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Scanning probe microscopy is often extended beyond simple topographic imaging to study electrical forces
and sample properties, with the most widely used experiment being frequency-modulated Kelvin probe force
microscopy. The equations commonly used to interpret this frequency-modulated experiment, however, rely on
two hidden assumptions. The first assumption is that the tip charge oscillates in phase with the cantilever motion
to keep the tip voltage constant. The second assumption is that any changes in the tip-sample interaction happen
slowly. Starting from an electro-mechanical model of the cantilever-sample interaction, we use Lagrangian
mechanics to derive coupled equations of motion for the cantilever position and charge. We solve these equa-
tions analytically using perturbation theory, and, for verification, numerically. This general approach rigorously
describes scanned probe experiments even in the case when the usual assumptions of fast tip charging and
slowly changing samples properties are violated. We develop a Magnus-expansion approximation to illustrate
how abrupt changes in the tip-sample interaction cause abrupt changes in the cantilever amplitude and phase.
We show that feedback-free time-resolved electric force microscopy cannot uniquely determine sub-cycle pho-
tocapacitance dynamics. We then use first-order perturbation theory to relate cantilever frequency shift and
dissipation to the sample impedance even when the tip charge oscillates out of phase with the cantilever motion.
Analogous to the treatment of impedance spectroscopy in electrochemistry, we apply this approximation to
determine the cantilever frequency shift and dissipation for an arbitrary sample impedance in both local dielec-
tric spectroscopy and broadband local dielectric spectroscopy experiments. The general approaches we develop
provide a path forward for rigorously modeling the coupled motion of the cantilever position and charge in the
wide range of electrical scanned probe microscopy experiments where the hidden assumptions of the conven-
tional equations are violated or inapplicable.

I. INTRODUCTION

The invention of the atomic-force microscope [1] (AFM)
led to an explosion of microcantilever-based electric force
microscope (EFM) experiments1 capable of mapping the elec-
trical properties of a thin-film sample [2]. In spite of this
progress, a unified, rigorous theory describing the electro-
mechanical forces at play in such experiments is lacking.
Here we present a unified Lagrangian treatment of the cou-
pled motion of the cantilever position, cantilever charge,
and sample charges in an electric force microscope experi-
ment. This treatment describes a wide variety of transient and
steady-state experiments and reveals the hidden assumptions
underlying many of the equations widely used by practitioners
of electric force microscopy.

To appreciate why such a new treatment is helpful, con-
sider a non-contact scanned-probe microscope experiment in
which an electrically conductive cantilever having a sharp tip
is used to measure the electrical properties of a conducting
or semi-conducting sample — the so-called scanning Kelvin
probe force microscope (KPFM) experiment [3–9]. The can-

1 For lack of a better moniker, let us use the term electric force microscope
to describe scanned-probe microscope experiments in which a voltage is
applied to a microcantilever with the goal of measuring the electrical prop-
erties of a sample.

tilever is brought near a sample surface and is driven into res-
onant oscillation by applying a mechanical force to the base of
the cantilever. A voltage, either static or oscillating, is applied
to the cantilever, and the cantilever’s position or frequency is
measured. The cantilever’s position is shifted by an electro-
static force acting on the charged tip. This force is usually
stated as

F =
1

2

∂C

∂z
(V − Φ)

2
, (1)

with z the axis of cantilever motion, C the tip-sample capac-
itance, V the applied voltage, and Φ the sample’s surface
potential. The associated electrostatic force gradient shifts the
cantilever’s resonance frequency. This shift is usually stated
as

∆f = − f0

4k0

∂2C

∂z2
(V − Φ)

2
, (2)

with f0 the cantilever resonance frequency and k0 the can-
tilever spring constant.

While universally used, Eqs. (1) and (2) make assumptions
about charge motion in the sample that are seldom explicitly
stated or experimentally checked. In the remaining paragraphs
of this introduction we summarize prior theoretical and exper-
imental work questioning the validity of Eqs. (1) and (2) and
summarize the new equations resulting from our Lagrangian
treatment of electric force microscopy.
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Silveira, Dunlap, and coworkers took up the question of
how to rigorously derive Eqs. (1) and (2) [9]. As a concrete
starting point for subsequent discussion, let us briefly repro-
duce their analysis here. In the idealized description of the
electric force microscope experiment presented in Ref. 9, the
sample is grounded and the cantilever-sample system is mod-
eled as a parallel-plate capacitor. A charge q is transferred
from the sample to the tip as a result of the applied voltage
V and the difference in the electron chemical potential of
the cantilever tip and the sample (µt and µs, respectively).
The energy needed to charge the associated cantilever-sample
capacitor is given by the Helmholtz free energy

A(q, T ) =
q2

2C
+
q

e
∆µ, (3)

with T temperature, C the tip-sample capacitance, e the elec-
tron charge, and ∆µ = µs−µt. The first term in this equation
accounts for the energy stored in the capacitor’s electric field
while the second term accounts for the change in free energy
associated with transferring electrons between two different
materials. The tip-sample force at constant charge is

Fq = −
(
∂A

∂z

)
q,T

=
1

2

1

C2

∂C

∂z
q2. (4)

With z defined such that z increases as the tip moves away
from the sample, the capacitance derivative ∂C/∂z is nega-
tive. The cantilever therefore feels a negative, attractive force,
as one would expect from Coulomb’s law since the tip and
sample are oppositely charged. For a parallel-plate capacitor,
the capacitance depends on plate separation z as C ∼ 1/z and
consequently ∂C/∂z ∼ −1/z2.

Computing the tip-sample force in a constant-voltage
experiment requires additional analysis. The voltage is
defined as the variable which is conjugate to the charge,

V =

(
∂A

∂q

)
z,T

=
q

C
+

∆µ

e
. (5)

When the cantilever is set to vibrate, C will become time
dependent and the charge will redistribute between the plates.
If the charge-redistribution time constant is much faster than
the cantilever period, q(t) = C(t) (V − ∆µ/e), and the
system will maintain the tip at constant voltage continuously.
Assuming this is the case, the force may be computed from
the grand-canonical free energy, obtained through a Legendre
transformation: Ω(V, T, z) = A− qV , where in writing Ω we
must eliminate q as the dependent variable. The term −qV
accounts for the work required to move the charge through
the battery that maintains the tip at constant potential. The
force experienced by the cantilever held at constant voltage is
obtained by differentiating the resulting grand-canonical free
energy,

FV = −
(
∂Ω

∂z

)
V,T

=
1

2

∂C

∂z

(
V − ∆µ

e

)2

. (6)

The capacitance derivative is negative and the cantilever feels
a negative, attractive force when held at constant voltage.

Equation (1) reduces to Eq. (6) in the limit where ∆µ/e = Φ.
For the case of a more interesting sample, Φ contains contri-
butions from the sample’s local electrostatic potential as well
as the difference ∆µ/e in the chemical potential of the tip and
the sample’s metallic contact [9]. Equation (2) is obtained
from Eq. (6) by expanding the force in a Taylor series about
an equilibrium position, identifying the z-dependent force as
a spring constant shift that modifies the cantilever’s resonance
frequency and neglecting any higher-order terms.

The Silveira-Dunlap analysis reveals that Eqs. (1) and (2)
implicitly assume that charge redistributes instantaneously
between the tip and the sample as the cantilever moves.
In other words, as the cantilever vibrates sinusoidally, it is
assumed that the tip and sample charges oscillate perfectly
in phase with the sinusoidal motion of the cantilever. How
valid is this assumption in practice? Early in the develop-
ment of the electric force microscope, Denk and Pohl argued
that currents induced in the sample by the oscillating can-
tilever would lead to Joule dissipation of energy at a rate that
depended on the sample’s local conductivity [10] (expressed
in terms of the spreading resistance [11]). The energy lost
to this Joule heating was supplied by the cantilever, leading
to a cantilever dissipation dependent on the electrical conduc-
tivity of the sample below the tip. Stowe et al., motivated
by this idea, used cantilever dissipation to image the con-
centration of dopants in silicon [12]. The postulated Joule
heating underlying both of these experiments implies the exis-
tence of sample charge oscillating out of phase with the sinu-
soidal motion of the cantilever, calling into question the gen-
eral validity of Eqs. (1) and (2).

This out-of-phase component of the oscillating sample
charge has since been exploited to create striking EFM images
of individual quantum dots [13–19]. These experiments relied
on the dots operating in the Coulomb-blockade limit such that
scanning the tip’s dc voltage or position resulted in a step
change in the number of electrons n residing on the quantum
dot. Adjusting the tip voltage or height to operate near a
n → n ± 1 transition, individual electrons could be pushed
on and off the quantum dot by applying a small modulation
to the tip voltage or height. Due to the finite rate at which
electrons tunneled on and off the dot, the electrostatic force
acting on the cantilever caused a frequency shift and dissipa-
tion. Characteristic oscillations in frequency shift and dissipa-
tion were seen as the tip’s dc voltage or position was scanned
and individual electrons were forced on or off the dot.

Sample-induced dissipation effects have been detected in
a number of other experiments on semiconducting samples.
A bias-dependent contact friction was observed over gal-
lium arsenide and modeled as arising from interactions of
the tip with trapped charge in the sample [20]. A measur-
able increase in non-contact friction was observed when a
polymer-fullerene solar-cell film was illuminated with light,
inducing photochemical damage [21]. Dramatic, simulta-
neous changes in cantilever frequency and dissipation were
observed over an illuminated lead-halide perovskite sample;
these changes were used to follow the slow relaxation of the
sample’s photocapacitance in the dark in real time [22] and
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FIG. 1. Apparent violation of Eq. (2) in an illuminated thin-film
semiconductor, CsPbBr3. (a) Experimental schematic. (b) The can-
tilever frequency shift ∆f and amplitude A are measured as a func-
tion of the tip-sample voltage Vts and the sample-induced dissipa-
tion Γs is calculated from A. The curvature of the (c) ∆f -vs-Vts and
(d) Γs-vs-Vts parabolas versus illumination intensity. The circles are
measured data and the lines are a fits to the Lagrangian-impedance
model discussed in the text. The plots in (c,d) are adapted with per-
mission from Ref. 22 (copyright 2017, American Chemical Society).

the activation energy of the underlying relaxation process was
measured by repeating the experiment at various tempera-
tures.

The illuminated-perovskite experiment is sketched in
Fig. 1. The sample is a thin-film semiconductor, CsPbBr3,
prepared on a conductive indium tin oxide substrate and illu-
minated from above with visible light. The tip-sample capac-
itance derivative C ′′ and surface potential Φ are inferred, in
the usual way, by measuring the cantilever frequency shift
∆f versus tip-sample voltage Vts. According to Eq. (2), the
curvature of the ∆f -vs-Vts parabola is −f0C

′′/4k0, propor-
tional toC ′′. In a semiconductor sample like CsPbBr3 the free
carrier density and therefore the capacitance should be pro-
portional to the illumination intensity Ihν ; we consequently
expect to see a power-law dependence of C ′′ on Ihν , which
was not observed. The cantilever dissipation Γs was also mea-
sured versus Vts and illumination intensity. Here we likewise
expect to see a power-law dependence of Γs on Ihν with the
dissipation increasing continuously with free-carrier density.
Instead, as Ihν was increased linearly, the observed voltage-
normalized dissipation increased, reached a maximum, and
then decreased.

How can we explain this non-monotonic behavior? In con-
trast with the quantum-dot experiments of Refs. 13–19, we
cannot rely on Coulomb-blockade physics to describe the

frequency-shift and dissipation effects seen in the semicon-
ductor experiments of Refs. 20–22. Moreover, we need to
model the sample as a continuous film, ideally using a com-
plex, frequency-dependent impedance. Such an approach
has been used to treat a number of related experiments.
In impedance microscopy measurements [23–26] the tip is
brought into contact with the sample and employed as the
top capacitor plate in a conventional impedance spectroscopy
measurement; modeling the signal in these experiments is
straightforward because the cantilever is not moving. Theoret-
ical treatments of more sophisticated charged-cantilever mea-
surements like local dielectric spectroscopy [27, 28], broad-
band local dielectric spectroscopy [29], piezoresponse force
microscopy [30–33], and electrochemical strain microscopy
[34–36] likewise treat the sample using a complex dielectric
function, but fail to fully treat the coupled motion of sample
charge and cantilever charge induced by the oscillation of the
cantilever’s position and voltage.

To understand the data of Fig. 1(c,d) we describe the sample
using a complex impedance while employing a Lagrangian
formalism to describe the coupled motion of the cantilever
displacement, tip charge, and sample charge. Applying this
treatment to the Fig. 1 experiment, below in Sec. VI we obtain
the frequency shift

∆f = − f0

4k0

(
C ′′q + ∆C ′′Re

(
Ĥ(ω0)

))
V 2 (7)

and sample-induced dissipation

Γs = − 1

4πf0
∆C ′′ Im

(
Ĥ(ω0)

)
V 2, (8)

with ∆C ′′ = 2(C ′)2/C and C ′′q = C ′′ − ∆C ′′ two distinct
capacitance derivatives, and

Ĥ(ω) =
1

1 + jωCZ(ω)
(9)

a transfer function that depends on the tip capacitance and
the complex sample impedance Z(ω). In Ref. 22, Tirmzi,
Dwyer, and coworkers derived Eqs. (7–9) by considering the
components of the electrostatic force in-phase and out-of-
phase with the oscillating cantilever. Here we show these
equations follow from a more general Lagrangian treatment
which reveals the implicit assumptions undergirding Eqs. (7–
9). These equations are one of the primary findings of this
manuscript. Equation (7) should be used in place of Eq. (2)
for semiconductors and other finite-impedance samples. The
physical insight we gain from these equations is that the fre-
quency shift and dissipation probe the real and imaginary
value, respectively, of the Eq. (9) transfer function at the can-
tilever oscillation frequency.

To explain the Fig. 1(c,d) data using Eqs. (7) and (8)
we model the sample as a capacitor Cs and light-dependent
resistor Rs operating in parallel. In this model, the transfer
function in Eq. (9) has a roll-off frequency determined by the
time constant τ = Rs(C + Cs) ≈ RsC. The non-monotonic
behavior of Γs can be understood qualitatively as follows: in
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FIG. 2. Broadband local dielectric spectroscopy. (a) Experimental
schematic. (b) Broadband local dielectric spectra collected at various
light intensities over the semiconducting CsPbBr3 sample of Fig. 1
[22]. The plot in (b) is adapted with permission from Ref. 22 (copy-
right 2017, American Chemical Society).

the Fig. 1 experiment, Rs is large in the dark and small under
illumination; the peak in Γs occurs at an illumination inten-
sity where 2πτ matches the cantilever period. The lines in
Fig. 1(c,d) are a fit of the data to Eqs. (7) and (8) assuming
a sample time constant τ ∝ I−nhν with n = 0.6, close to the
value of n = 0.5 expected for photogenerated free carriers.
The joint fit nicely captures the nonlinear behavior of both the
frequency and the dissipation versus illumination intensity.

The full frequency dependence of the Eq. (9) transfer func-
tion can be measured directly using a broadband local dielec-
tric spectroscopy (BLDS) measurement (Fig. 2). In one ver-
sion of the experiment, the tip voltage is switched slowly on
and off and, when on, is a sine wave of frequency fm. The
observed cantilever oscillation is sent to a frequency demod-
ulator and the resulting time-dependent cantilever frequency
shift sent to a lock-in amplifier with reference frequency set
to the on/off modulation frequency. The resulting signal, indi-
cated as ∆f(fm) in Fig. 2(a), changes when fm is slowly
varied. Using our Lagrangian-impedance formalism to calcu-
late the measured frequency shift in such BLDS experiments,
below in Sec. VI we obtain

∆f(fm) = −f0V
2
m

16k0

[
C ′′q +∆C ′′Re

(
H̄(ωm, ω0)

)]
|Ĥ(ωm)|2,

(10)
with Vm and fm the amplitude and frequency of the applied
oscillating voltage (assumed sinusoidal) and H̄ the average
value of the transfer function at frequencies ωm ± ω0. In
deriving Eq. (10) we assume for simplicity that a sinusoidal,
not on/off, amplitude modulation is employed. In Fig. 2(b)
we show the BLDS frequency-shift spectrum measured at
various light intensities over the semiconducting CsPbBr3
sample of Fig. 1. The change in the spectrum’s knee with
increasing light intensity is in qualitative agreement with the
light-dependent Rs used to explain the Fig. 1 data, validating
the use of a relatively simple RC sample impedance model in
explaining a wide range of experiments.

The treatment of transient effects in electrostatic force
microscopy requires great care. In time-domain EFM exper-

Light off on
FF-trEFM pk-EFM

light

Detect abrupt light-induced 

changes in tip-sample interaction

off on

(a)

(b)

(c)

(d)

FIG. 3. FF-trEFM and pk-EFM timing diagrams. (a) Experimental
cartoon. Both experiments start when the light is turned on. (b) The
tip-sample voltage during FF-tr-EFM is constant; during pk-EFM,
the voltage is abruptly stepped to zero after a variable time tp. In
both FF-trEFM and pk-EFM, the tip-sample force Fts (c) and the
spring constant shift ∆k (d) change, possibly abruptly, after the start
of the light pulse. The simplest model assumes the dynamics are
single-exponential with a risetime τs. In pk-EFM, the step change in
voltage causes Fts and ∆k to return to zero at delay time t = tp .

iments the response of ions to a step-change in tip voltage
is tracked in real time through a shift in cantilever frequency
[37–42]. EFM has been used to follow the time evolu-
tion of photocapacitance in response to illumination [43–46].
These experiments have pushed the limits of time resolution
in EFM, with claimed time resolutions down to less than 1
percent of the cantilever period [46]. These EFM photo-
capacitance experiments stand in contrast to scanning probe
microscopy-based variants of optical pump probe techniques,
which exploit a nonlinearity to infer ultrafast dynamics by
measuring differences in a time-averaged quantity versus a
pulse time, delay, or frequency [47, 48]. Recent experiments
along these lines have measured the surface photovoltage [49–
52] and charge moving through a transistor [53, 54] with ultra-
fast time resolution. In contrast, the origin of sub-cycle time
resolution in single-shot, transient EFM experiments is not
clearly understood.

Two representative transient EFM measurements are shown
in Fig. 3. The left side of Fig. 3 shows the feedback-free
time-resolved electric force microscopy (FF-trEFM) exper-
iment [46] and the right side shows the phasekick electric
force microscopy (pk-EFM) experiment [55]. The objective
of both experiments is to observe the temporal dynamics of
light-induced changes in a semiconductor sample’s capaci-
tance. Applying light initiates a sample-related change in the
tip-sample capacitance derivatives C ′ and C ′′ which for sim-
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plicity are sketched as a single-exponential with risetime τs.
In the presence of a finite tip voltage Vts, transients in C ′ and
C ′′ induce the indicated transients in the tip-sample force Fts

and force gradient ∆k.

How the sample’s photo-capacitance dynamics are inferred
from the data differs in the two experiments. In the FF-trEFM
experiment the voltage is left on continuously during the mea-
surement; the cantilever oscillation is demodulated to obtain
a plot of the cantilever phase and frequency shift versus time
(Fig. 4(a-c)). The transient frequency shift is observed to peak
and this time-to-first-peak tFP, Fig. 4(c), can be empirically
related back to the photocapacitance rise time τs if suitable
control experiments are carried out. In the pk-EFM experi-
ment the voltage is turned to zero abruptly at a time tp after the
light is turned on. The cantilever oscillation is again demodu-
lated but instead of studying the transient phase or frequency
shift, we measure the light-induced phase shift as a function of
the delay time tp (Fig. 4(d,e)). Representative data is shown
in Fig. 4(f). In Ref. 55, the Fig. 4(f) data was analyzed to
reveal that the sample’s photocapacitance had biexponential
dynamics.

Treating the effect of a time-dependent force Fts and force
gradient ∆k on cantilever position and momentum is chal-
lenging, particularly in the case of photovoltaic materials in
which τs can be shorter than the cantilever’s period of oscil-
lation. Nevertheless, using the Lagrangian formalism in con-
junction with the Magnus expansion, below we obtain closed-
form analytical results for both tFP and ∆φ(tp). For the phase
shift in the pk-EFM experiment, below in Sec. V we obtain

∆φ(tp) =
∆C ′hνV

2

2A0k1

ω1

1 + τ2
s ω

2
1

(
tp − τs + τse

−tp/τs
)
,

(11)
with A0 the cantilever amplitude and k1 and ω1 the can-
tilever spring constant and resonance frequency, respectively,
in the presence of light and tip voltage. By fitting the ∆φ
versus tp data, we can extract both ∆C ′hν and τs. The cor-
responding analytical result for tFP is more involved; see
Eqs. (100) and (101) below. The tFP number obtained in
the FF-trEFM experiment depends on ∆C ′hν , ∆C ′′hν , the can-
tilever’s intrinsic dissipation constant γ, and τs. Consequently,
the time τs cannot be uniquely determined from the single
number tFP measured in the FF-trEFM experiment. In the pk-
EFM experiment, in contrast, the ∆φ versus tp data set reveals
the full time dependence of the photocapacitance. Our anal-
ysis reveals that the standard equation for frequency shift in
KPFM (Eq. (84)) cannot be used to analyze these single-shot,
transient EFM experiments because the abrupt changes in the
tip-sample force shift the cantilever’s amplitude and phase.

Figure 5 outlines the remainder of the manuscript. Our
overall goal is to explain the results of experiments that vio-
late the assumptions that (1) the tip charge follows the can-
tilever oscillation instantaneously, and (2) any changes in the
tip-sample force or force gradient happen slowly. In Sec. II
we outline the common Lagrangian formalism that generates
coupled differential equations governing the cantilever dis-
placement, tip charge, and any other charges necessary to

describe the sample and wiring. We derive linearized ver-
sions of these equations that we then use to treat a variety
of EFM experiments. In Sec. III we develop an approx-
imate, Magnus-expansion treatment of cantilever dynamics
that accurately describes the cantilever position in the event
that the tip-sample force and force gradient change abruptly
(violating Assumption (2)). This treatment allows us to
describe the phasekick electric force microscopy (pk-EFM)
experiment of Ref. 55 and the feedback-free time-resolved
electric force microscopy (FF-trEFM) experiment of Ref. 46
using a common formalism (Figs. 3 and 4). The experi-
mental observables are the cantilever amplitude, phase and
frequency, so in Sec. IV we define these variables in a way
that accounts for abrupt changes in the tip-sample force. The
FF-trEFM experiment is discussed in detail in Sec. V; here
we use both the analytical results of Sec. III and numerical
simulations to evaluate the time resolution of the method. In
Sec. VI we return to the Lagrangian formalism and develop
a perturbation-theory approximation that accurately describes
the cantilever position and tip charge in the event that the
tip charge does not follow the cantilever oscillation instan-
taneously (violating Assumption (1)). This approximation
describes the cantilever frequency shift and dissipation for
an arbitrary sample impedance (Fig. 1). This approximation
similarly describes frequency shifts measured in local dielec-
tric spectroscopy [22, 27] and broadband local dielectric spec-
troscopy [22, 29] for an arbitrary sample impedance (Fig. 2).

The Lagrangian approach to understanding electric force
microscopy presented here unifies and significantly expands
the treatment of frequency-shift and dissipation effects in
EFM presented by Tirmzi et al. [22] and Dwyer et al. [55].
This approach has a number of advantages. It accounts for
dissipation of energy in both the sample and the cantilever;
treats both steady-state and transient phenomena in a unified
way; incorporates linearization of the equations of motion as
an explicit approximation late in the derivation; and captures
the effects of sub-cycle changes in sample capacitance, con-
ductivity, and tip charge that are missing from previous treat-
ments of the cantilever-sample interaction in EFM. We close
by outlining potential avenues of further study in Sec. VII.

II. CANTILEVER DYNAMICS AND TIP-SAMPLE
COUPLING

In this section, we present a general Lagrangian approach
for obtaining coupled equations of motion for the EFM can-
tilever, tip-sample charge, and external tip-sample bias cir-
cuitry. The EFM cantilever, sample, and bias circuitry consti-
tute a coupled electro-mechanical system of the type consid-
ered by Wells [56, 57], Ogar [58], and others [59–62]. These
authors demonstrate that the equations of motion for such sys-
tems can be developed in a unified Lagrangian formalism with
the electrical behavior treated in the lumped circuit element
approximation of elementary circuit theory. In our analysis,
the electrical behavior of the sample is modeled by a single
complex impedance, while the tip-sample coupling is mod-

5



DWYER, HARRELL, and MAROHN February 12, 2019

100 kW/m²

20 kW/m²

(a)

(b)

(c)

(d)

(e)

(f)

Δϕ(tp=94 µs)

Δϕ(tp=26 µs)

FF-trEFM pk-EFM

FIG. 4. FF-trEFM and pk-EFM data. In the FF-trEFM experiment, (a) the cantilever displacement z versus time is digitized and demodulated
to produce (b) the cantilever phase shift ∆φ and (c) frequency shift ∆f versus time. Abrupt changes in the tip-sample interaction are inferred
from changes in the time-to-first-peak tFP. The data are from a control experiment using a voltage pulse with risetime τ = 10 ns (blue)
and 10 µs (red). In the pk-EFM experiment, (d) the cantilever displacement z versus time is digitized and demodulated to produce (e) the
cantilever phase shift φ versus time. The solid traces are from tp = 94 µs (blue) and tp = 26 µs (purple) experiments; the dashed lines show
the corresponding control experiments with the same pulse time but with no light pulse. For each pulse time, the total light-induced phase
shift during the pulse ∆φ is determined. Abrupt changes in the tip-sample interaction are inferred from (f) the light-induced phase shift ∆φ
versus pulse time. Circles show the average phase shift from 6 consecutive pulse times, bars show the standard error, and the lines are a fit
to a biexponential model. Figure (a-c) reproduced with permission from Ref. 46 (copyright 2016, American Institute of Physics). Figure (f)
adapted from Ref. 55 (Creative Commons Attribution NonCommercial License 4.0, American Association for the Advancement of Science.).

Sec. II

Using Lagrangian mechanics, tip 

& sample electrical & mechanical 

degrees of freedom ⟶  coupled 

differential eqs.  describing time 

evolution (Eqs. 17–23)

If charge responds quickly, 

cantilever motion (x, p) 

described by ordinary 

differential Eqs. 52–53

Sec. III

Explicit solution x(t), 

p(t) approximated using 

Magnus expansion (Eqs. 

62–63).

Sec. IV

Amplitude, phase 

& freq. defined 

(Eqs. 72–76)

Sec. V

Cantilever phase during FF-trEFM (Eq. 

103) shows how time-to-first-peak tFP 

depends on experimental parameters 

(Eqs. 104–105).

Using perturbation theory, the tip capacitance and sample impedance determine

cantilever frequency shift and sample-induced dissipation (Eqs. 130-131),

frequency-dependent cantilever frequency shift in LDS, BLDS (Eqs. 132-133, 135)

Experiments with significant sample impedance

Sec.VI

Experiments with abrupt changes

FIG. 5. Unified Lagrangian-mechanics treatment of electric force microscopy (EFM): an outline showing the structure of the paper, high-
lighting major results.

eled as a position-dependent capacitance CT, with charge qT,
connected in series with the sample impedance. The complete
circuit, consisting of tip, sample, and external bias, could be
analyzed by applications of Kirchhoff’s junction rule and loop
rule; however we find it advantageous to take the Lagrangian
approach, described in detail below, as the correct electro-
mechanical coupling terms arise naturally in a unified frame-
work.

The circuit representing the electrical degrees of freedom
of the EFM consists of branches—discrete circuit elements
wired in series as illustrated in Fig. 6—interconnected by elec-

trical junctions at each end. For notational purposes, each
circuit branch is identified by a Latin subscript (e.g., n in
Fig. 6), while each junction is identified by a Greek subscript
(e.g., µ and ν in Fig. 6). Specification of the circuit branches,
their interconnections, the cantilever mechanical properties,
and the position-dependent tip-sample capacitance constitutes
the complete model.

The Lagrangian and Rayleigh dissipation function of the
EFM have contributions arising from the circuit branches, the
circuit junctions, and the mechanical degrees of freedom. In
the following treatment, we identify contributions from the

6
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FIG. 6. The nth branch of the circuit between junctions µ and ν
with instantaneous current in(t). The circuit branch behaves as a
voltage source Vn(t), inductance Ln, capacitanceCn, and resistance
Rn connected in series, while its state is specified by the generalized
coordinate qn and its time derivative q̇n = in(t). Taking Vn = 0,
Ln = 0, 1/Cn = 0, or Rn = 0 is equivalent to omitting the corre-
sponding circuit element. Each junction α in the circuit is character-
ized by a set of branch currents {inα} directed into the junction and
another set of branch currents {outα} directed out of the junction.
Based on the direction of the current indicated in the illustration,
in ∈ {outµ} and in ∈ {inν}.

circuit branches with the subscript B, contributions from the
circuit junctions with the subscript J, and contributions from
the mechanical degrees of freedom by the subscript M.

The generalized coordinate specifying the state of the nth

circuit branch is

qn = qn0 +

∫ t

t0

in(t′)dt′, (12)

where qn0 is the charge qn at the initial time t0. Then

q̇n = in(t) (13)

is the instantaneous current through the nth branch. Collec-
tively, the branches of the circuit, as shown in Fig. 6, con-
tribute the additive terms

LB =
∑
n

Lnq̇
2
n

2
− q2

n

2Cn
+ Vnqn (14)

to the Lagrangian and

DB =
∑
n

Rnq̇n
2

2
(15)

to the Rayleigh dissipation function when the corresponding
circuit elements are present.

The constraints of charge conservation at the circuit junc-
tions are fully realized by the application of Kirchhoff’s junc-
tion rule to a set {α} of all but one of the junctions, each of
which is characterized by sets {outα} and {inα} of outward
and inward directed branch currents (see, e.g., Ref. 63). In
our analysis, we enforce these constraints via the method of
Lagrange multipliers, adding the term

LJ =
∑
α

λα

 ∑
in∈{outα}

qn −
∑

in∈{inα}

qn

 (16)

to the system’s Lagrangian. The Lagrange multipliers λα
are then treated as additional generalized coordinates of the

system, which, when defined as in Eq. (16), can be identi-
fied with the instantaneous electric potential of the associated
junctions referenced to the one omitted junction.

The mechanical degrees of freedom of the cantilever and all
tip-sample forces F0 not arising from capacitive coupling are
included with the usual Lagrangian LM, Rayleigh dissipation
function DM and generalized forces Fx. In keeping with the
conventional notation for one-dimensional harmonic oscilla-
tors and to avoid confusion with the convention of using z to
represent a complex number, for the remainder of the article
we represent cantilever displacement with x rather than z,
with increasing x corresponding to motion of the cantilever
tip away from the sample surface.

Having accounted for all relevant degrees of freedom, we
generate the coupled electro-mechanical equations of motion
by application of the Euler-Lagrange equation

d

dt

(
∂L
∂q̇n

)
− ∂L
∂qn

= − ∂D
∂q̇n

+ Fn (17)

to each generalized coordinate qn, where

L = LB + LJ + LM (18)

and

D = DB +DM. (19)

Note that in writing Eq. (17), we have extended the range of
the index n and understand x and the λα’s to be among the
generalized coordinates qn.

In all of the cases we consider, the mechanical EFM can-
tilever is modeled as a linear harmonic oscillator with mass
m, spring constant k0 = mω2

0 , linear damping coefficient
Γ = 2mγ, and applied drive force Fdr(t), giving

LM =
mẋ2

2
− mω2

0x
2

2
, (20)

DM = mγẋ2, (21)

and

Fx = F0(x) + Fdr(t). (22)

Using Eqs. (20)–(22), and noting that

∂L
∂x

=
C ′T(x)q2

T

2CT(x)2
(23)

irrespective of the bias circuitry or sample impedance, appli-
cation of Eq. (17) for the generalized coordinate x gives

mẍ+ 2mγẋ+mω2
0x−

C ′T(x)q2
T

2CT(x)2
= F0(x) + Fdr(t). (24)

Throughout the article we determine the cantilever displace-
ment by solving or approximating Eq. (24). The equations of

7
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(b)

(c)

∆
k

10−2 1 102

τω0
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(a)

FIG. 7. (a) Single-loop circuit model of an EFM experiment with a resistive sample. Changes in the effective cantilever frequency and damping
constant depend on the cantilever resonance frequency ω0 and the time constant τ as defined in Eq. (31). (b) Changes to the effective cantilever
spring constant due to the tip-sample interaction. For τ � 1/ω0, oscillating charge reduces the effective spring constant, while for τ � 1/ω0,
this effect is suppressed. (c) Additional cantilever damping due to the tip-sample interaction. The damping is maximized for τ = 1/ω0.

motion of the charge degrees of freedom to which Eq. (24) is
coupled, on the other hand, vary from model to model.

The capacitive coupling and F0(x) terms that comprise the
tip-sample force in Eq. (24) are nonlinear in general. The non-
linearity of F0(x) is of particular concern in high-resolution
AFM imaging where it has been shown to cause significant
amplitude dependence of the cantilever oscillation frequency
[64–66] and lead to bi-stability in driven cantilevers with
amplitude feedback control of the tip-sample separation [66–
68]. The EFM experiments that we consider involve min-
imum tip-sample separations of 10’s of nanometers that are
beyond the effective range of the nonlinearities in F0(x) [65].
The approach in the following analysis is to neglect F0(x)
and to solve small-amplitude linearized approximations of the
resulting EFM equations of motion. These approximations are
not too severe in that this approach is sufficient to explain the
data in the experiments of Figs. 1–4. We defer further discus-
sion of the significance of the small amplitude approximation
and neglecting the nonlinearities of Eq. (24) until Sec. VII.
With the general theory completely developed, we proceed to
the characterization of specific EFM experiments.

A. Current-induced cantilever dissipation

In this section we apply the Lagrangian theory to a simple
model that violates the assumption of the tip charge following
the cantilever oscillation instantaneously. In this model, as
shown in Fig. 7, a voltage V (t) is applied between the can-
tilever tip and sample, while the tip displacement x changes
the tip-sample capacitance CT(x). The surface potential is
represented by the voltage source Φ and the sample has a
resistance RS. By inspection, the branch Lagrangian and dis-

sipation function are

LB = − q2
T

2CT(x)
+ (V (t)− Φ)qT, (25)

and

DB =
RSq̇

2
T

2
. (26)

As the circuit consists of a single branch, LJ = 0. We gen-
erate the equations of motion by applying the Euler-Lagrange
equation (Eq. (17)). The equation of motion for the tip dis-
placement is given by Eq. (24) with F0(x) = 0. The equation
of motion for the tip charge is

RSq̇T = (V (t)− Φ)− qT

CT(x)
. (27)

We now show that the simple model of Fig. 7 is sufficient
to reproduce the characteristic cantilever dissipation seen in
EFM experiments such as those described in Refs. 10, 15, and
17. In particular, cantilever dissipation is proportional to V 2

and C ′2 and is maximized when the tip charging rate matches
the cantilever frequency. In the experiment of Denk and Pohl
[10], an external drive force Fdr induces a small oscillation
at the cantilever’s resonance frequency. Small changes in the
cantilever’s resonance frequency and dissipation are measured
as a function of the static applied voltage. To model this
experiment, we seek solutions to the above system of coupled
nonlinear differential equations in the form of small driven
oscillations about the equilibrium point x0 and tip charge q0.
To this end, we expand the tip-sample capacitance to second
order about x0, giving

CT(x) ≈ C0 + C ′(x− x0) +
1

2
C ′′(x− x0)2, (28)

8
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and then make the change of variables

x→ x+ x0

qT → qT + q0
(29)

so that x and qT now represent a small change from the equi-
librium point. The linearized equations of motion are

mẍ+ 2mγẋ+mω2
0x−

C ′′V 2

2
x+

C ′V

C0
τ q̇T = Fdr(t), (30)

and

τ q̇T = C ′V x− qT, (31)

where τ = RSC0 is the tip-sample charging time constant
and we combine the applied voltage and surface potential as
V = V (t)− Φ for notational efficiency. 2

We now consider the steady-state solution when the can-
tilever is subject to

Fdr(t) = ReF (ω)ejωt, (32)

where F (ω) is the complex amplitude of the oscillating
driving force. In the linear-response regime the position and
tip charge have the form

x(t) = Rex(ω)ejωt, (33)

and

qT(t) = Re qT(ω)ejωt. (34)

Substituting Eqs. (33) and (34) into Eqs. (30) and (31) gives(
−mω2 + jω2mγ +mω2

0

−C
′′V 2

2
+
C ′2V 2

C0

jωτ

1 + jωτ︸ ︷︷ ︸
x(ω) = F (ω). (35)

This equation has the form(
−mω2 + jω(Γ + ∆Γ) + (k0 + ∆k)

)
x(ω) = F (ω), (36)

which describes the response of a damped harmonic oscillator
with additional damping

∆Γ = 2m∆γ =
V 2C ′2

ωC0

ωτ

1 + ω2τ2
(37)

2 For the reader interested in deriving Eq. (30) and Eq. (31), it is helpful to
begin by using Eq. (27) to rewrite q2

T /CT(x)2 in Eq. (24) as (V −RSq̇T)2

and then to multiply Eq. (27) through by CT(x) before proceeding to
expand CT(x) about x0. The linearized equations follow from applying
the equilibrium condition to identify x0 and q0, making the substitutions
indicated in Eq. (29), and dropping terms that are nonlinear in the new
coordinates and their time derivatives. Note that the expressions for x0

and q0 do not rely on approximating CT(x) in a power series and that the
coefficients on the right hand side of Eq. (28) are to be evaluated at the
equilibrium position of the cantilever under the tip-sample interaction, not
at the equilibrium position of the non-interacting cantilever.

and additional spring constant

∆k = −V
2C ′′

2
+
V 2C ′2

C0

ω2τ2

1 + ω2τ2
(38)

arising from the imaginary and the real parts of the under-
braced term in Eq. (35) respectively. In the limit that τ → 0,
Eq. 38 recovers the simplified Eq. 2 behavior. In Ref. 22,
Eq. 38 was used to analyze the observed frequency shift.

In the approximation that the tip-sample interaction can be
modeled as a parallel-plate capacitor, Eq. (38) takes on a par-
ticularly simple form. In this approximationC ′2/C0 = C ′′/2,
and the additional spring constant shift simplifies to

∆k = −V
2C ′′

2

1

1 + ω2τ2
. (39)

In the parallel-plate case, when τ → ∞, ∆k → 0. In a
scanned probe experiment, the parallel-plate model is a poor
description of the tip-sample interaction; in this case, ∆k in
the τ →∞ limit is nonzero, and depends on C ′′, C ′, and C0.

Equation (37) demonstrates the expected ∆Γ ∝ V 2C ′2

behavior. Figure 7(b) and (c) illustrate the behavior of ∆Γ
and ∆k as τ varies from the fast-charging limit to the slow-
charging limit while the cantilever is driven at its resonance
frequency. For fast charging (τω0 � 1), qT oscillates in phase
with the cantilever and there is no additional damping. As
τ increases, qT begins to oscillate out of phase with the can-
tilever leading to an increase in ∆Γ that peaks as expected at
τ = ω−1

0 . For slow charging, with τ much longer than the
cantilever period, qT no longer oscillates significantly and the
additional dissipation vanishes. This dependence of cantilever
damping on the charging rate agrees with previous results. For
example, Miyahara et al. present the same dependence derived
in the context of cantilever-induced single-electron tunneling
[69].

While this single-loop circuit model captures the essen-
tial physics of cantilever damping and frequency shifts due
to finite τ , it neglects many potentially significant features
of real experiments, such as stray capacitance and resistance
in the external wiring and complex impedance of the sample.
We proceed by treating these features in the Lagrangian for-
malism to develop equations of motion that apply to a wide
range of EFM protocols, returning to address the case of non-
negligible sample impedance in detail in Sec. VI.

B. A more general EFM model

Figure 8 illustrates our generalized EFM model, which
accounts for the applied bias V (t), resistance RW and capaci-
tance CW in the external wiring, resistance RS and capacitance
CS of the sample, resistance RT between the cantilever base
and tip, and the tip-sample capacitance CT(x, t). Again, the
surface potential is incorporated into V (t) for notational con-
venience. In addition to the position dependence of CT, which
couples the electrical and mechanical degrees of freedom of

9
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FIG. 8. Equivalent circuit of a generalized EFM experiment. This
circuit accounts for stray capacitance CW and resistance RW in the
external wiring, resistance RT in the cantilever tip, tip-sample capac-
itance CT, sample capacitance CS, and sample resistance RS.

the EFM, we consider the possibility that CT is explicitly time
dependent as is the case in, e.g., photocapacitance measure-
ments. Applying Eqs. (14)–(16) to the circuit of Fig. 8, we
have

LB = − q2
W

2CW

− q2
T

2CT(x, t)
− q2

S

2CS

+ V (t)qV, (40)

DB =
RWq̇

2
V

2
+
RTq̇

2
T

2
+
RSq̇

2
RS

2
, (41)

and

LJ = λW(qW + qT − qV) + λS(qRS + qS − qT). (42)

In total, there are two Lagrange multipliers, five branch
coordinates, and one mechanical coordinate, requiring eight
applications of Eq. (17) to generate the equations of motion.
The time derivatives of the two equations generated by the
Lagrange multipliers simply reproduce the junction-rule rela-
tions

q̇V = q̇T + q̇W (43a)

and

q̇RS = q̇T − q̇S. (43b)

The equations generated by the branch coordinates qW and qS,

λW = qW/CW (44a)

and

λS = qS/CS, (44b)

give algebraic expressions for the Lagrange multipliers and
confirm the earlier assertion about their relationship to the
electric potential.

Using Eqs. (43) and (44) to eliminate qV, qRS, λW and λS, the
remaining four equations of motion can be written as

mẍ+ 2mγẋ+mω2
0x−

C ′T(x)q2
T

2C2
T

= Fdr(t), (45)

RTq̇T =
qW

CW

− qT

CT

− qS

CS

, (46)

RW (q̇W + q̇T) = V (t)− qW

CW

, (47)

and

RS (q̇T − q̇S) =
qS

CS

. (48)

These four equations represent a complete model for a broad
class of EFM experiments. As we show in the next section,
significant simplifications to this system of equations can be
realized in experiments characterized by fast charging and
small oscillations.

C. Cantilever dynamic in the fast charging, small oscillation
limit

For many EFM experiments, including the photocapaci-
tance measurements described in Secs. III–V, the capacitive
charge redistribution times are much faster than one cantilever
cycle and voltage drops across the resistances (i.e., the left
hand sides of Eqs. (46–48)) are negligible. Taking the resis-
tances in the equations of motion to zero independently imple-
ments this fast-charging limit. In particular, taking RS → 0 in
Eq. (48) implies

qS = 0, (49)

while taking RW → 0 in Eq. (47) implies

qW

CW

= V (t), (50)

and taking RT → 0 in Eq. (46) implies

qT

CT

=
qW

CW

− qS

CS

. (51)

When all three resistances are negligible, Eqs. (49)–(51)
require qT/CT = V (t), or

mẍ+ 2mγẋ+mω2
0x−

1

2
V (t)2 ∂CT

∂x
= Fdr(t). (52)

For sufficiently small cantilever oscillation amplitude, the
tip-sample capacitance gradient can be linearized in x. In this
approximation, with

p = mẋ, (53a)

10
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Eq. (52) becomes

ṗ+ 2γp+mω2
0x−

1

2
V (t)2 (C ′(t) + C ′′(t)x) = Fdr(t).

(53b)
In Eq. (53) we have reduced the equations of motion to a
pair of first order ordinary differential equations that govern
both the pk-EFM and the FF-trEFM experiments described
in Sec. I. Note that in the FF-trEFM literature, the term
V (t)2C ′′(t)/2 is accounted for as a time-dependent natural
resonance frequency ω0(t), which is an important notational
difference from our usage where ω0 is the cantilever resonance
frequency in the absence of capacitive coupling between the
tip and sample [45, 46]. In the next section we demonstrate
an approximate solution to Eq. (53) that is particularly well-
suited to describe the cantilever motion in terms of time-
dependent frequency and phase shifts.

III. MAGNUS EXPANSION TREATMENT OF
PHOTOCAPACITANCE MEASUREMENTS

In this section, we develop a Magnus-expansion solution
for the cantilever motion during a photocapacitance mea-
surement, extending our previous results from Ref. 55 to
include both phasekick electric force microscopy (pk-EFM)
and feedback-free time-resolved electric force microscopy
(FF-trEFM) experiments in a common formalism. Equa-
tions (53) are two coupled, linear ordinary differential equa-
tions with time-varying coefficients. Noting that the C ′′ term
in Eq. (53) gives rise to a shift ∆k(t) in the effective spring
constant, we define the fractional change in spring constant

κ(t) =
∆k(t)

k0
≡ − 1

2mω2
0

C ′′(t)V (t)2. (54)

The C ′ term in Eq. (53) is the tip-sample force Fts(t) =
1
2C
′V (t)2. The total force is

F (t) = Fts(t) + Fdr(t) ≡
1

2
C ′(t)V (t)2 + Fdr(t). (55)

Using these definitions, Eq. (53) can be written in terms of the
position-momentum state vector x = (x p)T as

ẋ = A(t)x + b(t), (56)

where

A(t) =

(
0 1/m

−mω2
0 (1 + κ(t)) −2γ

)
, (57)

and

b(t) =

(
0

F (t)

)
. (58)

While there is no general analytic solution to Eq. (56), we
can use the Magnus-expansion technique to obtain a highly
accurate approximation [70, 71]. The exact solution can be
written in terms of the system’s (unknown) propagator U ,

x(t) = U(t, t0)x(t0) +

∫ t

t0

U(t, t′) b(t′) dt′. (59)

To take the Magnus expansion, we write U(t, t0) as the expo-
nential of a matrix Ω:

U(t, t0) ≡ expΩ(t, t0), (60)

and approximate U by approximating Ω. The first order
Magnus approximation for Ω is

Ω(t, t0) ≈
∫ t

t0

A(t′)dt′. (61)

For high-quality-factor cantilevers (Q ≡ ω0/(2γ) � 1),
matrix exponential can be approximated3 to give a propagator

U(t, t0) ≈ e−γ∆t

cos ( ω̄∆t) +
sin ( ω̄∆t)

2Q

sin ( ω̄∆t)

mω̄

−mω̄ sin ( ω̄∆t) cos( ω̄∆t)− sin ( ω̄∆t)

2Q

 , (62)

3 The matrix exponential is most easily calculated using the eigendecom-
position Ω = QΛQ−1, where Q is the matrix whose columns are the
eigenvectors of Ω and Λ is the diagonal matrix with the corresponding
eigenvalues of Ω along the diagonal. The result in Eq. (62) is obtained by
approximating the eigenvalues and eigenvectors to first-order in γ, a good

where ∆t = t − t0 is the elapsed time and ω̄ is the time-

approximation when γ � ω̄. The approximate eigenvalues are −γ ± jω̄

and the approximate eigenvectors are
(
− γ
mω̄2 ± 1

jmω̄
, 1

)T .
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dependent average frequency defined by

ω̄ ≡ ω0

(
1 +

1

∆t

∫ t

t0

κ(t′) dt′
)1/2

. (63)

If κ(t) is constant, then the first order Magnus expansion is
exact. For a time varying κ(t), corrections to the exponent Ω
will be on the order of the change in the normalized spring
constant shift ∆κ. An unrealistically large light-induced fre-
quency shift of ∆f = 350 Hz for a f0 = 70 kHz resonance
frequency cantilever corresponds to a change in the normal-
ized spring constant ∆κmax = 2∆f/f0 = 0.01. We are justi-
fied in neglecting higher-order terms of the Magnus expansion
because ∆κmax � 1.

To derive the usual EFM expression for cantilever fre-
quency, we define the cantilever phase accumulated between
t0 and t: θ(t, t0) ≡ ω̄∆t. As we will clarify in the next sec-
tion, this definition implicitly assumes that the forcing term b
does not affect the cantilever phase. Using Eq. (63) and this
definition, we recover a linear relationship between the can-
tilever phase and the change in the force-gradient by approxi-
mating θ to first order in κ

θ(t, t0) ≈ ω0 ∆t+
ω0

2

∫ t

t0

κ(t′) dt′, (64)

where the approximation is justified because κ � 1. We
obtain the usual expression for the cantilever frequency in
EFM by defining the cantilever’s instantaneous frequency as
the derivative of the cantilever phase:

f(t) =
1

2π

dθ

dt
= f0 −

f0

4k0
C ′′V (t)2, (65)

where, as usual, the voltage is V (t) = V − Φ. If F (t) =
0, Eqs. (64) and (65) hold even for arbitrarily fast changes
to κ(t). In principle, then, there is no inherent limit to the
time resolution that can be obtained from EFM measurements
of the cantilever frequency or phase. There are two potential
complications, however.

First, it becomes very difficult to detect changes in the can-
tilever frequency directly, by observing the cantilever’s posi-
tion over a short time interval, because the cantilever fre-
quency measurement bandwidth must be smaller than the can-
tilever’s resonance frequency [72–74]. This seemingly funda-
mental bandwidth limitation can be surmounted by recording
the phase shift as a function of a pulse delay [75], i.e. indi-
rectly, as Dwyer and coworkers showed in the “phasekick”
EFM experiment they introduced to measure fast, sub-cycle
photocapacitance transients [55]. In the Ref. 55 pk-EFM
experiment (Fig. 3), a light pulse applied at time t0 = 0
initiates charge generation in the sample. The capacitance
derivative C ′′ is now time dependent, and the cantilever phase
evolves in time according to Eq. (54) and Eq. (64). At a time
t = tp, the photo-induced advance of the cantilever phase is
abruptly arrested stepping the tip voltage back to zero

Vt(t) =

{
V for t < tp
0 for t ≥ tp.

(66)

The resulting cantilever phase is

θ(tp) ≈ ω0tp −
V 2

2mω0

∫ tp

0

C ′′(t′) dt′. (67)

In the Ref. 55 experiment (Fig. 4(d-f)), cantilever phase versus
time data were collected for a few milliseconds before and
after the time window during which the light and voltage
pulses were applied. The phase shift θ(tp) was obtained by
extrapolating the “before” phase data to t = 0 and the “after”
phase data to t = tp. The pulse time tp was stepped and this
θ(tp) measurement procedure was repeated at each tp. Since
tp, ω0, m, and V are known, the full time-evolution of the
sample’s capacitance derivative C ′′(t) could be inferred from
the resulting θ(tp) versus tp data. In this way it is possible to
track the evolution of photocapacitance on time scales much
faster than a single cantilever cycle.

The second potential complication to measuring fast
changes in cantilever frequency or phase is that abrupt
changes to Fts(t) cause additional changes in the cantilever’s
amplitude, frequency, and phase that we have so far neglected.
To address this problem, we first define the cantilever ampli-
tude, phase and frequency in terms of the cantilever’s position
and momentum.

IV. DEFINITION OF AMPLITUDE AND PHASE

EFM-based photocapacitance experiments record light-
induced changes in the amplitude, phase, and frequency of the
cantilever oscillation. We define the cantilever amplitude and
phase in terms of the cantilever position and momentum so
we can relate the photocapacitive quantities C ′(t) and C ′′(t)
to the data. We show how abrupt changes in the tip-sample
force Fts = 1

2C
′(V −Φ)2 affect the cantilever amplitude and

phase. The usual expression for the frequency shift in KPFM
(Eq. 2) ignores these effects, which become important when-
ever the tip-sample force changes on a timescale similar to the
cantilever period.

Figure 9 provides a geometrical view of our definition
of the cantilever amplitude and phase. The horizontal axis
shows the cantilever position x and the vertical axis shows
the scaled cantilever momentum −p/(mωd) (with ωd the
drive frequency). Each point on the graph is associated with
a particular cantilever state x = (x p)T . To define the
cantilever amplitude and phase, however, we also need to
know the equilibrium position that the cantilever state rotates
about. This equilibrium position—neglected in typical EFM
experiments—is

xeq(t) =
Fts(t)

k(t)
, (68)

where k(t) is the time-dependent cantilever spring constant.
We associate an amplitude and phase with each cantilever
state x = (x p)T using a complex number z:

z(t) = (x(t)− xeq(t))− p(t)

mωd
i, (69)
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where we assume a drive force of the form

Fdr(t) = Fd cos(ωdt+ φd), (70)

with Fd the drive amplitude, ωd the drive frequency, and φd

the drive phase. In terms of the complex number z, the can-
tilever amplitude is

A = |z|, (71)

and the absolute cantilever phase is

φabs = arg z. (72)

Fig. 9(a) shows this definition geometrically; the blue vector’s
length defines the amplitude and the angle with the x-axis
defines the absolute phase. With this definition, the ordinary
evolution of the cantilever is z(t) = z(t0)eiωd(t−t0). Graph-
ically, the cantilever state vector has length A and rotates
around its equilibrium state (xeq, 0)T at the drive frequency
ωd. To remove the effect of the ordinary evolution of the can-
tilever, we define the phase difference φ between the drive
force and the cantilever displacement

φ = φxp = arg
(
z e−i(ωdt+φd)

)
. (73)

We use the subscript φxp to emphasize that this is the phase
calculated from the cantilever position x and momentum p.
With Eqs. (69) and (73), we can approximate the cantilever’s
phase using numerical simulations or analytic approximations
of the cantilever position and momentum.

We use this definition of amplitude and phase to deter-
mine amplitude and phase shifts caused by abrupt forces.
We consider an experiment where the voltage, capacitance,
tip-sample force, and tip-sample force gradient remain con-
stant except for some short, abrupt change near t = 0. For
times t < 0, the applied voltage V induces a tip-sample
force Fts(t) = 1

2C
′V 2 ≡ F0 and a spring constant shift

∆k(t) = − 1
2C
′′V 2 ≡ ∆k0. The system is still a damped,

driven harmonic oscillator but with a new spring constant

k1 = k0 + ∆k0 (74)

and resonance frequency

ω1 = ω0 −
ω0

4k0
C ′′V 2. (75)

We use a drive force with amplitude Fd, frequency ωd, and
phase φd (Eq. (70)). The resulting cantilever state vector near
t = 0 is

xord =

(
x(t)
p(t)

)
=

(
F0/k1 +A0 cos(ωdt+ φ0)
−A0mωd sin(ωdt+ φ0)

)
, (76)

where the equilibrium position is xeq = F0/k1 and the sub-
script xord reflects that this is the cantilever’s ordinary oscil-
lation. The cantilever’s amplitudeA0 = |χ̂(ωd)|Fd and initial
phase φ0 = φd + arg χ̂(ωd) depend on the Fourier transform
of the oscillator’s impulse response function

χ̂(ω) =
1

k1

(
1− ω2

ω2
1

+
2jγω

ω2
1

)−1

, (77)

where γ is the linear damping parameter. Eqs. (75–77)
describe the cantilever position, momentum, amplitude, and
phase for a constant applied voltage. To describe ampli-
tude and phase shifts caused by abrupt forces, we consider
adding an additional force ∆Fabrupt at t = 0: Fts(t > 0) =
F0 + ∆Fabrupt(t). Our model of the cantilever is linear so
we can add the position and momentum change caused by this
additional force to the ordinary, existing oscillation of the can-
tilever: x(t > 0) = xord + xabrupt. The change induced by
the force is

xabrupt(t) =

∫ t

0

U(t, t′)

(
0

∆Fabrupt(t
′)

)
. (78)

We consider two limits for the abrupt change in tip-sample
force: an impulsive force and a step-like force. For an
impulsive force, the entire change in tip-sample force occurs
over a very short time timpulse � ω−1

1 . The impulsive
force changes the momentum of the cantilever by δp =∫ timpulse

0
∆Fabrupt(t

′)dt′. In Figure 9(b), the impulse shifts
the cantilever state along the vertical (momentum) axis. An
impulse delivered at time 1 shifts the cantilever amplitude
(green), while the same impulse delivered at time 2 shifts
the phase (orange). After the impulse, the cantilever state
continues rotating at the frequency ωd. If the change in
momentum δp is small (|δp/(mωd)| � A0), the impulse
shifts the cantilever amplitude and phase by

δA = −(mωd)−1 sinφ0 δp and (79)

δφ = −(A0mωd)−1 cosφ0 δp (80)

respectively.

For an abrupt step-like force, the abrupt change in force is
a constant: ∆Fabrupt(t > 0) = ∆Fabrupt. The abrupt change
in force does not cause any instantaneous change in the can-
tilever state, but does induce an additional position oscillation
xabrupt(t) = ∆Fabrupt cos(ω1t)/k1. This additional oscil-
lation is induced by the abrupt shift in the cantilever’s equi-
librium displacement by δxeq = ∆Fabrupt/k1. Figure 9(c)
illustrates this result geometrically. The step change in tip-
sample force abruptly shifts the cantilever equilibrium posi-
tion xeq (open purple circle denoted “step”). The actual can-
tilever state is not immediately affected by the abrupt change
in force and the equilibrium position. After the step, the can-
tilever state continues rotating at ωd,4, but is rotating around
the new equilibrium position (open purple circle). Over the
next part of the cantilever cycle, however, the effect of this
change in equilibrium position becomes clear. A step at time
1 shifts the cantilever phase (green), while the same step at
time 2 shifts the cantilever amplitude (orange). If the change
in equilibrium position is small compared to the cantilever
amplitude (|δxeq| � A0), we find that the step abruptly shifts

4 Here we assume that the drive frequency is at least approximately equal to
the resonance frequency, ω1 ≈ ωd.
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impulse 1

impulse 2
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step

1

2

FIG. 9. Amplitude and phase representation of the cantilever state. (a) The cantilever amplitude and phase are defined in terms of the
cantilever position x (horizontal axis), scaled momentum −p/(mωd) (vertical axis), and equilibrium position xeq (open circle). The black
line and arrows (every eighth of a period) show the normal evolution of the cantilever state in the absence of an abrupt change in tip-sample
force. (b) An impulsive force shifts the cantilever state along the vertical (momentum) axis. An impulsive force applied at time 1 decreases
the cantilever amplitude (green). Applied at time 2, the same impulsive force instead advances the cantilever phase (orange). (c) A step force
shifts the equilibrium position xeq (open circle). Applying the step force at time 1 advances the cantilever phase (green), while applying the
step force at time 2 increases the cantilever amplitude (orange).
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FIG. 10. Analysis of the feedback-free time-resolved electric force microscopy (FF-trEFM) experiment. Part (j) reproduced with permission
from Ref. 46.

the amplitude and phase by

δA = − cosφ0 δxeq and (81)

δφ = A−1
0 sinφ0 δxeq (82)

respectively. According to our definition of amplitude and
phase, A and φ change abruptly as soon as the step force
is applied. However, the shift in phase cannot be readily
observed in the cantilever position (horizontal axis) until per-
haps 1/4 of a cantilever cycle later (notice the time it takes for
the difference between the black and green curve in Fig. 9(c)
to develop). The cantilever amplitude and phase are not well-
determined during the short period of time when the the tip-
sample force is changing abruptly. As discussed in Ref. 55,
changes in tip-sample forces occurring on a timescale short
compared to the cantilever period should be detected using a

measurement that exploits a nonlinearity to generate a signal
that can be measured at low frequency.

For both impulsive and step-like changes to the tip-sample
force, the resulting change in the cantilever’s position and
momentum can be determined by integrating Eq. (78). After
the end of the abrupt changes in tip-sample force, the two
components of the cantilever state vector can be added back
together and propagated as usual. In each case, the same shift
in equilibrium position or momentum can cause an ampli-
tude shift or a phase shift depending on the cantilever’s initial
phase when the abrupt force occurs, as illustrated by the geo-
metric depiction in Fig. 9(b) and (c). The change in position
or momentum affects the cantilever phase more when the can-
tilever’s initial amplitudeA0 is smaller. The results of the pre-
vious two sections allow us to analyze experiments involving
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abrupt changes in the tip-sample force and force gradient. In
Ref. 55, we analyzed the phasekick electric force microscopy
experiment (pk-EFM), which was developed to measure light-
induced changes in capacitance with sub-cycle time resolu-
tion. In the next section, we analyze the alternative technique,
FF-trEFM.

V. FF-trEFM TIME RESOLUTION

Feedback-free time-resolved electric force microscopy (FF-
trEFM) [44–46] is a variant of tr-EFM designed to resolve
photocapacitance dynamics with better time resolution.
Ordinary tr-EFM measurements directly fit the cantilever-
frequency-shift-versus-time data to extract the sample’s pho-
tocapacitance risetime τs. In FF-trEFM, the cantilever is
driven at a fixed frequency ωd with a fixed tip voltage V . The
light is turned on at a specific point in the cantilever cycle and
the cantilever oscillation data is signal-averaged and demod-
ulated to obtain the cantilever’s instantaneous frequency shift
δf versus time. The time-to-first-frequency-shift peak tFP is
calculated from δf(t) (Fig. 5(c)). To calibrate the measure-
ment, voltage pulses with different rise times τv are applied
to the sample and tFP is measured versus τv. The sample
photocapacitance risetime τs is estimated using the tFP versus
τv calibration curve. Ginger and co-workers have shown that
sub-cycle time resolution can be obtained with this technique.
Through numerical simulations, they demonstrated that the
effect of the cantilever tip-sample force Fts ∝ C ′ gives rise to
the sub-cycle time resolution [46].

In this section, we apply our Magnus expansion approxi-
mation for cantilever dynamics to the FF-trEFM experiment.
We show that the FF-trEFM experiment is only sensitive to
the total magnitude of the force-induced phase shift at short
times. To extract a specific time constant in the limit that
τs � ω−1

0 , an assumption must be made about the magni-
tude of the abrupt change in the tip-sample force. This result
demonstrates how our approach reveals the hidden assump-
tions implicit in commonly used models of EFM experiments.

Figure 10 illustrates our analysis of the FF-trEFM exper-
iment. To explain the origin of the sub-cycle time resolu-
tion in FF-trEFM, we need to connect the experimental and
sample parameters (Fig. 10(a)) to the measured frequency-
shift-versus-time data that is used to calculate the time-to-
first-frequency-shift-peak tFP. We start from the description
of EFM derived in Sec. III, assuming the tip-sample force Fts

and force gradient ∆k both evolve with the same photocapac-
itance risetime τs after the light turns on (Fig. 10(a)). We use
the tip-sample force and force gradient to determine the can-
tilever’s phase φ in multiple ways (Fig 10(b–d)). To isolate the
effect of the sample parameters on the phase and frequency,
we model the measured cantilever phase as the convolution
of the cantilever’s actual phase and a demodulation or lock-in
amplifier low-pass filter (Fig. 10(f–h)). The measured can-

tilever phase shift is

φmeas(t) = [HL ∗ φ](t), (83)

where HL is the lock-in amplifier or demodulation filter
impulse response function, ∗ denotes convolution in the time
domain, and φ is the actual phase difference between the tip
displacement and drive force. The measured cantilever fre-
quency shift is the derivative of the measured phase

δfmeas(t) =
1

2π

dφmeas

dt
. (84)

At the time of the first frequency shift peak (t = tFP), the
derivative of the measured frequency shift is equal to zero
(Fig. 10(i)). The specific value of tFP is sensitive to the choice
of lock-in amplifier filter HL. Once a particular HL is chosen,
any differences in tFP are related to differences in the can-
tilever’s actual phase φ(t). To avoid artifacts in φmeas and
δfmeas related to filter ringing, Karatay and co-workers used
a filter function that was strictly positive [46]. As shown in
Fig. 10(j), they observed a monotonic, nonlinear relationship
between tFP and τs for risetimes faster than the cantilever
period of 2 µs under carefully chosen experimental conditions.
We connect the observed tFP to φ(t) and therefore to experi-
mental parameters using the model of the cantilever dynamics
developed in Sections III and IV.

In the following calculation, we will verify the relation-
ship between experimental parameters and φ by estimating the
phase in multiple ways. In particular, we estimate the phase
from simulations of the cantilever position and momentum
(Fig. 10(d)). We separately analyze the simulated cantilever
position data using the Ginger group’s analysis code [76]. We
calculate the same tFP with both approaches, which connects
our new analysis (shaded green region of Fig. 10) to that used
by Ginger and co-workers.

A. Analytic treatment of FF-trEFM

We use the description of the cantilever amplitude and
phase developed in the previous section to determine the can-
tilever phase during an FF-trEFM experiment. The applied
voltage is V , and the drive force has amplitude Fd, frequency
ωd, and phase φd (Eq. (70)). At t = 0, the sample is illumi-
nated, inducing a change in the tip-sample capacitance and its
derivatives, which we assume has the form

C ′(t) =

{
C ′ t < 0

C ′ + ∆C ′hν(1− e−t/τs) t ≥ 0
, (85)

where ∆C ′hν is the light-induced change in the tip-sample
capacitance at long times and τs is the sample’s photocapaci-
tance risetime. Similarly, we assume the second derivative of
the tip-sample capacitance is

C ′′(t) =

{
C ′′ t < 0

C ′′ + ∆C ′′hv(1− e−t/τs) t ≥ 0
, (86)
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where ∆C ′′hν is the light-induced change in the second deriva-
tive of the capacitance.

The goal of the experiment is to infer τs from the first
frequency-shift-peak time tFP. We analyze the experiment
using the Magnus-expansion approximation (Sec. III). The
exponential rise in C ′(t) causes an exponential rise in the tip-
sample force

Fts(t) =

{
F0 t < 0

F0 + Fhν(1− e−t/τs) t ≥ 0
, (87)

where the initial force is F0 = 1
2C
′V 2 and the light-induced

change in force is Fhν = 1
2∆C ′hνV

2. The exponential rise
in C ′′(t) causes an exponential rise in the tip-sample force
gradient

∆k(t) =

{
∆k0 t < 0

∆k0 + ∆khν(1− e−t/τs) t ≥ 0
, (88)

where the initial spring constant shift is ∆k0 = 1
2C
′′V 2

and the light-induced change in the spring constant shift is
∆khν = 1

2∆C ′′hνV
2.

Our goal is to understand and explain the case where the
photocapacitance risetime is faster than the cantilever period.
In this case, we expect that the step-like change in tip-sample
force to cause an abrupt change in the cantilever amplitude
and phase (Fig. 9 and Eqs. (81–82)). To focus on the effect
of the tip-sample force Fts, we first assume ∆C ′′hν = 0 so
that ∆k(t) = ∆k0. We are interested in times much shorter
than the cantilever ringdown time (t � γ−1) so we neglect
cantilever dissipation and the drive force by setting γ = 0 and
Fdr(t) = 0. The Magnus expansion approximation for the
cantilever state (Eq. (59)) is

x(t) = Ũ(t)

(
x0

p0

)
+

∫ t

0

Ũ(t− t′)
(

0
Fts(t

′)

)
dt′, (89)

where

Ũ(t) =

(
cos (ω1t)

1

mω1
sin (ω1t)

−mω1 sin (ω1t) cos (ω1t)

)
(90)

is the propagator of a simple harmonic oscillator with a shifted
spring constant k1 and resonance frequency ω1 given by
Eqs. (74) and (75) respectively. The integral in Eq. (89) can
be evaluated in closed form, giving

x(t) =

(
x0 −

F0

k1

)
cos(ω1t) +

p0

mω1
sin(ω1t)

+
F0

k1
+
Fhν
k1

(
1− ω2

1τ
2
s

1 + ω2
1τ

2
s

e−t/τs
)

− Fhν
k1 (1 + ω2

1τ
2
s )

(
cos(ω1t) + ω1τs sin(ω1t)

)
︸ ︷︷ ︸

xosc

(91)

Force

Position

FIG. 11. Cantilever response to step changes in force with different
risetimes τs. The (a) tip-sample force Fts and (b) cantilever position
x(t) versus time t (in units of ω−1

1 ). The solid lines in (b) show the
position calculated using Eq. (91). For reference, the dashed lines in
(b) show x = Fts(t)/k1, the cantilever position for a cantilever with
a much higher resonance frequency such that Fts changes slowly
relative to the cantilever period.

for the cantilever position. The first line of Eq. (91) is the
unperturbed continuation of the cantilever’s ordinary oscilla-
tion xord(t) (Eq. (76)). The second line describes the change
in the cantilever’s time-dependent equilibrium position xeq

(Eq. (68)). The final, underbraced line (xosc) is the persis-
tent contribution of the step change in Fts(t) to the cantilever
oscillation, which, depending on the phase of the cantilever
oscillation at t = 0, manifests as an abrupt amplitude or phase
shift.

Figure 11 illustrates the effect of the abrupt change in tip-
sample force on the cantilever oscillation for various time
constants τs. We focus on the effect of the abrupt, step-like
change in tip-sample force by starting the cantilever at rest
at its equilibrium position 5 so that the first line of Eq. 91
equals zero. The solid lines in Fig. 11 plot the cantilever posi-
tion versus time for the different risetime forces. The can-
tilever position contains both an exponential component (the
dashed line) and an oscillatory component. The oscillatory
component is largest in magnitude for the shortest rise time
forces and approaches zero for τs � ω−1

1 . From Eq. (91), the
amplitude of the induced oscillation is Fhν/

(
k1(1 + ω2

1τ
2
s )
)
.

When the tip-sample force changes abruptly, the ordinary
KPFM frequency shift given by Eq. (2) is incomplete; the
cantilever oscillation is better described using the cantilever
phase, which is advanced by both the usual frequency shift

5 The initial position is x0 = F0/k1 and initial momentum is p0 = 0.
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given by Eq. (2), as well as the abrupt effects described in X,
Y.

The two forces on the cantilever, the drive force and the tip-
sample capacitance force, affect the cantilever’s phase very
differently. The drive force determines the cantilever’s oscil-
lation frequency. Together, the properties of the drive force
and the propagator determine the cantilever’s amplitude and
phase difference relative to the drive force. In contrast, Fts

only determines the equilibrium displacement about which the
cantilever oscillates unless its contains significant energy at
the cantilever resonance frequency.

To apply these results of this section to ion-conductance
experiments, the exponential risetime change in capacitance
could be replaced with a stretched exponential risetime
change in capacitance by replacing e−t/τs with e−(t/τs)

β

in
Eqs. (85–88). In this case, the integral in Eq. (89) cannot be
evaluated in closed form. The magnitude and phase of the
induced oscillation at the cantilever frequency could be deter-
mined by numerical integration or using the Laplace trans-
form of the stretched exponential [77].

B. Approximate phase shift model

To gain insight into the dynamics of the cantilever phase,
we develop an approximate model to describe small cantilever
phase shifts (Fig. 10(c)). When the light is turned on, changes
in capacitance affect the phase difference between the drive
force and the cantilever through (1) changes in the tip-sample
force gradient and (2) abrupt changes in the tip-sample force.

The changes in the force gradient shift the cantilever’s nat-
ural resonance frequency ω(t), which results in a phase shift.
For κ = ∆k/k0 � 1, the cantilever’s resonance frequency is

ω(t) = ω0(1 + ∆k(t)/(2k0)), (92)

where we differentiate Eq. (64) to obtain Eq. (92). At steady
state, the phase difference between the cantilever and the drive
may be computed from the Fourier transform of the oscillator
impulse response function. We find

φss(t) = arg

([
1− ω2

d

ω(t)2
+

iωd

Qω(t)

]−1
)
. (93)

For small phase shifts, the cantilever response to changes in
φss is first order with a characteristic frequency equal to the
linear damping parameter γ = ω0/(2Q)

φ̇fg = −γφfg + γφss(t), (94)

where we use the subscript “fg” for force gradient. The drive
force and force gradient induce a slow evolution of φfg.

The change in tip-sample force affects the cantilever phase
differently. Abrupt changes in the tip-sample force Fts induce
an additional oscillation at the cantilever resonance frequency

(Fig. 11). For the FF-trEFM experiment, the existing oscilla-
tion near t = 0 is x(t) = −A0 sin(ωdt). so the cosine term
from Eq. (91) causes an abrupt phase shift

∆φf =
Fhν/k1

A0

1

1 + ω2
1τ

2
s

, (95)

where A0 is the cantilever zero-to-peak amplitude near t = 0,
and ∆φf is in units of radians. For times t ≤ τs, the phase shift
oscillates and approaches ∆φf . For the sake of our model, we
assume

φf(t ≥ 0) = ∆φf(1− e−t/τs). (96)

With the force contribution to the cantilever phase
accounted for, we need to correct Eq. (94) to take into account
φf . The total cantilever phase is the sum of the force-gradient
phase φfg and φf :

φ = φfg + φf(t). (97)

We describe the combined effects of the force and force-
gradient terms with the differential equation

φ̇fg = −γ
(
φfg + φf(t)

)
+ γφss(t). (98)

If the phase φ = φfg + φf is equal to the steady state phase
φss, the derivative φ̇fg = 0 and the normal oscillator dynamics
do not change the cantilever phase. Together, Eqs. (97) and
(98) describe a state space model with two inputs φss(t) and
φf(t), one state variable φfg, and one output φ. With this
model, we can write closed-form expressions for the can-
tilever phase when exponential risetime inputs are applied to
φss and φf . With either simulations of the cantilever position
and momentum, or the approximate phase shift model, we can
write the cantilever’s actual phase φ.

C. Simulations

To verify the phase model developed above, we simulated
cantilever dynamics for a cantilever similar to that performed
by Karatay and co-workers in their demonstration of 10 ns
time resolution [46]. We used a cantilever frequency at t = 0
equal to ω1 = 2π × 526 315 Hz. The cantilever spring con-
stant and quality factor were k1 = 72.7 N m−1 and Q = 499
respectively. We set the drive frequency ωd = ω1. We used
a drive amplitude Fd = k1 × 10 nm/Q and a drive phase
φd = π for maximum time resolution.6 The cantilever’s sim-
ulated zero-to-peak amplitude at t = 0 was A0 = 10 nm.
The light-induced change in spring constant was ∆khν =
−2k1×10−4, corresponding to a cantilever frequency shift of
∆ωhν = 2π × 52.6 Hz. The light-induced change in the tip-
sample force was Fhν = −k1 × 0.06 nm, inducing a 0.06 nm
shift in the cantilever’s equilibrium displacement xeq.

6 The initial phase difference between the cantilever and drive is −π/2 since
ωd = ω1. Setting the drive phase φd = π ensures the cantilever oscilla-
tion near t = 0 is x = A0 cos (ωd + π − π/2) = −A0 sin(ωdt), the
phase of maximum time resolution in Refs. 45 and 46.
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FIG. 12. Actual and measured cantilever phase and frequency calculated using models and simulations. (a) Relative phase φ between the
cantilever position and the drive force for sample photocapacitance risetime constants τs from 1 ns to 1 ms. The phase was calculated from
simulations of cantilever position and momentum (φxp, solid lines) and the approximate small-phase-shift model of Eq. (97) (φmod, dashed
lines). (b) Phase difference between the two models r = φxp−φmod. (c) The lock-in amplifier filter (green line) used to determine φmeas from
φ and the bandpass filter used to determine φmeas from simulated cantilever position data. (d) The actual phase shift φmod (dashed lines) and
the measured phase shift calculated from φmod (solid lines) and from simulated position versus time data using the Ginger group’s analysis
package FFTA with bandpass filterHbandpass (circles). (e) Phase difference between the two calculated, measured phases r = φmod

meas−φFFTA
meas .

(f) Actual frequency shift calculated from φmod (dashed lines) and the corresponding measured frequency shift calculated from φmod
meas (solid

lines) and φFFTA
meas (circles). (g) Frequency shift difference r = δfmod

meas − δfFFTA
meas . For simulated data (circles in (d) and (f)), only every

thousandth point (every 10 µs) is shown for clarity.

D. Results

Figure 12 demonstrates the close agreement between the
different models for the cantilever phase shift illustrated in
Fig. 10. In Fig. 12(a), we show the results of simulations for
a series of sample photocapacitance risetimes τs from 1 ns to
1 ms. From the simulated cantilever position and momentum,
we calculated the cantilever phase φxp using Eq. (73). In
Fig. 12(a), we plot φxp convolved with a rectangular filter with
width T = 2π/ω0 to remove phase oscillations at multiples of
the cantilever frequency (solid lines). We also plot the mod-
eled phase φmod (dashed lines), which was calculated using
the approximate phase model of Sec. V B (Eqs. (93)–(98)).
The simulated phase φxp agrees closely with the phase pre-
dicted by the analytic model φmod. Figure 12(b) shows that
the phase difference r = φxp− φmod is small and approaches
zero at long times. Both the analytical model and simula-
tions indicate that the cantilever phase versus time is iden-
tical for any photocapacitance risetime τs ≤ 100 ns. This sets
the first limit on the possible time resolution of FF-trEFM.
Figure 12(a,b) demonstrates good agreement between our dif-
ferent models of the cantilever’s actual phase (Fig. 10(b–d)).

Next we determine the measured phase shift φmeas. First
we calculate φmeas using φ from Fig. 12(a) and the convolu-
tion model illustrated in Fig. 10(f–h) (Eq. (83)). To demon-

strate the agreement between this description of the phase and
the phase calculated from the FF-trEFM workup, we use the
same simulation data used to calculate φxp to perform the FF-
trEFM analysis of Ginger and co-workers using their publicly
available package [46, 76]. The bandpass filter applied to the
x(t) data in the FF-trEFM analysis serves the same role as
the low-pass filter HL in our analysis. For the FF-trEFM data
analysis protocol of Ref. 46, we use a Parzen window band-
pass filter that passes frequencies between f0 − b and f0 + b
(Fig. 10(e)). We use the analogous Parzen window low-pass
filter with cutoff frequency b in our analyses. Figure 12(c)
shows the two filters, with b = 5.1 kHz. Figure 12(d) shows
that the measured phases calculated using the model (solid
lines) and the FFTA analysis (dot-dashed lines) agree closely.
For comparison, the input to the low-pass filter φmod (dashed
lines) is also shown. The low-pass filter blurs and delays the
phase. Figure 12(e) shows the maximum difference between
φmod

meas and φFFTA
meas is 8 µrad. Figure 12(f,g) shows that the

corresponding measured frequency shifts and time to first fre-
quency shift peaks agree closely as well. The maximum fre-
quency difference is 0.1 Hz.

The data of Fig. 12 demonstrate that the new models we
introduced to describe the measured phase in the FF-trEFM
experiment agree closely with the measured phase as calcu-
lated by Ginger and co-workers. We examine the dependence
of φ on experimental parameters to better understand how the
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(a)
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FIG. 13. Dependence of φ on photocapacitance risetime and force-
induced phase shift. (a) The steady-state photocapacitance φss

for different photocapacitance risetimes (10 ns, light blue circles;
100 ns, orange line; 1 µs, dark blue squares). (b) The force-
induced phase shift for different photocapacitance risetimes (blue)
and different magnitudes of ∆φf (−6 mrad, light green triangles;
−3 mrad, orange line; 0 mrad, dark green stars). (c) The phase
determined from the inputs in (a) and (b), offset by the initial phase
shift π/2.

experimental parameters affect the measured phase and time-
to-first frequency-shift peak.

The analytic model of Eqs. (97) and (98) gives a closed-
form expression for the cantilever phase during a FF-trEFM
experiment. In the analytic model, the cantilever’s actual
phase is

φ(t ≥ 0) = φ0 + ∆φss −∆φfe
−t/τs

+
∆φss −∆φf

1− γτs
(
γτse

−t/τs − e−γt
)
, (99)

where φ0 is the phase difference between the cantilever and
drive force at t = 0, ∆φss is the steady-state phase shift
∆φss = φss(∞) − φss(0) (Eq. (93)) and ∆φf is the total
phase shift induced by the abrupt change in the tip-sample
force (Eq. (95)).

Figure 13 shows how the modeled cantilever phase depends
on ∆φf and the photocapacitance risetime τs. We plot
the inputs to the model in Fig. 13(a,b) and the cantilever
phase calculated using Eq. (99) in Fig. 13(c). The orange
curve shows the case where the steady-state phase shift is
∆φss = −100 mrad, the force-induced phase shift is ∆φf =
−3 mrad, and the photocapacitance risetime is τs = 100 ns.
The two blue curves show the effect of varying the photoca-
pacitance risetime: τs = 10 ns (light blue circles) and τs =
1 µs (dark blue squares). The two green curves show the effect

of varying the magnitude of the force-induced phase shift:
∆φf = −6 mrad (light green triangles) and 0 mrad (dark
green stars). Changing the magnitude of ∆φf causes large,
persistent differences in the resulting phase-versus-time data
(Fig. 13(c)). In contrast, changing τs by an order of magnitude
causes almost no difference in the resulting phase-versus-time
data after the first few microseconds. The small, transient
differences in phase caused by changes in τs would be even
more difficult to detect after convolving with the 64 µs FWHM
low-pass lock-in amplifier or demodulation filter. The persis-
tent differences in modeled phase related to ∆φf indicate that
the measured phase versus time and calculated time-to-first-
frequency-shift peak should be very sensitive to changes in
∆φf , the magnitude of the phase shift induced by the abrupt
shift in the tip-sample force.

Figure 14 illustrates how differences in phase relate to dif-
ferences in the measured frequency shift δfmeas and time to
first frequency shift peak tFP when the sample photocapaci-
tance risetime is faster than the inverse of the lock-in ampli-
fier or demodulation bandwidth. Figure 14(a) shows δfmeas

for a series of photocapacitance risetimes from 1 ns to 1 µs
with the magnitude of the change in cantilever tip-sample
force Fhν = −k0 × 0.06 nm. The time to first frequency
shift peak tFP becomes shorter at faster photocapacitance rise-
times. From Eq. (95), we know that the magnitude of the
force-induced phase shift ∆φf increases dramatically as τs
becomes faster than the cantilever inverse angular frequency
because the exponential risetime change in force starts to con-
tain significant content at the cantilever resonance frequency.
To illustrate the importance of this effect, we show δfmeas for
a series of photocapacitance risetimes from 1 ns to 1 µs with
the magnitude of force-induced frequency shift held constant
as ∆φf = −6 mrad, equivalent to ∆φf for the fastest photo-
capacitance risetimes in Fig. 14(a). With ∆φf held constant,
there is very little change in tFP over the range of photoca-
pacitance risetimes. This result is expected because the max-
imum bandwidth at which the cantilever amplitude and phase
can be demodulated is a fraction of the cantilever’s resonance
frequency: b ≤ f0/4, for example. For a 500 kHz cantilever,
dynamics faster than 1 to 10 µs are significantly blurred by
the demodulation filter. For this reason, dynamics on these
fast time scales are typically detected with pump-probe based
techniques [47, 48, 51, 54, 78–80].

Fig. 14(c) plots the time to first frequency shift peak calcu-
lated from the data in Fig. 14(a) and (b). We also plot in green
the time to first frequency shift peak calculated by fixing the
photocapacitance risetime τs = 100 ns and varying the mag-
nitude of the force-induced phase shift ∆φf from 0 mrad to
−6 mrad. Together, the blue and green curves show that tFP

is not a reliable measure of the sample photocapacitance rise-
time τs. Figure 14(d) plots the same tFP data versus the force-
induced phase shift ∆φf . The three different curves from
Fig. 14(c) collapse to a single line, with tFP linearly related
to ∆φf over this range of time constants and force-induced
phase shifts. The theory and simulations indicate that for
photocapacitance risetimes τs much smaller than the inverse
filter bandwidth 1/(2πb), FF-trEFM mainly detects the total
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decreasing

(a) (b) (c) (d)

FIG. 14. (a) Demodulated frequency shift versus pulse time for simulated photocapacitance dynamics with risetime τs = 1 ns to τs =
1 µs, keeping the light-induced tip-sample force Fhν = −k0 × 0.06 nm. (b) Demodulated frequency shift versus pulse time for simulated
photocapacitance dynamics with risetime τs = 1 ns to τs = 1 µs keeping the total phase shift induced by the change in tip-sample force
constant: ∆φf = −6.0 mrad. The steady-state phase shift ∆φss = −99.5 mrad for both (a,b). (c) The time-to-first frequency shift tFP

calculated from the data in (a,b) as well as a series of data points with τs = 100 ns and ∆φf = 0 mrad to −6 mrad. (d) The time-to-first
frequency shift tFP plotted versus the force-induced phase shift ∆φf .

magnitude of the force-induced phase shift ∆φf . The force-
induced phase shift depends on both the magnitude of the
change in force and the photocapacitance risetime. To relate
tFP to a specific photocapacitance risetime, additional infor-
mation must be known or assumed about the magnitude of the
abrupt change in tip-sample force.

To illustrate this point, we show the predicted tFP by con-
volving the modeled phase φmod with a low-pass lock-in
amplifier filter with cutoff frequency ωf . In this case, the first
frequency shift peak occurs at

tFP = (ωf − γ)−1 log

(
ωf(τ

−1
s − γ)(∆φssωf −∆φfγ)

γ2(τ−1
s − ωf)(∆φss −∆φf)

)
.

(100)
To connect this result back to experimental parameters, we
expand to first order in τs and ∆φf near zero, and find

tFP = (ωf−γ)−1 log

(
ω2

f

γ2

)
+τs+

∆C ′hν
k1QA0ωf∆C ′′hν(1 + ω2

1τ
2
s )
.

(101)
In this limit, the time to first frequency shift peak is the sum of
a constant factor related to the cantilever damping parameter
(or ringdown time) and the chosen filter function, the sought-
after photocapacitance risetime, and a factor that depends on
the light-induced changes to the capacitance derivatives and
the photocapacitance risetime. Figures 13 and 14 and the
previous results of Karatay and co-workers [46] show that
for small photocapacitance risetimes (τs < 2π/ω1) the final
term dominates and unfortunately, the measured tFP depends
nonlinearly on τs with a coefficient that is sensitive to small
changes in ∆C ′hν/∆C

′′
hν . In contrast, pk-EFM can detect

small changes in photocapacitance risetime because the mea-
surement indirectly senses the total cantilever phase accumu-
lated versus time using a series of voltage and light pulses
[55]. The effect of the step-like change in tip-sample force

(∆C ′hν) is explicitly accounted for. For a photocapacitance
having single-exponential kinetics, the resulting phase shift
for short photocapacitance risetimes is

∆φ(tp) =
∆C ′hνV

2

2A0k1

ω1

1 + τ2
s ω

2
1

(
tp − τs + τse

−tp/τs
)
,

(102)
where tp is the pulse time. By measuring the phase shift ∆φ
versus the pulse time tp, the photocapacitance risetime τs can
be extracted along with ∆C ′hν .

VI. IMPEDANCE SPECTROSCOPY EFM THEORY

In this section we analyze experiments where the assump-
tion that tip charge responds instantaneously to changes in the
tip-sample separation or voltage breaks down. We consider
steady-state measurements so the assumption that there are
no abrupt changes in the tip-sample force or force-gradient
is valid. This case covers dissipation measurements [10],
local dielectric spectroscopy (LDS) [27, 28], and broadband
local dielectric spectroscopy [22, 29]. In the literature, these
experiments are normally described by assuming a time- or
frequency-dependent complex capacitance, a basically phe-
nomenological approach that fails to clearly separate the con-
tributions of the tip and sample impedance.

When the assumption that tip change responds instanta-
neously breaks down, the Lagrangian equations of motion
derived in Sec. II are, in general, a set of coupled, nonlinear,
differential algebraic equations. As shown in the derivations
of Sec. II A and II B, the Lagrangian equations of motion can
be reduced to a set of coupled, nonlinear ordinary differen-
tial equations. Even this simplification, however, necessi-
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FIG. 15. Impedance spectroscopy model of EFM. (a) We consider experiments at steady-state conditions with significant sample impedance
Z. (b) The Lagrangian model for the the experiment.

tates keeping track of numerous extraneous charge variables,
requires starting over if the model of the sample and wiring
impedance is changed, and most importantly, retains the cou-
pling between the evolution of the charge variables and the
evolution of the tip position. In Sec. II A we addressed these
limitations by linearizing both the charge and displacement
coordinates about some equilibrium position. This approach
is not suitable when large modulation voltages are applied,
which is the case for experiments such as local dielectric
spectroscopy and frequency-modulated Kelvin probe force
microscopy (FM-KPFM). Motivated by the idea that the cou-
pling between the charge and tip position is in some sense
small, we make a carefully controlled set of approximations
designed to decouple the charge and tip position so that we can
relate the measured observables (cantilever frequency shift
and sample-induced dissipation) to the sample impedance and
cantilever response function.

We start from the Lagrangian, dissipation, and generalized
forces developed according to the procedure in Sec. II. We
describe the sample with a general impedance Z that could in
principle contain any number of linear circuit elements or even
impedances such as the Warburg diffusion element that cannot
be expressed using only linear circuit elements [81] (Fig. 15).
Our experimental observables are the cantilever frequency and
dissipation so we focus on the equation of motion associated
with the tip position x (Eq. (??)) and the tip-sample electro-
mechanical force

Fts(qT, x) =
C ′T(x)q2

T

2CT(x)2
, (103)

which depends on the cantilever tip charge and the position-
dependent tip capacitance. Equation (103) is only of limited
use because we need to solve a system of coupled, nonlinear
differential equations to determine qT and x. In Sec. II A,
we proceeded by linearizing both the tip displacement x and
the tip charge qT. However, in this section, we are inter-
ested in modeling experiments that involve large amplitude,
high-frequency modulations of the tip charge, so we cannot
linearize the tip charge qT. Instead, we follow the series of
approximations and calculations outlined in Fig. 16. The first
assumption we make is that the tip oscillation is small so we
can linearize the equations of motion in x. The tip-sample

force then becomes

Fts =
1

2
C ′

q2
T

C2
+

1

2
C ′′q

q2
T

C2
x︸ ︷︷ ︸, (104)

where C = CT(0), C ′ = C ′T(0) and

C ′′q = C ′′ − 2
C ′2

C
∝
(
∂Fts

∂x

)
qT

(105)

describes the tip-sample force gradient at constant charge.
7 The first term in Eq. (104) describes the force detected
in amplitude-modulation EFM or KPFM experiments. Both
terms contribute to the force gradient because the charge qT

oscillates as the tip oscillates. For writing experimental quan-
tities, it is convenient to define the difference between C ′′q and
C ′′,

∆C ′′ = 2
C ′2

C
. (106)

Some of the charge variables qi contain a term propor-
tional to qix, which arises from linearizing terms involving
the tip capacitance. For example, in the simplest case where
the sample impedance is purely resistive (Z = RS, the case
treated in Sec. II A), linearizing Eq. (27) gives

V (t) = q̇TRS +
qT

C
− C ′

C

qT

C
x︸ ︷︷ ︸, (107)

where we assume Φ = 0 here and throughout this section.
The underbraced terms in Eqs. (104) and (107) couple the
evolution of the tip position and the tip charge. The second
assumption we make is that the coupling is small so that we
can treat the underbraced terms as perturbations of order ε and
apply perturbation theory to dramatically simplify the system

7 Consider a constant applied tip-sample voltage V . At constant tip voltage
(tip charge responds instantaneously to changes in tip position), the force
gradient is

(
∂Fts
∂x

)
V

= 1
2
C′′(V −Φ)2. Similarly, at constant tip charge,

the force gradient is
(
∂Fts
∂x

)
q

= 1
2
C′′q (V − Φ)2.
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tip fixed

FIG. 16. An outline of the approximations necessary to describe EFM using impedance spectroscopy.

of differential equations [82]. We expand the tip position x in
powers of ε:

x = x(0) + ε x(1) + . . . , (108)

where x(0) is the zeroth-order approximation of the tip posi-
tion and x(1) is the first order correction to the tip position.
Analogously, we expand the tip charge qT and any other nec-
essary charge variables (abbreviated qi) as

qT = q
(0)
T + ε q

(1)
T + . . . , (109)

qi = q
(0)
i + ε q

(1)
i + . . . . (110)

By design, q(0)
T is independent of the tip position x (see

Eq. (107)). Physically, q(0)
T is the tip charge assuming the

tip is fixed at x = 0. For a given circuit and applied tip-
sample voltage, we determine q(0)

T using ordinary circuit anal-
ysis techniques. We are interested in experiments that probe
frequency shift or dissipation at steady state, so we can neglect
transients and use the transfer function between the tip voltage
drop Vt and the applied tip-sample voltage V to determine qT:

Ĥ(ω) =
V̂t(ω)

V̂ts(ω)
=

1/(jωC)

Z(ω) + 1/(jωC)
, (111)

where Z is the sample impedance and V̂ denotes the Fourier
transform of V with respect to time. The Fourier transform of
the zeroth order tip charge is

q̂
(0)
T (ω) = C Ĥ(ω)V̂ts(ω). (112)

Next we can determine the zeroth order cantilever position
x̂(0) which is the sum of an oscillation at frequency ω (ampli-
tude A0 determined by the driving force Fdr) and the small
oscillation induced by the zeroth order tip-sample force,

F
(0)
ts =

1

2

C ′q
(0)
T q

(0)
T

C2
. (113)

In the frequency domain, the additional oscillation induced by
q

(0)
T is

x̂Fts
(ω) = χ̂(ω)F̂

(0)
ts (ω), (114)

where

χ̂(ω) =
1

k0

(
1− ω2

ω2
0

+
jω

Qω0

)−1

(115)

is the transfer function of the oscillator and

F̂
(0)
ts (ω) =

1

2

C ′

C2
[q̂

(0)
T ∗ q̂(0)

T ](ω) (116)

is the Fourier transform of the zeroth order tip-sample force,
with ∗ denoting convolution in the frequency domain. We
can describe EFM force measurements with just Eq. (114).
In order to describe force-gradient measurements, we will
need to compute F (1)

ts , which will re-introduce the coupling
between the tip charge and tip position and cause small
changes in the cantilever’s amplitude, frequency and phase.

At this point we have zeroth-order approximations for the
tip charge and tip position. Next we determine the addi-
tional charge oscillation q

(1)
T induced by the oscillating tip.

The sample impedance is unchanged and because we have
assumed the tip oscillation is small, the tip capacitance during
each oscillation is approximately constant. The first order tip
charge is driven by the effective voltage source

Vx =
C ′

C2
q

(0)
T x(0). (117)

The resulting first order correction to the tip charge is

q̂
(1)
T (ω) = C Ĥ(ω)V̂x(ω), (118)

where the transfer function Ĥ is given by Eq. (111) and the
Fourier transform of the effective voltage source is

V̂x(ω) =
C ′

C2
[q̂

(0)
T ∗ x̂(0)](ω). (119)

Finally, we can determine the first-order correction to the
tip-sample force, and therefore determine how the cantilever
amplitude and frequency depend on sample properties and the
applied modulation voltage. Our final approximation is that
this first-order correction is sufficient to approximate the can-
tilever frequency shift and sample-induced dissipation. The
first-order correction to the tip-sample force is

F
(1)
ts =

C ′q
(0)
T q

(1)
T

C2
+

1

2
C ′′q

q
(0)
T q

(0)
T x(0)

C2
. (120)
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It is useful to recall the limiting behavior of the tip-sample
force, frequency shift, and sample-induced dissipation in the
case of a purely resistive sample (Sec. II A). In the limit
that the sample impedance Z(ω0) is large compared to the
tip impedance 1/(jω0C), the tip charge remains constant
throughout the oscillation cycle so that q(1)

T = 0. In this
case, the force gradient is determined entirely by C ′′q , which
is related to the change in electric field between the tip and
sample at constant charge.8 The usual approximation is
that the sample impedance Z(ω0) is negligible compared to
the tip impedance so that the tip charge responds instanta-
neously to any change in tip position. In this case, q(1)

T =

C ′2q
(0)
T x(0)/C2 and the force gradient reduces to 1

2C
′′Vt(t)

2.
Both the oscillating charge induced by the oscillating tip and
the effect of the oscillating tip on the electric field between tip
and sample contribute to the measured force gradient. Note
as well that as long as the tip voltage is not determined from
the tip position using feedback, the oscillating force caused by
the second term in Eq. (120) will be purely in phase with the
cantilever oscillation and cause a frequency shift. In contrast,
the first term can give rise to a frequency shift or dissipation.

To determine the frequency shift and sample-induced dissi-
pation, we first take the lock-in amplifier signal to be

FLIA = F
(1)
ts e−jω0t, (121)

where we assume that the oscillation induced by the drive
force is x = A0 cos(ω0t). The real part of F̂LIA(0) cor-
responds to a force in phase with the cantilever oscillation,
which causes a frequency shift

∆f = − f0

2k0

Re F̂LIA(0)

A
, (122)

while the imaginary part of FLIA corresponds to a force out of
phase with the cantilever oscillation, which causes a sample-
induced dissipation

Γs = − 1

ωc

Im F̂LIA(0)

A
. (123)

In many experiments, we modulate the tip voltage and
detect the frequency shift at some non-zero frequency. In this
case, we isolate the force component responsible for a fre-
quency shift by taking

Fin-phase = Fts cos(ω0t), (124)

and then obtain the frequency shift as a function of frequency
by taking the Fourier transform,

∆f̂(ω) = − f0

2k0

F̂in-phase(ω)

A
, (125)

8 Recall that for an infinite parallel plate capacitor, the electric field E is
independent of the distance between the plates for a fixed charge.

where ∆f̂(ω) is a complex number representing the output
of both the X- and Y-channels of a lock-in amplifier set
to frequency ω. Below, we apply the procedure outlined
in Eqs. (111)–(125) to determine the frequency shift and/or
sample-induced dissipation in different experiments as a func-
tion of the sample impedance.

A. Frequency and dissipation versus voltage

We first consider applying a constant tip-sample voltage
Vts = V + Φ and driving the cantilever at its resonance fre-
quency using a phase-locked-loop controller (PLL).9 Using
the procedure outlined above, we obtain the cantilever fre-
quency shift

∆f = − f0

4k0

(
C ′′q + ∆C ′′Re

(
Ĥ(ω0)

))
V 2 (126)

and sample-induced dissipation

Γs = − 1

2ω0
∆C ′′ Im

(
Ĥ(ω0)

)
V 2, (127)

where we have assumed that the sample impedance Z has a
resistive component so that Ĥ(0) = 1. In the limit that the
sample impedance Z = RS, we recover the results derived in
Sec. II A.

B. Local dielectric spectroscopy

In local dielectric spectroscopy (LDS), the applied tip-
sample voltage is Vts = Vm cos(ωmt) with Vm the
modulation-voltage amplitude and ωm the modulation-voltage
frequency. The cantilever is driven at its resonance frequency
using a PLL. The cantilever frequency shift component at a
frequency 2ωm is monitored with a lock-in amplifier as the
frequency ωm is stepped from low to high frequency, with
the high frequency limit still significantly less that the can-
tilever resonance frequency. The frequency shift, in this case,
is found to be

∆f̂(2ωm) = −f0V
2
m

8k0

(
C ′′q + ∆C ′′H̄(ωm, ω0)

)
Ĥ2(ωm),

(128)
where H̄ is the average response at frequencies ωm ± ω0:

H̄(ωm, ω0) =
1

2

(
Ĥ(ωm + ω0) + Ĥ(ωm − ω0)

)
. (129)

9 In the experiments of Ref. 22, we measured the cantilever frequency and
amplitude after waiting a delay time Tdelay ≥ 3τr, with the ringdown time
τr = 4πf−1

0 Q. The delay allowed the cantilever time to settle to a new
amplitude that reflected any dissipation caused by the tip-voltage.
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FIG. 17. Analytical and numerical analysis of local dielectric spec-
troscopy. Comparison between frequency shift determined from
numerical simulations (points) and the impedance-theory approx-
imation (lines). Simulation parameters and details are given in
Appendix A.

In LDS, H̄(ωm, ω0) is typically well-approximated by
Re Ĥ(ω0) because ωm � ω0. We see that the experiment
mainly probes the response of sample charge at the modula-
tion frequency ωm.

To show that the first order perturbation theory approxi-
mation is good, we compare the analytic approximation of
Eq. (128) to numerical simulations of the equations of motion
for a sample impedance that shows dynamics over multiple
timescales (Fig. 19 and Appendix A). Figure 17 shows the real
and imaginary components of ∆f̂(2fm), which correspond to
the outputs of the X- and Y -channels of a lock-in amplifier
set to 2fm at various sample interfacial resistances RI. There
is good agreement between the numerical simulations (points)
and analytic approximation (lines) across the entire range of
modulation frequencies.

C. Broadband local dielectric spectroscopy

While local dielectric spectroscopy probes sample charge
at frequencies ωm � ω0, broadband local dielectric spec-
troscopy (BLDS) probes the response of sample charge at
higher frequencies by exploiting the nonlinear relationship
between applied voltage and frequency shift to mix a high
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FIG. 18. Analytical and numerical analysis of broadband local
dielectric spectroscopy. Comparison between frequency shift deter-
mined from numerical simulations (points) and the impedance-
theory approximation (lines). Simulation parameters and details are
given in Appendix A.

frequency signal to a convenient intermediate frequency. In
BLDS, the tip-sample voltage is

V (t) = Vm

(
1

2
+

1

2
cos(ωamt)

)
cos(ωmt), (130)

with Vm the modulation-voltage amplitude, ωm the
modulation-voltage frequency, and ωam the amplitude-
modulation frequency. The amplitude-modulation frequency
ωam is a convenient intermediate frequency; it must be within
the PLL frequency detection bandwidth (ωam/(2π) < 1 kHz,
typically). The cantilever is driven at its resonance frequency
using a PLL. The cantilever frequency shift component at
a frequency ωam is monitored with a lock-in amplifier as
the modulation frequency ωm is stepped from low to high
frequency. The frequency shift is

∆f̂(ωam;ωm) = −f0V
2
m

16k0

[
C ′′q +∆C ′′Re

(
H̄(ωm, ω0)

)]
|Ĥ(ωm)|2,
(131)

where H̄ is the average response at frequencies ωm ± ω0

(Eq. (129)). In contrast to LDS, which retains information
about both the real and imaginary components of the sample
response at the modulation frequency, in BLDS the frequency
mixing necessary to measure the response of sample charge at
high frequencies results in the loss of phase information.

Just as for LDS, we compare the analytic approximation
for the BLDS frequency shift in Eq. (131) to numerical simu-
lations of the equations of motion (Fig. 19 and Appendix A).
Figure 18 shows ∆f̂(fam) versus the applied modulation fre-
quency at various sample interfacial resistances RI. There is
good agreement between the numerical simulations (points)
and analytic approximation (lines) across the entire range
of modulation frequencies. Overall, the procedure outlined
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in this section provides a way to analyze any steady-state
force or force-gradient measurement for an arbitrary sample
impedance.

D. Parallel resistance and capacitance sample impedance

Just as in impedance spectroscopy, a specific model of the
sample impedance is needed to extract relevant information
about the sample from these experiments. Here we describe a
model that was useful in interpreting the experimental results
in Ref. 22. We model the sample using a parallel resistance
RS and capacitance CS so that the sample impedance Z =

(R−1
S + jωCS)

−1. In this case, the transfer function Ĥ is

Ĥ(ω) =
RSCSω − j

RS(CS + CT)ω − j
. (132)

The circuit is a lag compensator with time constant τ and gain
parameter g given by, respectively,

τ = RS(CS + CT) and g = (CS + CT)/CS. (133)

This model provides an intuitive way to interpret the rep-
resentative BLDS data of Fig. 2. As the light intensity is
increased (from bottom dark points to top light points), the
decrease in ∆f occurs at higher modulation frequencies, indi-
cating that the time constant τ decreases as the light intensity
increases. According to Eq. (133), the decrease in τ could be
caused by a decrease in sample resistance RS or a decrease
in sample capacitance CS. We can distinguish between these
two possibilities by examining the limiting behavior at high
frequencies. According to Eq. (132), at high frequencies
the transfer function H approaches CS/(CS + CT). In the
dark, ∆f approaches zero at high frequencies, which indicates
CS � CT. As a result, the time constant is relatively insen-
sitive to changes in the sample capacitance. Consequently,
τ ≈ RSCT. We can therefore ascribe the decrease in τ with
increasing light intensity to a decrease in sample resistance
RS. This conclusion is robust to the sample impedance model
used because even for a more complicated sample impedance
model, any resistances behave as an open-circuit at high fre-
quencies, and in the high frequency limit, only the capacitance
across the sample would be important. Moreover, the careful
analysis of the BLDS sheds light on the frequency shift and
dissipation versus light intensity data in Fig. 1(c) and (d). At
the point of maximum dissipation, RSCT = ω−1

0 . We can
use dissipation as a measure of the local sample resistance
(or conductivity) [10]. The clear separation of the tip capaci-
tance CT from the sample impedance Z is a major advantage
of the method presented here. In Ref. 22, the model helped
us relate changes in sample time constant and dissipation to
light-induced changes in the sample conductivity.

VII. CONCLUSIONS

The usual description of the EFM experiment (Eqs. (1) and
(2)) implicitly assumes that tip charge redistributes instan-
taneously as the tip oscillates and that the tip-sample force
and force-gradient do not change abruptly. In the Introduc-
tion we summarized a broad range of experiments where
these assumptions are violated. To lift these assumptions
we turned to Lagrangian mechanics to describe the coupled
motion of the tip charge, tip coordinate, and sample charge.
The resulting coupled differential equations are exact but non-
linear and insoluble; we linearize these equations to obtain
an approximate closed-form solution. This linearization is
a good approximation in the limit of small-amplitude charge
and position oscillations about equilibrium. Moving beyond
this approximation would bring in nonlinear oscillator physics
such as an amplitude-dependent frequency and bistability. In
contrast to high-resolution AFM experiments, these nonlinear
effects have not, to our knowledge, been significant in most
high-sensitivity EFM experiments carried out to date. The
Lagrangian-mechanics approach outlined here is neverthe-
less an excellent starting point for treating nonlinear effects
in electrical scanning-probe experiments. Nonlinear terms
would have to be measured experimentally, however, and the
associated nonlinear equations of motion solved numerically.
Within the small-amplitude approximation, we have devel-
oped an analytical framework (Sec. II) of closed-form equa-
tions for interpreting a broad range of EFM measurements
where the usually employed but often inapplicable adiabatic-
charge-redistribution and abrupt-∆k-change assumptions are
violated.

Sections III to V show how our framework can be used
to quantitatively analyze photocapacitance measurements that
involve abrupt changes in the tip-sample force and force gra-
dient when the light intensity or applied voltage is abruptly
changed. We derived how an abrupt change to the tip-sample
force induces an abrupt change in the cantilever’s amplitude
and phase, and used this result to obtain a new analytical
expression for the tFP observable in the FF-trEFM experi-
ment. Taken together with our prior analysis of the pk-EFM
experiment [55], we see that the results of Sections III to V
give us a framework for fully evaluating the sub-cycle time
resolution of ultrafast electrical scanning-probe experiments.
While we focused on the photocapacitive effects that were
most important for understanding the relevant experimental
results [45, 46, 55], our analysis also applies to situations
where the dominant factor is light- or voltage-induced changes
in the sample’s surface potential [49–51, 53, 54].

In Sec. VI, we introduced a procedure to relate frequency
shift and/or sample-induced dissipation during steady-state
EFM experiments to an arbitrary sample impedance Z. This
procedure helped us analyze frequency shift, dissipation,
local dielectric spectroscopy, and broadband local dielec-
tric spectroscopy measurements using a common framework
(Fig. 5(d–f)). The primary finding of Sec. VI is that Eq. (2),
ubiquitously employed to describe the FM-KPFM experi-
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ment, should be replaced by Eq. (126) when interrogating
any sample having finite resistance and capacitance. While
we focused in Sec. VI on analyzing light-induced changes to
the sample impedance, the model could also accommodate
light-induced changes to the surface potential Φ or describe
how the sample impedance would impact novel Kelvin probe
force microscopy measurements such as heterodyne KPFM
[83, 84], dissipative KPFM [85, 86], or open-loop KPFM
[87, 88] which seek to combine the spatial resolution of force-
gradient measurements with the temporal resolution of force
measurements. Our approach reveals how the signal in these
experiments changes when the sample impedance becomes
significant.

The general approach outlined in Sec. II and Sec. VI pro-
vide another possible, rigorous route to describe the tip-
sample interaction and cantilever parameters in piezoresponse
and electrochemical strain microscopy. In this case, an elec-
tromechanical model of the sample, with a sample displace-
ment variable, would be necessary. With such a model, the
Lagrangian formalism could be used to generate the coupled
equations of motion and the tip-sample force, frequency shift,
and friction could be derived.

The impedance theory description of EFM also provides an
interesting perspective on the photocapacitance experiments
discussed in the previous section. In the context of that theory,
an apparent increase in capacitance could be caused by an
increase in sample capacitance and/or a decrease in sample
resistance. Just as the combination of dissipation and broad-
band local dielectric spectroscopy was informative for the
perovskite materials of Ref. 22, performing photocapacitance
measurement in tandem with broadband local dielectric spec-
troscopy on the organic bulk heterojunction films of Refs. 45
and 55 could help resolve the origin of the photocapacitance
signal.
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Appendix A: Impedance spectroscopy simulations

This appendix lays out how the simulations shown in
Sec. VI were performed. First we applied the procedure
of Sec. II to the circuit shown in Fig. 19. This procedure
generates eight equations: one for the tip position x; five
for the charge variables qT, qS, qI, qRi, and qRs; and two for
the Lagrangian multipliers λ1 and λ2. In the limit that the
tip resistance RT approaches zero, there are two differential
equations and five algebraic equations for the charge variables
and Lagrangian multipliers. We reduce the dimensionality
of the system by solving for qT, qRi, qRs, λ1, λ2 in terms of the
remaining variables qS, qI. The eight differential and algebraic
equations are reduced to three differential equations:

mẍ = −mω0x− 2γmẋ+
C ′T(x)q2

T

2C2
T (x)

+ Fdr(t), (A1)

RIq̇Ri = −qRi

CI

+
qRs

CI

, and (A2)

RSq̇Rs = −
(

1

CS + CT(x)
+

1

CI

)
qRs +

qRi

CI

+
CT(x)

CS + CT(x)
V (t),

(A3)

with the tip charge given by

qT =
CT(x)

CS + CT(x)
qRs +

CSCT(x)

CS + CT(x)
V (t). (A4)

So far we have re-written our equations of motion in a form
that will be easier to simulate numerically but have not intro-
duced any approximations. The equations of motion above
were linearized in x about x = 0. The resulting equations of
motion, shown below, were used in the simulations:

ẋ = p/m, (A5)

ṗ = −mω2
0x− 2γp+

C ′q2
T

2mC2
+ ε

C ′′q q
2
T x

2mC2︸ ︷︷ ︸
Fts/m

+
Fdr(t)

m
, (A6)

q̇Ri = − qRi

CIRI

+
qRs

CIRI

, (A7)

q̇Rs = −
(

1

CS + C
− ε C ′x

(CS + C)2
+

1

CI

)
qRs

RS

+
qRi

RSCI

+

(
C

CS + C
+ ε

CSC
′x

(CS + C)2

)
V (t)

RS

. (A8)
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FIG. 19. A circuit illustrating the types of dynamics observed in
perovskite and organic-semiconductor solar cells.

For both the LDS simulations of Fig. 17 and the BLDS
simulations of Fig. 18, the cantilever mechanical parame-
ters were the spring constant k0 = 3.5 µN µm−1, quality
factor Q = 26 000, and angular resonance frequency ω0 =
2π×0.065 MHz, so that the cantilever mass wasm = 21.0 ng,
and the linear damping parameter was γ = 7.85× 10−6 µs−1.
The drive force was Fdr(t) = 0 and the initial cantilever
amplitude was A0 = 0.05 µm. The tip-sample capaci-
tance parameters were CT(x = 0) = C = 1× 10−3 pF,
C ′ = −1.80× 10−4 pF µm−1, C ′′ = 1.3× 10−4 pF µm−2

so that C ′′q = 6.5× 10−5 pF µm−2 (Eq. (105)). As defined
in Fig. 19, the sample impedance parameters were RS =
200 MΩ, CS = 1× 10−3 pF, and CI = 1× 10−3 pF.
The value of the resistance RI is given next to each trace
in Figs. 17 and 18. The given units were those used in
the simulation. For LDS, the applied tip-sample voltage
was V (t) = Vm sin(ωmt) with the modulation voltage
Vm = 5 V. For BLDS, the applied tip-sample voltage
was V (t) = Vm( 1

2 + 1
2 cosωamt) sin(ωmt), with Vm =

5 V and the amplitude-modulation frequency ωam = 2π ×
160× 10−6 MHz (Eq. (Eq. (130))).

The simulations were performed in Python using the odeint
method in Scipy [90], which calls the LSODE solver. Each
LDS experiment was simulated for 40 000 µs and each BLDS
experiment was simulated for 20 000 µs. The initial cantilever
state was x = A0, p = 0. Simulation transients were avoided
by defining the initial charge variables qRi and qRs using the
appropriate response function:

qRs = V
C + CCIRIs

1 + (RI +RS)CTSs+RICIs(1 +RSCTSs)
(A9)

and

qRi = V
C

1 + (RI +RS)CTSs+RICIs(1 +RSCTSs)
, (A10)

where s = jω, CTS = C + CS, and the charges at t = 0 are
determined by setting V = Vm exp(jωt − jπ/2) and evalu-

ating the real part of qRs and qRi at t = 0 for ω = ωm. While
LSODE controls the integration method, order, and step size,
inspection of the full output of the solver showed that a 5th
order backward differentiation formula (BDF) Gear method
was typically used with time steps of approximately 0.2 µs.
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