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Abstract

We define a general class of models representing natural selection
between two alleles. The population size and spatial structure are
arbitrary, but fixed. Genetics can be haploid, diploid, or otherwise;
reproduction can be asexual or sexual. Biological events (e.g. births,
deaths, mating, dispersal) depend in arbitrary fashion on the current
population state. Our formalism is based on the idea of genetic sites.
Each genetic site resides at a particular locus and houses a single allele.
Each individual contains a number of sites equal to its ploidy (one
for haploids, two for diploids, etc.). Selection occurs via replacement
events, in which alleles in some sites are replaced by copies of others.
Replacement events depend stochastically on the population state,
leading to a Markov chain representation of natural selection. Within
this formalism, we define reproductive value, fitness, neutral drift, and
fixation probability, and prove relationships among them. We identify
four criteria for evaluating which allele is selected and show that these
become equivalent in the limit of low mutation. We then formalize the
method of weak selection. The power of our formalism is illustrated
with applications to evolutionary games on graphs and to selection in
a haplodiploid population.

1 Introduction

Ever since the Modern Evolutionary Synthesis, mathematics has played an
indispensable role in the theory of evolution. Typically, the contribution of



mathematics comes in the development and analysis of mathematical mod-
els. By representing evolutionary scenarios in a precise way, mathematical
modeling can clarify conceptual issues, elucidate underlying mechanisms, and
generate new hypotheses.

However, conclusions from mathematical models must always be interro-
gated with respect to their robustness. Often, this interrogation takes place
in ad hoc fashion: Assumptions are relaxed one at a time (sometimes within
the original work, sometimes in later works by the same or other authors),
until a consensus emerges as to which conclusions are robust and which are
merely artifacts.

An alternative approach is to take advantage of the generality made pos-
sible by mathematical abstraction. If one can identify a minimal set of as-
sumptions that apply to a broad class of models, any theorem proven from
these assumptions will apply to the entire class. Such theorems eliminate the
duplicate work of deriving special cases one model at a time. More impor-
tantly, the greater the generality in which a theorem is proven, the more likely
it is to represent a robust scientific principle. This mathematically general
approach has been applied to a number of fields within evolutionary biology,
including demographically-structured populations (Metz and de Roos|, 1992}
Diekmann et al, 2001} |1998, 2007; Lessard and Soares, |2018), group- and
deme-structured populations (Simon et al,2013; Lehmann et al, 2016)), evolu-
tionary game theory (Tarnita et al, [2009b], 2011, [Wu et al, 2013; McAvoy and
Hauert], [2016), quantitative trait evolution (Champagnat et al, 2006} Durinx
et al, 2008} Allen et al, 2013; [Van Cleve, 2015), population extinction and
persistence (Schreiber et al, 2010} Roth and Schreiber], 2013 2014; Benaim|
and Schreiber} 2018)), and many aspects of population genetics (Tavaré, |1984;
Biirger} 2000} [Ewens, 2004).

Currently, there is great theoretical and empirical interest in understand-
ing how the spatial and/or genetic structure of a population influences its
evolution. Here, spatial structure refers to the physical layout of the habitat
as well as patterns of interaction and dispersal; genetic structure refers to
factors such as ploidy, sex ratio, and mating patterns. These factors can
affect the rate of genetic change (Allen et al, [2015; [McAvoy et al, |2018a)), the
balance of selection versus drift (Lieberman et al, 2005 [Broom et al, 2010}
'Adlam et al, |2015; Pavlogiannis et al, 2018]), and the evolution of cooperation
and other social behavior (Nowak and May| [1992; Taylor and Frank|, 1996}

Rousset and Billiard, 2000}, [Ohtsuki et al, [2006; [Taylor et al, 2007b} Nowak
et al, [2010al Débarre et al, 2014}, Pena et al, [2016}; [Allen et al, 2017} [Fotouhi
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et al, 2018).

To study the effects of spatial structure in a mathematically general way,
Allen and Tarnital (2014)) introduced a class of models with fixed population
size and spatial structure. Each model in this class represents competition
between two alleles on a single locus in a haploid, asexually-reproducing pop-
ulation. Replacement depends stochastically on the current population state,
subject to general assumptions that are compatible with many established
models in the literature. For this class, |Allen and Tarnital (2014) defined
three criteria for success under natural selection and proved that they coin-
cide when mutation is rare.

Here, we generalize the class of models studied by |Allen and Tarnita
(2014)) and significantly extend the results. As in|Allen and Tarnita (2014),
selection occurs on a single biallelic locus, in a population of fixed size and
structure. However, whereas |Allen and Tarnital (2014) assumed haploid ge-
netics, the class introduced here allows for arbitrary genetic structure, includ-
ing diploid (monoecious or dioecious), haplodiploid, and polyploid genetics.
Arbitrary mating patterns are allowed, including self-fertilization. This level
of generality is achieved using the notion of genetic sites. Each genetic site
houses a single allele copy, and each individual contains a number of genetic
sites equal to its ploidy. Spatial structure is also arbitrary, in that the pat-
terns of interaction and replacement among individuals are subject only to a
minimal assumption ensuring the unity of the population. We also allow for
arbitrary mutational bias.

In this class of models, which we present in Section [2] natural selection
proceeds by replacement events. Replacement events distill all interaction,
mating, reproduction, dispersal, and death events into what ultimately mat-
ters for selection—namely, which alleles are replaced by copies of which oth-
ers. Replacement events occur with probability depending on the current
population state, according to a given replacement rule. The replacement
rule implicitly encodes all relevant aspects of the spatial and genetic struc-
ture.

The replacement rule, together with the mutation rate and mutational
bias, define an evolutionary Markov chain representing natural selection.
Basic results on the asymptotic behavior of the evolutionary Markov chain
are established in Section [Bl

In Section {4 we turn to the question of identifying which of two compet-
ing alleles is favored by selection. We compare four criteria: one based on
fixation probabilities, one based on time-averaged frequency, and two based



on expected frequency change due to selection. We prove (Theorem {f) that
these coincide in the limit of low mutation, thereby generalizing the main
result of Allen and Tarnital (2014).

Sections[5land[6]explore the closely-related concepts of reproductive value,
fitness, and neutral drift. We define these notions in the context of our for-
malism and prove connections among them. Interestingly, to define reproduc-
tive value requires an additional assumption that does not necessarily hold for
all models; thus, the concept of reproductive value may not be as general as
is sometimes thought. We also provide a new proof for the recently-observed
principle (Maciejewskil 20145 |Allen et al, [2015)) that the reproductive value of
a genetic site is proportional to the fixation probability, under neutral drift,
of a mutation arising at that site.

We next turn to weak selection (Section [7]), meaning that the alleles in
question have only a small effect on reproductive success. Mathematically,
weak selection can be considered a perturbation of neutral drift. Using this
perturbative approach, one can obtain closed-form conditions for success un-
der weak selection for models that would be otherwise intractable. This
approach has fruitfully been applied in a great many contexts (Taylor and
Frankl [1996; |Rousset and Billiard, [2000; [Leturque and Rousset, [2002; [Nowak
et al, |2004; |Ohtsuki et al, 20006 Lessard and Ladret], [2007; [Taylor et al, [2007bj
Antal et al, 2009a; [Tarnita et al, 2009b; |Chen, 2013; |[Débarre et al, 2014; Dur-
rett], 2014} Tarnita and Taylor, 2014; Van Cleve, [2015; |Allen et al, 2017). Our
second main result (Theorem [§]) formalizes this weak-selection approach for
our class of models. It asserts that, to determine whether an allele is favored
under weak selection, one can take the expectation of a quantity describing
selection over a probability distribution that pertains to neutral drift. The
usefulness of this result stems from the fact that many evolutionary models
become much simpler in the case of neutral drift.

The bulk of this work adopts a “gene’s-eye view,” in that the analysis is
conducted at the level of genetic sites. In Section [§] we reframe our results
using quantities that apply at the level of the individual. This reframing
again requires additional assumptions, such as fair meiosis. Without these
additional assumptions, natural selection cannot be characterized solely in
terms of individual-level quantities.

We illustrate the power of our formalism with two examples (Section [J)).
The first is a model of evolutionary games on an arbitrary weighted graph.
For this model, we recover recent results of |Allen et al (2017)), using only
results proven in this work. The second is a haplodiploid population model
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in which a mutation may have different selective effects in males and females.
We obtain a simple condition to determine whether such a mutation is favored
under weak selection.

Although our formalism is quite general in some respects, it still makes a
number of simplifying assumptions. For example, we assume a population of
fixed size in a constant environment, but real-world populations are subject
to demographic fluctuations and ecological feedbacks, which may have sig-
nificant consequences for their evolution (Dieckmann and Law, 1996; Metz
et al, 1996} Geritz et al, [1997; [Pelletier et al, [2007; |Wakano et al, 2009
Schoener, [2011; |Constable et al, 2016; Chotibut and Nelson, [2017). Other
limitations arise from our assumptions of fixed spatial structure, single-locus
genetics, and trivial demography. Section [10| discusses these limitations and
the prospects for extending beyond them.

2 Class of models for natural selection

We consider a class of models representing selection, on a single biallelic lo-
cus, in a population with arbitrary—but fixed—spatial and genetic structure.
Each model within this class is represented by a set of genetic sites (parti-
tioned into individuals), a replacement rule, a mutation probability, and a
mutational bias. In this section, we introduce each of these ingredients in
detail and discuss how they combine to form a Markov chain representing
natural selection. A glossary of our notation is provided in Table

2.1 Sites and individuals

We represent arbitrary spatial and genetic structure by using the concept
of genetic sites (Figs. 1A, 2). Each genetic site corresponds to a particular
locus, on a single chromosome, within an individual. Since we consider only
single-locus traits, each individual has a number of sites equal to its ploidy
(e.g. one for haploids, two for diploids).

The genetic sites in the population are represented by a finite set G. The
individuals are represented by a finite set I. To each individual i € I, there
corresponds a set of genetic sites G; C G residing in 7. The collection of
these sets, {G;}icr, forms a partition of G. We use the equivalence relation
~ to indicate that two sites reside in the same individual; thus, g ~ h if and
only if g, h € G; for some i € I.



The total number of sites is denoted n := |G|, and the total number of
individuals is denoted N := |I|. The ploidy of individual i € I is denoted
n; = |G,|; for example, n; = 2 if 7 is diploid. The total number of sites is
equal to the total ploidy across all individuals: ) .., n; = n.

For a particular model within the class defined here, each individual may
be labeled with additional information. For example, each individual may
be designated as male or female and/or could be understood as occupying a
particular location. However, these details are not explicitly represented in
our formalism. In particular, we do not specify any representation of spatial
structure (lattice, graph, metapopulation, etc.), although our formalism is
compatible with all of these. Instead, all relevant aspects of spatial and
genetic structure are implicitly encoded in the replacement rule (see Section
below). The spatial and genetic structure are considered fixed, in the
sense that the roles of individuals and genetic sites do not change over time.

2.2 Alleles and states

There are two competing alleles, a and A. Each genetic site holds a single
allele copy. The allele currently occupying site ¢ € G is indicated by the
variable z, € {0,1}, with 0 corresponding to @ and 1 corresponding to A.
The overall population state is represented by the vector x := (mg)g cc» Which
specifies the allele (a or A) occupying each genetic site. The set of all possible
states is denoted {0,1}.

It will sometimes be convenient to label a state by the subset of sites that
contain the A allele. Thus, for any subset S C G, we let 15 € {0,1}“ denote
the state in which sites in S have allele A, and sites not in S have allele a.
That is, the state 1g is defined by

(1s), = {; ' 0

Of particular interest are the monoallelic states a == 1y, in which only
allele a is present; and A = 1¢, in which only allele A is present.

2.3 Replacement

Natural selection proceeds by replacement events, wherein some individuals
are replaced by the offspring of others (Figs. , . We let R C G denote
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Figure 1: (A) The parentage mapping, «, in the case of a diploid, sexually-
reproducing population. In a diploid population, each individual contains
two genetic sites. Here, site ¢; in the child inherits the allele from site m; in
the mother («(ci;) = my), while site ¢o in the child inherits the allele from
site fy in the father (a(cy) = f2). Note that, although arrows are drawn from
parent to child, the parentage map « is from child to parent. (B) Mutations
are resolved as follows: With probability 1 — u, there is no mutation and
the allele remains the parental type (A in this case). With probability u,
the allele mutates (lightning bolt) and becomes either A (probability v) or a

(probability 1 — v).
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Figure 2: One complete update step in the evolutionary Markov chain. An
example population is pictured with two diploid and three haploid individ-
uals. Genetic sites are indicated by numerals to the left of the site, and
the individuals in which these sites reside are labeled by bold numerals.
First, a replacement event, (R, «), is chosen according to the distribution
{p(R@) (x)}(R o) In this case, the replaced set, R, is shown in yellow. Note
that arrows are drawn from parents to children, but the parentage map, «,
is from child to parent. For every genetic site that is replaced under this
event (yellow), the replicated allele is then subjected to possible mutation,
resulting in a new state.



the set of genetic sites that are replaced in such an event. For example, if
only a single individual ¢ € I dies, then R = (. If the entire population is
replaced, then R = G.

The alleles in the sites in R are then replaced by alleles in new offspring.
Each new offspring inherits (possibly mutated) copies of alleles from its par-
ents. The parentage of new alleles is recorded in a set mapping a : R — G.
For each replaced site g € R, a(g) indicates the parental site from which ¢
inherits its new allele. In other words, the new allele in ¢ is derived from a
parent copy that (in the previous time-step) occupied site « (g). In haploid
asexual models, a (g) simply indicates the parent of the new offspring in g.
In models with sexual reproduction, « identifies not only the parents of each
new offspring but also which allele were inherited from each parent (Fig.[[A).

Overall, a replacement event is represented by the pair (R, «), where
R C G is the set of replaced positions and a : R — G is the parentage
mapping. Any pair (R,«) with R C G and o : R — G can be considered
a potential replacement event. Whether or not a given replacement event is
possible in a given state, and how likely it is to occur, depends on the model
in question. The probability that a given replacement event (R, «) occurs
in state x € {0, l}G is denoted p(p,q) (x); these satisfy Z(Rm PR (X) =1
for each fixed x. The probabilities {p(R7a) (x)} (R 35 functions of x, are
collectively called the replacement rule. 7

All biological events such as births, deaths, mating, dispersal and in-
teraction, and all aspects of spatial and genetic structure, are represented
implicitly in the replacement rule. For example, in a model of a diploid
population with nonrandom mating, the replacement rule encodes mating
probabilities as well as the laws of Mendelian inheritance. In a model of
a spatially-structured population with social interactions (see Section ,
the replacement rule encodes interaction patterns, as well as the effects of
interactions on births and deaths. From these biological details, the replace-
ment rule distills what ultimately matters for selection: the transmission and
inheritance of alleles.

2.4 Mutation

Each replacement of an allele provides an opportunity for mutation (Fig. )
Mutation is described by two parameters: (i) the mutation probability, 0 <
u < 1, which is the probability that a given allele copy in a new offspring is



mutated from its parent; and (ii) the mutational bias, 0 < v < 1, which is
the probability that such a mutation results in A rather than a.

In each time-step, after the replacement event (R, «) has been chosen,
mutations are resolved and the new state, X', is determined as follows. For
each replaced site g € R, one of three outcomes occurs:

e With probability 1 — wu, there is no mutation, and site g inherits the
allele of its parent: zj = (),

e With probability uv, a mutation to A occurs, and x, = 1,
e With probability u(1 — v), a mutation to a occurs, and zj, = 0.

Mutation events are assumed to be independent across replaced sites and
across time. Each site that is not replaced retains its current allele: x, =z,
for all ¢ ¢ R. In this way, the updated state, X, is determined.

2.5 The evolutionary Markov chain

Overall, from a given state x, first a replacement event is chosen according
to the probabilities {p( R,) (X)}( R’ and then mutations are resolved as de-
scribed in Section [2.4] This update leads to a new state x’, and the process
then repeats (Fig. This process defines a Markov chain M on {0, 1}G,
which we call the evolutionary Markov chain. The evolutionary Markov chain
is completely determined by the replacement rule {p( R,) (X)} (R.a)’ the muta-
tion rate u, and the mutational bias v. We denote the transition probability
from state x to state y in M by Py_,y.

2.6 Fixation Axiom

In order for the population to function as a single evolving unit, it should be
possible for an allele to sweep to fixation. To state this principle formally,
we introduce some new notation. For a given replacement event, (R, «), let
& : G — G be the mapping that coincides with « on elements of R and
coincides with the identity otherwise:

v Jalg) gER,
a(g)—{g JER (2)



In words, & maps to the parent of each replaced site, and to the site itself
for those not replaced.
We now formalize the notion of population unity as an axiom:

Fixation Axiom. There exists a genetic site g € G, a positive integer m,
and a finite sequence {(Rg, ax)}re, of replacement events, such that

(8) PRy (x) >0 for all k € {1,...,m} and all x € {0,1},
(b) g € Ry, for some k € {1,...,m},
(c) For each h € G, @y 0d90---0day,(h) =g.

In words, there should be at least one genetic site g € GG that can even-
tually spread its contents throughout the population, such that all sites ulti-
mately trace their ancestry back to g. Part (b) is included to guarantee that
no site is eternal (otherwise no evolution would occur). The Fixation Axiom
ensures that the population evolves as a single unit, rather than (for exam-
ple) being comprised of isolated subpopulations with no gene flow among
them. We regard this axiom as a defining property of our class of models.

2.7 Relation to Allen and Tarnita (2014)

Our formalism extends the class of models introduced by |Allen and Tarnita
(2014)), which considered only haploid populations with asexual reproduction,
to populations with arbitrary genetic structure. Despite the differences in
genetics, the two classes are very similar in their formal structure. Indeed,
one can “forget” the partition of genetic sites into individuals and instead
consider the population as consisting of haploid asexual replicators. With
this perspective, the results of |Allen and Tarnita (2014) can be applied at
the level of genetic sites rather than individuals.

Beyond genetic structure, our current formalism generalizes that of |Allen
and Tarnital (2014)) in three ways. First, whereas Allen and Tarnita (2014)
assumed unbiased mutation, we consider here arbitrary mutational bias, 0 <
v < 1. Second, |Allen and Tarnita| (2014) assumed that the total birth rate
is constant over states; here this assumption is deferred until Section by
which point we have already established a number of fundamental results.
Third, our Fixation Axiom generalizes its analogue in |Allen and Tarnital
(2014)) (there labeled Assumption 2), which required that fixation be possible
from every site. Here, we only require fixation to be possible from at least
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one site. The current formulation allows for “dead end” sites, such as those
in sterile worker insects, which not allowed in the formalism of Allen and
Tarnita (2014).

Despite the increase in generality, some proofs from [Allen and Tarnita
(2014)) carry over to the current formalism with little or no modification. We
will not repeat proofs from |Allen and Tarnital (2014) here unless they need
to be modified significantly.

3 Stationarity and Fixation

In this section, we establish fundamental results regarding the asymptotic
behavior of the evolutionary Markov chain. We also define fixation proba-
bility and introduce probability distributions that characterize the frequency
with which states arise under natural selection.

3.1 Demographic variables

We first introduce the following variables as functions of the state x € {0, 1}
The frequency of the allele A is denoted by x:

1
T = - Z Zg. (3)
geG

The (marginal) probability that the allele in site ¢ € G transmits a copy of
itself to site h € G over the next transition is denoted ey, (x):

egh (X) = E P(R.a) (X) - (4)
(R,c)
a(h)=g

The expected number of copies that the allele in ¢ transmits, which we call
the birth rate of site g in state x, can be calculated as:

by (x) =Y e (%) = Y piray (%) [ (9)]- (5)
heG (R,a)

The probability that the allele in ¢ is replaced, which we call the death
probability of site g in state x, can be calculated as:

dy (x) = Z eng (X) = Z P(Ra) (X). (6)
(

heG R,a)
geR
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The Fixation Axiom guarantees that d, (x) > 0 for all g € G and x € {0, 1},
The total birth rate in state x is denoted b (x). Since the population size
is fixed, b(x) also gives the expected number of deaths:

b(x):=) by(x) = dy(x)= Y e (x). (7)

geG gelG g,h€CG

3.2 The mutation-selection stationary distribution

When mutation is present (u > 0), the evolutionary Markov chain is ergodic
(aperiodic and positive recurrent; Theorem 1 of Allen and Tarnita, 2014). In
this case, the evolutionary Markov chain has a unique stationary distribution
called the mutation-selection stationary distribution, or MSS distribution for
short. For any state function f (x), its time-averaged value converges almost
surely, as time goes to infinity, to its expectation under this distribution:

Jim % 20 F(X(8) = Byss [f]  almost surely. (8)

We denote the probability of state x in the MSS distribution by myss (x) =
Puss [X = x]. The MSS distribution is uniquely determined by the system
of equations

Tuss (x) = Z mss () Py, (92)

ye{0,1}¢

> muss (x) =1. (9b)

xe{0,1}¢

3.3 Fixation probability

When there is no mutation (v = 0), the monoallelic states a and A are
absorbing, and all other states are transient (Theorem 2 of |Allen and Tarnita,
2014)). Thus, from any initial state, the evolutionary Markov chain converges,
almost surely as ¢ — oo, to one of the two monoallelic states. We say that
the population has become fixed for allele a if the state converges to a, and
fixed for allele A if the state converges to A.

The fization probability of an allele is informally defined as the probability
that it becomes fixed when starting from a single copy. A precise definition,
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however, must take into account that the fate of a mutant allele can depend
on the site in which it arises (Allen and Tarnitaj, 2014; [Maciejewski, [2014;
Adlam et al,|2015} |Allen et al, 2015; Chen et al, 2016). Since each replacement
provides an independent opportunity for mutation, new mutations arise in
proportion to the rate at which a site is replaced (Allen and Tarnita, |2014).
Thus, in state a, A mutations arise in site g at a rate proportional to d, (a),
while in state A, a mutations arise in site g at a rate proportional to d, (A).
The probability of multiple A mutations arising in state a, or multiple a
mutations arising in state A, is of order u? as u — 0. We formalize these
observations as a lemma:

Lemma 1.

(1—uvb(a)+0@W?) ifx=a,

Pasx = quvdy (a) + O (u?) if x = 1y for some g € G, (10a)
L O (u?) otherwise;

(1—u(1-v)b(A)+0O @) ifx=A,

Pax = qu (1 - V) dg (A) +0 (U2) if x = 1(;\{9} for some g € G,

O (u?) otherwise.

\

(10b)

The proof is a minor variation on the proof of Lemma 3 in |Allen and
Tarnita (2014) and is therefore omitted.

Lemma (1| motivates the following definitions (from |Allen and Tarnita,
2014)), describing the relative likelihoods of initial states when a mutant first
arises under rare mutation:

Definition 1. The mutant appearance distribution for allele A is a proba-
bility distribution on {0,1}“ defined by

b(a)
0 otherwise.

(11)

g Y

Similarly, the mutant appearance distribution for allele a is a probability
distribution on {0,1}“ defined by

(12)

d‘I(A) lf X = ]-G\{g} fOI‘ some g S G7
0 otherwise.
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Taking these mutant appearance distributions into account, Allen and
Tarnital (2014)) defined the overall fixation probabilities of A and a as follows:

Definition 2. The fization probability of A, denoted p4, is defined as

pa= > pa() (Jim PY,). (13)

xe{0,1}¢

Similarly, the fization probability of a, denoted p,, is defined as

pai= > pa(x) (Jim PO,). (14)

xe{0,1}¢

Above, P,gy denotes the probability of transition from state x to state y
in ¢ steps. The Fixation Axiom guarantees that there is at least one site g for

which lim;_, Pl(?q} oA Hmy o P1(2\{g} _as dg(a), and d, (A) are all positive.

It follows that p4 and p, are both positive.

3.4 The limit of rare mutation

We now consider the limit of low mutation for a fixed replacement rule,
{p(R@) (x)} (R’ and mutational bias v. There is an elegant relationship

between the fixation probabilities and the limiting MSS distribution:

Theorem 1. Fizx a replacement rule {p(R,a) (X)}(R o) and a mutational bias

v. Then for each state x € {0, 1}G, lim,,_,o myss (X) exists and is given by

( vb(a) pa _
V(@) pa+ (L—v)b(A)p, 17X
lir% muss (X) = (1—=v)b(A)pa forx=a (15)
7 vb(a) pa+ (1 —v) b(A)pa ’
0 forx ¢ {a, A}.

Above, pa and p, are the fixation probabilities for this replacement rule when
u=0.

Intuitively, Theorem [1| states that as u — 0, the MSS distribution be-
comes concentrated on the monoallelic states A and a, with probabilities
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determined by the relative rates of transit, vb(a)ps and (1 —v)b(A) p,.
Theorem |1| result generalizes Theorem 6 of |Allen and Tarnita (2014) and a
result of [Van Cleve, (2015]), both of which apply to the special case v = 1/2
and b(a) =b(A).

We will prove Theorem [1| using the principle of state space reduction. Let
A be a finite Markov chain and let S be a nonempty subset of the states of A.
(In proving Theorem [1| we will use A = M and S = {a, A}.) For any states
s, € 8, let Qs_y be the probability that, from initial state s, the next
visit to S occurs in state s’. We define a reduced Markov chain Ajg with
set of states S and transition probabilities @)s .. The following standard
result (e.g. Theorem 6.1.1 of Kemeny and Snell, |1960) shows that stationary
distributions for the original and reduced Markov chains are compatible in a
simple way:

Theorem 2. Let A be finite Markov chain with a unique stationary distri-
bution, w4, and let S be a nonempty subset of states of A. Then, the reduced
Markov chain, Ag, has a unique stationary distribution, TAss which is given
by conditioning the stationary distribution w4 on the event S':

s (5) = g (16)

ses TA (3/) .
Proof of Theorem[1 The limits lim, o muss (X) exist for each x € {0, 1}G
since each myss (x) is a bounded, rational function of u (see Lemma 1 of
Allen and Tarnital 2014)). Since mygg satisfies Eq. @ for each u > 0, it also
satisfies Eq. @ in the limit v — 0. Therefore, lim, _,o mvss is a stationary
distribution for the mutation-free (v = 0) evolutionary Markov chain, M.
Since all states other than a and A are transient when v = 0, they must have
zero probability in any stationary distribution; therefore, lim, o myss (x) = 0
for x ¢ {a, A}.

To determine the limiting values of myss (a) and myss (A), we temporarily
fix some u > 0 and consider the reduction of M to the set of states {a, A}.
By Theorem , the reduced Markov chain M|, a1 has a unique stationary
distribution, may,, ,,, satistying

- . (17)

Let Qa—a and Qa_,a denote the transition probabilities in M, a3. Eq.
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and the stationarity of a4, ,, imply that

muss (A) _ Qasa
mvss (@) Qasa

(18)

We note that Q.. equals the probability, in M with initial state a, of (i)
leaving a in the initial step, and (ii) subsequently visiting A before revisiting
a. Step (i) occurs with probability uvb (a) + O (u?) as u — 0, while step (ii)
occurs with probability p4 + O (u). Thus, overall, we have the expansion

Qasa = uvb(a) pa + O (u?) (u —0). (19)
Similarly, we have
Qasa=u(l—v)b(A)p, + O (v?) (u—0). (20)

Substituting these expansions in Eq. and taking the limit as u — 0
yields
A b
lim Tuss (A vb(@)pa (21)
u=0 myvss (@) (1 —v)b(A)p,
The desired result now follows from the fact that, since lim,_,o myvss (x) = 0
for x ¢ {a, A}, we must have lim,,_,o myss (a) + lim, 0 myss (A) = 1. O

Theorem |[I| implies that the stationary probabilities myss (x) extend to
smooth functions of the mutation rate v on the interval 0 < u < 1, with the
values at u = 0 defined according to Eq. . As mentioned in the proof, the
limiting probabilities in Eq. comprise a stationary distribution for the
evolutionary Markov chain with v = 0. However, this stationary distribution
is not unique—indeed, any probability distribution concentrated entirely on
states A and a is stationary for © = 0. We can achieve uniqueness at u = 0
by augmenting Eq. @ by an additional equation:

gaHA’/TMSS (a) O<u< 1,
muss (A) = . (22)
vb(a) pa
(1 =v)b(A)pa

TTMSS (a) u=0.

The system of linear equations @ and has a unique solution that varies
smoothly with u for 0 < u < 1, coincides with mygg (x) for 0 < u < 1, and
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coincides with the right-hand side of Eq. for u = 0. We will make use
of these observations in Section [7l

Alternatively, Theorem [l| can be proven using Theorem 2 of [Fudenberg
and Imhof| (2006), which implies that as u — 0, the vector (myvss (A) , muss (a))
converges to the stationary distribution of the embedded Markov chain on the
absorbing states, A and a. The transition matrix of this embedded Markov
chain is

1—qvb(a)p yvb (a) p
(V (I=v)b (A)Apa 1-~(1—v) beA) pa) ) (23)

where v is an arbitrary constant chosen small enough to ensure that this ma-
trix has non-negative entries. The stationary distribution of this embedded
Markov chain is independent of v and consists of the limiting probabilities

for mvss (A) and myss (a) specified in Eq. (15).

3.5 The rare-mutation conditional distribution

According to Theorem [I} as u — 0, the mutation-selection stationary dis-
tribution becomes concentrated on the monoallelic states, a or A. However,
since no selection occurs in the monoallelic states, it is important to quantify
the frequencies with which other states are visited in transit between them.
For this purpose, |Allen and Tarnita| (2014)) introduced the rare-mutation di-
morphic (RMD) distribution for haploid models with two alleles. Here, we
introduce a natural generalization of this distribution, which we call the rare-
mutation conditional (RMC) distribution. We avoid the term “dimorphic”
because it can be misleading with non-haploid genetics; for example, the
genotypes AA, Aa, and aa could correspond to three different morphologies.

Definition 3. The rare-mutation conditional (RMC) distribution is the prob-
ability distribution on {0,1}“ \ {a, A} obtained by conditioning the MSS
distribution on being in states other than a and A, and then taking the limit
u— 0:

. B . Tuss (X)
maie (x) = lim Puss (X = x | X ¢ {a, A}] = lim 77—
(24)

The existence of the above limit was shown by Allen and Tarnita (2014,
Lemma 2).
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Allen and Tarnita (2014, Theorem 3) derived a recurrence relation from
which the RMC distribution can be computed, in the case of unbiased mu-
tation (v = 1/2). Here, we show that this recurrence relation—and hence
the RMC distribution itself—is in fact independent of the mutational bias v.
Informally speaking, as u — 0, the mutational bias only affects the amount
of time spent in the monoalleleic states a and A, which are by definition
excluded from the RMC distribution. The RMC distribution depends only
on transition probabilities in the absence of mutation and is therefore inde-
pendent of v.

Theorem 3. For any given replacement rule {p(R,a) (X)}(R o)’ the RMC dis-

tribution is independent of the mutational bias v and is uniquely determined
by the recurrence relations

TRMC (X) = Z TRMC (Y) (Py—>x + Py—>a,uA (X) + Py—)A/La (X)) ) (25)
y#{a,A}

where the transition probabilities Py,_,, above are evaluated at u = 0.

Proof. Let us temporarily fix a positive mutation rate, u > 0, and a mu-
tational bias, . We apply Theorem [2| to reduce M to the set of states
S = {0,1}°\ {a, A}, i.e. those states for which both alleles are present. The

reduced Markov chain Mg has for a stationary distribution {71' M, S}, which
is determined by the recurrence relations

s ()= > e () (Pyox + ProaQasx + PyoaQas) - (26)
y#{a,A}

Here, Q._,x is the probability that, from state a, the first visit to the set
{0, 1}G \ {a, A} occurs in state x; Qa_,x is defined similarly. By Lemma ,
these probabilities have the low-mutation expansion

Qasx = Hna (X) +0 (u) ) (27&)
Qasx = pa (x) + O (u) . (27Db)

Therefore, taking the v — 0 limit of Eq. yields Eq. .
To show that Eq. uniquely defines the RMC distribution, we note
that any solution (in {7rmc (x)}) to Eq. is a stationary distribution
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for a new Markov chain Mpyc, with states {0,119\ {a, A} and transition
probabilities

P)E{_I\)/I;} = Px%y + Px%a,uA (Y) + prA,ua (}’) . (28>

Let x,y € {0, 1}G \ {a, A} be any pair of states with ps (y) > 0. Using
the Fixation Axiom one can show that it is possible to reach state A from
x, in the original Markov chain M, by a finite sequence of transitions with
nonzero probability. Therefore, it is also possible to reach y from x in Mgyc
by a finite sequence of transitions with nonzero probability, which shows that
Mgwuc has only a single closed communicating class and therefore possesses
a unique stationary distribution, determined by Eq. .

Finally, we note that none of the quantities in Eq. depend on the
mutational bias v since they are evaluated at u = 0. Thus, the RMC distri-
bution is independent of v. O

The following lemma, which relates the RMC distribution to the wu-
derivative of the MSS distribution at v = 0, is very useful for both proofs
and computations:

Lemma 2. For any given replacement rule {p(R,a) (X)}(R o) and mutational

bias v, the limit
u
K = lim 29
0 B X € (o AJ) 2

exists and is finite and positive. Furthermore, if ¢ (Xx) is any state function
with ¢ (a) = ¢ (A) =0, then

d Enss ()]

E =K )
ruic (4] du u=0

(30)

Lemma [2] allows expectations under RMC distribution to be computed,
up to the proportionality constant K, from the MSS distribution (which is
often easier to analyze). For many purposes, it is not necessary to know the
value of K, only that it exists and is positive.

Proof. Summing Eq. over the states x ¢ {a, A}, we have
Puss [X ¢ {a, A} = muss (@) Y Pasx+muss (A) Y Pasx
x¢{a,A} x¢{a,A}
+ Z muss (YY) Py—x- (31)

x,y¢{a,A}
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Applying Theorem [I] and Lemma [I| to the first two terms on the right-hand
side, we obtain the following expansion as u — 0:

v(1—v)b(a)b(A)(pa+ pa)
vb(a) pa+ (1 —v)b(A)p,
+ > muss (¥) Pox + O (u?) . (32)

xy¢{a,A}

]P)MSS [X ¢ {a, A}] = U

Dividing by v and taking u — 0, we have

_ v(l—=v)b(a)b(A) (ps + pa)
vb(a)pa+(1—v)b(A)p,

1
lim — PMSS [X ¢ {a, A}]
u—0 U

. 1
+ 71}5)% " Z mass (Y) Pyox | - (33)
x,y¢{a A}

Since v, 1 — v, b(a), b(A), p., and pu are all positive, the first term on
the right-hand side of Eq. is positive. The limit in the second term
exists and is finite since myss (y) and P,_x are both rational functions of
w and lim, o myss (y) = 0 for y ¢ {a, A}. The limit in the second term is
nonnegative since both mygs (y) and Py_,x are. Therefore, the limit on the
left-hand side of Eq. exists and is positive; consequently, the limit in
Eq. exists and is positive as well.
For the second claim, we have

Ernc [¢] = lim Enrss [¢(X) | X ¢ {a,A}]

i Enss [¢]
u—0 Ppag [X ¢ {37 A}]

(since ¢ (A) = ¢ (a) = 0)

= [ lim 4 lim Exiss [¢]
dEnss [¢)]
=K————— 34
du u=0 ( )
which completes the proof. O]

4 Selection

We turn now to the question of how selection acts on the two competing
alleles, a and A. We can ask this question on two different time-scales. In
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the short term, we can look at how natural selection acts to change allele
frequencies from a given state. In the longer term, we can look at the fixation
probabilities of each allele, or at their stationary frequencies under mutation-
selection balance. These notions lead to different criteria for evaluating the
success of an allele under natural selection. In this section, we define these
criteria and prove (Theorem {)) that they become equivalent in the limit of
low mutation when averaged over the RMC distribution.

4.1 Change due to selection

To address questions of short-term selection, we consider an evolutionary
process in a given state x € {0, 1}G. We let A (x) denote the expected
change in the absolute frequency of A (i.e. the number of A alleles) from
state x, over a single transition:

A(x)=(1-u) Z z4by (%) — Z Tydy (X) + uvb (x) . (35)
geqG geG

We use absolute (rather than relative) frequency in the definition of A (x) to
avoid tedious factors of 1/n. The three terms on the right-hand side represent
the respective contributions of faithful reproduction, death, and mutation.
Collecting the terms involving u, we have

Ax) =) 2y (by () = dy (x)) +uy (v =) by (x). (36)

Eq. can be understood as a version of the [Price (1970) equation (but
see van Veelen, 2005). The two terms on the right-hand side of Eq.
represent the effects of selection and mutation, respectively, which motivates
the following definitions (Nowak et al, 2010b):

Definition 4. The expected change due to selection from state x is defined

N (x) =) g (by (x) — dy (x)). (37)

geG
The expected change due to mutation from state x is defined as

A (%) =1 (V= 34) by (x). (38)

geG

With the above definitions, Eq. can be restated as A (x) = Agq (X) +
Amut (X) .
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4.2 Equivalence of success criteria

How does one judge which of the two competing alleles, a and A, is favored
by selection? There are a number of reasonable criteria to use:

e In a given state x, we could say that A is favored if Ay (x) > 0.

e For an evolutionary process with no mutation, we could say that A is
favored if it has larger fixation probability; that is, if p4 > p,.

e For an evolutionary process with mutation, we could say that that A is
favored if its stationary frequency is greater than one would expect by
mutation alone; the latter quantity can be obtained by setting p4 = p,
in Eq. . This leads to the success criterion

- vb(a)
vb(a)+ (1—v)b(A)

}Llir(l) EMSS [[L’] (39)
In the case that the overall birth rates coincide in the two monoallelic
states, b(a) = b(A), this criterion reduces to lim,_,o Eygs [] > v.

Our first main result shows that these success criteria become equivalent
in the limit u — 0, when Ay is averaged over the RMC distribution. Al-
ternatively, one may average Ay, over the MSS distribution and take the
u-derivative at v = 0.

Theorem 4. For any replacement rule, {p(R@) (X)} and any mutational

bias, v, the following success criteria are equz’valent(:R’a)’
(a) pa> pa;
vb(a) _
vb(a)+ (1 —v)b(A)’
(¢) Ermc [Asel] > 0;
(d) L Byss [Aal] |,_, > 0.

The equivalence of (b) and (d), in the case that b(a) = b(A), was pre-
viously shown by Tarnita and Taylor| (2014). Under the further assumption
that v = 1/2, Nowak et al (2010b|, Corollary 1 of Appendix A) showed the
equivalence of (b) and (d); |Allen and Tarnital (2014, Theorem 6 and Corol-
lary 2) showed the equivalence of (a), (b), and (c); and |[Van Cleve (2015)

(b) }LEI(I)EMSS [iL‘] >
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showed the equivalence of (a), (b), and a variant of (c¢). Special cases of this
result for particular models were also proven by |[Rousset and Billiard| (2000)
and Taylor et al (2007al).

Proof. We begin by assuming a fixed v > 0 and rewriting Eq. as
A(x) = A (X) =Y (zg—v)b (40)
geG

We now take the expectation of both sides under the MSS distribution. The
left-hand side vanishes since the expected change in any quantity is zero when
averaged over a stationary distribution. We therefore have

Z (xg —v) bg] : (41)

geG

We also observe from Eq. that Age (2) = Age (A) = 0. Applying Lemma
2, we have

Enss [Ase] = v Enss

d IEMSS [Asel]

E Aol = K
RMC [Asel] T

= K lim EMSS
u—0

Z (zg —v) bg] , (42)

u=0
geG

with K > 0. Theorem [I] now gives

Z (:Ij'g — V) bg] = (1 — I/) b (A) 11¢1£>r(1) TTMSS (A) —vb (a) IILILI(I) TTMSS (a)

geG

lim ]EMSS
u—0

v(l—v)b(a)b(A)
= - a . 43
b (@) pa + (1—0)b(A)p, AP (43)
The coefficient of p4—p, above is positive; thus Egyic [Asel ] = Enss [Agel] ‘u:O’
and ps — p, have the same sign. This proves (a) < (¢) < ( ). For (b), we

write
| vb (a)
lim Eygs ] — vb(a) + (1 —v)b(A)

vb (a)
vb(a)+ (1 —v)b(A)
_ v(l—v)b(a)b(A) (s — pu)
(wb(a) + (1 —v)b(A)) (vb(a) pa+ (1 —v)b(A) pa) a(;ﬂ)

by Theorem [1] The last line above has the sign of ps— pq, thus (a) < (b). O

= lim TTMSS (A) -
u—0
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If the conditions of Theorem [4] are satisfied, we say that allele A is favored
by selection. An interesting consequence of Theorem [4|is that Condition (b)
is independent of the mutational bias, v; either it holds for all values of v
or else for none of them. We can understand this result to say that, when
mutation is vanishingly rare, mutational bias does not affect the direction of
selection.

Theorem W is our most general equivalence result. It shows that four
reasonable measures of selection coincide with each other when mutation is
rare. However, for many models of interest, none of the four conditions are
analytically or computationally tractable (Ibsen-Jensen et al, [2015). In what
follows, we will begin to introduce additional assumptions that allow us to
define important notions such as reproductive value and fitness and obtain
conditions that more tractable than those in Theorem [l

5 Reproductive value and fitness

Reproductive value and fitness are ubiquitous concepts in evolutionary the-
ory. Both quantify the expected reproductive success of an individual or
a genetic site. Fitness, which is used to quantify selection, takes into ac-
count the alleles present in the population. In contrast, reproductive value
quantifies reproductive success in the absence of selection and is therefore
independent of the alleles in the population. Both fitness and reproductive
value may depend on other factors such as age, sex, caste, and spatial loca-
tion.

In this section, we define both notions for our class of models. First, how-
ever, we must introduce an additional assumption regarding the consistency
of replacement in the monoallelic states a and A.

5.1 Consistency of monoallelic states

Since selection does not occur in the monoallelic states a and A, the capacity
of a site to