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Abstract

We define a general class of models representing natural selection
between two alleles. The population size and spatial structure are
arbitrary, but fixed. Genetics can be haploid, diploid, or otherwise;
reproduction can be asexual or sexual. Biological events (e.g. births,
deaths, mating, dispersal) depend in arbitrary fashion on the current
population state. Our formalism is based on the idea of genetic sites.
Each genetic site resides at a particular locus and houses a single allele.
Each individual contains a number of sites equal to its ploidy (one
for haploids, two for diploids, etc.). Selection occurs via replacement
events, in which alleles in some sites are replaced by copies of others.
Replacement events depend stochastically on the population state,
leading to a Markov chain representation of natural selection. Within
this formalism, we define reproductive value, fitness, neutral drift, and
fixation probability, and prove relationships among them. We identify
four criteria for evaluating which allele is selected and show that these
become equivalent in the limit of low mutation. We then formalize the
method of weak selection. The power of our formalism is illustrated
with applications to evolutionary games on graphs and to selection in
a haplodiploid population.

1 Introduction

Ever since the Modern Evolutionary Synthesis, mathematics has played an
indispensable role in the theory of evolution. Typically, the contribution of
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mathematics comes in the development and analysis of mathematical mod-
els. By representing evolutionary scenarios in a precise way, mathematical
modeling can clarify conceptual issues, elucidate underlying mechanisms, and
generate new hypotheses.

However, conclusions from mathematical models must always be interro-
gated with respect to their robustness. Often, this interrogation takes place
in ad hoc fashion: Assumptions are relaxed one at a time (sometimes within
the original work, sometimes in later works by the same or other authors),
until a consensus emerges as to which conclusions are robust and which are
merely artifacts.

An alternative approach is to take advantage of the generality made pos-
sible by mathematical abstraction. If one can identify a minimal set of as-
sumptions that apply to a broad class of models, any theorem proven from
these assumptions will apply to the entire class. Such theorems eliminate the
duplicate work of deriving special cases one model at a time. More impor-
tantly, the greater the generality in which a theorem is proven, the more likely
it is to represent a robust scientific principle. This mathematically general
approach has been applied to a number of fields within evolutionary biology,
including demographically-structured populations (Metz and de Roos, 1992;
Diekmann et al, 2001, 1998, 2007; Lessard and Soares, 2018), group- and
deme-structured populations (Simon et al, 2013; Lehmann et al, 2016), evolu-
tionary game theory (Tarnita et al, 2009b, 2011; Wu et al, 2013; McAvoy and
Hauert, 2016), quantitative trait evolution (Champagnat et al, 2006; Durinx
et al, 2008; Allen et al, 2013; Van Cleve, 2015), population extinction and
persistence (Schreiber et al, 2010; Roth and Schreiber, 2013, 2014; Benäım
and Schreiber, 2018), and many aspects of population genetics (Tavaré, 1984;
Bürger, 2000; Ewens, 2004).

Currently, there is great theoretical and empirical interest in understand-
ing how the spatial and/or genetic structure of a population influences its
evolution. Here, spatial structure refers to the physical layout of the habitat
as well as patterns of interaction and dispersal; genetic structure refers to
factors such as ploidy, sex ratio, and mating patterns. These factors can
affect the rate of genetic change (Allen et al, 2015; McAvoy et al, 2018a), the
balance of selection versus drift (Lieberman et al, 2005; Broom et al, 2010;
Adlam et al, 2015; Pavlogiannis et al, 2018), and the evolution of cooperation
and other social behavior (Nowak and May, 1992; Taylor and Frank, 1996;
Rousset and Billiard, 2000; Ohtsuki et al, 2006; Taylor et al, 2007b; Nowak
et al, 2010a; Débarre et al, 2014; Peña et al, 2016; Allen et al, 2017; Fotouhi
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et al, 2018).
To study the effects of spatial structure in a mathematically general way,

Allen and Tarnita (2014) introduced a class of models with fixed population
size and spatial structure. Each model in this class represents competition
between two alleles on a single locus in a haploid, asexually-reproducing pop-
ulation. Replacement depends stochastically on the current population state,
subject to general assumptions that are compatible with many established
models in the literature. For this class, Allen and Tarnita (2014) defined
three criteria for success under natural selection and proved that they coin-
cide when mutation is rare.

Here, we generalize the class of models studied by Allen and Tarnita
(2014) and significantly extend the results. As in Allen and Tarnita (2014),
selection occurs on a single biallelic locus, in a population of fixed size and
structure. However, whereas Allen and Tarnita (2014) assumed haploid ge-
netics, the class introduced here allows for arbitrary genetic structure, includ-
ing diploid (monoecious or dioecious), haplodiploid, and polyploid genetics.
Arbitrary mating patterns are allowed, including self-fertilization. This level
of generality is achieved using the notion of genetic sites. Each genetic site
houses a single allele copy, and each individual contains a number of genetic
sites equal to its ploidy. Spatial structure is also arbitrary, in that the pat-
terns of interaction and replacement among individuals are subject only to a
minimal assumption ensuring the unity of the population. We also allow for
arbitrary mutational bias.

In this class of models, which we present in Section 2, natural selection
proceeds by replacement events. Replacement events distill all interaction,
mating, reproduction, dispersal, and death events into what ultimately mat-
ters for selection—namely, which alleles are replaced by copies of which oth-
ers. Replacement events occur with probability depending on the current
population state, according to a given replacement rule. The replacement
rule implicitly encodes all relevant aspects of the spatial and genetic struc-
ture.

The replacement rule, together with the mutation rate and mutational
bias, define an evolutionary Markov chain representing natural selection.
Basic results on the asymptotic behavior of the evolutionary Markov chain
are established in Section 3.

In Section 4, we turn to the question of identifying which of two compet-
ing alleles is favored by selection. We compare four criteria: one based on
fixation probabilities, one based on time-averaged frequency, and two based
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on expected frequency change due to selection. We prove (Theorem 4) that
these coincide in the limit of low mutation, thereby generalizing the main
result of Allen and Tarnita (2014).

Sections 5 and 6 explore the closely-related concepts of reproductive value,
fitness, and neutral drift. We define these notions in the context of our for-
malism and prove connections among them. Interestingly, to define reproduc-
tive value requires an additional assumption that does not necessarily hold for
all models; thus, the concept of reproductive value may not be as general as
is sometimes thought. We also provide a new proof for the recently-observed
principle (Maciejewski, 2014; Allen et al, 2015) that the reproductive value of
a genetic site is proportional to the fixation probability, under neutral drift,
of a mutation arising at that site.

We next turn to weak selection (Section 7), meaning that the alleles in
question have only a small effect on reproductive success. Mathematically,
weak selection can be considered a perturbation of neutral drift. Using this
perturbative approach, one can obtain closed-form conditions for success un-
der weak selection for models that would be otherwise intractable. This
approach has fruitfully been applied in a great many contexts (Taylor and
Frank, 1996; Rousset and Billiard, 2000; Leturque and Rousset, 2002; Nowak
et al, 2004; Ohtsuki et al, 2006; Lessard and Ladret, 2007; Taylor et al, 2007b;
Antal et al, 2009a; Tarnita et al, 2009b; Chen, 2013; Débarre et al, 2014; Dur-
rett, 2014; Tarnita and Taylor, 2014; Van Cleve, 2015; Allen et al, 2017). Our
second main result (Theorem 8) formalizes this weak-selection approach for
our class of models. It asserts that, to determine whether an allele is favored
under weak selection, one can take the expectation of a quantity describing
selection over a probability distribution that pertains to neutral drift. The
usefulness of this result stems from the fact that many evolutionary models
become much simpler in the case of neutral drift.

The bulk of this work adopts a “gene’s-eye view,” in that the analysis is
conducted at the level of genetic sites. In Section 8, we reframe our results
using quantities that apply at the level of the individual. This reframing
again requires additional assumptions, such as fair meiosis. Without these
additional assumptions, natural selection cannot be characterized solely in
terms of individual-level quantities.

We illustrate the power of our formalism with two examples (Section 9).
The first is a model of evolutionary games on an arbitrary weighted graph.
For this model, we recover recent results of Allen et al (2017), using only
results proven in this work. The second is a haplodiploid population model
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in which a mutation may have different selective effects in males and females.
We obtain a simple condition to determine whether such a mutation is favored
under weak selection.

Although our formalism is quite general in some respects, it still makes a
number of simplifying assumptions. For example, we assume a population of
fixed size in a constant environment, but real-world populations are subject
to demographic fluctuations and ecological feedbacks, which may have sig-
nificant consequences for their evolution (Dieckmann and Law, 1996; Metz
et al, 1996; Geritz et al, 1997; Pelletier et al, 2007; Wakano et al, 2009;
Schoener, 2011; Constable et al, 2016; Chotibut and Nelson, 2017). Other
limitations arise from our assumptions of fixed spatial structure, single-locus
genetics, and trivial demography. Section 10 discusses these limitations and
the prospects for extending beyond them.

2 Class of models for natural selection

We consider a class of models representing selection, on a single biallelic lo-
cus, in a population with arbitrary—but fixed—spatial and genetic structure.
Each model within this class is represented by a set of genetic sites (parti-
tioned into individuals), a replacement rule, a mutation probability, and a
mutational bias. In this section, we introduce each of these ingredients in
detail and discuss how they combine to form a Markov chain representing
natural selection. A glossary of our notation is provided in Table 1.

2.1 Sites and individuals

We represent arbitrary spatial and genetic structure by using the concept
of genetic sites (Figs. 1A, 2). Each genetic site corresponds to a particular
locus, on a single chromosome, within an individual. Since we consider only
single-locus traits, each individual has a number of sites equal to its ploidy
(e.g. one for haploids, two for diploids).

The genetic sites in the population are represented by a finite set G. The
individuals are represented by a finite set I. To each individual i ∈ I, there
corresponds a set of genetic sites Gi ⊆ G residing in i. The collection of
these sets, {Gi}i∈I , forms a partition of G. We use the equivalence relation
∼ to indicate that two sites reside in the same individual; thus, g ∼ h if and
only if g, h ∈ Gi for some i ∈ I.
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The total number of sites is denoted n := |G|, and the total number of
individuals is denoted N := |I|. The ploidy of individual i ∈ I is denoted
ni := |Gi|; for example, ni = 2 if i is diploid. The total number of sites is
equal to the total ploidy across all individuals:

∑
i∈I ni = n.

For a particular model within the class defined here, each individual may
be labeled with additional information. For example, each individual may
be designated as male or female and/or could be understood as occupying a
particular location. However, these details are not explicitly represented in
our formalism. In particular, we do not specify any representation of spatial
structure (lattice, graph, metapopulation, etc.), although our formalism is
compatible with all of these. Instead, all relevant aspects of spatial and
genetic structure are implicitly encoded in the replacement rule (see Section
2.3 below). The spatial and genetic structure are considered fixed, in the
sense that the roles of individuals and genetic sites do not change over time.

2.2 Alleles and states

There are two competing alleles, a and A. Each genetic site holds a single
allele copy. The allele currently occupying site g ∈ G is indicated by the
variable xg ∈ {0, 1}, with 0 corresponding to a and 1 corresponding to A.
The overall population state is represented by the vector x := (xg)g∈G, which
specifies the allele (a or A) occupying each genetic site. The set of all possible
states is denoted {0, 1}G.

It will sometimes be convenient to label a state by the subset of sites that
contain the A allele. Thus, for any subset S ⊆ G, we let 1S ∈ {0, 1}G denote
the state in which sites in S have allele A, and sites not in S have allele a.
That is, the state 1S is defined by

(1S)g =

{
1 g ∈ S,

0 g /∈ S.
(1)

Of particular interest are the monoallelic states a := 1∅, in which only
allele a is present; and A := 1G, in which only allele A is present.

2.3 Replacement

Natural selection proceeds by replacement events, wherein some individuals
are replaced by the offspring of others (Figs. 1A, 2). We let R ⊆ G denote
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Figure 1: (A) The parentage mapping, α, in the case of a diploid, sexually-
reproducing population. In a diploid population, each individual contains
two genetic sites. Here, site c1 in the child inherits the allele from site m1 in
the mother (α(c1) = m1), while site c2 in the child inherits the allele from
site f2 in the father (α(c2) = f2). Note that, although arrows are drawn from
parent to child, the parentage map α is from child to parent. (B) Mutations
are resolved as follows: With probability 1 − u, there is no mutation and
the allele remains the parental type (A in this case). With probability u,
the allele mutates (lightning bolt) and becomes either A (probability ν) or a
(probability 1− ν).
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Figure 2: One complete update step in the evolutionary Markov chain. An
example population is pictured with two diploid and three haploid individ-
uals. Genetic sites are indicated by numerals to the left of the site, and
the individuals in which these sites reside are labeled by bold numerals.
First, a replacement event, (R,α), is chosen according to the distribution{
p(R,α) (x)

}
(R,α)

. In this case, the replaced set, R, is shown in yellow. Note

that arrows are drawn from parents to children, but the parentage map, α,
is from child to parent. For every genetic site that is replaced under this
event (yellow), the replicated allele is then subjected to possible mutation,
resulting in a new state.
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the set of genetic sites that are replaced in such an event. For example, if
only a single individual i ∈ I dies, then R = Gi. If the entire population is
replaced, then R = G.

The alleles in the sites in R are then replaced by alleles in new offspring.
Each new offspring inherits (possibly mutated) copies of alleles from its par-
ents. The parentage of new alleles is recorded in a set mapping α : R → G.
For each replaced site g ∈ R, α (g) indicates the parental site from which g
inherits its new allele. In other words, the new allele in g is derived from a
parent copy that (in the previous time-step) occupied site α (g). In haploid
asexual models, α (g) simply indicates the parent of the new offspring in g.
In models with sexual reproduction, α identifies not only the parents of each
new offspring but also which allele were inherited from each parent (Fig. 1A).

Overall, a replacement event is represented by the pair (R,α), where
R ⊆ G is the set of replaced positions and α : R → G is the parentage
mapping. Any pair (R,α) with R ⊆ G and α : R → G can be considered
a potential replacement event. Whether or not a given replacement event is
possible in a given state, and how likely it is to occur, depends on the model
in question. The probability that a given replacement event (R,α) occurs
in state x ∈ {0, 1}G is denoted p(R,α) (x); these satisfy

∑
(R,α) p(R,α) (x) = 1

for each fixed x. The probabilities
{
p(R,α) (x)

}
(R,α)

, as functions of x, are

collectively called the replacement rule.
All biological events such as births, deaths, mating, dispersal and in-

teraction, and all aspects of spatial and genetic structure, are represented
implicitly in the replacement rule. For example, in a model of a diploid
population with nonrandom mating, the replacement rule encodes mating
probabilities as well as the laws of Mendelian inheritance. In a model of
a spatially-structured population with social interactions (see Section 9.1),
the replacement rule encodes interaction patterns, as well as the effects of
interactions on births and deaths. From these biological details, the replace-
ment rule distills what ultimately matters for selection: the transmission and
inheritance of alleles.

2.4 Mutation

Each replacement of an allele provides an opportunity for mutation (Fig. 1B).
Mutation is described by two parameters: (i) the mutation probability, 0 ⩽
u ⩽ 1, which is the probability that a given allele copy in a new offspring is
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mutated from its parent; and (ii) the mutational bias, 0 < ν < 1, which is
the probability that such a mutation results in A rather than a.

In each time-step, after the replacement event (R,α) has been chosen,
mutations are resolved and the new state, x′, is determined as follows. For
each replaced site g ∈ R, one of three outcomes occurs:

• With probability 1 − u, there is no mutation, and site g inherits the
allele of its parent: x′

g = xα(g),

• With probability uν, a mutation to A occurs, and x′
g = 1,

• With probability u(1− ν), a mutation to a occurs, and x′
g = 0.

Mutation events are assumed to be independent across replaced sites and
across time. Each site that is not replaced retains its current allele: x′

g = xg

for all g /∈ R. In this way, the updated state, x′, is determined.

2.5 The evolutionary Markov chain

Overall, from a given state x, first a replacement event is chosen according
to the probabilities

{
p(R,α) (x)

}
(R,α)

, and then mutations are resolved as de-

scribed in Section 2.4. This update leads to a new state x′, and the process
then repeats (Fig. 2). This process defines a Markov chain M on {0, 1}G,
which we call the evolutionary Markov chain. The evolutionary Markov chain
is completely determined by the replacement rule

{
p(R,α) (x)

}
(R,α)

, the muta-

tion rate u, and the mutational bias ν. We denote the transition probability
from state x to state y in M by Px→y.

2.6 Fixation Axiom

In order for the population to function as a single evolving unit, it should be
possible for an allele to sweep to fixation. To state this principle formally,
we introduce some new notation. For a given replacement event, (R,α), let
α̃ : G → G be the mapping that coincides with α on elements of R and
coincides with the identity otherwise:

α̃ (g) =

{
α (g) g ∈ R,

g g /∈ R.
(2)
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In words, α̃ maps to the parent of each replaced site, and to the site itself
for those not replaced.

We now formalize the notion of population unity as an axiom:

Fixation Axiom. There exists a genetic site g ∈ G, a positive integer m,
and a finite sequence {(Rk, αk)}mk=1 of replacement events, such that

(a) p(Rk,αk)(x) > 0 for all k ∈ {1, . . . ,m} and all x ∈ {0, 1}G,

(b) g ∈ Rk for some k ∈ {1, . . . ,m},

(c) For each h ∈ G, α̃1 ◦ α̃2 ◦ · · · ◦ α̃m(h) = g.

In words, there should be at least one genetic site g ∈ G that can even-
tually spread its contents throughout the population, such that all sites ulti-
mately trace their ancestry back to g. Part (b) is included to guarantee that
no site is eternal (otherwise no evolution would occur). The Fixation Axiom
ensures that the population evolves as a single unit, rather than (for exam-
ple) being comprised of isolated subpopulations with no gene flow among
them. We regard this axiom as a defining property of our class of models.

2.7 Relation to Allen and Tarnita (2014)

Our formalism extends the class of models introduced by Allen and Tarnita
(2014), which considered only haploid populations with asexual reproduction,
to populations with arbitrary genetic structure. Despite the differences in
genetics, the two classes are very similar in their formal structure. Indeed,
one can “forget” the partition of genetic sites into individuals and instead
consider the population as consisting of haploid asexual replicators. With
this perspective, the results of Allen and Tarnita (2014) can be applied at
the level of genetic sites rather than individuals.

Beyond genetic structure, our current formalism generalizes that of Allen
and Tarnita (2014) in three ways. First, whereas Allen and Tarnita (2014)
assumed unbiased mutation, we consider here arbitrary mutational bias, 0 <
ν < 1. Second, Allen and Tarnita (2014) assumed that the total birth rate
is constant over states; here this assumption is deferred until Section 5.2, by
which point we have already established a number of fundamental results.
Third, our Fixation Axiom generalizes its analogue in Allen and Tarnita
(2014) (there labeled Assumption 2), which required that fixation be possible
from every site. Here, we only require fixation to be possible from at least

11



one site. The current formulation allows for “dead end” sites, such as those
in sterile worker insects, which not allowed in the formalism of Allen and
Tarnita (2014).

Despite the increase in generality, some proofs from Allen and Tarnita
(2014) carry over to the current formalism with little or no modification. We
will not repeat proofs from Allen and Tarnita (2014) here unless they need
to be modified significantly.

3 Stationarity and Fixation

In this section, we establish fundamental results regarding the asymptotic
behavior of the evolutionary Markov chain. We also define fixation proba-
bility and introduce probability distributions that characterize the frequency
with which states arise under natural selection.

3.1 Demographic variables

We first introduce the following variables as functions of the state x ∈ {0, 1}G.
The frequency of the allele A is denoted by x:

x :=
1

n

∑
g∈G

xg. (3)

The (marginal) probability that the allele in site g ∈ G transmits a copy of
itself to site h ∈ G over the next transition is denoted egh (x):

egh (x) :=
∑
(R,α)
α(h)=g

p(R,α) (x) . (4)

The expected number of copies that the allele in g transmits, which we call
the birth rate of site g in state x, can be calculated as:

bg (x) :=
∑
h∈G

egh (x) =
∑
(R,α)

p(R,α) (x)
⏐⏐α−1 (g)

⏐⏐ . (5)

The probability that the allele in g is replaced, which we call the death
probability of site g in state x, can be calculated as:

dg (x) :=
∑
h∈G

ehg (x) =
∑
(R,α)
g∈R

p(R,α) (x) . (6)
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The Fixation Axiom guarantees that dg (x) > 0 for all g ∈ G and x ∈ {0, 1}G.
The total birth rate in state x is denoted b (x). Since the population size

is fixed, b (x) also gives the expected number of deaths:

b (x) :=
∑
g∈G

bg (x) =
∑
g∈G

dg (x) =
∑
g,h∈G

egh (x) . (7)

3.2 The mutation-selection stationary distribution

When mutation is present (u > 0), the evolutionary Markov chain is ergodic
(aperiodic and positive recurrent; Theorem 1 of Allen and Tarnita, 2014). In
this case, the evolutionary Markov chain has a unique stationary distribution
called the mutation-selection stationary distribution, or MSS distribution for
short. For any state function f (x), its time-averaged value converges almost
surely, as time goes to infinity, to its expectation under this distribution:

lim
T→∞

1

T

T−1∑
t=0

f (X (t)) = EMSS [f ] almost surely. (8)

We denote the probability of state x in the MSS distribution by πMSS (x) :=
PMSS [X = x]. The MSS distribution is uniquely determined by the system
of equations

πMSS (x) =
∑

y∈{0,1}G
πMSS (y)Py→x, (9a)

∑
x∈{0,1}G

πMSS (x) = 1. (9b)

3.3 Fixation probability

When there is no mutation (u = 0), the monoallelic states a and A are
absorbing, and all other states are transient (Theorem 2 of Allen and Tarnita,
2014). Thus, from any initial state, the evolutionary Markov chain converges,
almost surely as t → ∞, to one of the two monoallelic states. We say that
the population has become fixed for allele a if the state converges to a, and
fixed for allele A if the state converges to A.

The fixation probability of an allele is informally defined as the probability
that it becomes fixed when starting from a single copy. A precise definition,
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however, must take into account that the fate of a mutant allele can depend
on the site in which it arises (Allen and Tarnita, 2014; Maciejewski, 2014;
Adlam et al, 2015; Allen et al, 2015; Chen et al, 2016). Since each replacement
provides an independent opportunity for mutation, new mutations arise in
proportion to the rate at which a site is replaced (Allen and Tarnita, 2014).
Thus, in state a, A mutations arise in site g at a rate proportional to dg (a),
while in state A, a mutations arise in site g at a rate proportional to dg (A).
The probability of multiple A mutations arising in state a, or multiple a
mutations arising in state A, is of order u2 as u → 0. We formalize these
observations as a lemma:

Lemma 1.

Pa→x =

⎧⎪⎨⎪⎩
1− uν b (a) +O (u2) if x = a,

uν dg (a) +O (u2) if x = 1{g} for some g ∈ G,

O (u2) otherwise;

(10a)

PA→x =

⎧⎪⎨⎪⎩
1− u (1− ν) b (A) +O (u2) if x = A,

u (1− ν) dg (A) +O (u2) if x = 1G\{g} for some g ∈ G,

O (u2) otherwise.

(10b)

The proof is a minor variation on the proof of Lemma 3 in Allen and
Tarnita (2014) and is therefore omitted.

Lemma 1 motivates the following definitions (from Allen and Tarnita,
2014), describing the relative likelihoods of initial states when a mutant first
arises under rare mutation:

Definition 1. The mutant appearance distribution for allele A is a proba-
bility distribution on {0, 1}G defined by

µA (x) :=

{
dg(a)

b(a)
if x = 1{g} for some g ∈ G,

0 otherwise.
(11)

Similarly, the mutant appearance distribution for allele a is a probability
distribution on {0, 1}G defined by

µa (x) :=

{
dg(A)

b(A)
if x = 1G\{g} for some g ∈ G,

0 otherwise.
(12)
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Taking these mutant appearance distributions into account, Allen and
Tarnita (2014) defined the overall fixation probabilities of A and a as follows:

Definition 2. The fixation probability of A, denoted ρA, is defined as

ρA :=
∑

x∈{0,1}G
µA (x)

(
lim
t→∞

P
(t)
x→A

)
. (13)

Similarly, the fixation probability of a, denoted ρa, is defined as

ρa :=
∑

x∈{0,1}G
µa (x)

(
lim
t→∞

P (t)
x→a

)
. (14)

Above, P
(t)
x→y denotes the probability of transition from state x to state y

in t steps. The Fixation Axiom guarantees that there is at least one site g for
which limt→∞ P

(t)
1{g}→A, limt→∞ P

(t)
1G\{g}→a, dg (a), and dg (A) are all positive.

It follows that ρA and ρa are both positive.

3.4 The limit of rare mutation

We now consider the limit of low mutation for a fixed replacement rule,{
p(R,α) (x)

}
(R,α)

, and mutational bias ν. There is an elegant relationship

between the fixation probabilities and the limiting MSS distribution:

Theorem 1. Fix a replacement rule
{
p(R,α) (x)

}
(R,α)

and a mutational bias

ν. Then for each state x ∈ {0, 1}G, limu→0 πMSS (x) exists and is given by

lim
u→0

πMSS (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

νb (a) ρA
νb (a) ρA + (1− ν) b (A) ρa

for x = A,

(1− ν) b (A) ρa
νb (a) ρA + (1− ν) b(A)ρa

for x = a,

0 for x /∈ {a,A}.

(15)

Above, ρA and ρa are the fixation probabilities for this replacement rule when
u = 0.

Intuitively, Theorem 1 states that as u → 0, the MSS distribution be-
comes concentrated on the monoallelic states A and a, with probabilities
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determined by the relative rates of transit, νb (a) ρA and (1− ν) b (A) ρa.
Theorem 1 result generalizes Theorem 6 of Allen and Tarnita (2014) and a
result of Van Cleve (2015), both of which apply to the special case ν = 1/2
and b (a) = b (A).

We will prove Theorem 1 using the principle of state space reduction. Let
A be a finite Markov chain and let S be a nonempty subset of the states of A.
(In proving Theorem 1 we will use A = M and S = {a,A}.) For any states
s, s′ ∈ S, let Qs→s′ be the probability that, from initial state s, the next
visit to S occurs in state s′. We define a reduced Markov chain A|S with
set of states S and transition probabilities Qs→s′ . The following standard
result (e.g. Theorem 6.1.1 of Kemeny and Snell, 1960) shows that stationary
distributions for the original and reduced Markov chains are compatible in a
simple way:

Theorem 2. Let A be finite Markov chain with a unique stationary distri-
bution, πA, and let S be a nonempty subset of states of A. Then, the reduced
Markov chain, A|S, has a unique stationary distribution, πA|S , which is given
by conditioning the stationary distribution πA on the event S:

πA|S (s) :=
πA (s)∑

s′∈S πA (s′)
. (16)

Proof of Theorem 1. The limits limu→0 πMSS (x) exist for each x ∈ {0, 1}G
since each πMSS (x) is a bounded, rational function of u (see Lemma 1 of
Allen and Tarnita, 2014). Since πMSS satisfies Eq. (9) for each u > 0, it also
satisfies Eq. (9) in the limit u → 0. Therefore, limu→0 πMSS is a stationary
distribution for the mutation-free (u = 0) evolutionary Markov chain, M.
Since all states other than a and A are transient when u = 0, they must have
zero probability in any stationary distribution; therefore, limu→0 πMSS (x) = 0
for x /∈ {a,A}.

To determine the limiting values of πMSS (a) and πMSS (A), we temporarily
fix some u > 0 and consider the reduction of M to the set of states {a,A}.
By Theorem 2, the reduced Markov chain M|{a,A} has a unique stationary
distribution, πM|{a,A} , satisfying

πM|{a,A} (A)

πM|{a,A} (a)
=

πMSS (A)

πMSS (a)
. (17)

Let Qa→A and QA→a denote the transition probabilities in M|{a,A}. Eq. (17)
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and the stationarity of πM|{a,A} imply that

πMSS (A)

πMSS (a)
=

Qa→A

QA→a

. (18)

We note that Qa→A equals the probability, inM with initial state a, of (i)
leaving a in the initial step, and (ii) subsequently visiting A before revisiting
a. Step (i) occurs with probability uνb (a) +O (u2) as u → 0, while step (ii)
occurs with probability ρA +O (u). Thus, overall, we have the expansion

Qa→A = uνb (a) ρA +O
(
u2
)

(u → 0) . (19)

Similarly, we have

QA→a = u (1− ν) b (A) ρa +O
(
u2
)

(u → 0) . (20)

Substituting these expansions in Eq. (18) and taking the limit as u → 0
yields

lim
u→0

πMSS (A)

πMSS (a)
=

νb (a) ρA
(1− ν) b (A) ρa

. (21)

The desired result now follows from the fact that, since limu→0 πMSS (x) = 0
for x /∈ {a,A}, we must have limu→0 πMSS (a) + limu→0 πMSS (A) = 1.

Theorem 1 implies that the stationary probabilities πMSS (x) extend to
smooth functions of the mutation rate u on the interval 0 ⩽ u ⩽ 1, with the
values at u = 0 defined according to Eq. (15). As mentioned in the proof, the
limiting probabilities in Eq. (15) comprise a stationary distribution for the
evolutionary Markov chain with u = 0. However, this stationary distribution
is not unique—indeed, any probability distribution concentrated entirely on
states A and a is stationary for u = 0. We can achieve uniqueness at u = 0
by augmenting Eq. (9) by an additional equation:

πMSS (A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qa→A

QA→a

πMSS (a) 0 < u ⩽ 1,

νb (a) ρA
(1− ν) b (A) ρa

πMSS (a) u = 0.

(22)

The system of linear equations (9) and (22) has a unique solution that varies
smoothly with u for 0 ⩽ u ⩽ 1, coincides with πMSS (x) for 0 < u ⩽ 1, and
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coincides with the right-hand side of Eq. (15) for u = 0. We will make use
of these observations in Section 7.

Alternatively, Theorem 1 can be proven using Theorem 2 of Fudenberg
and Imhof (2006), which implies that as u → 0, the vector (πMSS (A) , πMSS (a))
converges to the stationary distribution of the embedded Markov chain on the
absorbing states, A and a. The transition matrix of this embedded Markov
chain is (

1− γνb (a) ρA γνb (a) ρA
γ (1− ν) b (A) ρa 1− γ (1− ν) b (A) ρa

)
, (23)

where γ is an arbitrary constant chosen small enough to ensure that this ma-
trix has non-negative entries. The stationary distribution of this embedded
Markov chain is independent of γ and consists of the limiting probabilities
for πMSS (A) and πMSS (a) specified in Eq. (15).

3.5 The rare-mutation conditional distribution

According to Theorem 1, as u → 0, the mutation-selection stationary dis-
tribution becomes concentrated on the monoallelic states, a or A. However,
since no selection occurs in the monoallelic states, it is important to quantify
the frequencies with which other states are visited in transit between them.
For this purpose, Allen and Tarnita (2014) introduced the rare-mutation di-
morphic (RMD) distribution for haploid models with two alleles. Here, we
introduce a natural generalization of this distribution, which we call the rare-
mutation conditional (RMC) distribution. We avoid the term “dimorphic”
because it can be misleading with non-haploid genetics; for example, the
genotypes AA, Aa, and aa could correspond to three different morphologies.

Definition 3. The rare-mutation conditional (RMC) distribution is the prob-
ability distribution on {0, 1}G \ {a,A} obtained by conditioning the MSS
distribution on being in states other than a and A, and then taking the limit
u → 0:

πRMC (x) := lim
u→0

PMSS [X = x | X /∈ {a,A}] = lim
u→0

πMSS (x)

1− πMSS (A)− πMSS (a)
.

(24)

The existence of the above limit was shown by Allen and Tarnita (2014,
Lemma 2).
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Allen and Tarnita (2014, Theorem 3) derived a recurrence relation from
which the RMC distribution can be computed, in the case of unbiased mu-
tation (ν = 1/2). Here, we show that this recurrence relation—and hence
the RMC distribution itself—is in fact independent of the mutational bias ν.
Informally speaking, as u → 0, the mutational bias only affects the amount
of time spent in the monoalleleic states a and A, which are by definition
excluded from the RMC distribution. The RMC distribution depends only
on transition probabilities in the absence of mutation and is therefore inde-
pendent of ν.

Theorem 3. For any given replacement rule
{
p(R,α) (x)

}
(R,α)

, the RMC dis-

tribution is independent of the mutational bias ν and is uniquely determined
by the recurrence relations

πRMC (x) =
∑

y/∈{a,A}

πRMC (y) (Py→x + Py→aµA (x) + Py→Aµa (x)) , (25)

where the transition probabilities Py→z above are evaluated at u = 0.

Proof. Let us temporarily fix a positive mutation rate, u > 0, and a mu-
tational bias, ν. We apply Theorem 2 to reduce M to the set of states
S := {0, 1}G \{a,A}, i.e. those states for which both alleles are present. The

reduced Markov chain M|S has for a stationary distribution
{
πM|S

}
, which

is determined by the recurrence relations

πM|S (x) =
∑

y/∈{a,A}

πM|S (y) (Py→x + Py→aQa→x + Py→AQA→x) . (26)

Here, Qa→x is the probability that, from state a, the first visit to the set
{0, 1}G \ {a,A} occurs in state x; QA→x is defined similarly. By Lemma 1,
these probabilities have the low-mutation expansion

Qa→x = µA (x) +O (u) ; (27a)

QA→x = µa (x) +O (u) . (27b)

Therefore, taking the u → 0 limit of Eq. (26) yields Eq. (25).
To show that Eq. (25) uniquely defines the RMC distribution, we note

that any solution (in {πRMC (x)}) to Eq. (25) is a stationary distribution
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for a new Markov chain MRMC, with states {0, 1}G \ {a,A} and transition
probabilities

PRMC
x→y := Px→y + Px→aµA (y) + Px→Aµa (y) . (28)

Let x,y ∈ {0, 1}G \ {a,A} be any pair of states with µA (y) > 0. Using
the Fixation Axiom one can show that it is possible to reach state A from
x, in the original Markov chain M, by a finite sequence of transitions with
nonzero probability. Therefore, it is also possible to reach y from x in MRMC

by a finite sequence of transitions with nonzero probability, which shows that
MRMC has only a single closed communicating class and therefore possesses
a unique stationary distribution, determined by Eq. (25).

Finally, we note that none of the quantities in Eq. (25) depend on the
mutational bias ν since they are evaluated at u = 0. Thus, the RMC distri-
bution is independent of ν.

The following lemma, which relates the RMC distribution to the u-
derivative of the MSS distribution at u = 0, is very useful for both proofs
and computations:

Lemma 2. For any given replacement rule
{
p(R,α) (x)

}
(R,α)

and mutational

bias ν, the limit

K := lim
u→0

u

PMSS [X /∈ {a,A}]
(29)

exists and is finite and positive. Furthermore, if ϕ (x) is any state function
with ϕ (a) = ϕ (A) = 0, then

ERMC [ϕ] = K
dEMSS [ϕ]

du

⏐⏐⏐
u=0

. (30)

Lemma 2 allows expectations under RMC distribution to be computed,
up to the proportionality constant K, from the MSS distribution (which is
often easier to analyze). For many purposes, it is not necessary to know the
value of K, only that it exists and is positive.

Proof. Summing Eq. (9a) over the states x /∈ {a,A}, we have

PMSS [X /∈ {a,A}] = πMSS (a)
∑

x/∈{a,A}

Pa→x + πMSS (A)
∑

x/∈{a,A}

PA→x

+
∑

x,y/∈{a,A}

πMSS (y)Py→x. (31)
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Applying Theorem 1 and Lemma 1 to the first two terms on the right-hand
side, we obtain the following expansion as u → 0:

PMSS [X /∈ {a,A}] = u
ν (1− ν) b (a) b (A) (ρa + ρA)

νb (a) ρA + (1− ν) b (A) ρa

+
∑

x,y/∈{a,A}

πMSS (y)Py→x +O
(
u2
)
. (32)

Dividing by u and taking u → 0, we have

lim
u→0

1

u
PMSS [X /∈ {a,A}] = ν (1− ν) b (a) b (A) (ρa + ρA)

νb (a) ρA + (1− ν) b (A) ρa

+ lim
u→0

⎛⎝1

u

∑
x,y/∈{a,A}

πMSS (y)Py→x

⎞⎠ . (33)

Since ν, 1 − ν, b (a), b (A), ρa, and ρA are all positive, the first term on
the right-hand side of Eq. (33) is positive. The limit in the second term
exists and is finite since πMSS (y) and Py→x are both rational functions of
u and limu→0 πMSS (y) = 0 for y /∈ {a,A}. The limit in the second term is
nonnegative since both πMSS (y) and Py→x are. Therefore, the limit on the
left-hand side of Eq. (33) exists and is positive; consequently, the limit in
Eq. (29) exists and is positive as well.

For the second claim, we have

ERMC [ϕ] = lim
u→0

EMSS [ϕ (X) | X /∈ {a,A}]

= lim
u→0

EMSS [ϕ]

PMSS [X /∈ {a,A}]
(since ϕ (A) = ϕ (a) = 0)

=

(
lim
u→0

u

PMSS [X /∈ {a,A}]

)(
lim
u→0

EMSS [ϕ]

u

)
= K

dEMSS [ϕ]

du

⏐⏐⏐
u=0

, (34)

which completes the proof.

4 Selection

We turn now to the question of how selection acts on the two competing
alleles, a and A. We can ask this question on two different time-scales. In
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the short term, we can look at how natural selection acts to change allele
frequencies from a given state. In the longer term, we can look at the fixation
probabilities of each allele, or at their stationary frequencies under mutation-
selection balance. These notions lead to different criteria for evaluating the
success of an allele under natural selection. In this section, we define these
criteria and prove (Theorem 4) that they become equivalent in the limit of
low mutation when averaged over the RMC distribution.

4.1 Change due to selection

To address questions of short-term selection, we consider an evolutionary
process in a given state x ∈ {0, 1}G. We let ∆ (x) denote the expected
change in the absolute frequency of A (i.e. the number of A alleles) from
state x, over a single transition:

∆ (x) := (1− u)
∑
g∈G

xgbg (x)−
∑
g∈G

xgdg (x) + uνb (x) . (35)

We use absolute (rather than relative) frequency in the definition of ∆ (x) to
avoid tedious factors of 1/n. The three terms on the right-hand side represent
the respective contributions of faithful reproduction, death, and mutation.
Collecting the terms involving u, we have

∆ (x) =
∑
g∈G

xg (bg (x)− dg (x)) + u
∑
g∈G

(ν − xg) bg (x) . (36)

Eq. (36) can be understood as a version of the Price (1970) equation (but
see van Veelen, 2005). The two terms on the right-hand side of Eq. (36)
represent the effects of selection and mutation, respectively, which motivates
the following definitions (Nowak et al, 2010b):

Definition 4. The expected change due to selection from state x is defined
as

∆sel (x) :=
∑
g∈G

xg (bg (x)− dg (x)) . (37)

The expected change due to mutation from state x is defined as

∆mut (x) := u
∑
g∈G

(ν − xg) bg (x) . (38)

With the above definitions, Eq. (36) can be restated as ∆ (x) = ∆sel (x)+
∆mut (x).
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4.2 Equivalence of success criteria

How does one judge which of the two competing alleles, a and A, is favored
by selection? There are a number of reasonable criteria to use:

• In a given state x, we could say that A is favored if ∆sel (x) > 0.

• For an evolutionary process with no mutation, we could say that A is
favored if it has larger fixation probability; that is, if ρA > ρa.

• For an evolutionary process with mutation, we could say that that A is
favored if its stationary frequency is greater than one would expect by
mutation alone; the latter quantity can be obtained by setting ρA = ρa
in Eq. (15). This leads to the success criterion

lim
u→0

EMSS [x] >
νb (a)

νb (a) + (1− ν) b (A)
. (39)

In the case that the overall birth rates coincide in the two monoallelic
states, b (a) = b (A), this criterion reduces to limu→0 EMSS [x] > ν.

Our first main result shows that these success criteria become equivalent
in the limit u → 0, when ∆sel is averaged over the RMC distribution. Al-
ternatively, one may average ∆sel over the MSS distribution and take the
u-derivative at u = 0.

Theorem 4. For any replacement rule,
{
p(R,α) (x)

}
(R,α)

, and any mutational

bias, ν, the following success criteria are equivalent:

(a) ρA > ρa;

(b) lim
u→0

EMSS [x] >
νb (a)

νb (a) + (1− ν) b (A)
;

(c) ERMC [∆sel] > 0;

(d) d
du

EMSS [∆sel]
⏐⏐
u=0

> 0.

The equivalence of (b) and (d), in the case that b(a) = b(A), was pre-
viously shown by Tarnita and Taylor (2014). Under the further assumption
that ν = 1/2, Nowak et al (2010b, Corollary 1 of Appendix A) showed the
equivalence of (b) and (d); Allen and Tarnita (2014, Theorem 6 and Corol-
lary 2) showed the equivalence of (a), (b), and (c); and Van Cleve (2015)
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showed the equivalence of (a), (b), and a variant of (c). Special cases of this
result for particular models were also proven by Rousset and Billiard (2000)
and Taylor et al (2007a).

Proof. We begin by assuming a fixed u > 0 and rewriting Eq. (36) as

∆ (x) = ∆sel (x)− u
∑
g∈G

(xg − ν) bg (x) . (40)

We now take the expectation of both sides under the MSS distribution. The
left-hand side vanishes since the expected change in any quantity is zero when
averaged over a stationary distribution. We therefore have

EMSS [∆sel] = uEMSS

[∑
g∈G

(xg − ν) bg

]
. (41)

We also observe from Eq. (37) that ∆sel (a) = ∆sel (A) = 0. Applying Lemma
2, we have

ERMC [∆sel] = K
dEMSS [∆sel]

du

⏐⏐⏐
u=0

= K lim
u→0

EMSS

[∑
g∈G

(xg − ν) bg

]
, (42)

with K > 0. Theorem 1 now gives

lim
u→0

EMSS

[∑
g∈G

(xg − ν) bg

]
= (1− ν) b (A) lim

u→0
πMSS (A)− νb (a) lim

u→0
πMSS (a)

=
ν (1− ν) b (a) b (A)

νb (a) ρA + (1− ν) b (A) ρa
(ρA − ρa) . (43)

The coefficient of ρA−ρa above is positive; thus ERMC [∆sel],
d
du

EMSS [∆sel]
⏐⏐
u=0

,
and ρA − ρa have the same sign. This proves (a) ⇔ (c) ⇔ (d). For (b), we
write

lim
u→0

EMSS [x]−
νb (a)

νb (a) + (1− ν) b (A)

= lim
u→0

πMSS (A)− νb (a)

νb (a) + (1− ν) b (A)

=
ν (1− ν) b (a) b (A)

(νb (a) + (1− ν) b (A)) (νb (a) ρA + (1− ν) b (A) ρa)
(ρA − ρa) ,

(44)

by Theorem 1. The last line above has the sign of ρA−ρa, thus (a) ⇔ (b).
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If the conditions of Theorem 4 are satisfied, we say that allele A is favored
by selection. An interesting consequence of Theorem 4 is that Condition (b)
is independent of the mutational bias, ν; either it holds for all values of ν
or else for none of them. We can understand this result to say that, when
mutation is vanishingly rare, mutational bias does not affect the direction of
selection.

Theorem 4 is our most general equivalence result. It shows that four
reasonable measures of selection coincide with each other when mutation is
rare. However, for many models of interest, none of the four conditions are
analytically or computationally tractable (Ibsen-Jensen et al, 2015). In what
follows, we will begin to introduce additional assumptions that allow us to
define important notions such as reproductive value and fitness and obtain
conditions that more tractable than those in Theorem 4.

5 Reproductive value and fitness

Reproductive value and fitness are ubiquitous concepts in evolutionary the-
ory. Both quantify the expected reproductive success of an individual or
a genetic site. Fitness, which is used to quantify selection, takes into ac-
count the alleles present in the population. In contrast, reproductive value
quantifies reproductive success in the absence of selection and is therefore
independent of the alleles in the population. Both fitness and reproductive
value may depend on other factors such as age, sex, caste, and spatial loca-
tion.

In this section, we define both notions for our class of models. First, how-
ever, we must introduce an additional assumption regarding the consistency
of replacement in the monoallelic states a and A.

5.1 Consistency of monoallelic states

Since selection does not occur in the monoallelic states a and A, the capacity
of a site to reproduce (i.e. its reproductive value) is ascribable to the site
itself, not to the alleles in the population. It is therefore reasonable to define
reproductive value with respect to states a and A. To obtain a consistent
definition, we require that the probabilities of replacement events coincide in
these states:
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Assumption 1. (Consistency of monoallelic states) Each replacement event
(R,α) has the same probability in state A as in state a: p(R,α) (A) =
p(R,α) (a).

Assumption 1 does not necessarily hold for every plausible model of nat-
ural selection. For example, if allele A has a positive fitness effect in some
sites and a negative fitness effect in others (relative to allele a), then the
patterns of replacement in state A are likely to differ from those in state a.
Importantly, if Assumption 1 is not satisfied, there may not be a consistent
way to define reproductive values. That is, one may obtain two different sets
of reproductive values, one for state a and one for state A, with no obvious
way of reconciling them.

With Assumption 1 in force, we denote the probability of a replacement
event (R,α) in state a or A by p◦(R,α) := p(R,α) (A) = p(R,α) (a). We will also
use the superscript ◦ to denote the following other quantities in states a or
A:

e◦gh := egh (a) = egh (A) =
∑
(R,α)
α(h)=g

p◦(R,α); (45a)

b◦g := bg (a) = bg (A) =
∑
h∈G

e◦gh; (45b)

d◦g := dg (a) = dg (A) =
∑
h∈G

e◦hg. (45c)

5.2 Reproductive value

Reproductive value (Fisher, 1930; Taylor, 1990; Maciejewski, 2014) quantifies
the expected contribution of an individual or a genetic site to the future gene
pool of the population in the absence of selection, depending on factors such
as age, sex, location, and caste. Reproductive values indicate the relative
importance of different individuals to the process of natural selection. For
example, a sterile worker in an insect colony has zero reproductive value,
since it has no opportunity to transmit its genetic material.

We will first define reproductive value on the level of genetic sites, and
later (in Section 8) extend to individuals. The reproductive value vg of a
genetic site g ∈ G is defined as follows:

Definition 5. For a replacement rule satisfying Assumption 1, the repro-
ductive values {vg}g∈G are defined as the unique solution to the system of
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equations

d◦gvg =
∑
h∈G

e◦ghvh for all g ∈ G; (46a)∑
g∈G

vg = n. (46b)

Eq. (46a) can be understood as saying that, for an allele occupying site
g ∈ G, under one transition in either of the monoallelic states, the expected
loss of reproductive value due to death, d◦gvg, is balanced by the expected
reproductive value of new copies produced,

∑
h∈G e◦ghvh. The normalization

in Eq. (46b) is arbitrary, chosen so that the average reproductive value of
each site is one.

We prove in Proposition 1 below that reproductive values are uniquely
defined by Eq. (46) and are nonnegative. We show in Section 6 below that,
under neutral drift, the reproductive value of a site g is proportional to the
probability that a mutation arising at site g becomes fixed.

Reproductive value (RV) provides a natural weighting for genetic sites
when computing quantities related to natural selection. We indicate RV-
weighted quantities with a hat; for example, the RV-weighted frequency x̂ is
defined as

x̂ :=
1

n

∑
g∈G

vgxg. (47)

We also define the RV-weighted birth and death rates of each site g ∈ G:

b̂g (x) :=
∑
h∈G

egh (x) vh; (48a)

d̂g (x) := vgdg (x) . (48b)

It follows from Eq. (46) that in the monoallelic states, the RV-weighted
birth and death rates are equal for each state:

b̂◦g = d̂◦g. (49)

We let b̂ (x) denote the total RV-weighted birth rate in state x, which is
equal to the total RV-weighted death rate:

b̂ (x) =
∑
g∈G

b̂g (x) =
∑
g,h∈G

egh (x) vh =
∑
h∈G

d̂h (x) . (50)
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5.3 Fitness

Fitness quantifies reproductive success under natural selection. Although
the concept of fitness is fundamental in evolutionary biology (Haldane, 1924;
Fisher, 1930), it can be difficult to define for a general evolutionary process
(Metz et al, 1992; Rand et al, 1994; Doebeli et al, 2017).

As with other quantities, we first define fitness on the level of genetic
sites. Intuitively, the fitness of site g in state x should quantify the expected
reproductive success of the allele occupying g in this state. This success can
be quantified in terms of its own reproductive value (if it survives) plus the
expected reproductive value of copies it produces and transmits, which leads
to the following definition:

Definition 6. The fitness of site g ∈ G in state x is defined as

wg (x) :=

(
1−

∑
h∈G

ehg (x)

)
vg +

∑
h∈G

egh (x) vh

=vg − d̂g (x) + b̂g (x) . (51)

The definition of fitness used here differs from the definition in Allen and
Tarnita (2014), which does not take reproductive value into account.

We observe that, by Eq. (46b), the total fitness is n in every state x, i.e.∑
g∈G

wg (x) = n. (52)

For the monoallelic states, it follows from Eq. (49) that each site has fitness
equal to its reproductive value:

w◦
g = vg − d̂◦g + b̂◦g = vg. (53)

5.4 Selection with reproductive value

To quantify selection using reproductive value, we use the expected change
in the absolute RV-weighted frequency from a given state x, denoted ∆̂ (x),
which we define as follows:

∆̂ (x) :=−
∑
g∈G

xgvgdg (x) + (1− u)
∑
g,h∈G

xgegh (x) vh + uν
∑
g∈G

vgdg (x)

=−
∑
g∈G

xgd̂g (x) + (1− u)
∑
g∈G

xg b̂g (x) + uν
∑
g∈G

d̂g (x) . (54)
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(Note that ∆̂ (x), like ∆ (x), is defined using absolute rather than relative
weights, in order to avoid tedious factors of 1/n.)

We rewrite Eq. (54), in analogy to Eq. (40), as

∆̂ (x) = ∆̂sel (x)− u
∑
g∈G

(xg − ν) b̂g (x) . (55)

Above (following Tarnita and Taylor, 2014) we have introduced ∆̂sel (x), the
expected change in RV-weighted frequency due to selection from state x, which
can be defined in a number of equivalent ways:

∆̂sel (x) =
∑
g∈G

xg

(
b̂g (x)− d̂g (x)

)
=
∑
g∈G

xg (wg (x)− vg)

=
∑
g,h∈G

xg (egh (x) vh − ehg (x) vg)

=
1

2

∑
g,h∈G

(xg − xh) (egh (x) vh − ehg (x) vg) . (56)

We now extend our equivalence of success criteria (Theorem 4) to include
measures weighted by reproductive value:

Theorem 5. For any replacement rule,
{
p(R,α) (x)

}
(R,α)

, satisfying Assump-

tion 1, and any mutational bias ν, the following success criteria are equiva-
lent:

(a) ρA > ρa;

(b) ERMC [∆sel] > 0;

(c) ERMC

[
∆̂sel

]
> 0;

(d) d
du

EMSS [∆sel]
⏐⏐
u=0

> 0;

(e) d
du

EMSS

[
∆̂sel

] ⏐⏐
u=0

> 0;

(f) limu→0 EMSS [x] (= limu→0 EMSS [x̂]) > ν.
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The equivalence of (d) and (f) was previously shown by Tarnita and
Taylor (2014).

Proof. Analogously to the proof of Theorem 4, we temporarily fix u > 0 and
take the expectation of both sides of Eq. (55) under the MSS distribution.
Upon rearranging, we obtain

EMSS

[
∆̂sel

]
= uEMSS

[∑
g∈G

(xg − ν) b̂g

]
. (57)

Since ∆̂sel (a) = ∆̂sel (A) = 0, application of Lemma 2 yields

ERMC

[
∆̂sel

]
= K

dEMSS

[
∆̂sel

]
du

⏐⏐⏐
u=0

= K lim
u→0

EMSS

[∑
g∈G

(xg − ν) b̂g

]
, (58)

for some K > 0. We observe that, by Assumption 1, b (A) = b (a) and
b̂ (A) = b̂ (a); we denote the latter quantity by b̂◦. Theorem 1 now gives

lim
u→0

EMSS

[∑
g∈G

(xg − ν) b̂g

]
= b̂◦

(
(1− ν) lim

u→0
πMSS (A)− ν lim

u→0
πMSS (a)

)
=

b̂◦ν (1− ν)

νρA + (1− ν) ρa
(ρA − ρa). (59)

The coefficient of ρA − ρa above is positive, which proves the equivalence of
(a), (c), and (e). The rest of the proof follows from Theorem 4.

We note that Theorem 5 requires Assumption 1 and is therefore less
general than its non-RV-weighted analogue, Theorem 4 (see Tarnita and
Taylor, 2014, for related discussion).

6 Neutral drift

Neutral drift describes a situation where the alleles present in the population
do not affect the drivers of selection (births and deaths). Neutral drift is
interesting and important in its own right (e.g. Kimura et al, 1968; Allen et al,
2015; McAvoy et al, 2018a), and will also serve as a baseline for studying weak
selection. In our framework, neutral drift is characterized by the property
that the probabilities of replacement events are independent of the population
state:
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Definition 7. A replacement rule
{
p(R,α) (x)

}
(R,α)

represents neutral drift if

p(R,α) (x) is independent of the state x for every (R,α).

Clearly, a replacement rule representing neutral drift satisfies Assump-
tion 1; indeed, we have p(R,α) (x) = p◦(R,α) for each replacement event, (R,α),
and each state, x. For this reason, we will denote a replacement rule rep-

resenting neutral drift by its (fixed) probability distribution,
{
p◦(R,α)

}
(R,α)

,

over replacement events.

6.1 Ancestral random walks and uniqueness of repro-
ductive value

A convenient property of neutral drift is that it can be analyzed backwards
in time, using the perspective of coalescent theory (Kingman, 1982; Wakeley,

2009). Let
{
p◦(R,α)

}
(R,α)

be a replacement rule representing neutral drift. For

a given site, g ∈ G, the probability agh that the parent copy of the allele in
g occupied site h is

agh := P◦ [α (g) = h | g ∈ R] =
e◦hg
d◦g

. (60)

(Note that d◦g > 0 as a consequence of the Fixation Axiom.) We define the
ancestral random walk as a Markov chain, A, on G with transition proba-
bilities agh from g to h. The trajectory of the ancestral random walk from
a given site g represents the ancestry of g traced backwards in time. The
ancestral random walk is a special case of a coalescing random walk (Holley
and Liggett, 1975; Cox, 1989) for which there is only one walker.

The ancestral random walk enables an intuitive proof for the uniqueness
and non-negativity of reproductive values:

Proposition 1. For a given replacement rule satisfying Assumption 1, the
reproductive values, {vg}g∈G, are uniquely defined by Eq. (46) and are non-
negative for every g ∈ G.

Proof. First suppose that the given replacement rule represents neutral drift.
Let A be the corresponding ancestral random walk, with transition probabili-
ties agh = e◦hg/d

◦
g. The Fixation Axiom implies that there exists a g ∈ G such

that, for all h ∈ G, there is a k ⩾ 0 and a sequence ℓ1, . . . , ℓk ∈ G such that
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ahℓkaℓkℓk−1
· · · aℓ2ℓ1aℓ1g > 0. In other words, there exists g ∈ G such that for

every h ∈ G, there is a finite sequence of transitions in A, each with positive
probability, from h to g. It follows that A has a single closed communicat-
ing class, and therefore it has a unique stationary probability distribution,
{zg}g∈G, which is the unique solution to the system of equations

zg =
∑
h∈G

e◦gh
d◦h

zh; (61a)∑
g∈G

zg = 1. (61b)

Setting

vg :=
zg/d

◦
g∑

ℓ∈G (zℓ/d◦ℓ)
, (62)

it follows that {vg}g∈G is the unique solution to Eq. (46). The zg are non-
negative since they comprise a probability distribution, and it follows that
the vg are nonnegative as well.

If the given replacement rule does not represent neutral drift, we define
a new replacement rule

{
p̃(R,α)

}
(R,α)

by p̃(R,α) := p(R,α) (a) = p(R,α) (A). This

new replacement rule represents neutral drift by definition. The above ar-
gument again shows that the reproductive values are uniquely defined by
Eq. (46) and are nonnegative.

As a corollary to the proof, we can see that the states with positive
reproductive value are precisely those that are recurrent under the ancestral
random walk, which in turn are those that are able to spread their contents
throughout the population in the sense of the Fixation Axiom. This fact
hints at a connection between reproductive value and fixation probability,
which we will make explicit in Section 6.3.

6.2 Change due selection vanishes under neutral drift

A key result for neutral drift is that the RV-weighted change due to selection,
∆̂sel (x), is zero in every state, x. This property mathematically expresses
the neutrality (absence of selection) in neutral drift. Notably, the analogous
property does not hold for unweighted change due to selection, ∆sel (x). In-
deed, this property uniquely defines reproductive value, and is one of the
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primary motivations studying RV-weighted quantities (see also Tarnita and
Taylor, 2014). We formalize these observations in the following proposition:

Theorem 6. If the replacement rule
{
p◦(R,α)

}
(R,α)

represents neutral drift,

then ∆̂sel (x) = 0 for each state x ∈ {0, 1}G. Furthermore, if {ṽg}g∈G is any

weighting of genetic sites g ∈ G such that ∆̃sel (x) (the change in ṽ-weighted
frequency) is zero for each state x, then {ṽg}g∈G are a constant multiple of
{vg}g∈G.

Proof. For the first claim, combining Eqs. (49) and (56) gives

∆̂sel(x) =
∑
g∈G

xg

(
b̂◦g − d̂◦g

)
= 0. (63)

For the second claim, consider an arbitrary weighting of genetic sites
{ṽg}g∈G. In analogy with Eq. (56), the expected change in x̃ =

∑
g∈G ṽgxg

can be written
∆̃sel (x) =

∑
g,h∈G

xg

(
e◦ghṽh − e◦hgṽg

)
. (64)

If ∆̃sel (x) = 0 for each state x, then, by substituting x = 1{g} into
Eq. (64) and rearranging, we obtain∑

h∈G

e◦ghṽh =
∑
h∈G

e◦hgṽg = d◦gṽg for each g ∈ G. (65)

The above equation is equivalent to Eq. (46a), with ṽg in place of vg. Propo-
sition 1 guarantees the solution to Eq. (46a) is unique up to a constant
multiple. Therefore, the {ṽg}g∈G are a constant multiple of {vg}g∈G.

6.3 Reproductive value and fixation probability

As an application of Theorem 6, we deduce a remarkable relationship be-
tween reproductive value and fixation probability: under neutral drift with
no mutation, the reproductive value of a site is proportional to the fixation
probability of a novel type initiated at that site. This relationship was pre-
viously noted by Maciejewski (2014) and Allen et al (2015); here, we provide
an elegant proof using martingales:
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Theorem 7. Let
{
p◦(R,α)

}
(R,α)

be a replacement rule representing neutral

drift and let M be the associated evolutionary Markov chain with u = 0.
Then, for any state x ∈ {0, 1}G,

lim
t→∞

P
(t)
x→A = x̂. (66)

In particular, the fixation probability of a single mutation arising in site g is

lim
t→∞

P
(t)
1{g}→A =

vg
n
, (67)

and the overall fixation probabilities of A and a are

ρA = ρa =
b̂◦

nb◦
. (68)

Proof. Consider M started from an arbitrary initial state X (0) = x0. Let
X (t) denote the state at time t, and let X̂ (t) := 1

n

∑
g∈G vgXg (t) denote the

RV-weighted frequency at time t. We claim that X̂ (t) is a martingale, which
can be seen by writing Eq. (55) as

E
[
X̂ (t+ 1)− X̂ (t) | X (t) = x

]
=

1

n
∆̂ (x)

=
1

n
∆̂sel (x)−

u

n

∑
g∈G

(xg − ν) b̂◦g. (69)

The first term in the final expression is zero by Theorem 6, and the second
is zero since u = 0; thus X̂(t) is a martingale.

Since u = 0, M eventually becomes absorbed either in state A, for which
x̂ = 1, or a, for which x̂ = 0. The martingale property then implies

x̂0 = lim
t→∞

E
[
X̂ (t) | X (0) = x0

]
= lim

t→∞
P

(t)
x0→A, (70)

which proves Eq. (66). Eq. (67) follows from setting x0 = 1{g}, and Eq. (68)
follows from Definitions 1 and 2.

Note that, according to Eq. (68), the fixation probability of a neutral mu-
tation is not necessarily 1/N , and depends on the spatial structure. It follows
that spatial structure can affect a population’s rate of neutral substitution
(or “molecular clock”; Kimura et al, 1968). This effect is discussed in detail
by Allen et al (2015).
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6.4 Symmetry of neutral distributions

Since, for neutral drift, the alleles a and A are interchangeable, we expect
the neutral RMC and MSS distributions to be insensitive to interchanging
the roles of a and A. To formalize this property, we define the complement
of a state x, denoted x̄, by x̄g = 1 − xg for each g ∈ G. In other words, x̄
is formed from x by replacing all a’s with A’s and vice versa. In particular,
ā = A and Ā = a. The symmetry property for the RMC distribution can
then be stated as follows:

Proposition 2. If the replacement rule
{
p◦(R,α)

}
(R,α)

represents neutral drift,

then for each state x ∈ {0, 1}G, πRMC (x̄) = πRMC (x).

Proof. For a replacement rule representing neutral drift and u = 0, it fol-
lows from how transitions are defined that Px→y = Px̄→ȳ for all states

x,y ∈ {0, 1}G. We further observe that µa (x) = µA (x̄) and µA (x) = µa (x̄).
Substituting into the recurrence relation for the RMC distribution, Eq. (25),
we obtain

πRMC (x) =
∑

y/∈{a,A}

πRMC (y) (Pȳ→x̄ + Pȳ→Aµa (x̄) + Pȳ→aµA (x̄)) , (71)

for all states x, with the transition probabilities evaluated at u = 0. Since
Eq. (71) uniquely determines {πRMC (x̄)}, we have πRMC (x̄) = πRMC (x) for
all x ∈ {0, 1}G.

In particular, under neutral drift, we have ERMC [xg] = 1/2 for each site
g; that is, g is equally likely to be occupied by either allele in the RMC
distribution for neutral drift.

For the MSS distribution, interchanging the roles of a and A leads to a
different symmetry property, one that incorporates the mutational bias, ν:

Proposition 3. Let
{
p(R,α) (x)

}
(R,α)

be a replacement rule representing neu-

tral drift and let the mutation probability u > 0 be fixed. Then, for each state
x ∈ {0, 1}G, the value of πMSS (x) with mutational bias ν equals the value
πMSS (x̄) with mutational bias 1− ν.

We omit the proof, which is similar to that Proposition 2 but uses the
recurrence relations (9a) in place of (25). Proposition 3 implies in particular
that EMSS [xg] = ν for each site g. The apparent discrepancy between the
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results ERMC [xg] = 1/2 and EMSS [xg] = ν can be resolved by recalling that,
as u → 0, the MSS distribution becomes concentrated on state A (with
probability approaching ν) and state a (with probability approaching 1−ν);
in contrast, the RMC distribution excludes these monoallelic states and is
independent of ν.

7 Weak selection

We say that selection is weak if the process of natural selection between A and
a approximates neutral drift. Weak selection is mathematically convenient
because it allows the use of perturbative techniques; it is also biologically
relevant since, for many systems of interest, mutations have a relatively small
effect on reproductive success.

7.1 Formalism

To formalize the notion of weak selection, we introduce a selection strength
parameter, δ, which takes values in some half-open neighborhood [0, ε) of
zero. We consider a δ-indexed family of replacement rules, subject to the
following assumption:

Assumption 2 (Assumptions for weak selection). For each replacement
event (R,α), the probabilities p(R,α) (x) satisfy the following:

(a) p(R,α) (x) varies smoothly with respect to δ ∈ [0, ε) for each state x;

(b) p(R,α) (x) is independent of x for δ = 0.

Part (b) guarantees that the replacement rule represents neutral drift
when δ = 0. For now, we do not require that Assumption 1 be satisfied for
all values of δ. Assumption 1 will appear later as a condition of Corollary 1
below.

The following proposition shows that, under Assumption 2, other funda-
mental quantities of interest also vary smoothly with respect to δ:

Proposition 4. For a δ-indexed family of replacement rules,
{
p(R,α) (x)

}
(R,α)

,

satisfying Assumption 2, and for any mutational bias, 0 < ν < 1,

(a) ρA, ρa, and πRMC (x) for each x ∈ {0, 1}G are smooth functions of
δ ∈ [0, ε);
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(b) For each x ∈ {0, 1}G, πMSS (x) extends uniquely to a smooth function
of (u, δ) ∈ [0, 1]× [0, ε);

(c) For each x ∈ {0, 1}G\{a,A}, PMSS [X = x | X /∈ {a,A}] extends uniquely
to a smooth function of (u, δ) ∈ [0, 1]× [0, ε).

Proof. We first observe that, from the definition of the evolutionary Markov
chain and the formalism for weak selection, the transition probabilities Px→y

are smooth functions of (u, δ) ∈ [0, 1]× [0, ε).
The fixation probabilities, ρA and ρa, being absorption probabilities for a

finite Markov chain, are bounded, rational functions of the transition prob-
abilities (see, for example, Theorem 3.3.7 of Kemeny and Snell, 1960), and
are therefore smooth functions of δ ∈ [0, ε).

We turn now to the stationary probabilities πMSS (x). The system of
Eqs. (9) and (22) define a unique continuous extension of πMSS (x) to 0 ⩽
u ⩽ 1. Since the equations of this system vary smoothly with u and δ and the
solution is unique, this extension of πMSS (x) is smooth in (u, δ) ∈ [0, 1]×[0, ε).

The argument for PMSS [X = x | X /∈ {a,A}] is similar, except that the
relevant system of equations is Eq. (26)—which is replaced by Eq. (25) for u =
0—together with the additional equation

∑
x/∈{a,A} PMSS [X = x | X /∈ {a,A}] =

1. This system of equations has a unique solution for each (u, δ) ∈ [0, 1] ×
[0, ε), which coincides with {PMSS [X = x | X /∈ {a,A}]} for u > 0 and with
{πRMC (x)} for u = 0. Thus, for each x /∈ {a,A}, PMSS [X = x | X /∈ {a,A}]
extends uniquely to a smooth function of (u, δ) ∈ [0, 1] × [0, ε), which coin-
cides with πRMC (x) at u = 0.

We will study weak selection as a perturbation of neutral drift (δ = 0).
In formulating weak-selection expansions of various quantities, we will use
a circle (◦) to indicate the value at δ = 0 and a prime (′) to denote the
first-order coefficient in δ as δ → 0+. (In light of Assumption 2b, this use of
◦ is consistent with the previous use in Section 6.) For example, we have the
following weak selection expansions:

p(R,α) (x) = p◦(R,α) + δp′(R,α) (x) +O
(
δ2
)
; (72a)

πRMC (x) = π◦
RMC (x) + δπ′

RMC (x) +O
(
δ2
)
. (72b)

We say that a statement holds under weak selection if it holds to first order
in δ as δ → 0+. We deal only with first-order expansions here; for the
mathematical theory of higher-order perturbations of a Markov chain, see
Silvestrov and Silvestrov (2017).
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7.2 Success criteria for weak selection

Turning now to quantities describing selection, we have the following weak-
selection expansion of fitness:

wg (x) = vg + δw′
g (x) +O

(
δ2
)
, (73)

with

w′
g (x) = b̂′g (x)− d̂′g (x) =

∑
h∈G

(
e′gh (x) vh − e′hg (x) vg

)
. (74)

Above and throughout this section, the reproductive values vg are understood
to be computed at δ = 0, and not to vary with δ. We note that, in light of
Eq. (52),

∑
g∈Gw′

g (x) = 0 for each state, x.

For the RV-weighted change due to selection, ∆̂sel (x), we note that The-
orem 6 implies that ∆̂◦

sel (x) = 0 for all states x. We therefore have the
weak-selection expansion

∆̂sel (x) = δ∆̂′
sel (x) +O

(
δ2
)
, (75)

with

∆̂′
sel (x) =

∑
g∈G

xgw
′
g (x)

=
∑
g,h∈G

xg

(
e′gh (x) vh − e′hg (x) vg

)
=

1

2

∑
g,h∈G

(xg − xh)
(
e′gh (x) vh − e′hg (x) vg

)
. (76)

Our second main result is a weak-selection analogue of Theorems 4 and
5. It proves the equivalence of four success criteria: one based on fixation
probability, one based on expected frequency, and two based on change due
to selection.

Theorem 8. For any replacement rule
{
p(R,α) (x)

}
(R,α)

satisfying Assump-

tion 2, and any mutational bias ν, the following success criteria are equiva-
lent:

(a) ρA > ρa under weak selection;
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(b) lim
u→0

EMSS [x] >
νb (a)

νb (a) + (1− ν) b (A)
under weak selection;

(c) E◦
RMC

[
∆̂′

sel

]
> Kν (1− ν)

(
b̂′ (A)− b̂′ (a)− b̂◦

b◦
(b′ (A)− b′ (a))

)
;

(d)
d

du
E◦

MSS

[
∆̂′

sel

] ⏐⏐⏐
u=0

> ν (1− ν)

(
b̂′ (A)− b̂′ (a)− b̂◦

b◦
(b′ (A)− b′ (a))

)
,

with K defined as in Eq. (29).

Conditions (a) and (b) above are the weak-selection versions of the corre-
sponding criteria in Theorem 4. Conditions (c) and (d) involve expectations
of ∆̂′

sel (x) over the neutral RMC and MSS distributions, respectively. How-
ever, these latter conditions also involve terms on the right-hand side that
were not seen in our previous results. To gain intuition for these additional
terms, it is helpful to note that Condition (c) can be rewritten as

E◦
RMC

[
∆̂′

sel

]
+Kb◦ν (1− ν)

d

dδ

(
b̂ (a)

b (a)
− b̂ (A)

b (A)

)⏐⏐⏐⏐
δ=0

> 0. (77)

Eq. (77) reveals that E◦
RMC

[
∆̂′

sel

]
captures only part of the effects of weak

selection on allele A. The other part, represented by the second term in
Eq. (77), has to do with the average reproductive value of offspring created
in the monoallelic states. For example, the average reproductive value of new
offspring in state a is b̂ (a) /b (a). If this quantity increases with δ, new A-
mutants arising in state a will have additional reproductive value for δ > 0,
relative to the neutral drift (δ = 0) case. Such effects are accounted for in the
second term of Eq. (77), or equivalently, in the right-hand sides of Conditions
(c) and (d). In short, fitness-based quantities such as ∆̂sel account for only
part of the direction of selection. This phenomenon is discussed in detail by
Tarnita and Taylor (2014), who also proved the equivalence of (b) and (d) in
the special case that b(a) = b(A) for all δ ⩾ 0.

We also observe that Condition (b) above involves two limits, u → 0 and
δ → 0. These limits can be freely interchanged according to Proposition 4,
so there is no concern regarding limit orderings.
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Proof of Theorem 8. We first show the equivalence of (a) and (b). Theorem
1 gives

lim
u→0

EMSS [x] =
νb (a) ρA

νb (a) ρA + (1− ν) b (A) ρa
. (78)

Note that for δ = 0, we have ρA = ρa = b̂◦/(nb◦) by Theorem 7, and both
sides of Condition (b) become equal to ν. It therefore suffices to show that the
first δ-derivatives of ρA−ρa and limu→0 EMSS [x]−νb (a) / (νb (a) + (1− ν) b (A))
have the same sign at δ = 0. Applying Eq. (78), we compute:

d

dδ

(
lim
u→0

EMSS [x]−
νb (a)

νb (a) + (1− ν) b (A)

) ⏐⏐⏐
δ=0

= ν (1− ν)

(
nb◦

b̂◦
(ρ′A − ρ′a) +

b′ (a)− b′ (A)

b◦

)
− ν (1− ν)

b′ (a)− b′ (A)

b◦

= ν (1− ν)
nb◦

b̂◦
(ρ′A − ρ′a) . (79)

This shows (a) ⇔ (b). We now show (a) ⇔ (c). From Eq. (58), we have

ERMC

[
∆̂sel

]
= K lim

u→0
EMSS

[∑
g∈G

(xg − ν) b̂g

]
= K

(
(1− ν) b̂ (A) lim

u→0
πMSS (A)− νb̂ (a) lim

u→0
πMSS (a)

)
= Kν (1− ν)

b̂ (A) b (a) ρA − b̂ (a) b (A) ρa
νb (a) ρA + (1− ν) b (A) ρa

, (80)

where the last line comes from Theorem 1. Differentiating both sides with
respect to δ at δ = 0 gives

d

dδ
ERMC

[
∆̂sel

] ⏐⏐⏐
δ=0

= Kν (1− ν)

(
nb◦ (ρ′A − ρ′a) + b̂′ (A)− b̂′ (a)− b̂◦

b◦
(b′ (A)− b′ (a))

)
. (81)
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We rewrite the left-hand side of this equation as

d

dδ
ERMC

[
∆̂sel

] ⏐⏐⏐
δ=0

=
∑

x∈{0,1}G\{a,A}

d

dδ

(
πRMC (x) ∆̂sel (x)

) ⏐⏐⏐
δ=0

=
∑

x∈{0,1}G\{a,A}

π◦
RMC (x) ∆̂′

sel (x)

= E◦
RMC

[
∆̂′

sel

]
. (82)

In the second line above, all terms of the form π′
RMC (x) ∆̂◦

sel (x) vanish since
∆̂◦

sel (x) = 0 for all states x by Theorem 6. Combining Eqs. (81) and (82)
gives the equivalence of (a) and (c). Finally, (a) and (d) are equivalent by
Lemma 2, completing the proof.

If the conditions of Theorem 8 are satisfied, we say that allele A is favored
under weak selection. The power of Theorem 8 lies in the fact that, for many
models of interest, Conditions (c) and (d) are easier to evaluate than (a)
and (b) because (c) and (d) involve expectations taken at neutrality (δ = 0),
meaning that the probabilities of replacement events are independent of the
state. At neutrality, the recurrence relations governing the RMC and MSS
distributions simplify greatly, in many cases allowing conditions (c) or (d) to
be simplified to closed form (see Section 9 for examples).

Still, Conditions (c) and (d) are not as simple as one might hope. Eval-
uating them requires computing the full value (not just the sign) of either
d
du

E◦
MSS

[
∆̂′

sel

] ⏐⏐
u=0

or both E◦
RMC

[
∆̂′

sel

]
and K. However, if we assume that

the replacement probabilities in the monoallelic states satisfy Assumption 1

and are independent of δ, only the sign of d
du

E◦
MSS

[
∆̂′

sel

] ⏐⏐
u=0

or E◦
RMC

[
∆̂′

sel

]
is needed, as shown below:

Corollary 1. Let
{
p(R,α) (x)

}
(R,α)

be a replacement rule satisfying Assump-

tion 2. Suppose that p(R,α) (a) and p(R,α) (A) are equal to each other and
independent of δ, for all replacement events (R,α) and all sufficiently small
δ ⩾ 0. Then, for any mutational bias ν, the following success criteria are
equivalent:

(a) ρA > ρa under weak selection;

(b) limu→0 EMSS [x] (= limu→0 EMSS [x̂]) > ν under weak selection;
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(c) E◦
RMC

[
∆̂′

sel

]
> 0;

(d) d
du

E◦
MSS

[
∆̂′

sel

] ⏐⏐
u=0

> 0.

The proof follows immediately from Theorem 8. Aspects of this result, in
the special case that all sites have the same reproductive value, were proven
in Theorem 2 of Nowak et al (2010b) and in Eq. (16) of Van Cleve (2015).
Additionally, a number of instances of this result have been obtained for
particular models (Rousset and Billiard, 2000; Leturque and Rousset, 2002;
Lessard and Ladret, 2007; Taylor et al, 2007a; Antal et al, 2009a; Wakano
et al, 2013; Débarre et al, 2014; Allen et al, 2017).

8 Results for individuals

All of the above results apply equally to haploid, diploid, haplodiploid, or
polyploid populations, because the analysis is based on genetic sites rather
than individuals. However, any formalism for natural selection must reserve
a special role for the individual, as the entity that carries and is shaped
by its genetic material. Here, we connect the individual-level and gene-
level perspectives with definitions and results that apply at the level of the
individual.

We recall from Section 2.1 that the set of genetic sites, G, is partitioned
into a collection, {Gi}i∈I , where Gi is the set of sites residing in individual
i ∈ I. The ploidy of individual i is ni := |Gi|. The notation g ∼ h indicates
that sites g and h reside in the same individual.

8.1 Assumptions

Moving to an individual-level perspective requires the introduction of addi-
tional assumptions. First, we assume that an individual’s alleles survive or
die all together (along with the individual itself). Thus, if one of an indi-
vidual’s genetic sites is replaced, then all of them are. This excludes the
possibility that, for example, a virus causes a germline mutation in one of a
diploid individual’s alleles.

Assumption 3 (Coherence of individuals). If genetic sites g, h ∈ G reside
in the same individual, g ∼ h, then for each state x ∈ {0, 1}G and each
replacement event (R,α) with p(R,α) (x) > 0, either g, h ∈ R or g, h /∈ R.
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The second assumption is that meiosis is fair: each of the alleles in an
individual is equally likely to be passed on to offspring when this individ-
ual reproduces. This assumption excludes the possibility of meiotic drive
(Sandler and Novitski, 1957; Lindholm et al, 2016).

Assumption 4 (Fair meiosis). Let (R,α1) and (R,α2) be replacement events
with the same set R ⊆ G of replaced individuals. If α1 (g) ∼ α2 (g) for all
g ∈ R, then p(R,α1) (x) = p(R,α2) (x) for each state x ∈ {0, 1}G.

In words, the probability of a replacement event depends only on the
(individual) parent of each replaced site, not on which allele is inherited
from that parent.

8.2 Fitness and selection at the individual level

As immediate consequences of Assumptions 3 and 4, we see that sites residing
in the same individual have the same birth rate, death rate, reproductive
value, and fitness:

Lemma 3. Suppose the replacement rule
{
p(R,α) (x)

}
(R,α)

satisfies Assump-

tions 3 and 4. If sites g, h ∈ G reside in the same individual, g ∼ h,
then dg (x) = dh (x) and egℓ (x) = ehℓ (x) for each state x ∈ {0, 1}G and
each site ℓ ∈ G. If, furthermore, Assumption 1 holds, then vg = vh and

wg (x) = wh (x) for each x ∈ {0, 1}G.

Proof. Fix sites g, h ∈ G with g ∼ h. Assumption 3 and Eq. (6) imply that
that dg (x) = dh (x) for all states x ∈ {0, 1}G. Assumption 4 implies that∑

(R,α)
α(ℓ)=g

p(R,α) (x) =
∑
(R,α)
α(ℓ)=h

p(R,α) (x) , (83)

which is equivalent to egℓ (x) = ehℓ (x).
If Assumption 1 holds, then the above arguments imply that d◦g = d◦h and

e◦gℓ = e◦hℓ for all ℓ ∈ G. It follows that vg =
1
d◦g

∑
ℓ∈G e◦gℓvℓ =

1
d◦h

∑
ℓ∈G e◦hℓvℓ =

vh, as desired.
The definitions in Eqs. (48a) and (48b) now imply that b̂g (x) = b̂h (x)

and d̂g (x) = d̂h (x) for all states x, from which it follows that wg (x) = wh (x)
for all x.
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Moving to individual-level quantities, we can identify the type of an in-
dividual i ∈ I, in state x ∈ {0, 1}G, by its fraction of A alleles:

Xi :=
1

ni

∑
g∈Gi

xg. (84)

For example, a diploid heterozygote (genotype Aa) has Xi = 1/2. The
reproductive value and fitness of individual i ∈ I are defined by summing
the corresponding quantities over all sites in I:

Vi :=
∑
g∈Gi

vg; (85a)

Wi (x) :=
∑
g∈Gi

wg (x) . (85b)

If Assumptions 1, 3, and 4 hold, then all sites in the same individual have
the same reproductive value and fitness according to Lemma 3, and it follows
that Vi = nivg and Wi (x) = niwg (x) for any g ∈ Gi.

We can use the above definitions to express the RV-weighted change due
to selection, ∆̂sel, using only quantities that apply at the level of the individ-
ual:

Proposition 5. For any replacement rule satisfying Assumptions 1, 3, and
4, and any state x,

∆̂sel (x) =
∑
i∈I

Xi (Wi (x)− Vi) . (86)

Proof. For each individual i ∈ I we calculate

Xi (Wi (x)− Vi) =

(
1

ni

∑
g∈Gi

xg

)(∑
h∈Gi

wh(x)−
∑
h∈Gi

vh

)

=

(∑
g∈Gi

xg

)(
1

ni

∑
h∈Gi

(wh (x)− vh)

)
. (87)

Lemma 3 implies that 1
ni

∑
h∈Gi

(wh (x)− vh) = wg (x) − vg for any g ∈
Gi; thus, the right-hand side above is equal to

∑
g∈Gi

xg (wg (x)− vg). Now
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summing over all individuals i ∈ I we have∑
i∈I

Xi (Wi (x)− Vi) =
∑
i∈I

∑
g∈Gi

xg (wg (x)− vg)

=
∑
g∈G

xg (wg (x)− vg)

= ∆̂sel (x) , (88)

as desired.

We can use Proposition 5 to restate the criteria for success in Theorems 5
and 8 using individual-level quantities. For example, if Assumptions 1, 3, and
4) hold, thenA is favored by selection if and only if

∑
i∈I ERMC [Xi (Wi − Vi)] >

0. Likewise, if Assumptions 2, 3, 4, and the assumptions of Corollary 1 hold,
then A is favored under weak selection if and only if

∑
i∈I E

◦
RMC [XiW

′
i ] > 0.

If Assumptions 3 and 4 do not hold, then sites in the same individual may
have different reproductive value and/or fitness. These differences would not
be reflected in the individual-level quantities Vi and Wi; thus, the criteria for
success may not be expressible in terms of these quantities.

9 Examples

We illustrate the application of our formalism to two examples: evolutionary
games on an arbitrary weighted graph (Allen et al, 2017), and a haplodiploid
population in which alleles may affect males and females differently. In each
case, we show how Conditions (c) and (d) of Corollary 1 can be evaluated to
obtain tractable conditions for success under natural selection.

9.1 Games on graphs

Evolutionary games on graphs (Nowak and May, 1992; Blume, 1993; San-
tos and Pacheco, 2005; Ohtsuki et al, 2006; Szabó and Fáth, 2007; Chen,
2013; Allen and Nowak, 2014; Débarre et al, 2014; Peña et al, 2016) are a
well-studied mathematical model for the evolution of social behavior. Indi-
viduals play a game with neighbors, and payoffs from this game determine
reproductive success. Analytical results were first obtained for regular graphs
(Ohtsuki et al, 2006; Taylor et al, 2007b; Cox et al, 2013; Chen, 2013; Allen
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(A) (B) (C)

complete regular heterogeneous

Figure 3: Three examples of graph-structured populations. In each popu-
lation, blue indicates that a location is occupied by the allele A, while red
indicates the allele at that location is a. (A) A complete graph, wherein each
player is a neighbor of (i.e. shares a link with) every other player in the
population. (B) A (non-complete) regular graph, for which all individuals
have the same number of neighbors (4, in this instance). (C) A weighted het-
erogeneous graph, for which both the number of neighbors and the weights
of the connections (given by the shading of the links) may vary from player
to player. Historically, the analysis of evolutionary games on graphs has
proceeded in order of increasing asymmetry, from (A) to (B) to (C).

and Nowak, 2014; Débarre et al, 2014; Durrett, 2014; Peña et al, 2016) and
have recently been extended to arbitrary weighted graphs (Allen et al, 2017;
Fotouhi et al, 2018).

9.1.1 Model

Population structure is represented as a weighted (undirected) graph G,
which we assume to be connected. Each vertex is always occupied by a
single haploid individual (see Fig. 3). The edge weight between vertices
g, h ∈ G, denoted ωgh ⩾ 0, indicates the strength of spatial relationship
between these vertices. It is helpful to define the weighted degree of vertex
g as ωg =

∑
h∈G ωgh. The random-walk step probability from g to h is de-

noted pgh = ωgh/ωg. The probability that an m-step random walk from g

terminates at h is denoted p
(m)
gh .

In each state of the process, each individual interacts with each of its
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neighbors according to a game a 2× 2 matrix game of the form

( A a

A fAA fAa

a faA faa

)
. (89)

In each state x, each individual g retains the edge-weighted average payoff
it receives from neighbors, given by

fg(x) =
∑
ℓ∈G

pgℓ (fAAxgxℓ + fAaxg (1− xℓ) + faA (1− xg)xℓ + faa (1− xg) (1− xℓ)) .

(90)
Game payoff is translated into fecundity by Fg (x) = 1+δfg (x), where δ > 0
is a parameter representing the strength of selection.

Reproduction and replacement proceed according to a specified update
rule (Ohtsuki et al, 2006). For Birth-Death (BD) updating, an individual g is
chosen at random, with probability proportional to reproductive rate Fg (x),
to (asexually) produce an offspring. This offspring replaces a random neigh-
bor of g, chosen proportionally to edge weight ωgh. For Death-Birth (DB)
updating, an individual h is chosen, uniformly at random, to be replaced.
Then, a neighbor g is chosen, proportionally to ωghFg (x), to produce an
offspring to fill the vacancy. Mutations are resolved in accordance with our
framework (Section 2.4), leading to a new state.

9.1.2 Basic quantities

Since only one individual is replaced per time-step, any replacement event
with positive probability has the form ({h}, h ↦→ g), meaning that the occu-
pant of site h is replaced by the offspring of site g. The nonzero probabilities
in the replacement rule are given by

p({h},h ↦→g) (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 + δfg (x)∑
ℓ∈G (1 + δfℓ (x))

)
pgh for BD updating,

1

n

(
ωgh (1 + δfg (x))∑
ℓ∈G ωℓh (1 + δfℓ (x))

)
for DB updating.

(91)

Above, fg(x) is the payoff to g in state x, given by Eq. (90). We note also
that egh (x) = p({h},h↦→g) (x) for each g, h ∈ G.
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death birth and replacement updated state
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Figure 4: Birth-Death (BD) and Death-Birth (DB) updating on a graph.
Each node is occupied by a haploid individual with allele A (blue) or a (red).
Under BD updating, an individual is first chosen for reproduction with proba-
bility proportional to fecundity (large blue node). The offspring then replaces
a neighbor, with probability determined by the weights of the outgoing links.
Under DB updating, an individual is chosen for death uniformly at random
from the population (empty node). The neighbors of this individual then
compete to reproduce and fill the vacancy, with probability determined by
both fecundity and the weights of the incoming links to the empty node.
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For DB updating, new mutants are equally likely to appear at each vertex
since each vertex is equally likely to be replaced in each state. Thus, the
mutant appearance distribution for DB updating is

µA (x) =

{
1
n

if x = 1{g} for some g ∈ G,

0 otherwise.
(92)

The formula for µa (x) is analogous. For BD updating, the mutant appear-
ance is distribution is nonuniform and given by

µA (x) =

{
1
n

∑
h∈G phg if x = 1{g} for some g ∈ G,

0 otherwise,
(93)

and analogously for µa (x).
Both BD and DB updating satisfy Assumption 2, and therefore have a

well-defined neutral process. The probability that vertex h is replaced by the
offspring of vertex g, given by Eq. (91), reduces under the neutral process to

e◦gh =

{
pgh/n for BD updating,

phg/n for DB updating.
(94)

The reproductive value of a vertex g is proportional to its weighted degree
for DB updating, and inversely proportional to its weighted degree for BD
updating:

vg =

⎧⎪⎪⎨⎪⎪⎩
n
ω−1
g

Ω̃
for BD updating,

n
ωg

Ω
for DB updating,

(95)

where Ω =
∑

h∈G ωh and Ω̃ =
∑

h∈G ω−1
h are the total weighted degree and

total inverse weighted degree, respectively (see Fig. 5). These reproductive
values were first discovered by Maciejewski (2014) for unweighted graphs and
generalized to weighted graphs by Allen et al (2017).

A weak-selection expansion of Eq. (91) yields

e′gh (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pgh
n

(
fg (x)−

1

n

∑
ℓ∈G

fℓ (x)

)
for BD updating,

phg
n

(
fg (x)−

∑
ℓ∈G

phℓfℓ (x)

)
for DB updating.

(96)
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Figure 5: Reproductive values on a weighted graph for BD and DB updating.
The weighted degree ωg of vertex g is defined as ωg :=

∑
h∈G ωgh, where ωgh

is the weight of the edge between vertices g and h. (A) For BD updating, the
reproductive value of a vertex is inversely proportional to weighted degree:
vg = nω−1

g /
∑

g∈G ω−1
g . (B) For DB updating the reproductive value of a

vertex is directly proportional to its weighted degree: vg = nωg/
∑

g∈G ωg.
For both panels, vertices are sized proportionally to reproductive value.
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The fitness of vertex g in state x has the weak-selection expansion

wg (x) = vg + δw′
g (x) +O

(
δ2
)
, (97)

where

w′
g (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

nΩ̃

∑
h∈G

ωgh

ωgωh

(fg (x)− fh (x)) for BD updating,

1

nΩ

∑
g,h∈G

ωgp
(2)
gh (fg (x)− fh (x)) for DB updating.

(98)

The first-order term of the RV-weighted change due to selection can be
written

∆̂′
sel (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2nΩ̃

∑
g,h∈G

ωgh

ωgωh

(xg − xh) (fg (x)− fh (x)) for BD updating,

1

2nΩ

∑
g,h∈G

ωgp
(2)
gh (xg − xh) (fg (x)− fh (x)) for DB updating.

(99)

9.1.3 Condition for success: Birth-Death

Applying Corollary 1, we obtain that for BD, type A is favored under weak
selection if and only if∑

g,h∈G

ωgh

ωgωh

E◦
RMC [(xg − xh) (fg (x)− fh (x))] > 0. (100)

To express Condition (100) in terms of the entries of the payoff matrix
(89), we use Eq. (90) to calculate

E◦
RMC [(xg − xh) (fg (x)− fh (x))]

=
∑
ℓ∈G

(
fAA (pgℓ E◦

RMC [xg (1− xh)xℓ] + phℓ E◦
RMC [(1− xg)xhxℓ]))

+ fAa (pgℓ E◦
RMC [xg (1− xh) (1− xℓ)] + phℓ E◦

RMC [(1− xg)xh (1− xℓ)])

− faA (pgℓ E◦
RMC [(1− xg)xhxℓ] + phℓ E◦

RMC [xg (1− xh)xℓ])

− faa (pgℓ E◦
RMC [(1− xg)xh (1− xℓ)] + phℓ E◦

RMC [xg (1− xh) (1− xℓ)])
)
.

(101)
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We can reduce to pairwise quantities by noting that Proposition 2 implies

E◦
RMC [xgxhxℓ] = E◦

RMC [(1− xg) (1− xh) (1− xℓ)] , (102)

which leads to the identity

E◦
RMC [xgxhxℓ] =

1

2
(E◦

RMC [xgxh] + E◦
RMC [xgxℓ] + E◦

RMC [xhxℓ])−
1

4
. (103)

Applying this identity, Eq. (101) reduces to

E◦
RMC [(xg − xh) (fg (x)− fh (x))] =

1

2

(
(fAA + fAa − faA − faa) (1− 2E◦

RMC [xgxh])

+ (fAA − fAa + faA − faa)
∑
ℓ∈G

(pgℓ − phℓ) (E◦
RMC [xgxℓ]− E◦

RMC [xhxℓ])
)
.

(104)

Substituting and rearranging, we can rewrite Condition (100) as

∑
g,h∈G

ωgh

ωgωh

(
(fAA + fAa − faA − faa)

(
1

2
− E◦

RMC [xgxh]

)
+ (fAA − fAa + faA − faa)

∑
ℓ∈G

pgℓ (E◦
RMC [xgxℓ]− E◦

RMC [xhxℓ])
)
> 0. (105)

It remains to describe how to compute the pairwise expectations E◦
RMC [xgxh].

Let us define the centered variables xg = xg − ν. Working through the pos-
sibilities of a single replacement event under neutral drift, one arrives at the
following recurrence relation: for all pairs of sites g ̸= h,

E◦
MSS

[
xgxh

]
=

1− u∑
ℓ∈G (pℓg + pℓh)

∑
ℓ∈G

(
pℓg E◦

MSS [xℓxh] + pℓh E◦
MSS

[
xgxℓ

])
.

(106)
Define the state function

ϕgh (x) = xgxh −
1∑

ℓ∈G (pℓg + pℓh)

∑
ℓ∈G

(
pℓgxℓxh + pℓhxgxℓ

)
. (107)

From the recurrence relation (106), we have

E◦
MSS [ϕgh] = − u

1− u
E◦

MSS

[
xgxh

]
(108)
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Note also that ϕgh (a) = ϕgh (A) = 0. Therefore, by Lemma 2, there exists
K > 0 such that, for all g, h ∈ G with g ̸= h,

E◦
RMC [ϕgh] = K

d

du

⏐⏐⏐⏐
u=0

E◦
MSS [ϕgh]

= K
d

du

⏐⏐⏐⏐
u=0

(
− u

1− u
E◦

MSS

[
xgxh

])
= −K E◦

MSS

[
xgxh

] ⏐⏐⏐⏐
u=0

= −Kν (1− ν) . (109)

Substituting in from Eq. (107), we see that for all g, h ∈ G with g ̸= h,

E◦
RMC

[
xgxh

]
=

1∑
ℓ∈G (pℓg + pℓh)

∑
ℓ∈G

(
pℓg E◦

RMC [xℓxh] + pℓh E◦
RMC

[
xgxℓ

])
−Kν (1− ν) . (110)

We define the quantity τgh, for all pairs g, h ∈ G, by

τgh =
1
2
− E◦

RMC [xgxh]

Kν (1− ν)
=

1
2
− E◦

RMC

[
xgxh

]
− ν (1− ν)

Kν (1− ν)
. (111)

Note that τgg = 0 for all g ∈ G since E◦
RMC

[
x2
g

]
= E◦

RMC [xg] =
1
2
by Propo-

sition 2. Eq. (110) then leads to the recurrence relations:

τgh =

⎧⎨⎩1 +
∑

ℓ∈G(pℓgτℓh+pℓhτgℓ)∑
ℓ∈G(pℓg+pℓh)

g ̸= h,

0 g = h.
(112)

The system of linear equations (112) can be solved for the τgh on any given
graph; the solution exists and is unique provided that G is connected. The
condition for success can then be rewritten in terms of the τgh: By Corollary
1, A is favored under weak selection if and only if∑

g,h∈G

ωgh

ωgωh

(
(fAA + fAa − faA − faa) τgh

+ (fAA − fAa + faA − faa)
∑
ℓ∈G

pgℓ (τhℓ − τgℓ)
)
> 0. (113)
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The τgh can be interpreted as coalescence times for a discrete-time co-
alescing random walk (CRW) process; however, this interpretation is not
necessary here. We note that Eq. (112) differs from the recurrence for the
CRW for BD updating presented in Allen et al (2017). The difference arises
from the way initial mutants are introduced; in Allen et al (2017) it is as-
sumed that the location of the initial mutant is chosen uniformly among
vertices; here, the initial mutant location is chosen according to the mutant
appearance distribution given in Eq. (93).

We observe that Condition (113) can be written in the form

σfAA + fAa > faA + σfaa, (114)

with

σ =

∑
g,h∈G

ωgh

ωgωh

(
τgh −

∑
ℓ∈G

(pgℓ − phℓ) τgℓ

)
∑
g,h∈G

ωgh

ωgωh

(
τgh +

∑
ℓ∈G

(pgℓ − phℓ) τgℓ

) . (115)

Eq. (114) is an instance of the Structure Coefficient Theorem (Tarnita et al,
2009b; Nowak et al, 2010a; Allen et al, 2013), which states that, for a quite
general class of evolutionary game models, the condition for success under
weak selection takes the form (114) for some “structure coefficient,” σ.

9.1.4 Conditions for success: Death-Birth

For DB updating, applying Corollary 1 to Eq. (99), we obtain that ρA > ρa
under weak selection if and only if∑

g,h∈G

ωgp
(2)
gh E◦

RMC [(xg − xh) (fg (x)− fh (x))] > 0. (116)

Applying Eq. (104), this condition becomes

∑
g,h∈G

ωgp
(2)
gh

(
(fAA + fAa − faA − faa) (1− 2E◦

RMC [xgxh])

+(fAA − fAa + faA − faa)
∑
ℓ∈G

(pgℓ−phℓ) (E◦
RMC [xgxℓ]− E◦

RMC [xhxℓ])

)
> 0.

(117)
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To obtain the quantities E◦
RMC [xgxh], we note that DB updating has a

recurrence equation analogous to Eq. (106):

E◦
MSS

[
xgxh

]
=

1− u

2

∑
ℓ∈G

(
pgℓ E◦

MSS [xℓxh] + phℓ E◦
MSS

[
xgxℓ

])
, (118)

where xg = xg − ν as before. Upon defining

ϕgh(x) = xgxh −
1

2

∑
ℓ∈G

(
pgℓxℓxh + phℓxgxℓ

)
, (119)

we find that Eq. (108) holds for DB updating as well. Following the argument
of Section 9.1.3, we obtain the following analogue of Eq. (110):

E◦
RMC

[
xgxh

]
=

1

2

∑
ℓ∈G

(
pgℓ E◦

RMC [xℓxh] + phℓ E◦
RMC

[
xgxℓ

])
−Kν (1− ν) .

(120)
Defining the quantities τgh for g, h ∈ G according to Eq. (111), we arrive at
the DB analogue of the recurrence relations (112):

τgh =

{
1 + 1

2

∑
ℓ∈G (pgℓτℓh + phℓτgℓ) g ̸= h,

0 g = h.
(121)

These τgh are precisely the pairwise coalescence times studied by Allen et al
(2017), and they can be obtained for any given (weighted, connected) graph
by solving Eq. (121) as a linear system of equations. If we now define, for
m ⩾ 0,

τ (m) :=
∑
g,h∈G

ωg

Ω
p
(m)
gh τgh, (122)

then the condition for success (117) can be rewritten as

(fAA + fAa − faA − faa) τ
(2) + (fAA − fAa + faA − faa)

(
τ (3) − τ (1)

)
> 0,
(123)

Again, the condition for success takes the form (114), with the structure
coefficient for DB updating given by

σ =
τ (2) + τ (3) − τ (1)

τ (2) − τ (3) + τ (1)
, (124)

which is exactly the result obtained by Allen et al (2017). The appearances of
one-step, two-step, and three-step random walks in Eq. (124) have an elegant
interpretation in terms of interactions at various distances; see Allen et al
(2017).
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9.2 Haplodiploid population

To illustrate the applicability of our framework beyond haploid populations,
we analyze a simple model of evolution in a haplodiploid population with
one male and one female parent per generation. This could represent, for
example, a completely inbred, singly-mated, eusocial insect colony.

9.2.1 Model

The population consists of NF diploid females and NM haploid males. Thus,
there are n = 2NF +NM genetic sites and N = NF +NM individuals. Each
genotype has an associated fecundity, denoted Fxy for females and Fz for
males, with x, y, z ∈ {a,A}. (Here and throughout this example, xy is
understood as an unordered pair.) The fecundities for females are

Faa = 1; FAa = 1 + δhs; FAA = 1 + δs. (125)

Above, the parameter s quantifies selection on the A allele in females and
the parameter h represents the degree of dominance. Fecundities for males
are

Fa = 1; FA = 1 + δm, (126)

where the parameter m quantifies selection on the A allele in males.
Each time-step, one female and one male are chosen at random, with

probability proportional to fecundity, to be parents for the next generation.
These parents produce a new generation of offspring, replacing all previous
individuals. Females are produced sexually while males are produced asex-
ually (parthenogenetically); thus, each female offspring inherits the allele of
the male parent and one of the two alleles of the female parent, while each
male offspring inherits one of the two alleles of the female parent.

9.2.2 Sites and replacement rule

To translate this model into our formalism, we partition the set of sites G as
G = GF ⊔GM, where GF and GM are the sets of sites in females and males,
respectively. Similarly, we partition the set I of individuals into females
and males: I = IF ⊔ IM. It is notationally convenient (although not strictly
necessary) to distinguish the sites in females according to which parent (male
or female) they inherit alleles from. We therefore partition the sites in females
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generation !

generation ! + 1

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

mother father

+, = 1,2,3,4,5,6
+,, = 1,3,5
+,/ = 2,4,6
+/ = 7,8

Figure 6: Model of selection in a haplodiploid population. Females (green)
are diploid and males (purple) are haploid. At each time step, one female
(mother) and one male (father) are selected to populate the subsequent gen-
eration. Each parent is chosen with probability proportional to its fecundity,
which depends on its genotype according to Eqs. (125)–(126). Each female
in the next generation inherits one allele from the mother and one allele from
the father, while each male inherits a single allele from the mother. The pro-
cess then repeats. The genetic sites are numbered in their upper-left corner.
In generation t+1, the color of the site label indicates the parent from which
the allele was inherited (which, in females, determines whether the site is in
GF

F or GM
F ).
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as GF = GF
F ⊔ GM

F , where sites in GF
F house alleles from the female parent,

and sites in GM
F house alleles from the male parent.

For a given state x ∈ {0, 1}G, we denote the number of females of type
xy by nxy, and the number of males of type z by nz, where x, y, z ∈ {A, a}.
Clearly, naa + nAa + nAA = NF and na + nA = NM in every state.

We recall that, at each time-step, one male and one female are chosen
to replace the entire population. Therefore, all replacement events (R,α)
with nonzero probability have R = G; furthermore, there exists a pair of
individuals i ∈ IF and j ∈ IM, with genetic sites Gi = {gi, g′i} and Gj = {gj},
such that {

α (g) ∈ {gi, g′i} for g ∈ GM ∪GF
F,

α (g) = gj for g ∈ GM
F .

(127)

The probability that a particular replacement event (G,α) of the above form
occurs in state x can be written as

p(G,α)(x) =
1

2N

(
Fxgixg′

i

naaFaa + nAaFAa + nAAFAA

)(
Fxgj

naFa + nAFA

)
. (128)

Above, we have extended our notation for fecundity to numerical genotypes,
so that F11 = FAA, etc. The prefactor 1/2N reflects the 2N possible map-
pings from GM∪GF

F to {gi, g′i}, representing the possible ways that each new
offspring could inherit one of the two alleles in the mother.

9.2.3 Evolutionary Markov chain

We now establish some basic results for the evolutionary Markov chain.
First, we note that the transition probabilities depend only the 5-tuple
(naa, nAa, nAA, na, nA). We also observe that transitions consist of two steps:
(i) selection of parents and (ii) production of offspring. The probabilities re-
sulting from the second step depend only on the genotypes of the two chosen
parents, for which there are six possibilities:

Spar :=
{
(aa, a) , (Aa, a) , (AA, a) , (aa,A) , (Aa,A) , (AA,A)

}
. (129)

Transitions for the evolutionary Markov chain can therefore be written in
the form

Px→x′ =
∑

(xy,z)∈Spar

Px→(xy,z) P(xy,z)→x′ . (130)
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In other words, the transition matrix M for the evolutionary Markov chain
factors as M = SR, where S =

(
Px→(xy,z)

)
represents the selection of parents

and R =
(
P(xy,z)→x

)
represents (re)production of offspring.

The probabilities for selection (i.e. the entries of S) can be written as

Px→(xy,z) =
nxyFxy

naaFaa + nAaFAa + nAAFAA

nzFz

naFa + nAFA

. (131)

The probabilities for reproduction (i.e. the entries of R) can be written as

P(xy,z)→x = ((1− qxy) (1− qz))
naa (qxy + qz − 2qxyqz)

nAa (qxyqz)
nAA

× (1− qxy)
na qnA

xy . (132)

Above, qxy (resp. qz) is the probability that an allele inherited from a mother
of type xy (resp. a father of type z) is A, with mutation taken into account.
Specifically,

qaa = uν; (133a)

qAa =
1

2
(1− u+ 2uν) ; (133b)

qAA = 1− u (1− ν) ; (133c)

qa = uν; (133d)

qA = 1− u (1− ν) . (133e)

Note that the entries of R do not depend on the parameters quantifying
selection (h, m, and s).

9.2.4 Reproductive value and selection

The marginal probability that g transmits a copy of itself to ℓ is

egℓ (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2

Fxgxg′

naaFaa + nAaFAa + nAAFAA

g ∈ GF, ℓ ∈ GM ∪GF
F,

Fxg

naFa + nAFA

g ∈ GM, ℓ ∈ GM
F ,

0 otherwise.

(134)
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Above, g′ denotes the other site in the same individual as site g ∈ GF. For
neutral drift (δ = 0), Eq. (134) reduces to

e◦gℓ =

⎧⎪⎨⎪⎩
1

2NF
g ∈ GF, ℓ ∈ GM ∪GF

F,
1

NM
g ∈ GM, ℓ ∈ GM

F ,

0 otherwise.

(135)

A straightforward calculation gives the mutant-appearance distribution,

µA (x) =

{
1
n

if x = 1{g} for some g ∈ G,

0 otherwise,
(136)

and analogously for µa (x).
Substituting from Eq. (135) into the recurrence equation (46a) for repro-

ductive values, using the fact that there are 2NF female genetic sites and NM

male sites, yields

vF =
1

2
vF +

NM

2NF

vM, (137)

so vF = NM

NF
vM. Since

∑
g∈G vg = n = 2NF +NM, we obtain

vF =
2NF +NM

3NF

; (138a)

vM =
2NF +NM

3NM

. (138b)

Note that for an even sex ratio (NF = NM), all sites have equal reproductive
value.

Applying Eq. (51), the fitness of site g in state x is given by

wg (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
2NF +NM

3

)
Fxgxg′

naaFaa + nAaFAa + nAAFAA

g ∈ GF,(
2NF +NM

3

)
Fxg

naFa + nAFA

g ∈ GM.

(139)

On the individual level, the fitness of a female with genotype xy is

Wxy(x) = 2

(
2NF +NM

3

)
Fxy

naaFaa + nAaFAa + nAAFAA

, (140)
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and the fitness of a male with genotype z is

Wz(x) =

(
2NF +NM

3

)
Fz

naFa + nAFA

. (141)

The RV-weighted change due to selection is

∆̂sel(x) =

(
2NF +NM

3

)
×(

nAaFAa + 2nAAFAA

naaFaa + nAaFAa + nAAFAA

+
nAFA

naFa + nAFA

− nAa + 2nAA

NF

− nA

NM

)
.

(142)

Substituting from Eqs. (125) and (126) and applying a weak-selection expan-
sion, we obtain

∆̂′
sel (x) =

(
2NF +NM

3

)
×(

(hnAa + 2nAA) s

NF

− (hnAa + nAA) (nAa + 2nAA) s

N2
F

+
mnanA

N2
M

)
. (143)

9.2.5 Neutral stationary distributions

The two-step nature of transitions allows us to define the parental Markov
chain, which describes the transition from one generation’s parents to the
next. The parental Markov chain has state space Spar and transition matrix
P = RS. More explicitly, we can write

P(xy,z)→(x′y′,z′) =
∑

x∈{0,1}N
P(xy,z)→x′ Px→(x′y′,z′). (144)

For neutral drift, probabilities for selection (entries of S) are given by

P ◦
x→(xy,z) =

nxy

NF

nz

NM

. (145)

Substituting from Eqs. (132), (133), and (145) into Eq. (144) and applying
multinomial expectations, we obtain the following neutral transition proba-
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bilities on the parental chain:

P ◦
(xy,z)→(aa,a) = (1− qxy)

2 (1− qz) ; (146a)

P ◦
(xy,z)→(Aa,a) =

(
qxy + qz − 2qxyqz

)
(1− qxy) ; (146b)

P ◦
(xy,z)→(AA,a) = qxyqz (1− qxy) ; (146c)

P ◦
(xy,z)→(aa,A) = (1− qxy) (1− qz) qxy; (146d)

P ◦
(xy,z)→(Aa,A) =

(
qxy + qz − 2qxyqz

)
qxy; (146e)

P ◦
(xy,z)→(AA,A) = q2xyqz. (146f)

Since the parental chain has only six states, one can directly solve for its
stationary distribution, Π◦

MSS:

Π◦
MSS (aa, a) =

(1− ν)

(
1−2u7ν2+3u7ν−u7+14u6ν2−21u6ν+7u6−48u5ν2

+70u5ν−23u5+96u4ν2−134u4ν+43u4−110u3ν2

+143u3ν−43u3+58u2ν2−61u2ν+13u2−16uν+11u

)
1 + 11u+ 13u2 − 43u3 + 43u4 − 23u5 + 7u6 − u7

; (147a)

Π◦
MSS (Aa, a) =

4uν (1− ν)
(

3+20u−29uν+55u2ν−48u3ν+24u4ν
−7u5ν+u6ν−45u2+43u3−23u4+7u5−u6

)
1 + 11u+ 13u2 − 43u3 + 43u4 − 23u5 + 7u6 − u7

; (147b)

Π◦
MSS (AA, a) =

uν (1− ν)
(

4+58uν−19u−110u2ν+96u3ν−48u4ν
+14u5ν−2u6ν+37u2−38u3+22u4−7u5+u6

)
1 + 11u+ 13u2 − 43u3 + 43u4 − 23u5 + 7u6 − u7

; (147c)

Π◦
MSS (aa,A) =

uν (1− ν)
(

4+39u−58uν+110u2ν−96u3ν+48u4ν
−14u5ν+2u6ν−73u2+58u3−26u4+7u5−u6

)
1 + 11u+ 13u2 − 43u3 + 43u4 − 23u5 + 7u6 − u7

; (147d)

Π◦
MSS (Aa,A) =

4uν (1− ν)
(

3+29uν−9u−55u2ν+48u3ν
−24u4ν+7u5ν−u6ν+10u2−5u3+u4

)
1 + 11u+ 13u2 − 43u3 + 43u4 − 23u5 + 7u6 − u7

; (147e)

Π◦
MSS (AA,A) =

ν

(
1−2u7ν2+u7ν+14u6ν2−7u6ν−48u5ν2+26u5ν
−u5+96u4ν2−58u4ν+5u4−110u3ν2+77u3ν
−10u3+58u2ν2−55u2ν+10u2+16uν−5u

)
1 + 11u+ 13u2 − 43u3 + 43u4 − 23u5 + 7u6 − u7

. (147f)

Notably, this distribution is independent of both NF and NM.
The stationary distribution for the full evolutionary Markov chain can be

obtained from Π◦
MSS using the fact that, if Π is stationary for P = RS, then,

defining π := R⊺Π we have π⊺SR = Π⊺RSR = Π⊺R = π⊺. Applying this
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idea, we obtain the neutral RMC distribution for the full chain:

2
(
16 + n− 3 · 2−N+2

)
π◦
RMC (x) = 4δnaa,0 δnAA,0 (δna,0 + δnA,0)

+ 3 · 2−N+2 (δnaa,0 + δnAA,0)

+ 2nAaδnAA,0 (δnAa,0 δnA,1 + δnAa,1 δnA,0)

+ 2nAaδnaa,0 (δnAa,0 δna,1 + δnAa,1 δna,0) .
(148)

Above, δm,m′ is the Kronecker symbol, equal to 1 if m = m′ and 0 otherwise.
In contrast, the parental chain has a much simpler RMC distribution:

Π◦
RMC (Aa, a) = Π◦

RMC (Aa,A) =
3

8
; (149a)

Π◦
RMC (AA, a) = Π◦

RMC (aa,A) =
1

8
. (149b)

9.2.6 Condition for success

Combining Eqs. (143) and (148), it follows from Corollary 1 that

ρA > ρa ⇐⇒ E◦
RMC

[
∆̂′

sel

]
> 0

⇐⇒ 8
NF

NF − 1
m+ 5

NM

NM − 1
s > 0. (150)

Interestingly, this condition is independent of the degree h of genetic domi-
nance in females. Moreover, for large NF and NM, we have the approximate
condition

ρA > ρa ⇐⇒ 8m+ 5s > 0. (151)

Condition (151) becomes exact under the limit ordering (i) δ → 0, (ii) NM →
∞, NF → ∞ (i.e. the wN limit sensu Jeong et al, 2014; Sample and Allen,
2017).

It is tempting to think that one could more easily obtain Condition (151)
by first defining an analogue of ∆̂sel on the parental chain, and then averaging
this analogue over the RMC distribution on the parental chain, as given by
Eq. (149). This scheme turns out not to work because it does not account
for mutations correctly. Since different numbers of male and female offspring
are produced each generation, and each offspring provides an independent
opportunity for mutation, the mutant appearance distribution in parents
differs from the expression given in Eqs. (11)–(12); this effect is not captured
by the above scheme.

63



10 Discussion

10.1 Summary

10.1.1 Generality and abstraction

The aim of this work is to provide a mathematical formalism for describ-
ing natural selection that is general enough to encompass a wide variety of
biological scenarios and modeling approaches. Dealing in such generality re-
quires “abstracting away” the details of particular models while preserving
what is ultimately relevant for natural selection. To this end, we use the
replacement rule (introduced by Allen and Tarnita, 2014) to represent birth,
death, and inheritance, and we use the formalism of genetic sites to allow
for different genetic systems (haploid, diploid, haplodiploid, or polyploid).
This level of abstraction, although atypical for evolutionary theory, entails a
number of advantages: (i) it provides a common language for natural selec-
tion with formal definitions of key concepts; (ii) it enables proofs of general
theorems that eliminate the duplicate work of deriving analogous results one
model at a time; (iii) it may help distinguish robust theoretical principles
from artifacts of particular modeling assumptions.

10.1.2 Main results

Our main results, Theorem 4 and Theorem 8, show that various criteria
for success under natural selection become equivalent in the limit of low
mutation. Theorem 4, which shows the equivalence of success criteria based
on fixation probability, stationary frequency, and change due to selection, is
quite general: it applies under arbitrary strength of selection and requires
no assumptions beyond the basic setup of our formalism. However, these
criteria may all be intractable for a model of reasonable complexity (Ibsen-
Jensen et al, 2015).

Our second main result, Theorem 8, applies to weak selection. The ad-
vantage of Theorem 8 is that two of these criteria involve expectations under
neutral drift, for which the recurrence relations for the MSS and RMC dis-
tributions simplify considerably. Moreover, if the additional assumptions of
Corollary 1 hold, the direction of selection is completely determined by the

sign of E◦
RMC

[
∆̂′

sel

]
or d

du
E◦

MSS

[
∆̂′

sel

] ⏐⏐
u=0

. Evaluating these criteria may not

require knowing the full RMC or MSS distributions, but only certain statis-
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tics of them. For the example of games on graphs, one only needs to obtain
the pairwise expectations, E◦

RMC

[
xgxh

]
, which obey their own recurrence

relations (110) and (120). In contrast, the other success criteria, ρA > ρa
and limu→0 EMSS [x] > ν, are of clear biological relevance but are difficult to
analyze directly.

To be clear, neither of our main results comes as a surprise. Theorem
4 generalizes the main result of Allen and Tarnita (2014), and special cases
of this result are also discussed by Rousset and Billiard (2000), Taylor et al
(2007a), Nowak et al (2010b) and Tarnita and Taylor (2014). Theorem 8
generalizes and extends the main result of Tarnita and Taylor (2014). Aspects
and instances of Corollary 1—which is a special case of Theorem 8—have
been obtained in so many contexts that this result might be called a “folk
theorem” (Taylor and Frank, 1996; Rousset and Billiard, 2000; Leturque and
Rousset, 2002; Nowak et al, 2004; Ohtsuki et al, 2006; Lessard and Ladret,
2007; Taylor et al, 2007b; Antal et al, 2009a; Chen, 2013; Cox et al, 2013;
Wakano et al, 2013; Débarre et al, 2014; Durrett, 2014; Van Cleve, 2015;
Allen et al, 2017). The contribution of Theorems 4 and 8 is to formalize and
prove these results in a general setting, and elucidate the assumptions on

which upon which they depend. For example, the equivalence E◦
RMC

[
∆̂′

sel

]
>

0 ⇔ ρA > ρa, under weak selection, relies on the addition assumptions of
Corollary 1, and is not valid in the more general setting of Theorem 8 (see
also Tarnita and Taylor, 2014).

10.1.3 Examples

Our two examples illustrate how our results (in particular, Corollary 1) can
be applied to obtain conditions for success in models with different spatial
and genetic structures. The games on graphs example (Section 9.1) recovers
the main results of Allen et al (2017), i.e. the conditions for success under
weak selection in two-player games on arbitrary weighted graphs. Notably,
while Allen et al (2017) relied on sophisticated results regarding perturba-
tions of voter models (Chen, 2013) along with the Structure Coefficient The-
orem (Tarnita et al, 2009b), the present analysis uses only the results of this
work. This fact underscores the fact that Corollary 1 provides not only an
equivalence result, but also a problem-solving methodology general enough
to handle reasonably complicated models.

For the haplodiploid model, we have found that a mutation with selection
coefficient m in males and s in females is favored under weak selection in
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large populations if 8m + 5s > 0, regardless of the degree of dominance, h.
This result suggests, intriguingly, that a mutation’s effect in males is 5/8 as
important as its effect in females. The applicability of this particular result is
limited by the rather artificial assumption that each generation is produced
by a single mating pair. However, there is no a priori reason the analysis
could not be generalized to populations with larger numbers of reproducers.

10.2 Conceptual issues

10.2.1 Gene’s-eye view

Identifying the salient units or levels at which selection operates is a long-
standing conversation in evolutionary theory (Williams, 1966; Lewontin, 1970;
Hull, 1980; Gould and Lloyd, 1999; Okasha, 2006; Akçay and Van Cleve,
2016). This work employs a “gene’s-eye view” (Williams, 1966), in that the
analysis is conducted almost exclusively at the level of genetic sites. In par-
ticular, the criteria for success in Theorems 4 and 8 are expressed in terms
of gene-level quantities. Under Assumptions 3 and 4, these criteria may be
rewritten in terms of individual-level quantities via Proposition 5. However,
with meiotic drive and/or frequent horizontal gene transfer, these assump-
tions are violated, and an analysis based solely on individual-level quantities
would not accurately describe selection.

Our gene-centric perspective does not preclude the possibility that selec-
tion may also operate at other levels, including the individual and the group
or colony. However, our analysis makes clear that all effects of individual-
level or group-level selection can be analyzed using of gene-level quantities
(e.g. ∆̂sel). Analysis of individual-level or group-level quantities is not math-
ematically necessary, although it may be conceptually illuminating.

10.2.2 Reproductive value

Reproductive value has been a central concept in evolutionary theory since
Fisher (1930). Recent work (Maciejewski, 2014) has extended this notion
to populations with heterogeneous spatial structure. The key property of
reproductive value—that RV-weighted frequency has zero expected change
under neutral drift—is encapsulated in our Theorem 6. A closely related
result is that the reproductive value of a site is proportional to the fixation
probability of a neutral mutation arising at this site (Theorem 7; see also
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Maciejewski, 2014; Allen et al, 2015).
Our work underscores the importance of reproductive value, but also

reveals an important limitation of this concept. Reproductive value can
only be defined with reference to some particular process of neutral drift.
In Section 5.2, we defined reproductive value with respect to replacement
probabilities in the monoallelic states a and A. However, without further
assumptions, there is no guarantee that these two states will yield the same
reproductive value for each genetic site. It may therefore be impossible to
assign consistent reproductive values in a given model. This issue may be
exacerbated if one considers models with more than two alleles (see Section
10.3.3), in which each new selective sweep may alter the reproductive values
of sites, thereby affecting selection pressure on subsequent mutations. Here,
we obtained consistent reproductive values either by invoking Assumption 1,
or (in the context of weak selection) by using δ = 0 as a reference process of
neutral drift. For an arbitrary mathematical model or biological population,
there is no guarantee that well-defined reproductive values exist.

10.2.3 Fitness

Like reproductive value, the concept of fitness is both fundamental to evo-
lutionary theory and difficult to formalize in a fully consistent way (Metz
et al, 1992; Akçay and Van Cleve, 2016; Lehmann et al, 2016; Metz and
Geritz, 2016; Doebeli et al, 2017). Here, we have defined fitness as the
RV-weighted contribution of a genetic site to the next time-step, which
can be decomposed as the sum of the RV-weighted survival probability,
vg − d̂g (x) = vg (1− dg (x)), and the RV-weighted birth rate, b̂g (x). This
definition is consistent with other definitions of fitness in the literature (e.g.
Tarnita and Taylor, 2014). However, we do not intend this definition to be
universal or canonical, for two reasons. First, it depends on the existence
of well-defined reproductive values, which is not guaranteed if Assumption
1 is violated. Second, it quantifies only the one-step contribution of a site
in a given state, which may not accurately capture the long-term success of
the progeny of this site. In general, there may not be any fully satisfactory
definition of fitness of a single genetic site (let alone an individual). Indeed,
Akçay and Van Cleve (2016) argue that fitness should instead be ascribed to
a genetic lineage—that is, the progeny of a given allele copy. An interesting
direction for future work would be to describe the lineage-eye view of fitness
in the context of our formalism.
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10.3 Limitations and possible extensions

Although we have aimed for a relatively high level of generality, our formal-
ism still entails a number of limiting assumptions. Here, we discuss these
assumptions and the prospects for extending beyond them.

10.3.1 Fixed population size

Fluctuations in population size can affect the process of natural selection
(Lambert, 2006; Parsons and Quince, 2007a,b; Wakano et al, 2009; Parsons
et al, 2010; Schoener, 2011; Uecker and Hermisson, 2011; Waxman, 2011).
These effects cannot be studied in the current framework, which assumes
constant population size. In some cases, fluctuations in population size can
be safely ignored—for example, if selection depends only on the relative fre-
quencies of competing types (as in the classical population genetics setting
of Crow and Kimura, 1970; Bürger, 2000; Ewens, 2004), or if the popula-
tion is assumed to remain close to its carrying capacity (Bürger, 2005). In
other cases, however, population dynamics have important consequences for
long-term evolution (Dieckmann and Law, 1996; Metz et al, 1996; Pelletier
et al, 2007; Dercole and Rinaldi, 2008; Wakano et al, 2009; Schoener, 2011;
Korolev, 2013; Constable et al, 2016; Chotibut and Nelson, 2017), including
the possibility of evolutionary branching (Geritz et al, 1997; Dieckmann and
Doebeli, 1999) or evolutionary suicide (Gyllenberg and Parvinen, 2001).

Technical complications arise when mathematically modeling populations
of fluctuating size. For example, it may be possible for the entire population
to become extinct, and as a result, there may be no non-trivial stationary
distribution. An alternative is to consider the quasi-stationary distribution
for the process (Haccou et al, 2005; Gyllenberg and Silvestrov, 2008; Cat-
tiaux et al, 2009; Faure and Schreiber, 2014), which is conditioned on non-
extinction of the population. Quantifying the evolutionary success of an
allele also becomes more nuanced when population size can vary (Lambert,
2006; Parsons et al, 2010; Constable et al, 2016; McAvoy et al, 2018b).

To extend the current framework to populations of changing size would
require the set of sites, G, to itself be an aspect of the population state.
The offspring-to-parent map, α, would then map the set of sites at time
t + 1 to the set of sites at time t. Such complications are not necessarily
insurmountable but would add considerable notational and technical burden
to our formalism.
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10.3.2 Fixed spatial structure and environment, trivial demogra-
phy

In our framework, the probability of a replacement event depends only on
the current population state, x. This precludes the possibility that the pop-
ulation structure could change over time (Pacheco et al, 2006b,a; Antal et al,
2009a; Tarnita et al, 2009a; Wu et al, 2010; Cavaliere et al, 2012; Wardil
and Hauert, 2014), or that replacement events could depend on variable as-
pects of the environment (Cohen, 1966; Philippi and Seger, 1989; Haccou and
Iwasa, 1996; Kussell and Leibler, 2005; Starrfelt and Kokko, 2012; Cvijović
et al, 2015) or on the demographic stages of individuals (e.g. juvenile versus
adult; Diekmann et al, 1998, 2001; Parvinen and Seppänen, 2016; Lessard
and Soares, 2018). Eco-evolutionary feedbacks between a population and
its demography and environment can be important drivers of evolutionary
change (Dieckmann and Law, 1996; Metz et al, 1996; Geritz et al, 1997; Der-
cole and Rinaldi, 2008; Durinx et al, 2008; Perc and Szolnoki, 2010), but
such phenomena lie outside the scope of the formalism presented here.

These limitations can be overcome by allowing the probabilities of re-
placement events to depend on additional variables beyond the population
state x. These variables can represent the current population structure, en-
vironmental conditions, and/or the demographic stages of individuals. Ad-
ditional rules must then be provided for updating these variables. In such
an extension, natural selection is described by a Markov chain with state
space {0, 1}G ×E, where E is the set of possible joint values for these extra
variables. This extension would bring phenomena such as bet-hedging (Co-
hen, 1966; Philippi and Seger, 1989; Kussell and Leibler, 2005; Starrfelt and
Kokko, 2012) and structure-strategy coevolution (Pacheco et al, 2006b; Tar-
nita et al, 2009a; Perc and Szolnoki, 2010) into the purview of our formalism.
However, the incorporation of this additional information may introduce sig-
nificant difficulties in establishing basic results such as the equivalence of
success criteria.

10.3.3 Two alleles

We have focused here on the case of two competing alleles; however, gen-
eralizing to any number of alleles appears straightforward. In the limit of
rare mutation, the outcome of natural selection depends only on the pair-
wise competitions between alleles. We therefore anticipate that the RMC
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distribution (generalized for more than two alleles) will be nonzero only for
states containing exactly two alleles. Moreover, the results of Fudenberg and
Imhof (2006) imply that the equilibrium mutation-selection balance will be
obtainable from the pairwise fixation probabilities of each allele into each
other. On the other hand, away from the limit of rare mutation, determining
which of multiple alleles is favored by selection is a more nuanced question
(Antal et al, 2009b; Traulsen et al, 2009; Tarnita et al, 2011; Wu et al, 2012).

10.3.4 One locus

Although our formalism allows for arbitrary genetics in the sense of ploidy
and mating structure, we have focused on selection at a single genetic lo-
cus. Extending to multilocus genetics would require considering additional
genetic sites—one for each locus on each chromosome. It would then be
natural to impose assumptions on the replacement rule so that replacement
can only occur between sites at the same locus. The replacement rule could
then encode an arbitrary pattern of linkage and recombination. One com-
plication is that quantifying success under natural selection becomes subtler
in the context of multiple linked loci (Hammerstein, 1996; Eshel et al, 1998;
Lehmann and Rousset, 2009).

10.3.5 Independence and rarity of mutations

Although we have generalized the framework of Allen and Tarnita (2014) to
include arbitrary mutational bias, ν, we still assume that mutations occur
independently with a constant probability per offspring. This assumption
may be violated in natural systems; for example, an adult may acquire a
germline mutation that is passed to all offspring. Our formalism can be
generalized to accommodate such cases by allowing for adult mutation, or
by relaxing the assumption that offspring mutations are independent. One
could also allow for the mutation parameters u and ν to depend on the
parental site and/or the population state. The effect of such amendments to
our framework would be to alter the mutant appearance distribution (which
in turn affects fixation probabilities) as well as the RMC distribution.

Additionally, most of our results assume that mutation is either absent or
rare. With nonvanishing mutation, even defining which type is favored under
natural selection is a nontrivial question, since distinct, intuitive criteria for
success may disagree with each other (Allen and Tarnita, 2014). Further-
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more, mutation can alter the direction of selection (Traulsen et al, 2009);
for example, high mutation rates can impede the evolution of cooperation
in spatially-structured populations by diluting the clustering of cooperators
(Allen et al, 2012; Débarre, 2017). General mathematical theorems on natu-
ral selection with nonvanishing mutation could shed new light on such results
and perhaps uncover new ones.

10.4 Connections to other approaches

Beyond the above-mentioned possibilities for generalization, there is signifi-
cant opportunity to connect our formalism to population genetics and other
general approaches in evolutionary theory. For example, one might conceive
of a coalescent process (Kingman, 1982; Cox, 1989; Wakeley, 2009) for our
formalism, using the neutral replacement probabilities p◦(R,α). Likewise, it ap-

pears possible to define a notion of identity-by-descent probability (Malécot,
1948; Rousset and Billiard, 2000; Allen and Nowak, 2014) to characterize the
extent to which a given pair (or set) of sites are genetically related. More
speculatively, one could ask whether diffusion methods (Kimura, 1964; Chen,
2018) could be applied to our formalism in the large-population limit. Devel-
oping these connections may provide opportunities to generalize results from
population genetics to a wider variety of spatial and genetic structures.

11 Conclusion

Mathematical modeling of evolution is a robust and growing field, with a
rapid pace of new discoveries and rich interplay between theoretical and em-
pirical study. At such moments of expansion, unifying mathematical frame-
works are particularly helpful—by clarifying concepts, providing common
definitions, and establishing fundamental results. We hope that the formal-
ism presented here will provide a strong foundation for the theory of natural
selection in structured populations to build upon.

Table 1: Glossary of Notation

Symbol Description
α Parentage map in a replacement event 2.3

b (x) Total (population-wide) expected offspring num-
ber in state x

3.1
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Table 1: Glossary of Notation

Symbol Description
bg (x) Expected offspring number of site g in state x 3.1
dg (x) Death probability of site g in state x 3.1
δ Selection strength 7.1

∆sel (x) Expected change due to selection in the frequency
of allele A

4.1

egh (x) Marginal probability that allele in site h is replaced
by copy of allele in site g in state x

3.1

Fxy, Fz Fecundity of genotypes xy and z for haplodiploid
population; x, y, z ∈ {a,A}

9.2

fxy Payoff to x interacting with y for games on graphs;
x, y ∈ {a,A}

9.1

G Set of genetic sites 2.1
Gi Set of genetic sites in individual i 2.1
I Set of individuals 2.1
M Evolutionary Markov chain 2.5
n Number of genetic sites 2.1
N Number of individuals (population size) 2.1
ni Ploidy (number of genetic sites) of individual i 2.1
ν Mutational bias 2.4
ωgh Edge weight between vertices g and h for games

on graphs
9.1

R Set of replaced positions in a replacement event 2.3
pgh Probability of stepping from vertex g to vertex h

for games on graphs
9.1

p
(m)
gh Probability that m-step random walk from g ter-

minates at h for games on graphs
9.1

ρA, ρa Fixation probabilities of alleles A and a, respec-
tively

3.3

u Mutation probability per reproduction 2.4
vg Reproductive value of site g 5.2
wg Fitness of site g 5.3
x Frequency of allele A 3.1
x Vector of alleles occupying each site; state of M 2.2
xg Allele occupying site g ∈ G (0 for a, 1 for A) 3.1

MSS Mutation-selection stationary distribution 3.2
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Table 1: Glossary of Notation

Symbol Description
RMC Rare-mutation conditional distribution 3.5
ˆ Indicates weighting by reproductive value 5.2
◦ Indicates the absence of selection 5.1
′ Indicates a quantity to first order in δ as δ → 0 7.1
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France

Crow JF, Kimura M (1970) An introduction to population genetics theory.
An introduction to population genetics theory
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