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Abstract
This paper is devoted to develop an efficient meshfree method based on radial basis functions
(RBFs) to solve a system of partial differential equations arising from pricing options under
the regime switching model. For global RBF methods, one of the major disadvantages is the
computational cost and ill-conditioning associated with the dense linear systems that arise.
So, we employ one of the local meshfree methods known as radial basis function based finite
difference method. Then with an operator splitting method, sparse and well-conditioned
system of complementarity problems are solved very fast for the American option. Also,
the uniqueness of solution is proved for the discretized system of equations. Numerical
examples presented in the last section illustrate the robustness and practical performance of
the proposed algorithm for pricing European and American options.

Keywords Radial basis functions · Finite difference · Option pricing · Regime switching
model

1 Introduction

It is well known that a financial model which follows a stochastic process having constant
volatility is not consistent with market prices. Recent studies have shown that models based
on stochastic volatility, jump diffusion, and regime switching processes produce better fits to
the market data. Unlike the standard Black–Scholes model [8] which assumes that the under-
lying assets follow a geometric Brownian motion with constant mean return and volatility,
the rationale behind the regime switching framework is that the market may switch from time
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to time among different regimes. In short-term political or economic uncertainty, this prop-
erty of regime switching model help us to account for certain periodic or cyclic patterns. In
many practical researches such as [4] regime switching model has been used widely. Recent
empirical research suggests that regime switching model describe the time series properties
of several important financial variables, including interest rates and exchange rates, more
accurately than single-regime alternatives. Some of regime switching applications are insur-
ance [23], electricity markets [22,44], natural gas [1,13], optimal forestry management [12],
trading strategies [14], valuation of stock loans [51], and interest rate dynamics [29].

In this work, we present a numerical method to evaluate European and American options
under the regime switching model. The prices of European and American options under
the regime switching are derived by solving a system of PDEs. A variety of numerical
methods are proposed to price an European or American option when the underlying asset
follows a regime switching model. In [5] a global RBF collocation method for pricing the
American options is presented. For pricing American options under a regime switching
stochastic process, in [26] both explicit and implicit discretizations with the focus onmethods
which are unconditionally stable are investigated, and they conclude, their technique which
is implemented for the American problem as an abstract optimal control problem; hence they
can use their results to more general problems as well. In [33], author used a tree method
for pricing European and American options under the regime switching model, and under
some conditions positivity of branch probabilities is granted. Also, this method is considered
in [34] for pricing both European and American options in a regime switching jump diffusion
model with state-dependent regime switching rates.

In [30], authors present a combination of the penalty method for dealing with linear
complimentary problem (LCP) and an exponential time differencingCrank–Nicolsonmethod
employed for time discretization for numerical solution of the American option pricing
problem in the regime switching model. The numerical method based on multivariable front-
fixing transformation is employed in [16] for solving a system of PDE with a free boundary
arising in the American option pricing problem under the regime switching model. In [31],
a numerical scheme via a combination of an implicit implementation of the θ -method and a
penalty scheme for solving a regime switching American option pricing model is developed.
Also, in [50] a second-order method based on exponential time differencing approach is
proposed for solving American options under multi-state regime switching. For dealing with
free boundary problems, they use a penalty method, and stability and convergence of the
method are considered.

Iterated optimal stopping method has been used as the basis of a numerical algorithm for
American options under the regime switching in [32]. Then local policy iteration method
as an alternative method has been suggested in [26,40]. Also, comparison of these two
methods has been done for American options under the regime switching model in [2].
In [47] a combination of finite element method with Crank–Nicolson time discretization
technique and a simple lattice method are proposed for numerical valuation of American
options under a regime switching model. Also, stability analysis of the method is discussed.
Some conjectures about the position of early exercise prices were presented in [47], and then
in [24] those conjectures are proved.

Meshfree methods based on RBFs are of general interest for solving PDEs, because they
can provide high-order or spectral convergence for smooth solutions in complex geometries.
In [3,17], meshfree methods based on RBF approximation have been shown to perform better
than finite difference methods for option pricing problems in one and two spatial dimensions.
Similar problems have also been solved in [25,46]. Also, in [38], a meshfree radial basis
point interpolation method is used for solving the Black–Scholes model for European and
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American options which has some advantages in compare with the conventional meshfree
methods. Global radial basis function method is employed in [36] for pricing of financial
contracts, and also authors have shown that the proposed scheme is second order accurate in
time and spectrally accurate in space for constant shape parameter.

However, all of these papers employ global RBF collocation methods, leading to dense
linear systems, and computational costs that become prohibitive as the number of dimen-
sions increase. Localized RBF approximations such as the RBF partition of unity collocation
method (RBF-PUM) and RBF-FD give an answer to deal with these issues. In [20] local
meshless approach based on radial basis functions generated by finite difference is presented
to price the options under the Black–Scholes model. Also, they derived that the proposed
method is unconditionally stable. In [35], we price American options under Heston’s stochas-
tic volatility model using RBF-PUM applied to a linear complementary formulation of the
free boundary partial differential equation problem.

In the present paper, we use RBF-FD method in spatial discretization of a system of
partial differential equations arisen from European and American option pricing problem
under the regime switching model. Although RBF-FD method has been implemented in
various favors and contexts in the last 10 years, the first survey articles on RBF-FD are just
emerging in [18,19]. Thematrices formed during the localizedRBF-FDmethodwill be sparse
and, hence, will not suffer from ill-conditioning and high computational costs. For temporal
discretization, we apply the implicit method with two time levels. In American options, we
solve an sparse and well-conditioned disceretized LCP instead of free boundary problem by
using an operator splitting method defined in [28].

In the next section, we describe the regime switching model and a system of partial
differential equations for pricing European option, then we formulate the American option
pricing problem as an LCP. RBF-FD approximation is introduced in Sect. 3, then applied
for spatial discretizarion in Sect. 4. Time discretizarion for semidiscrete system of equations
arisen in European option as well as LCP derived from American option pricing problem
are presented in Sect. 5. Then, we prove that the full discrete system of equations has a
unique and stable solution in Sect. 6. Finally, in the last section, the accuracy and efficiency
of the proposed method is numerically investigated for European and American options, and
compared with existing methods in the literature.

2 Regime SwitchingModel

Suppose (Ω,F ,P) is a complete probability space, whereP is a reference physical prob-
ability measure. Let T denote the time index set [0, T ] of the model. We suppose that the
underlying asset switches among a finite number of states M := {1, 2, . . . ,m}, which is
modeled by a finite Markov chain X(t). Also, we can identify the state space of X(t) with
a finite set of unit vectors {e1, e2, ..., em}, where ei = (0, ..., 1, ..., 0) ∈ R

m . Then the stock
price process S(t) is assumed to follow the stochastic differential equation

dS(t)

S(t)
= rX(t)dt + σX(t)dW (t), t ∈ T

where rX(t) is the risk-free interest rate, σX(t) is the volatility of the asset S(t), and W (t) is a
standard Brownian motion, also rei and σei are constant when the economy is in the i th state
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at time t , that is, X(t) = ei . Then we have the regime generator of X(t) by an m ×m matrix

Q =
⎛
⎝

q11 . . . q1m
. . . . . . . . .

qm1 . . . qmm

⎞
⎠ .

From Markov chain theory [48], the entries of generator matrix satisfy

1. qi j ≥ 0 if i �= j .
2.

∑m
j=1 qi j = 0 for each i ∈ M .

Now, we let Vi (S(t), t) denote the time t price of an European option with asset price St at
regime X(t) = ei . Under the equivalent martingale measureQ, the risk-neutral value of this
option with exercise price S0 and time to maturity T is defined as its expected discounted
payoff given by

Vi (S(t), t) = E
Q

[
e−rX(t)(T−t)P(X(t))(S(T ))|X(t) = ei

]
,

where under each regime, the payoff for call option is defined by P(X(t))(S(T )) =
max(S(T ) − S0, 0) and for put option is defined by P(X(t))(S(T )) = max(S0 − S(T ), 0).

As in [11], using Itô’s differentiation rule and the fact that Vi (S, t) is a Q martingale,
Vi (S, t) satisfies the following regime switching partial differential equation

∂Vi (S, t)

∂t
+1

2
S2σ 2

i
∂2Vi (S, t)

∂S2
+ri S

∂Vi (S, t)

∂S
−ri Vi (S, t)+ < QV(S, t), ei >= 0, i ∈ M

(1)
with terminal condition

Vi (S, T ) = P(S), (2)

for (S, t) ∈ [0,∞)×[0, T )where P(S) is the payoff function,V(S, t) = (V1(S, t), V2(S, t),
. . . , Vm(S, t))T , < ·, · > is the usual inner product on Rm defined by

< QV(S, t), ei >=
∑

qilVl(S, t),

and constants ri and σi are the interest rate and volatility in the i th state, respectively.
Now, we consider the change of variables x = log( S

S0
) and τ = T − t , and letUi (x, τ ) =

Vi (S, t), denoted as the value of an option on the transformed space x for regime i soUi (x, τ )

satisfies the partial differential equation

∂Ui

∂τ
− RUi = 0, i ∈ M (3)

with initial condition
Ui (x, 0) = P(S0e

x ) =: g(x), (4)

for (x, τ ) ∈ R × (0, T ] where

RUi := 1

2
σ 2
i

∂2Ui

∂x2
+

(
ri − 1

2
σ 2
i

)
∂Ui

∂x
− riUi+ < QU, ei > . (5)

For simplicity, the operator R is separated into the following form

RUi = DUi+ < QU, ei >, (6)
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where the differential operator D defined by

DUi := 1

2
σ 2
i

∂2Ui

∂x2
+

(
ri − 1

2
σ 2
i

)
∂Ui

∂x
− riUi . (7)

In order to develop a numerical scheme for partial differential equation (3), we need to
impose some boundary conditions, so let the asymptotic behavior of the European call option
as

lim
x→−∞Ui (x, τ ) = 0, lim

x→∞[Ui (x, τ ) − S0(e
x − e−ri τ )] = 0, (8)

and the asymptotic behavior of the European put option is defined by

lim
x→−∞[Ui (x, τ ) − S0(e

−ri τ − ex )] = 0, lim
x→∞Ui (x, τ ) = 0. (9)

It is useful to mention that for numerical experiments, first we truncate the unbounded
domain in x ∈ (−∞,∞) direction with a bounded domain [xmin, xmax], so for boundary
conditions of European call option we have

Ui (xmin, τ ) = 0, Ui (xmax, τ ) = S0(e
xmax − e−ri τ ), (10)

and for European put option, boundary conditions are defined by

Ui (xmin, τ ) = S0(e
−ri τ − exmin ), Ui (xmax, τ ) = 0. (11)

In the following, we will give a PDE formulation to price an American option under the
regime switching model. An American option has the early exercise feature, so the optimal
exercise boundary is a free boundary and separates the stopping and continuation region. Let
Vi (S, t) denote the fair value of an American option at time t if the asset price at that time is
St = S, so Vi (S, t) satisfy the following free boundary value problem

⎧⎪⎨
⎪⎩

∂Vi (S,t)
∂t + 1

2 S
2σ 2

i
∂2Vi (S,t)

∂S2
+ ri S

∂Vi (S,t)
∂S − ri Vi (S, t)+ < QV(S, t), ei >= 0, S > S f

i (t)

Vi (S, t) = P(S), 0 ≤ S ≤ S f
i (t),

(12)
where P(S) is the payoff function, and S f

i (t) for i ∈ M denote the unknown free moving
exercise boundaries of the option.

For solving the free boundary problem (12), there are some techniques such as linear
programming [9] or penalty methods as in e.g. [39,52] and [42]. We consider the equivalent
formulation as a linear complementary problem (LCP), see e.g. [41]. To derive the equivalent
LCP, first we use the change of variables x = log( S

S0
) and τ = T − t similar to European

option, and let Ui (x, τ ) = Vi (S, t), denoted as the value of an option on the transformed
space x for regime i , so Ui (x, τ ) satisfies the following LCP

∂Ui

∂τ
− RUi ≥ 0,

Ui − g ≥ 0,(
∂Ui

∂τ
− RUi

)
(Ui − g) = 0, (13)

for i ∈ M where R and g are defined by (5) and (4). LCP (13) is equipped with initial
condition (4) and boundary conditions

lim
x→−∞Ui (x, τ ) = 0, lim

x→∞[Ui (x, τ ) − S0(e
x − 1)] = 0, (14)
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for call options, and boundary conditions

lim
x→−∞[Ui (x, τ ) − S0(1 − ex )] = 0, lim

x→∞Ui (x, τ ) = 0, (15)

for put options. Similar to European options, boundary conditions for truncated domain for
call and put options are defined by

Ui (xmin, τ ) = 0, Ui (xmax, τ ) = S0(e
xmax − 1) (16)

and
Ui (xmin, τ ) = S0(1 − exmin ), Ui (xmax, τ ) = 0, (17)

respectively.

3 RBF-FD Approximation

Consider a spatial domain Ω ⊂ R
d and a set of distinct points X = {x1, x2, . . . , xN } in Ω .

Also, let φ : Ω ×Ω → R be a kernel with the property φ(x, y) := φ(‖x− y‖) for x, y ∈ Ω ,
and ‖ · ‖ is the Euclidean norm. Kernels with this property known as radial functions. The
RBF interpolant for a continuous target function u : Ω → R known at the nodes in X takes
the form

Iu(x) =
N∑
j=1

λ jφ(‖x − x j‖). (18)

The interpolation coefficients {λ j }Nj=1 are determined by collocating the interpolantIu(x)
to satisfy the interpolation condition Iu(xi ) = u(xi ) for i = 1, 2, . . . , N . This results in a
symmetric system of linear equations

⎛
⎜⎜⎜⎝

φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xN‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xN‖)

...
...

. . .
...

φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎝

λ1
λ2
...

λN

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
λ

=

⎛
⎜⎜⎜⎝

u1
u2
...

uN

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
u

. (19)

When the points in X are chosen to be distinct and φ is a positive-definite radial kernel or an
order one conditionally positive-definite kernel onRd , the coefficient matrixA is guaranteed
to be non-singular, see [45]. Now, assume that u : Ω → R is a differentiable function.
Also, let L as a linear differential operator. We want to approximate L u at scattered grids
X with finite-difference-style local approximations. Consider any subset of X denoted by
Ωi = {x1, . . . , xn} containing n << N nodes which are nearest neighbors to xi measured
by Euclidean distance inRd .We refer toΩi as the stencil corresponding to xi . Approximation
to L u at xi involves a linear combination of the values of u over the stencil Ωi of the form

L (u(xi )) ≈
n∑
j=1

w j u(x j ), (20)

where weights {w j }nj=1 can be computed by RBFs, so this technique known as RBF-FD.
We can rewrite (20) as L (u(xi )) ≈ wui , so for computing RBF-FD weights, first of all, we
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prepare a local interpolant, so we have

Iu(x) =
n∑
j=1

λ jφ(‖x − x j‖), (21)

and its matrix-vector form isAiλ = ui , whereAi and ui are local distance matrix and known
data corresponding to stencil of xi , respectively. Unknown coefficients λ j are determined by
λ = A−1

i ui . Now, we apply the differentiation operator L to the both side of (21), then we
have

L (Iu(x)) =
n∑
j=1

λ jL (φ(‖x − x j‖)). (22)

Now, by collocating (22) at xi and writing matrix-vector form, we derive

L (u(xi )) = LΦ(xi )λ = LΦ(xi )A
−1
i ui . (23)

where LΦ(xi ) = [L φ(‖xi − x1‖),L φ(‖xi − x2‖), . . . ,L φ(‖xi − xn‖)]. By comparing
(20) with (23), we conclude w = LΦ(xi )A

−1
i .

The global RBF method for deriving differentiation matrix needs O(N 3) operations, and
leads to a dense matrix, but in RBF-FD method for each stencil, we need O(n3) operations
and there are N such stencils, so that the total cost of computing is O(n3N ), although we
do not take into account the cost of determining the stencil grids. Since n << N and n is
fixed as N increases, so that the total cost will be O(N ). For computing weights, we need to
compute the inverse of local distance matrix of order n×n for each stencil, and since distance
matrix depends only on distance of grid points, in uniform grids which we use in this study,
we only need to compute the inverse of local distance matrix once. Also, since computing
differentiation matrix for each stencil is independent to other stencils, so parallel algorithms
can be employed to increase the efficiency of RBF-FDmethod in high dimensional problems
and adaptive algorithms.

4 Spatial Discretization

For numerical techniques, we replace the unbounded domain {(x, τ ) | x ∈ R, τ ∈ (0, T ]}
with a bounded one [xmin, xmax]×(0, T ]where the values xmin and xmax, will be chosen based
on standard financial arguments, such that the error caused by truncating the solution domain
is negligible. Let X = {x0, x1, . . . , xN } ⊂ [xmin, xmax] such that xmin = x0 < x1 < · · · <

xN = xmax , and for each point x j , we choose an influence domain X j = {x1, x2, . . . , xn} ⊂
X which contains a local region formed by the n closest neighboring interpolation points to
x j . Local RBF interpolant for each regime is defined by

Ui (x, τ ) ≈ Ũi (x, τ ) =
n∑

k=1

λkφ(‖x − xk‖) (24)

where unknown {λk}nk=1 are determined by imposing the interpolation conditions and

solving linear system of equations Φ jλ j = Ũ j
i , where Φ j = [φ(‖xi − xk‖)]1≤i,k≤n ,

λ j = [λ1, λ2, . . . , λn]T and Ũ j
i = [Ũi (x1, τ ), Ũi (x2, τ ), . . . , Ũi (xn, τ )]T , regarding to this

fact that Φ j is invertible, so we have λ j = (Φ j )−1Ũ j
i .
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For each interior point x j ∈ X we apply differential operator (7) to the local interpolant
(24), so we have

DŨi (x j , τ ) =
n∑

k=1

λkDφ(‖x j − xk‖) =: Ψ
j
i Ũ

j
i (25)

where similar to previous section

Ψ
j
i = [Dφ(‖x j − x1‖),Dφ(‖x j − x2‖), . . . ,Dφ(‖x j − xn‖)](Φ j )−1. (26)

Now, by substituting local interpolant (24) and (25) in (3), locally we have

∂Ũ j
i

∂τ
= Ψ

j
i Ũ

j
i + < QŨ

j
, ei >, i ∈ M (27)

where Ũ
j = [Ũ1(x j , τ ), Ũ2(x j , τ ), . . . , Ũm(x j , τ )]T .

The above equation in the local form is equivalent to the following global form

∂Ũi

∂τ
= Ψi Ũi+ < QŨ, ei >, i ∈ M (28)

where ∂Ũi
∂τ

= [ ∂Ũi (x1,τ )
∂τ

,
∂Ũi (x2,τ )

∂τ
, . . . ,

∂Ũi (xN−1,τ )
∂τ

]T , Ũi = [Ũi (x1, τ ), Ũi (x2, τ ), . . . ,

Ũi (xN−1, τ )]T and Ψi is the mapping of Ψ
j
i from local to global by inserting zeros in

the proper locations. We can rewrite system of equations (28) as

∂Ũ
∂τ

= AI Ũ (29)

where AI = blkdiag(Ψ1, Ψ2, . . . , Ψm) + Q ⊗ I , Ũ = [Ũ1, Ũ2, . . . , Ũm] and blkdiag and ⊗
mean block diagonal and tensor product, respectively.

Similarly, for each boundary point x j ∈ X , we can choose an influence domain X j , and
let B as a boundary operator, so we have

BŨi (x j , τ ) =
n∑

k=1

λkBφ(‖x j − xk‖) =: Υ
j
i Ũ

j
i (30)

where

Υ
j
i = [Bφ(‖x j − x1‖),Bφ(‖x j − x2‖), . . . ,Bφ(‖x j − xn‖)](Φ j )−1, (31)

and in this paper, we consider Dirichlet boundary condition, so operator B is the identity
operator. Similar to what we have done for interior points, we can extend the local system to
the global form as

Υi Ũi = Gi , i ∈ M (32)

where Υi is the extension of Υ
j
i similar to the mapping of Ψ

j
i to Ψi , and Gi is related to

Dirichlet boundary condition.
To impose system of boundary conditions (32) to (29), for each block ofAI corresponding

to each regime, we insert two rows related to boundary grids derived in (32). Finally, we
conclude the following semidiscrete system of equations

∂Ũ
∂τ

= AŨ, (33)

where A is the discretization matrix corresponding to interior and boundary points.
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Similarly, for LCP (13), we get the following semidiscrete system of equations

∂Ũ
∂τ

− AŨ ≥ 0,

Ũ − g ≥ 0
(

∂Ũ
∂τ

− AŨ
)T

(Ũ − g) = 0. (34)

5 Time Discretization

Let �τ = T
M with integer M ≥ 1 be a given time step, and let temporal grid points τk =

k�τ for 0 ≤ k ≤ M . To apply time discretization for (33), we employ an often used
scheme known as the θ -method, with parameter θ ∈ [0, 1]. The choices θ = 1

2 and θ = 1
represent, respectively, the well-known Crank–Nicolson and backward Euler methods. Now,
let Ũk ≈ Ũ(τk), so for European option we have

Ũk+1 − Ũk

�τ
= θAŨk+1 + (1 − θ)AŨk, f or 0 ≤ k ≤ M − 1, (35)

then, linear system of equations

(I − θ�τA)Ũk+1 = (I + (1 − θ)�τA)Ũk , f or 0 ≤ k ≤ M − 1, (36)

with initial condition Ũ0 = g is derived.
One of the sources of error can arise when we use initial function (4) at the RBF-FD

grid points, since this function is discontinuous in their first derivatives. A useful notion in
the implementation of numerical method is that the value of a function on a grid represents
average value of the function over the surrounding grids rather than its value sampled at each
grid point [37] by

g(xi ) ≈ 1

h

∫ xi+ h
2

xi− h
2

g(x)dx,

and this makes the payoff function smooth at the strike price S0, and we use this technique
to improve the accuracy of RBF-FD numerical method especially near the strike price.

For American options, the most commonly used method for solving (34) is the projected
successive over relaxation (PSOR) method [27], but it is rather inefficient for finer space
discretization. In this paper,we propose time discretization schemebased on operator splitting
which was introduced by Ikonen and Toivanen in [28] to evaluate the price of the American
put option under the Black–Scholes model. The operator splitting method is based on the
formulation with an auxiliary vector Λ as follow

∂Ũ
∂τ

− AŨ = Λ,

Λ ≥ 0

Ũ − g ≥ 0

(Λ)T (Ũ − g) = 0. (37)
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By using the θ -method for time discretization of the semidiscrete system of equations (37),
we define approximations Ũk ≈ Ũ(τk) successively for k = 0, 1, . . . , M − 1 by

(I − θ�τA)Ũk+1 = (I + (1 − θ)�τA)Ũk + �τΛk+1

Λk+1 ≥ 0

Ũk+1 − g ≥ 0

(Λk+1)T (Ũk+1 − g) = 0. (38)

To apply operator splitting method for solving (38), each time step [τk, τk+1] is splitted
into two parts. First, an intermediate solution Ũ

k+1
for k = 0, 1, . . . , M − 1 is determined

by solving the modified system of linear equations

(I − θ�τA)Ũ
k+1 = (I + (1 − θ)�τA)Ũk + �τΛk , (39)

where Ũ0 = g, and the vector Λk+1 is given at the start of each time step.
The second stage is concerned with determining the approximation solutions Ũk+1 and

Λk+1 on the subinterval [τk, τk+1] by solving the problem

Ũk+1 − Ũ
k+1 = �τ(Λk+1 − Λk), (40)

with two inequality constraints and one equality constraint

Λk+1 ≥ 0, Ũk+1 − g ≥ 0, (Λk+1)T (Ũk+1 − g) = 0.

Values Ũk+1 and Λk+1 can be determined very fast at each spatial grid point independently
with the formulas

Ũk+1 = max{g, Ũk+1 − �τΛk}, Λk+1 = Λk + Ũk+1 − Ũ
k+1

�τ
. (41)

6 Stability Analysis

In this section, to apply RBF-FD discretization for operator D defined in (7), we show how
we can derive the exact RBF-FD formulas for first and second derivatives. In the following,
we use multiquadrics as RBFs, defined by

φ(‖x − y‖) =
√

ε2 + (‖x − y‖)2, (42)

where ‖ · ‖ is the Euclidean norm and ε is the shape parameter. Also, we assume that the
grid points in x direction are equidistance with step size h and n = 3 is the number of
grids in influence domain which are closest neighboring interpolation points to x j . Also,
in continue we derive the stability analysis of RBF-FD combined with θ method for full
discretized system of equations (36). In this system of equations, A is an sparse discretized
matrix derived by RBF-FD discretization for operator R defined by (5) which contains the
differential operator D defined by (7) and non-differential part < QU, ei >.

So, the first derivative of Ui (x, τ ) at x = x j is approximated by

∂Ui

∂x
(x j , τ ) = α j−1Ui (x j − h, τ ) + α jUi (x j , τ ) + α j+1Ui (x j + h, τ ), (43)

so, by substituting function Ui (x, τ ) by multiquadrics radial basis functions centered at
x j − h, x j , and x j + h, the unknown coefficients α j−1, α j and α j+1 are derived by solving
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a 3 × 3 linear system of equations, then we have

α j−1 = −α j+1 = − 1

4h

1 +
√
1 + 4h2

ε2√
1 + h2

ε2

, α j = 0. (44)

In the numerical experiments, we assume ε 
 h, so we get [6]

α j−1 = −α j+1 = − 1

2h

(
1 + h2

2ε2

)
, α j = 0, (45)

and since our grid points are equidistance, so for all j , we let

α = α j+1 = 1

2h

(
1 + h2

2ε2

)
, α j−1 = −α, α j = 0. (46)

Now, for second derivative of Ui (x, τ ) at x = x j let

∂2Ui

∂x2
(x j , τ ) = β j−1Ui (x j − h, τ ) + β jUi (x j , τ ) + β j+1Ui (x j + h, τ ), (47)

so, the unknown coefficients β j−1, β j and β j+1 are derived by

β j−1 = β j+1 =
2 +

(
h2

ε2
+ 2

)√
1 + 4h2

ε2
+ 5h2

ε2
+ 2h4

ε4

4h2
(
1 + h2

ε2

) 3
2

,

β j = −
2 +

(
h2

ε2
+ 2

)√
1 + 4h2

ε2
+ 3h2

ε2

2h2
(
1 + h2

ε2

) . (48)

Also, if we assume ε 
 h, and the gride points are equidistance, then we have [6]

β2 = β j−1 = β j+1 = 1

h2

(
1 + h2

ε2

)
, β1 = β j = − 2

h2

(
1 + h2

ε2

)
. (49)

Now, by substituting the above first and second derivative approximations in operator D
we get the following differential matrix

D = 1

2
σ 2
i

⎛
⎜⎜⎜⎜⎜⎝

β1 β2

β2 β1 β2
. . .

. . .
. . .

β2 β1 β2

β2 β1

⎞
⎟⎟⎟⎟⎟⎠

+
(
ri − 1

2
σ 2
i

)
⎛
⎜⎜⎜⎜⎜⎝

0 α

−α 0 α

. . .
. . .

. . .

−α 0 α

−α 0

⎞
⎟⎟⎟⎟⎟⎠

− ri I , (50)

finally,

D = tridiag

(
1

2
σ 2
i β2 −

(
ri − 1

2
σ 2
i

)
α ,

1

2
σ 2
i β1 − ri ,

1

2
σ 2
i β2 +

(
ri − 1

2
σ 2
i

)
α

)
, (51)

where tridiag means tridiagonal matrix.

Definition 1 [49]. A real n × n matrix A = [ai, j ] is a Z-matrix if ai, j ≤ 0 for all i �= j .

Definition 2 [43]. A real n × n matrix A = [ai, j ] with ai, j ≤ 0 for all i �= j is an M-matrix
if A is nonsingular and A−1 ≥ 0 (means all elements of A−1 must be nonnegative).
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In this paper, our mean about convergence of matrix A is ρ(A) < 1 where ρ(A) denotes the
spectral radius of A.

Lemma 1 Let A = [ai, j ] be an n×n Z-matrix, then the following statements are equivalent:

1. A is a nonsingular M-matrix.
2. There exists a vector v > 0 such that Av > 0.
3. A + I is nonsingular, and G = (A + I )−1(A − I ) is convergent.

Proof [7] ��
Regarding to Lemma 1, if in the second statement, we let v = 1 as a vector with all

elements one, and also let matrix A = [ai, j ] with ai, j ≤ 0 for all i �= j and ai,i > 0, then
Av > 0 is equivalent with diagonally dominance of matrix A.

Theorem 1 Matrix −D is a nonsingular M-matrix if

∣∣∣∣1 − 2ri
σ 2
i

∣∣∣∣ ≤ β2
α

≈ O( 1h ) for all i ∈ M

where α and β2 are defined by (46) and (49).

Proof To show matrix −D is a nonsingular M-matrix, it is sufficient to show that matrix −D
is diagonal dominant with positive diagonal entries, and nonpositive off-diagonal entries.
Since ri and σi are positive for all i ∈ M and β1 is negative, so ri − 1

2σ
2
i β1 > 0 which are

the diagonal entries of matrix −D. For off-diagonal entries of matrix −D, we should prove

1

2
σ 2
i β2 −

(
ri − 1

2
σ 2
i

)
α ≥ 0,

1

2
σ 2
i β2 +

(
ri − 1

2
σ 2
i

)
α ≥ 0, (52)

so by using assumption
∣∣∣∣∣1 − 2ri

σ 2
i

∣∣∣∣∣ ≤ β2

α
,

inequalities (52) are satisfied.
Now, we show that matrix −D is diagonal dominant. Since diagonal entries of −D are

positive and off-diagonal entries are nonpositive, so it is sufficient to show sum of all nonzero
entries of −D in each row is positive, and equivalently for matrix D, we should prove that
sum of all nonzero entries of D in each row is negative.

For the first row of D, we must show that sum of nonzero entries 1
2σ

2
i (β1 + β2) + (ri −

1
2σ

2
i )α − ri is negative. We know 2β2 + β1 = 0, so by substitute β2 + β1 = −β2, we get

1

2
σ 2
i (β1 + β2) +

(
ri − 1

2
σ 2
i

)
α − ri = −1

2
σ 2
i β2 +

(
ri − 1

2
σ 2
i

)
α − ri

and by using inequalities (52), − 1
2σ

2
i (β2) + (ri − 1

2σ
2
i )α ≤ 0, and −ri < 0, therefore

− 1
2σ

2
i β2 + (ri − 1

2σ
2
i )α − ri < 0.

For middle rows of D with three nonzero entries, sum of all nonzero entries of D in each
row is

σ 2
i β2 + 1

2
σ 2
i β1 − ri = 1

2
σ 2
i (2β2 + β1) − ri ,

since 2β2 + β1 = 0 and ri > 0 for all i ∈ M , so it is clear that sum of all nonzero entries of
D in each row for middle rows is negative.
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For the last row of D, we must prove that 1
2σ

2
i (β1 + β2) − (ri − 1

2σ
2
i )α − ri < 0. Similar

to the first row of D, we have

1

2
σ 2
i (β1 + β2) −

(
ri − 1

2
σ 2
i

)
α − ri = −1

2
σ 2
i β2 −

(
ri − 1

2
σ 2
i

)
α − ri

and by using inequalities (52), − 1
2σ

2
i (β2) − (ri − 1

2σ
2
i )α ≤ 0, and −ri < 0, therefore

− 1
2σ

2
i β2 − (ri − 1

2σ
2
i )α − ri < 0 is satisfied, and this completes the proof for the diagonally

dominant property. ��

Remark 1 In Theorem 1, if condition

∣∣∣∣1 − 2ri
σ 2
i

∣∣∣∣ ≤ β2
α

is satisfied, then we can derive matrix

−D is a nonsingular M-matrix. For a fixed value of shape parameter ε, and small enough
value for step size h, it is easy to see that β2

α
→ ∞, and this limit value show that for small

values of h, this assumption is easily available.

Remark 2 With properties of matrix Q given in Sect. 2, it is easy to derive that matrix −Q
is diagonal dominant with positive diagonal entries, and nonpositive off-diagonal entries, so
Lemma 1 grantees that matrix −A = −D−Q is a nonsingular M-matrix where matrix A is
defined by (33) as the discretization matrix .

Remark 3 Since −A is an M-matrix and nonsingular, so −θ�τA is also an M-matrix and
nonsingular. By using Lemma 1, it is easy to derive that (I − θ�τA) is nonsingular, then
linear system of equations (36) has a unique solution.

For discussion about the stability of RBF-FD method, let ek = Ũk
ex − Ũk

ap as a small

perturbation at kth time level, where Ũk
ex is the exact and Ũk

ap is the approximate solution

of (36). The equation for error ek+1 can be written as ek+1 = Gek , where G = (I −
θ�τA)−1(I + (1 − θ)�τA). The numerical scheme will be stable if as k → ∞, the error
ek → 0. This can be ensured provided ρ(G) < 1, where ρ(G) denote the spectral radius of
G. For the case of the Crank–Nicolson scheme (θ = 1

2 ), and regarding to the Lemma 1, the
condition ρ(G) < 1 and convergence of G is always satisfied provided −A is a nonsingular
M-matrix, then this shows that scheme is stable.

7 Numerical Results

In this section, we carry out some numerical experiments to evaluate the prices of European
and American options under the regime switching model. The truncated domain of the log
price for all examples are chosen to be [xmin, xmax] = [−1.5, 1.5] except example 3 for
T = 10 which we let [xmin, xmax] = [−2.5, 2.5], and as RBF for spatial discertization, we
select the multiquadric radial basis function defined by (42) with ε = 0.5 for all American
and European options, and we choose n = 3 as number of local nodes in each stencil. Also,
all experiments are performed on a PC with a 3.6 GHz Corei3 processor.

For European option under the regime switchingmodel, there exists an analytical solution,
so Error in tables refers to the difference between analytical and approximate solutions, but
for American option, analytical solution is not available, so in tables, Error refers to the
difference between successive numerical solutions following mesh refinements, given by

Error =
∣∣∣∣Ũi (�x,�τ) − Ũi

(�x

2
,
�τ

2

)∣∣∣∣ ,
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Table 1 Absolute errors for European call option values derived by RBF-FD method for N = 512 and
M = 256, a numerical PDE algorithm reported in [10], tree method presented in [33] and pseudospectral (PS)
method [15] at different stock prices with parameter set of Example 1

S Regime 1 Regime 2

RBF-FD [10] Tree [33] PS [15] RBF-FD [10] Tree [33] PS [15]

94 3.1e−04 4.1e−03 8.0e−04 4.1e−04 2.3e−05 9.9e−03 8.0e−04 8.3e−04

96 2.0e−04 5.7e−03 5.0e−04 5.0e−04 4.4e−06 1.1e−02 1.0e−04 8.7e−04

98 3.4e−05 6.9e−03 1.0e−03 6.5e−04 1.6e−04 1.2e−02 1.0e−04 1.0e−03

100 8.4e−05 7.7e−04 1.8e−03 7.6e−04 2.9e−04 1.3e−02 2.1e−03 1.2e−03

102 2.0e−04 8.1e−03 1.4e−03 8.7e−04 4.2e−04 1.3e−02 2.0e−04 1.3e−03

104 3.8e−04 8.2e−03 1.4e−03 1.1e−03 4.8e−04 1.4e−02 1.4e−03 1.4e−03

106 5.3e−04 7.9e−03 1.5e−03 1.2e−03 6.1e−04 1.3e−02 4.0e−04 1.5e−03

time(s) 0.213 32.04 0.213 32.04

cond 8.113 8.113

where �x = xmax−xmin
N and �τ = T

M are space and time step sizes, respectively. Also, Ratio
denotes the log2 ratio of errors defined by

Ratio = log2

⎛
⎝
∣∣∣∣∣∣
Ũi (�x,�τ) − Ũi (

�x
2 ,

�τ
2 )

Ũi

(�x
2 ,

�τ
2

)
− Ũi

(�x
4 ,

�τ
4

)
∣∣∣∣∣∣

⎞
⎠ .

Example 1 In this example, we consider European call option under the regime switching
model with parameters

(
r1
r2

)
=

(
0.05
0.05

)
,

(
σ1
σ2

)
=

(
0.15
0.25

)
, Q =

(−0.5 0.5
0.5 −0.5

)
, T = 1, S0 = 100

chosen from [33].An explicit closed-form formula for the arbitrage-free price of theEuropean
call option is available in [21]. In Table 1, for a list of stock prices, absolute errors for
RBF-FD method developed in the present paper for N = 512 and M = 256, a numerical
PDE algorithm proposed in [10], tree method presented in [33] and pseudospectral (PS)
method [15] by using Chebfun package are reported for comparison. Also, at the button of
Table 1, time(s) and cond stand CPU time in second and condition number of arisen linear
system, respectively.

Example 2 In this example, we consider the following parameters
(
r1
r2

)
=

(
0.1
0.05

)
,

(
σ1
σ2

)
=

(
0.8
0.3

)
, Q =

(−6 6
9 −9

)
, T = 1, S0 = 9

to price an American put option with two regimes. For different number of spatial grids and
time steps, results are derived by RBF-FD method including option Price, Error, Ratio and
CPU time(s) and presented in Table 2.

For more investigation about the efficiency of RBF-FD method, we define the following
maximum error

= max
xmin≤x j≤xmax

∣∣∣Ũi (x j , T ) − Ũ re f
i (x j , T )

∣∣∣ (53)
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Table 2 Numerical results of RBF-FD method for American put option with two regimes for Example 2

M N Regime 1 Regime 2

Price Error Ratio Price Error Ratio Time (s)

50 50 1.9699970 1.8813124 0.010

100 100 1.9714882 1.5e−03 1.8821686 8.6e−04 0.041

200 200 1.9718763 3.9e−04 1.942 1.8823926 2.2e−04 1.935 0.103

400 400 1.9719660 9.0e−05 2.113 1.8824414 4.9e−05 2.197 0.308

800 800 1.9719838 1.8e−05 2.333 1.8824491 7.8e−06 2.651 0.853

Table 3 Maximum error and
ratio for different number of
spatial grids N and time steps M
of RBF-FD method for American
put option with two regimes for
Example 2

M N Regime 1 Regime 2

Max error Ratio Max error Ratio

50 50 7.3e−03 6.5e−03

100 100 1.8e−03 1.998 1.6e−03 2.009

200 200 4.3e−04 2.100 3.7e−04 2.123

400 400 9.0e−05 2.246 7.7e−05 2.282

800 800 1.5e−05 2.523 1.5e−05 2.287

Table 4 American put option prices computed byRBF-FDwith�x = �τ = 0.01, FF-expl [16], ETD-CN[30]
and Tree [33] methods for two regimes for Example 2

S Regime 1 Regime 2

RBF-FD FF-expl ETD-CN Tree RBF-FD FF-expl ETD-CN Tree

6 3.4143 3.4196 3.4144 3.3507 3.3563 3.3503

7.5 2.5842 2.5886 2.5844 2.5033 2.5077 2.5028

9 1.9718 1.9713 1.9756 1.9722 1.8825 1.8817 1.8859 1.8819

10.5 1.5185 1.5177 1.5213 1.5186 1.4274 1.4265 1.4301 1.4267

12 1.1803 1.1796 1.1825 1.1803 1.0924 1.0915 1.0945 1.0916

where x j = xmin + j�x and �x = xmax−xmin
300 and j = 0, 1, . . . , 300. In the case of the

American option the exact solution is not available. Therefore, in the definition of maximum
error, we use a very accurate solution obtained by the RBF-FD approximation with a very
large number of grid points N = 2400 and time steps M = 2400 as Ũre f

i . For different
number of spatial grids N and time steps M , results are derived and presented in Table 3.

Our solutions prepared by RBF-FD method are compared with other methods in Table 4
which contains option prices for different values of asset price S computed by front-fixing
explicit method (FF-expl) [16], the exponential time differencing Crank–Nicolson scheme
(ETD-CN) [30], and the binomial tree approach (Tree) developed in [33]. The solutions
derived by RBF-FD method with �x = �τ = 0.01, also condition number of arisen linear
system is 47.601, and CPU time is 0.058 s. It is important to mention that the reported
CPU times for the experiments do not include the setup cost for the computations of the
differentiation matrices. From Table 4, we derive that our option prices are in line with those
obtained by different techniques.

An option’s price can be influenced by a number of factors. To become a successful option
trader, it is essential to understandwhat factors influence the price of an option,which requires
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Fig. 1 Today’s American put price, Delta and Gamma values for RBF-FDmethodwith parameters as provided
in Example 2
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Fig. 2 The option price surface for two regimes derived by RBF-FD method with parameters as provided in
Example 2

learning about the Greeks. Figure 1 displays the option values, the Delta and the Gamma
functions known as Greeks. The plot shows that the option values and Greeks are very stable
and there is no oscillation at or around the strike price. This figure shows that Greeks are
efficiently evaluated using proposed method. Also, in Fig. 2, we plot option price surfaces
that are obtained with RBF-FD method for two different regimes.

Example 3 In this example, we consider the following parameters
(
r1
r2

)
=

(
0.05
0.05

)
,

(
σ1
σ2

)
=

(
0.3
0.4

)
, Q =

(−3 3
2 −2

)
, S0 = 10,

T = 1 and T = 10 adapted by [2] which in it authors compare iterated optimal stopping
(IOS) and local policy iteration (LPI) methods to evaluate option price of an American case
with regime switching model. Option prices and CPU times for different time steps and grid
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Table 5 American put option values derived from RBF-FD method at S = 10 for Regime 1 and Example 3

M N T = 1 T = 10

Price Time (s) Price Time (s)

50 50 1.1779555 0.113 2.5193244 0.113

100 100 1.1756722 0.226 2.5458278 0.226

200 200 1.1750973 0.412 2.5534748 0.412

400 400 1.1749502 0.645 2.5553798 0.645

800 800 1.1749104 0.865 2.5558371 0.865

1600 1600 1.1748988 1.045 2.5559404 1.045

IOS [2] 1.174888119 5286 2.555962940 21570

LPI [2] 1.174888084 713 2.555963088 1015

Table 6 Maximum error and ratio for different number of spatial grids N and time stepsM of RBF-FDmethod
for American put option with two regimes for Example 3

M N T = 1 T = 10

Regime 1 Regime 2 Regime 1 Regime 2

Max error Ratio Max error Ratio Max error Ratio Max error Ratio

50 50 4.7e−03 5.0e−03 3.8e−02 3.9e−02

100 100 1.1e−03 2.006 1.2e−03 2.000 1.0e−02 1.834 1.0e−02 1.833

200 200 2.9e−04 2.022 3.0e−04 2.017 2.6e−03 2.049 2.6e−03 2.045

400 400 7.1e−05 2.037 7.5e−05 2.031 6.1e−04 2.100 6.1e−04 2.102

800 800 1.5e−05 2.159 1.7e−05 2.153 1.2e−04 2.266 1.2e−04 2.264

points are computed by RBF-FD method, and presented in Table 5. For comparison, option
prices and CPU times of IOS and LPI methods reported in [2] are given at the button of
Table 5. Results show that RBF-FD method is fast and accurate in comparison with IOS and
LPI methods developed in [2]. Also, for different number of spatial grids and time steps,
maximum error and ratio are derived for different values of maturity time and presented in
Table 6.

Figure 3 displays the option values, Delta and Gamma functions, and also, in Fig. 4, we
have plotted option price surfaces that are obtained with RBF-FD method for two different
regimes and T = 1.

Example 4 Here, we report the numerical results when there are four regimes with the param-
eters

⎛
⎜⎜⎝
r1
r2
r3
r4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0.02
0.1
0.06
0.15

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

σ1
σ2
σ3
σ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0.9
0.5
0.7
0.2

⎞
⎟⎟⎠ , Q =

⎛
⎜⎜⎜⎜⎜⎝

−1 1
3

1
3

1
3

1
3 −1 1

3
1
3

1
3

1
3 −1 1

3

1
3

1
3

1
3 −1

⎞
⎟⎟⎟⎟⎟⎠

, T = 1, S0 = 9.

Thus, the market can be in any of the four regimes with equal probability. In Table 7,
we report the approximate prices of American put options in the four different regimes and
different asset prices, obtained by using the RBF-FD approximation scheme, and since for
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Fig. 3 Today’s American put price, Delta and Gamma values for RBF-FDmethod and T = 1 with parameters
as provided in Example 3

1

0.8

0.6

0.4

t0.2

Regime1

00

10
S

20

30

40

7

6

5

8

4

3

2

1

0

50

O
pt

io
n 

P
ric

e

1

0.8

0.6

0.4

t0.2

Regime2

00

10
S

20

30

40

1

2

3

4

5

6

7

8

0

50

O
pt

io
n 

P
ric

e

Fig. 4 The option price surface for two regimes derived by RBF-FD method and T = 1 with parameters as
provided in Example 3

American cases there is no exact solution, so for comparison, we present numerical solutions
obtained by FF-expl, ETD-CN and Tree methods given in literatures. The RBF-FD solutions
are derived with �x = �τ = 0.01, also condition number of arisen linear system is 30.475,
and CPU time is 0.217 s.

For different number of spatial grids and time steps, results are derived byRBF-FDmethod
including optionPrice at S = S0 = 9,Error,Ratio andCPU time(s), and presented in Table 8.

Figure 5 displays the option values, Delta and Gamma functions. Also, in Fig. 6, we
have plotted option price surfaces that are obtained with RBF-FD method for four different
regimes. Also, for different number of spatial grids and time steps, maximum error and ratio
are computed for different regimes and reported in Table 9.
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Table 7 American put option
prices computed by RBF-FD with
�x = �τ = 0.01, FF-expl [16],
ETD-CN [30] and Tree [33]
methods at different asset prices
for four regimes for Example 4

Regime Method S = 7.5 S = 9 S = 10.5 S = 12

1 RBF-FD 3.1424 2.5564 2.1052 1.7527

FF-expl 3.1421 2.5563 2.1047 1.7524

ETD-CN 3.1513 2.5641 2.1113 1.7578

Tree 3.1433 2.5576 2.1064 1.7545

2 RBF-FD 2.2320 1.5835 1.1415 0.8377

FF-expl 2.2313 1.5827 1.1406 0.8368

ETD-CN 2.2384 1.5884 1.1451 0.8404

Tree 2.2319 1.5834 1.1417 0.8377

3 RBF-FD 2.6744 2.0566 1.6013 1.2623

FF-expl 2.6739 2.0559 1.6004 1.2614

ETD-CN 2.6813 2.0623 1.6057 1.2658

Tree 2.6746 2.0568 1.6014 1.2625

4 RBF-FD 1.6576 0.9857 0.6554 0.4708

FF-expl 1.6573 0.9850 0.6546 0.4700

ETD-CN 1.6664 0.9903 0.6580 0.4725

Tree 1.6574 0.9855 0.6553 0.4708

Table 8 Numerical results
derived by RBF-FD method with
different number of spatial grids
and time steps for American put
option price at S = 9 with four
regimes for Example 4

Regime M N Price Error Ratio Time (s)

1 50 50 2.5418456 0.024

100 100 2.5531370 1.1e−02 0.092

200 200 2.5561649 3.0e−03 1.899 0.138

400 400 2.5569334 7.7e−04 1.978 0.513

800 800 2.5571243 1.9e−04 2.009 2.092

2 50 50 1.5825090 0.024

100 100 1.5832415 7.3e−04 0.092

200 200 1.5834372 2.0e−04 1.904 0.138

400 400 1.5834794 4.2e−05 2.213 0.513

800 800 1.5834852 5.8e−06 2.857 2.092

3 50 50 2.0519000 0.024

100 100 2.0555084 3.6e−03 0.092

200 200 2.0564695 9.6e−04 1.909 0.138

400 400 2.0567070 2.4e−04 2.017 0.513

800 800 2.0567630 5.6e−05 2.085 2.092

4 50 50 0.9825651 0.024

100 100 0.9848779 2.3e−03 0.092

200 200 0.9855176 6.4e−04 1.854 0.138

400 400 0.9856777 1.6e−04 1.999 0.513

800 800 0.9857152 3.8e−05 2.093 2.092
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Fig. 5 Today’s American put price, Delta and Gamma values for RBF-FDmethodwith parameters as provided
in Example 4
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Fig. 6 The option price surface for four regimes derived by RBF-FD method with parameters as provided in
Example 4

Table 9 Maximum error and ratio for different number of spatial grids N and time stepsM of RBF-FDmethod
for American put option with four regimes for Example 4

M N Regime 1 Regime 2 Regime 3 Regime 4

Max error Ratio Max error Ratio Max error Ratio Max error Ratio

50 50 2.8e−02 4.8e−03 1.1e−02 7.7e−03

100 100 7.7e−03 1.897 1.1e−03 2.052 3.0e−03 1.957 2.0e−03 1.951

200 200 1.9e−03 1.992 2.5e−04 2.174 7.3e−04 2.041 5.8e−04 1.782

400 400 4.6e−04 2.061 5.0e−05 2.341 1.6e−04 2.134 7.7e−05 2.911

800 800 9.6e−05 2.265 1.3e−05 1.944 3.1e−05 2.402 3.0e−05 1.353
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Fig. 7 Temporal error vs. �τ derived by RBF-FD method with N = 800 spatial nodes and a sequence of
seven increasing time steps M = 25, 50, 100, 200, 400, 800, 1600 for Examples 2, 3 and 4

To show convergence of the time discretisation, we numerically investigate the behavior
of the global temporal errors as a function of �τ which is defined by

Temporal error =
√√√√ 1

N

N∑
j=1

(
V M
i (S j , 0) − V 10 000

i (S j , 0)
)2

, (54)

where V M
i is the numerical solution of i th regime at the spatial nodes S j ∈ [ S02 , 3S0

2 ],
j = 1, 2 . . . , N where N = 800 after M time steps, and V 10 000

i is the corresponding
solution for M = 10,000 and N = 800 used as an approximant for the exact solution.
Figure 7 displays the global temporal errors versus �τ for a sequence of seven increasing
time steps M , namely 25, 50, 100, 200, 400, 800, 1600 and N = 800 for Examples 2, 3
and 4.

Example 5 For more comparison, in this example, we consider the following parameters
(
r1
r2

)
=

(
0.1
0.1

)
,

(
σ1
σ2

)
=

(
0.4
0.2

)
, Q =

(−1.375968919 1.375968919
1.031976689 −1.031976689

)
,

T = 1 and S0 = 100 adapted by [47] for pricing American put option under the regime
switching model. In [47], finite element method combined with Crank–Nicolson scheme
with 12800 time steps (CN12800) and the lattice method with 51200 time steps (LM51200)
are considered, and we apply RBF-FD method with 800 time steps and 513 spatial grids
(RBF-FD800), and results for American put option are reported in Table 10. Also, today’s
hedge ratios (Delta function values) for Crank–Nicolson scheme, latticemethod andRBF-FD
method for different asset prices are given in Table 11. Reported results in Tables 10 and 11
show that RBF-FDmethod provides not only very accurate values of option prices and hedge
ratios, but also it is faster than Crank–Nicolson and lattice methods developed in [47].

The accuracy of global RBF methods highly depends on the shape parameter ε of the
basis functions. For smooth problems, the best accuracy is typically achieved when ε is
small, but then the condition number of the linear system becomes very large, but for local
RBF methods such as RBF-FD the accuracy of the method is less sensitive to the changes
of shape parameter. Figure 8 displays the dependence of the maximum error defined by (53)
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Table 10 American put option values derived by Crank–Nicolson scheme with 12800 time steps (CN12800)
and the lattice method with 51200 time steps (LM51200) in [47] and RBF-FD method with 800 time steps
(RBF-FD800) for two regimes for Example 5

S Regime 1 Regime 2

CN12800 LM51200 RBF-FD800 CN12800 LM51200 RBF-FD800

60 40.0000 40.0000 39.9999648 40.0000 40.0000 39.9999648

70 30.0007 30.0006 30.0007529 30.0000 30.0000 29.9999590

80 21.2289 21.2289 21.2289525 20.0000 20.0000 19.9999531

90 14.6191 14.6190 14.6191707 11.6126 11.6125 11.6125421

100 9.9245 9.9245 9.9246529 6.7423 6.7423 6.7423578

110 6.7017 6.7017 6.7018512 3.9244 3.9243 3.9244261

120 4.5257 4.5257 4.5258304 2.3083 2.3083 2.3084130

130 3.0665 3.0665 3.0667011 1.3825 1.3825 1.3826159

140 2.0889 2.0889 2.0890234 0.8460 0.8460 0.8460737

150 1.4318 1.4318 1.4319674 0.5287 0.5287 0.5287890

Table 11 Today’s hedge ratios derived by Crank–Nicolson scheme with 12800 time steps (CN12800), the
lattice method with 51200 time steps (LM51200) in [47] and RBF-FD method with 800 time steps (RBF-
FD800) for two regimes for Example 5

S Regime 1 Regime 2

CN12800 LM51200 RBF-FD800 CN12800 LM51200 RBF-FD800

60 −1.0000 −1.0000 −1.0000311 −1.0000 −1.0000 −1.0000311

70 −0.9942 −0.9941 −0.9939012 −1.0000 −1.0000 −1.0000311

80 −0.7667 −0.7667 −0.7667411 −1.0000 −1.0000 −1.0000308

90 −0.5586 −0.5586 −0.5586468 −0.6319 −0.6319 −0.6318931

100 −0.3881 −0.3881 −0.3881526 −0.3664 −0.3664 −0.3664050

110 −0.2636 −0.2636 −0.2636018 −0.2109 −0.2109 −0.2109330

120 −0.1771 −0.1771 −0.1771089 −0.1206 −0.1206 −0.1206398

130 −0.1186 −0.1186 −0.1186200 −0.0694 −0.0694 −0.0694222

140 −0.0796 −0.0796 −0.0795718 −0.0406 −0.0406 −0.0406406

150 −0.0536 −0.0536 −0.0536103 −0.0243 −0.0243 −0.0243355

on the size of the shape parameter. For computing maximum errors, we use N = 2400 and
M = 2400 and ε = 0.5 for reference solution Ũ re f

i (x, T ) and also, we let N = 400 and
M = 400 and derive RBF-FD solution Ũi (x, T ) for different values of shape parameter.

8 Conclusion

We proposed RBF-FD method to price European and American options under the regime
switching model. The free boundary problem formulated as a PDE was transformed into an
LCP problem. The RBF-FD was used for the spatial discretisation. Next, a Crank–Nicolson
time discretisation was combined with an operator splitting method. This results in a linear
algebraic system with a sparse and well-conditioned matrix. Also, we proved the resulting
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Fig. 8 Maximum error against the shape parameter ε

linear system of equations after space and time discretization is uniquely solvable and stable.
The shape parameter in the RBF method affects the accuracy and stability of the method,
but the proposed local RBF method is less sensitive to the change of the shape parameter.
The effect of the time discretisation is measured by studying the temporal error for American
option cases. The numerical experiments confirm that RBF-FD performs not only better than
the front-fixing explicit method, the exponential time differencing Crank–Nicolson scheme,
the binomial tree approach and finite elementmethod but also, it is faster than iterated optimal
stopping and local policy iteration methods.
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