant is independent of h.
This inequality gives us an estimate on the negative part of vh, while a bound for

its positive part can be derived in the same fashion by considering a concave envelope
and the corresponding (upper) contact set. Combining these bounds yields that the
L∞-norm of vh is controlled by a discrete Ld-like norm of {fz}z∈Nh

. We make this
idea rigorous below.

Proposition 3.8 (uniform boundedness). Let the family of meshes {Th}h>0

be quasi-uniform and satisfy (3.16). Then, the family {uεh ∈ V0
h}h>0 of solutions of

(3.3) is uniformly bounded with respect to h and ε, i.e.,

‖uεh‖L∞(Ω) . ‖f‖Ld(Ω),

where the hidden constant is independent of h and ε.
Proof. Notice that, by construction uεh = 0 on N ∂

h and, consequently (uεh)− 6= 0
only in the interior of Ω̄.

Now, by definition of the convex envelope (3.17) we have that

uεh(x) ≥ Γ(uεh)(x), ∀x ∈ Ω,

and that, if z ∈ C−h (uεh) we have uεh(z) = Γ(uεh)(z). Since Γ(uεh)(x) is convex, we
obtain that, for every z ∈ C−h (uεh) and y ∈ BQε we have duε(z, y) ≥ dΓ(uεh)(z, y) ≥ 0.
Consequently,

Iα,βε [uεh](z) ≥ Iα,βε [Γ(uεh)](z) ≥ 0, ∀z ∈ C−h (uεh)

and

inf
α∈A

sup
β∈B

Iα,βε [uεh](z) ≥ inf
α∈A

sup
β∈B

Iα,βε [Γ(uεh)](z) ≥ 0.

In conclusion, for every z ∈ C−h (uεh), the scheme (3.3) reduces to

λ

2
∆hu

ε
h(z) ≤ Fεh[uεh](z) = fz.

The previous inequality, together with the discrete ABP estimate of Lemma 3.7 then
yields

sup
Ω

(uεh)− .

 ∑
z∈C−h (uεh)

ωz|fz|d
1/d

. ‖f‖Ld(Ω),

where the last inequality follows from the shape regularity of Th.
We have obtained a lower bound for uεh. By considering the positive part, and

the corresponding concave envelope, we can obtain an upper bound on uεh and this
yields its uniform boundedness.
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3.5. Convergence to the viscosity solution. Combining the discrete maxi-
mum principle of Corollary 3.3 and the consistency estimate encoded in Lemma 3.4
it is now possible, following the guidelines established in [2, 24], to prove convergence
of our scheme (3.3). We begin by recalling the essence of the convergence results
established in [2, 24]:

If (1.1) has a strong comparison principle, then uniformly bounded
solutions of a consistent, monotone, stable scheme converge to the
viscosity solution of (1.1).

To be able to assert consistency, we must guarantee that the right hand side of (3.13)
tends to zero as we refine the mesh and let ε → 0. This imposes a relation between
the parameter ε and the mesh size h of the form

ε = O
(

max
{

(h| log h|)1/2
, $(h)

})
, and h→ 0 =⇒ ε→ 0. (3.19)

which from now on we assume. At this point the reason why we call our scheme a
two-scale one becomes evident. The fine scale is given by the mesh size h and provides
a scale for the discretization of functions. On the other hand, the coarse scale ε can
be understood as a stencil width that, as is well known [26, 20], must be large enough
to be able to guarantee monotonicity of a scheme. In this regard, our method bears
resemblance to semi-Lagrangian schemes [12] in that functions are approximated with
piecewise linears, but their derivatives are approximated at a coarser scale.

To establish convergence, we begin by constructing boundary barrier functions,
which will be essential to show that the boundary conditions are attained in a classical
sense.

Lemma 3.9 (barrier functions). Assume that Ω is convex and x0 ∈ ∂Ω. Let h
and ε be small enough and satisfy (3.19). With these assumptions, for every positive
constant E > 0 there exist finite element functions p±x0,h

∈ Vεh such that:
1. for all x ∈ (∂Ω)ε we have

p+
x0,h

(x) ≤ 0 ≤ p−x0,h
(x), (3.20)

2. for all z ∈ Nh they satisfy

± Fεh[p±x0,h
](z) ≥ λ

2
E, (3.21)

and,
3. for all x ∈ x0 +BQε ∩ Ωε

|p±x0,h
(x)| . EQε, (3.22)

where the hidden constant depends only on the domain Ω.
Proof. Let x?0 ∈ ∂Ωε be the closest point in ∂Ωε to x0. Without loss of generality

we may assume that x?0 is the origin. Now, since Ω is convex, it is not difficult to see
that Ωε is convex as well. Consequently, it has a supporting hyperplane at x?0 which,
again without losing generality, we may assume is given by xd = 0. Finally, since Ωε
is bounded, there is L > 0 such that

Ωε ⊂ {x ∈ Rd : 0 ≤ xd ≤ L}.

With this notation at hand we define the functions

p±x0
(x) = ±1

2
Exd(xd − L),
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and the discrete barriers are

p±x0,h
= Ghp±x0

.

Let us now show that these functions satisfy the claimed properties.
1. To show this we recall that, if z ∈ N ε

h ,

p+
x0,h

(z) = p+
x0

(z) =
1

2
Ezd(zd − L) ≤ 0.

Similarly, we have

p−x0,h
(z) = p−x0

(z) = −1

2
Ezd(zd − L) ≥ 0.

2. To show (3.21) we begin by noticing that D2p±x0
= ±Eed ⊗ ed, where ed is the

d-th canonical basis vector. Therefore, we have that F[p+
x0

] ≥ λE. Moreover, since
Lemma 2.1 shows that Iα,βε [·] is exact for quadratics, proceeding as in (3.14) yields,
for every z ∈ Nh,

Fεh[p+
x0,h

](z) ≥ λE +Rh,ε[p+
x0

](z).

For ε and h small enough, assumption (3.19) allows us to estimate Rh,ε[p+
x0

](z) ≥
−λ2E. Similarly, we have that F[p−x0

] ≤ −λE and we can choose ε and h so that

Rh,ε[p−x0
](z) ≤ λ

2E.
3. It remains to establish the growth bound (3.22), but this is an easy consequence

of the fact that p±x0
(0) = 0 and estimate (3.5) for the Galerkin projection.

The functions p±x0,h
have thus been constructed.

We are now in position to establish convergence of our scheme.
Theorem 3.10 (convergence). Assume that f ∈ C0,1(Ω̄), that the matrices

{Aα,β : α ∈ A, β ∈ B} are uniformly elliptic (1.2) and satisfy

sup
x1,x2∈Ω̄,|x1−x2|≤t

‖Mα,β(x1)−Mα,β(x2)‖ ≤ $(t), ∀α ∈ A, β ∈ B,

where Mα,β = (Aα,β − λ
2 I)1/2. For h > 0 and ε > 0 let uεh ∈ V0

h be the solution to the
numerical scheme (3.3), obtained over a mesh Th that is weakly acute with respect
to faces, and belongs to a quasi-uniform family. Assume also that (3.19) holds. For
x ∈ Ω̄ define

u?(x) = lim sup
ε,h→0,z→x

uεh(z), u?(x) = lim inf
ε,h→0,z→x

uεh(z). (3.23)

Then the upper semi-continuous function u? is a viscosity subsolution of (1.1) with
u? ≤ 0 on ∂Ω and the lower semi-continuous function u? is a viscosity supersolution
of (1.1) with u? ≥ 0 on ∂Ω.

Proof. We begin by remarking that, in light of the uniform boundedness shown
in Proposition 3.8, the functions u? and u? are bounded.

Let us now show that u? is a subsolution. Let p be a quadratic polynomial such
that u? − p has a local maximum at x0 ∈ Ω. We need to show that

F[p](x0) ≥ f(x0).

Without loss of generality we can assume that this is a strict maximum.



Isaacs equation 19

Let us now show that there are {zh ∈ Nh}h>0 such that uεh − Ghp attains its
maximum at zh and, as h → 0, we have zh → x0. If that is not the case, for any
{zh}h>0, there is a subsequence {zhk} ⊂ {zh}h>0 that converges to some y0 6= x0. By
definition (3.23) we have

(u? − p)(y0) ≥ lim
hk→0

uεhk(zhk)− p(y0) = lim
hk→0

(
uεhk − Ghkp

)
(zhk).

On the other hand, since uεhk −Ghkp attains its maximum at zhk , (uεhk −Ghkp)(x0) ≤
(uεhk − Ghkp)(zhk). Passing to the limit, we have

(u? − p)(x0) ≤ lim
hk→0

uεhk(zhk)− p(y0) ≤ (u? − p)(y0),

which contradicts that u? − p attains a strict maximum at x0.
In what follows we consider this sequence of nodes and, for simplicity, we suppress

the subindex h. As in Corollary 3.3, the fact that uεh − Ghp attains its maximum at
z yields

λ

2
∆h(uεh − Ghp)(z) + Iα,βε [uεh − Ghp](z) ≤ 0,

which combined with Lemma 3.1 allows us to conclude that

fz = Fεh[uεh](z) ≤ Fεh[Ghp](z).

Since f is continuous fz → f(x0) and so it remains to study the behavior of the right
hand side in this inequality.

Repeating the computations in the proof of Theorem 3.5 that led to (3.14) allows
us to obtain

Fεh[Ghp](z) =

´
Ω
F[p](x)φz(x) dx´

Ω
φz(x) dx

+Rh,ε[p](z),

where Rh,ε[p](z) is defined in (3.12). Consequently, if we are able to show that, for
every z ∈ Nh, Rh,ε[p](z)→ 0 as h→ 0, ε→ 0 we would get that

f(x0) ≤ lim sup
h→0

Fεh[Ghp](z) ≤ F[p](x0),

which is what we need to prove. The bound on Rh,ε[p](z), obtained in Lemma 3.4,
and the choice of ε allow us to conclude.

We now show that if x0 ∈ ∂Ω, then we must have u?(x0) ≤ 0. To do so, let ε and
h be small enough and set E = 2

λ‖f‖L∞(Ω) in the barrier function p−x0,h
of Lemma 3.9.

Property (3.21) yields that, for every z ∈ Nh

Fεh[p−x0,h
](z) ≤ −‖f‖L∞(Ω) ≤ fz = Fεh[uεh](z).

Moreover, by (3.20), we have p−x0,h
≥ 0 = uεh in (∂Ω)ε. Consequently, invoking the

discrete maximum principle of Corollary 3.3 we obtain

uεh(x) ≤ p−x0,h
(x) ≤ Cε, ∀x ∈ x0 +BQε ∩ Ωε,

where the upper bound follows from (3.22). Letting ε → 0 and x → x0 we conclude
that u?(x0) ≤ 0.
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Finally, the fact that u? is a super-solution can be shown in a similar fashion. For
brevity, we skip the details.

Corollary 3.11 (convergence). Let the family of triangulations {Th}h>0 be
quasi-uniform and assume that, for every h > 0, Th is weakly acute with respect
to faces (3.16), and that, as ε, h → 0, we have (3.19). In this setting the family
{uεh}h>0,ε>0 of solutions to (3.3) converges pointwise to u, the viscosity solution of
the uniformly elliptic Isaacs equation (1.1).

Proof. Using the notation of Theorem 3.10, we observe that u? ≥ 0 ≥ u? on
∂Ω and that u? and u? are viscosity sub and super solutions, respectively. By a
comparison principle for (1.1); see [31, Theorem 2.52(b)], we then must have

u?(x) ≤ u?(x) ∀x ∈ Ω.

On the other hand, by definition (3.23), u? ≤ u?. Both inequalities readily imply that
u? = u? = u, the viscosity solution of (1.1). This proves convergence of uεh to u.

Remark 3.12 (nonhomogeneous boundary conditions). All the considerations
given above can be extended to the case of nonhomogeneous boundary conditions, i.e.,
when in (1.1) the boundary condition reads u = g. For that we need to assume that
g = tr∂ΩG for some G ∈ C2(Ω̄), and a suitable extension of g to (∂Ω)ε must be
provided in the second equation of (2.5). As described in [8], this can be achieved by
using the so-called sup-convolution:

g̃(x) = sup
x?∈∂Ω

[
g(x?)− |x− x∗|2

]
, ∀x /∈ Ω,

which given the smoothness of g and Ω satisfies g̃ ∈ C1,1(Ωε). The discrete solution
uεh ∈ Vεh then, satisfies uεh(z) = g̃(z) for z ∈ N ε

h . Let us now briefly indicate the
modifications that need to be made to our arguments:
• Existence: To show existence we need to redefine the set of super-solutions. We

now require that vh(z) ≥ Ghg̃(z) for z ∈ N ε
h . We need to show that this set is

nonempty, and for that it suffices to show Ghp ∈ Sh with

p(x) =
1

2
λ−1F (|x− ξ|2 −R2) + g−, g− = max

x∈(∂Ω)ε
g̃(x).

• Uniform boundedness: We consider the function wh = uεh + M where M is suffi-
ciently large so that wh ≥ 0 on N ∂

h . This is possible because g is bounded. Notice
that, for all z ∈ Nh, Iα,βε [uεh](z) = Iα,βε [wh](z) and ∆huh(z) = ∆hwh(z). Therefore

λ

2
∆hwh(z) ≤ fz, ∀z ∈ C−h (wh).

and by ABP

‖uεh‖L∞(Ω) . ‖f‖Ld(Ω) + ‖g‖L∞(∂Ω).

• Barrier functions: When proving convergence, we must be able to assert that the
boundary conditions are attained in a classical sense. For that it suffices to show
that u?(x) ≥ g(x) for x ∈ ∂Ω and this is achieved by constructing suitable barrier
functions (cf. Lemma 3.9). In this case, the barrier functions will be defined as

q±x0,h
= p±x0,h

+ g±, g+ = min
x∈(∂Ω)ε

g̃(x).

We leave the details of this program to the reader.
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4. Rate of convergence. Let us now study the rate of convergence of uεh to
u, under the smoothness assumptions of Corollary 2.4. We will achieve this by com-
paring the solution of the discrete scheme (3.3) with the solution of the integrod-
ifferential approximation (2.5). In light of the technique that we are adopting, we
must immediately note that since the approximation results of Proposition 2.3 and,
as a consequence, the regularity obtained in Corollary 2.4 only apply in the case of
constant coefficients, Aα,β(x) = Aα,β , in what follows we must assume this. In this
setting (2.4) is trivially satisfied with $ ≡ 0. It is possible that the results of [37] can
be used to extend Proposition 2.3 to variable coefficients and if that is the case, our
results will immediately follow as well.

The main technical tool we will employ to obtain rates of convergence in the L∞-
norm will be the discrete ABP estimate of Lemma 3.7. Thus, we must require that
the mesh is weakly acute with respect to faces, as defined in (3.16). We finally remark
that since the relation (3.19) is required for convergence of our method we will study
the rate of convergence under this assumption.

4.1. The error equation. We now derive an equation to determine the error.
Multiply the integro-differential approximation to the Isaacs equation (2.5) by a test
function φz with z ∈ Nh, integrate over Ω and divide by ωz. In view of the definition
of the discrete Laplacian (3.2) and of the Galerkin projection (3.4), we obtain

λ

2
∆hGhuε(z) + inf

α∈A
sup
β∈B

Iα,βε [Ghuε](z) = fz +Rh,ε[uε](z).

Subtract from this equation the scheme (3.3) to obtain, for all z ∈ Nh,

λ

2
∆h (Ghuε − uεh) (z) + inf

α∈A
sup
β∈B

Iα,βε [Ghuε](z)

− inf
α∈A

sup
β∈B

Iα,βε [uεh](z) = Rh,ε[uε](z).
(4.1)

Notice, finally, that Ghuε − uεh ≡ 0 over N ε
h .

4.2. Rate of convergence. With the error equation (4.1) at hand, we now
readily obtain an error estimate. This is the content of the next result.

Theorem 4.1 (rate of convergence). Let u ∈ C1,s(Ω) ∩ C0,1(Ω̄) be the viscosity
solution of the Isaacs equation (1.1) and uεh ∈ Vεh be the solution of (3.3). Choose ε
so that (3.19) holds with $ ≡ 0. Then, there is σ > 0 such that

‖u− uεh‖L∞(Ω) .

(
εσ +

h

ε2
| log h|

)
‖f‖C0,1(Ω̄),

where the hidden constant depends on λ and Λ, but is independent of ε and h.
Proof. We write

‖u− uεh‖L∞(Ω) ≤ ‖u− uε‖L∞(Ω) + ‖uε − Ghuε‖L∞(Ω) + ‖Ghuε − uεh‖L∞(Ω),

and we examine each term separately.
By Proposition 2.3, there is σ > 0 such that

‖u− uε‖L∞(Ω) . εσ‖f‖C0,1(Ω̄).

Estimate (3.5) on the Galerkin projection immediately yields

‖uε − Ghuε‖L∞(Ω) . h| log h|‖f‖C0,1(Ω̄),
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where, using Proposition 2.3, we bounded ‖uε‖C0,1(Ω̄) by ‖f‖C0,1(Ω̄).

Let us denote eh = Ghuε−uεh ∈ V0
h. Using the convex envelope Γ(eh) of the error

we can, as in the proof of Proposition 3.8, conclude that for every α ∈ A and β ∈ B
we have

Iα,βε [Ghuε](z) ≥ Iα,βε [uεh](z), ∀z ∈ C−h (eh),

so that using the monotonicity property of the inf-sup operator (3.7), we have

inf
α∈A

sup
β∈B

Iα,βε Ghuε(z) ≥ inf
α∈A

sup
β∈B

Iα,βε uεh(z), ∀z ∈ C−h (eh).

In conclusion, at the nodal contact set C−(eh) equation (4.1) reduces to

λ

2
∆heh(z) ≤ Rh,ε[uε](z).

An application of the discrete ABP estimate of Lemma 3.7 then yields

sup
Ω
e−h .

 ∑
z∈C−(eh)

ωz|Rh,ε[uε](z)|d
1/d

. max
z∈Nh

|Rh,ε[uε](z)|.

This yields a lower bound for eh. An upper bound can be derived in a similar fashion
by considering −eh. Hence, we infer

‖Ghuε − uεh‖L∞(Ω) . max
z∈Nh

|Rh,ε[uε](z)|.

Using the fact that uε ∈ C0,1(Ω̄) uniformly in ε we can invoke the bounds on
Rh,ε[uε](z) obtained in Lemma 3.4 which, recalling that $ ≡ 0, can be combined
with the estimate of Proposition 2.3 to yield

max
z∈Nh

|Rh,ε[uε](z)| .
h

ε2
| log h|‖f‖C0,1(Ω̄).

Notice now that (3.19) implies that h| log h|ε−2 → 0 as h→ 0 and ε→ 0. Therefore,
we obtain

‖Ghuε − uεh‖L∞(Ω) .
h

ε2
| log h|‖f‖C0,1(Ω̄).

Combining the estimates of these three steps yields the result.
Remark 4.2 (choice of ε). If one knows the value of σ in Proposition 2.3, setting

εσ+2 = h| log h| yields an error estimate of the form

‖u− uεh‖L∞(Ω) . h
σ
σ+2 | log h|

σ
σ+2 ‖f‖C0,1(Ω̄).

Notice that in the best case scenario, that is σ = 1, we would obtain a rate of conver-
gence of order O(h1/3| log h|1/3).

Remark 4.3 (explicit rate of convergence). The rate of convergence in The-
orem 4.1 is given rather implicitly. It seems that this is a recurring feature in the
literature; see for instance the main result in [23].



Isaacs equation 23

5. Implementation details. Let us discuss how to obtain a solution to the
nonlinear problem that scheme (3.3) entails. The main difficulty in devising a conver-
gent algorithm for the solution of (3.3) is the fact that, due to the inf-sup operations,
the underlying operator is neither convex nor concave. This is in sharp contrast with,
for instance, the interpretation of Howard’s algorithm [16] as a semi-smooth Newton
method described in [19, 35] for the Hamilton-Jacobi-Bellman equation since, as it is
shown in [6, Remark 5.3] such a method may not converge.

On the other hand, [6, Section 5] presents a convergent generalization of Howard’s
algorithm for max-min problems, which we readily adapt here. We will present an
algorithm which requires the solution, at every iteration step, of a Hamilton Jacobi
Bellman equation, which can be realized via a semi-smooth Newton method. We will
also comment on an algorithm with inexact solves.

For a given wh ∈ V0
h and z ∈ Nh define α(wh, z) ∈ A as the element that infimizes

the supremum of the integral operators when applied to wh at the point z, that is

inf
α∈A

sup
β∈B

Iα,βε [wh](z) = sup
β∈B

Iα(wh,z),β
ε [wh](z).

Set α(wh) = {α(wh, z) : z ∈ Nh}. For vh ∈ V0
h and z ∈ Nh define

F
α(vh)
h,ε [wh](z) :=

λ

2
∆hwh(z) + sup

β∈B
Iα(vh,z),β
ε [wh](z). (5.1)

Our algorithm can then be described as follows:
• Initialization: Choose w−1

h ∈ V0
h and set α0 = α(w−1

h ).
• Iteration: For k ≥ 0 find wkh ∈ V0

h that solves

Fαk
h,ε[w

k
h](z) = fz, ∀z ∈ Nh (5.2)

and set

αk+1 = α(wkh). (5.3)

• Convergence test: If Fεh[wkh](z) = fz for all z ∈ Nh stop.
Notice that (5.3) is equivalent to

Fεh[wkh](z) = F
αk+1

h,ε [wkh](z), ∀z ∈ Nh.

The analysis of the algorithm (5.2)–(5.3) relies on the following properties of the
operators Fα

h,ε.

Lemma 5.1 (monotonicity and comparison). For every α ∈ A#Nh the operator
Fα
h,ε is monotone and satisfies a comparison principle, i.e., if vh, wh ∈ V0

h are such
that

Fα
h,ε[vh](z) ≤ Fα

h,ε[wh](z), ∀z ∈ Nh,

then vh ≥ wh over Nh.
Proof. The proof repeats the arguments of Lemma 3.2 and Corollary 3.3. For

brevity, we skip details.
The comparison principle will allow us to obtain convergence.
Theorem 5.2 (convergence). The sequence {wkh}k≥0 ⊂ V0

h obtained by algorithm
(5.2)–(5.3) converges in a finite number of steps to uεh ∈ V0

h, solution of (3.3).
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Proof. We proceed in two steps:
First, we show that the sequence is monotone, i.e., for every z ∈ Nh, wkh(z) ≥

wk+1
h (z). By construction:

F
αk+1

h,ε [wkh](z) = Fεh[wkh](z) ≤ Fαk
h,ε[w

k
h](z).

Subtracting fz from this inequality we realize that

F
αk+1

h,ε [wkh](z)− fz ≤ Fαk
h,ε[w

k
h](z)− fz = 0 = F

αk+1

h,ε [wk+1
h ](z)− fz,

which by the comparison principle established in Lemma 5.1 implies wkh ≥ w
k+1
h over

Nh.
Next, since the set A is finite, there are at most (#A)#Nh different variables

and there must be two indices κ > ` for which (5.3) yields ακ = α`. This implies
that wκh = w`h and by monotonicity wkh = w`h for all k ≥ l. But then, by uniqueness
w`h = uεh.

This concludes the proof.
Notice that (5.2) requires the exact solution of a discrete version of a Hamilton

Jacobi Bellman problem, which can be achieved by Howard’s algorithm. We also
propose a scheme with inexact solves in this step:
• Initialization: Choose w−1

h ∈ V0
h and set α0 = α(w−1

h ).
• Iteration: For k ≥ 0 find wkh ∈ V0

h such that

max
z∈Nh

∣∣∣Fαk
h,ε[w

k
h](z)− fz

∣∣∣ < ηk. (5.4)

Set

αk+1 = α(wkh). (5.5)

• Convergence test: If Fεh[wkh](z) = fz for all z ∈ Nh stop.
The convergence of this algorithm follows mutatis mutandis the proof of Theo-

rem 5.4 of [6].
Theorem 5.3 (convergence with inexact solves). Assume that the sequence of

errors {ηk}k∈N ∈ `1. Then the sequence {wkh}k≥0 ⊂ V0
h, obtained by algorithm (5.4)–

(5.5), converges to uεh ∈ V0
h, solution of (3.3).
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