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Abstract

Let Ω ⊂ R
d, 1 ≤ d ≤ 3, be a bounded d-polytope. Consider the parabolic equation

on Ω with the Dirac delta function on the right hand side. We study the well-posedness,

regularity, and the interior error estimate of semidiscrete finite element approximations of

the equation. In particular, we derive that the interior error is bounded by the best local

approximation error, the negative norms of the error, and the negative norms of the time

derivative of the error. This result implies different convergence rates for the numerical

solution in different interior regions, especially when the region is close to the singular

point. Numerical test results are reported to support the theoretical prediction.
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1. Introduction

Let Ω ⊂ R
d, 1 ≤ d ≤ 3, be a bounded d-polytope and ΩT := Ω× (0, T ]. Namely, Ω is a line

segment for d = 1, a polygon for d = 2, and a polyhedron for d = 3. Denote by δz(x) = δ(x−z)

the Dirac delta function at z ∈ Ω. We consider a parabolic problem with the homogeneous

Dirichlet boundary condition

ut −∆u = f, in ΩT , (1.1a)

u = 0, on ∂Ω× [0, T ], (1.1b)

u(·, 0) = u0, on Ω× {t = 0}, (1.1c)

where u0 ∈ L2(Ω) and f = gδz for g ∈ L2(0, T ;C(Ω̄)). The finite element approximations

for parabolic equations with sufficiently smooth solutions have been well investigated in the

literature (see, e.g., [3, 21, 29]). The study of numerical methods for parabolic equations with

less regular data has become increasingly popular in recent years. We refer to [5, 14, 15] for

equations with singular solutions due to the non-smoothness in the domain and in the coefficient
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of the differential operator. Some recent results on point-wise approximations can be found

in [12,13] for fully discrete methods (finite element method in space and discontinuous Galerkin

method in time). For numerical analysis on parabolic problems with Dirac delta functions, we

mention [8, 25] and references therein. In these works, the global convergence of the numerical

scheme on the entire domain was obtained approximating the singular solution.

Partial differential equations with the δ-function sources have many applications in astro-

physics and oil reservoir simulations. Especially in the latter case, an interesting model is the

two-phase flow displacement in porous medium which can be described by a parabolic system.

Moreover, the injection and production wells can be represented by point sources and sinks,

respectively, which can be approximated by δ-singularities with different strengths. In such

problems, the exact solutions are not smooth and high-order numerical schemes can yield poor

convergence or strong oscillations in a vicinity (pollution region) of the singularity. In [30],

Yang and Shu applied discontinuous Galerkin methods to solve linear hyperbolic equations

with δ-function source terms in one space dimension and the size of the pollution region was

proved to be of order O(h
1
2 ), where h is the mesh size.

Note that the distributional data in Eq. (1.1) can lead to singular solutions, for which the

global approximation may not be of high-order accuracy even when high-order finite element

methods are used. Meanwhile, the numerical approximation in certain interior regions is often

more interesting in practice. In this paper, we study the interior error estimate of the semidis-

crete finite element method for Eq. (1.1). In particular, we first derive the well-posedness of the

weak solution for Eq. (1.1) in suitable Sobolev spaces (Theorem 2.1). This result extends the

well-posedness result in [8,16] on convex domains to general polytopal domains. Then, we show

that away from the singular point z, the solution possesses higher interior regularity (Corollary

2.1), which justifies the use of the L2 and H1 norms of the error in such interior regions for our

error analysis. The main result regarding the interior error estimate is summarized in Theorem

4.1, in which we obtain that the L2 and H1 norms of the error in an interior region away from z

are determined by three components: the best local approximation error from the finite element

space, the negative norms of the interior error, and the negative norms of the time derivative

of the local error. Namely, the interior convergence may be of higher order compared with the

global convergence, which is affected by the regularity of u and ut. Applying this result to

regions close to z, we further formulate an interior estimate (Corollary 4.1) that depends on

the distance to the singular point. This implies that as the region gets closer to z, the interior

convergence rate can slow down and eventually resemble the global convergence rate.

For elliptic boundary value problems, the finite element interior estimates have been studied

in a series of papers [20, 22–24]. These results show that the error in an interior region is

bounded by the best local approximation error and the error in negative norms. Thus, the

interior error estimates in this paper extend these results to parabolic problems by including

additional effects from the time derivative of the solution. We also mention that for parabolic

equations, an interior finite element analysis was derived in [27] using the energy method on

uniform meshes with specific conditions. In this paper, we use a more direct method to obtain

the interior error analysis, especially when distributional data is present. In addition, our results

apply to general quasi-uniform meshes.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and

derive the well-posedness and regularity results for the parabolic problem (1.1). In Section

3, we formulate the semidiscrete finite element approximation and recall useful properties of

the numerical scheme. In Section 4, we obtain the interior error estimates for the parabolic
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equation (1.1). In Section 5, we report numerical test results to verify the theory.

Throughout the paper, for two regions A and B, A ⊂ B means that A is an interior proper

subset of B (i.e. dist(∂A, ∂B) > 0), while A ⊆ B means that A is a subset of B (A can be equal

to B). The generic constant C > 0 in our analysis may be different at different occurrences. It

will depend on the underlying domain, but not on the functions or the mesh size involved in

the estimates.

2. Well-osedness and Regularity

In this section, we introduce the notation and derive related regularity results for Eq. (1.1).

2.1. The Notation

For an integer m ≥ 0 and D ⊂ R
d, 1 ≤ d ≤ 3, let Hm(D) be the Sobolev space with the

norm and the seminorm

‖v‖m,D =





∑

|α|≤m

‖∂αv‖2L2(D)





1/2

and |v|m,D =





∑

|α|=m

‖∂αv‖2L2(D)





1/2

,

where α = (α1, · · · , αd) ∈ Z
d
≥0 is the multi-index with |α| =

∑

1≤i≤d αi. Denote by L2(D) =

H0(D) the standard L2 space over D. Moreover, we denote by Hm
0 (D) the completion of

C∞
0 (D) in Hm(D). For a non-integer s ≥ 0, the space Hs(D) and Hs

0(D) are defined by

interpolation. More details on the Sobolev space can be found in [9, 17, 19]. Specifically, for

D ⊆ Ω and m ≤ 0 being an integer, the negative norm is defined as

‖v‖m,D = sup
06=ϕ∈C∞

0 (D)

(v, ϕ)D
‖ϕ‖−m,D

,

where (v, ϕ)D =
∫

D
vϕdx. For any negative integer m, the following two properties hold :

1. If D1 and D2 are two disjoint sets, then

‖v‖2m,D1
+ ‖v‖2m,D2

= ‖v‖2m,D1∪D2
. (2.1)

2. If D1 ⊂ D2, then

‖v‖m,D1 ≤ ‖v‖m,D2 . (2.2)

Meanwhile, we recall the function spaces involving time. Let X be a Banach space with

norm ‖·‖X . Then, we denote by L2(0, T ;X) and H1(0, T ;X) the spaces of measurable functions

v : [0, T ] → X such that

‖v‖2L2(0,T ;X) :=

∫ T

0

‖v(t)‖2Xdt <∞, ‖v‖2H1(0,T ;X) :=

∫ T

0

(

‖v(t)‖2X + ‖vt(t)‖X

)2

dt <∞,

where vt = ∂tv; and denote by C(0, T ;X) the space of continuous functions v : [0, T ] → X with

the norm

‖v‖C(0,T ;X) := max
0≤t≤T

‖v(t)‖X <∞.

In addition, we define the space

G(Ω) :=
{

v, v ∈ H1
0 (Ω), ∆v ∈ L2(Ω)

}

.
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Remark 2.1. Since the domain Ω in Eq. (1.1) is a d-polytope, we here briefly recall the

regularity property for the associated elliptic problem. For q ∈ L2(Ω), the elliptic problem

−∆v = q in Ω, v = 0 on ∂Ω, (2.3)

has a unique solution in H1
0 (Ω). The regularity of the solution, however, depends on both the

regularity of q and the geometry of the domain Ω. For a sufficiently smooth function q, we

usually have v ∈ H1+α(Ω) when Ω has a non-smooth boundary (d = 2, 3), where α > 1/2

is the regularity index determined by the domain. In particular, the index α < 1 in the

following cases. (I) Ω contains a reentrant corner (d = 2). (II) Ω contains part of an edge

(d = 3) with dihedral angle > π . (III) Ω contains a vertex (d = 3) with certain opening

angle such that the solution is singular (v /∈ H2) in the neighborhood of the vertex. Unlike the

two-dimensional case, the relation between the vertex angle and the solution regularity does

not follow a simple formula, but can be computed numerically. Consequently, for the global

regularity, if Ω is convex, G(Ω) = H2(Ω) ∩ H1
0 (Ω); and if Ω is non-convex, G(Ω) ⊂ H1+α(Ω)

for some α > 1/2 [10]. Meanwhile, in an interior region D ⊂ Ω, the solution of (2.3) possesses

higher regularity ‖v‖Hk+2(D) ≤ C‖q‖Hk(Ω), for k ≥ 0.

2.2. The Equation

Consider the forward problem associated with Eq. (1.1)

vt −∆v = q, in ΩT , (2.4a)

v = 0, on ∂Ω× [0, T ], (2.4b)

v = v0, on Ω× {t = 0}, (2.4c)

and the backward problem

vt +∆v = q, in Ω× [0, T ), (2.5a)

v = 0, on ∂Ω× [0, T ], (2.5b)

v = 0, on Ω× {t = T }. (2.5c)

Then, we have the following well-posedness and regularity results.

Proposition 2.1. Suppose q ∈ L2(0, T ;L2(Ω)) and v0 ∈ H1
0 (Ω). Then, each of the problems

(2.4) and (2.5) admits a unique solution v ∈ L2(0, T ;G(Ω)), such that vt ∈ L2(0, T ;L2(Ω)).

Proof. For the forward problem (2.4), the conclusion follows from the regularity estimates

(Theorem 5.1.1, [10]). Meanwhile, with the change of variable τ = T − t and ṽ(τ) := v(t), Eq.

(2.5) becomes

ṽτ −∆ṽ = −q̃, in ΩT , (2.6a)

ṽ = 0, on ∂Ω× [0, T ], (2.6b)

ṽ = 0, on Ω× {τ = 0}, (2.6c)

which is a well-posed forward problem. Therefore, the same argument for (2.4) applies to (2.6),

and consequently leads to the desired regularity estimates for the backward problem (2.5).

Now, we show Eq. (1.1) has a well-posed solution.



462 L. GUO, H.G. LI AND Y. YANG

Theorem 2.1. Suppose u0 ∈ L2(Ω) and f = gδz, where g ∈ L2(0, T ;C(Ω̄)). Then, the

parabolic problem (1.1) admits a unique weak solution u ∈ L2(0, T ;L2(Ω)) that satisfies

−(u, vt)ΩT
− (u,∆v)ΩT

=

∫

Ω

u0v(x, 0)dx +

∫ T

0

∫

Ω

fvdxdt, ∀v ∈ X, (2.7)

where (u, v)ΩT
:=

∫

ΩT
uvdxdt and X := {v, v ∈ L2(0, T ;G(Ω)) ∩H1(0, T ;L2(Ω)) and v(T ) =

0}.

Proof. Case I. We first consider the case when f ∈ L2(0, T ;L2(Ω)). Let V := {v, v ∈

L2(0, T ;H1
0(Ω))∩H

1(0, T ;H−1(Ω)) and v(T ) = 0}. Then, equation (1.1) has a unique solution

u ∈ L2(0, T ;H1
0(Ω)) (Theorems 2.1 and 4.2, Chapter 3 of [16]) satisfying

−(u,∆v + vt)ΩT
=

∫

Ω

u0v(x, 0)dx + (f, v)ΩT
, ∀v ∈ V. (2.8)

Since X ⊂ V , this solution u ∈ L2(0, T ;H1
0 (Ω)) ⊂ L2(0, T ;L2(Ω)) satisfies (2.7) for v ∈ X .

Now, we show the uniqueness. Assume there is another solution u1 ∈ L2(0, T ;L2(Ω)) of Eq.

(1.1) satisfying (2.7). Consider w = u−u1 ∈ L2(0, T ;L2(Ω)). Let v be the solution of Eq. (2.5)

with q = w. Then, by Proposition 2.1, v ∈ X ; and Eq. (2.7) gives rise to (w,w)ΩT
= 0. Thus,

L2(0, T ;L2(Ω)) ∋ w = 0 and therefore the solution u ∈ L2(0, T ;L2(Ω)) is unique.

Case II. We consider the case f = gδz with g ∈ L2(0, T ;C(Ω̄)). Denote by M(Ω) the dual

space of C(Ω̄), such that

‖v‖M(Ω) = sup
‖w‖C(Ω̄)=1

∫

Ω

wvdx.

Let {δn}, δn ∈ C(Ω̄), be a sequence converging weakly to δz in M(Ω) such that

‖δn‖L1(Ω) ≤ C‖δz‖M(Ω). (2.9)

Such sequence {δn} can be constructed, for example, using mollifiers as in [6]. Let un be the

solution of Eq. (1.1) with δz replaced by δn (namely the right hand side gδn ∈ L2(0, T ;L2(Ω))).

Therefore, by the standard well-posedness result, un ∈ L2(0, T ;H1
0 (Ω)) ⊂ L2(0, T ;L2(Ω)). For

any q ∈ L2(0, T ;L2(Ω)), let v ∈ X be the solution of Eq. (2.5). Then, by the argument in Case

I, we have

(q, un)ΩT
= (vt +∆v, un)ΩT

= −

∫

Ω

u0v(x, 0)dx − (gδn, v)ΩT

≤ ‖u0‖L2(Ω)‖v(x, 0)‖L2(Ω) + C‖g‖L2(0,T ;L∞(Ω))‖δn‖L1(Ω)‖v‖L2(0,T ;L∞(Ω)).

Note that v ∈ X implies v ∈ C(0, T ;L2(Ω)). Thus, by Proposition 2.1,

‖v(x, 0)‖L2(Ω) ≤ ‖v‖C(0,T ;L2(Ω)) ≤ C‖v‖H1(0,T ;L2(Ω)) ≤ C‖q‖L2(0,T ;L2(Ω)).

Meanwhile, by the fact G(Ω) ⊂ H1+α(Ω) for α > 1/2 (Remark 2.1), the Sobolev Embedding

Theorem, and Proposition 2.1, we have

‖v‖L2(0,T ;L∞(Ω)) ≤ C‖v‖L2(0,T ;G(Ω)) ≤ C‖q‖L2(0,T ;L2(Ω)).

Therefore, using (2.9), we deduce

(q, un)ΩT
≤ C‖q‖L2(0,T ;L2(Ω))

(

‖u0‖L2(Ω) + ‖g‖L2(0,T ;L∞(Ω))‖δz‖M(Ω)

)

.
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This implies that {un} is a bounded sequence in L2(0, T ;L2(Ω)), and therefore contains a

subsequence {unk
} that is weakly convergent to a function in L2(0, T ;L2(Ω)). Denote this

function by u. Then, a standard calculation shows that u satisfies Eq. (2.7) with f = gδz. The

proof is hence completed. �

Then, we have the interior regularity estimate for Eq. (1.1).

Corollary 2.1. Let D ⊂ DL ⊂ Ω be two d-dimensional concentric balls with increasing radii,

such that z /∈ D̄L. For the parabolic problem (1.1), suppose that u0 ∈ H2(DL) ∩ L
2(Ω). Then,

we have u ∈ C(0, T ;H1(D)) and ut ∈ C(0, T ;L2(D)).

Proof. First, we let D ⊂ DS ⊂ D′′ ⊂ D′ ⊂ DL be five d-dimensional concentric balls with

increasing radii. Let ωL ∈ C∞
0 (DL) be such that ωL = 1 on D′. Similarly, let ω′′ ∈ C∞

0 (D′′)

be such that ω′′ = 1 on DS .

By Theorem 2.1 and equation (1.1), ũ := ωLu ∈ L2(0, T ;L2(DL)) and it satisfies

ũt −∆ũ = f1 = ωLf − u∆ωL − 2∇ωL · ∇u, in DL × (0, T ], (2.10a)

ũ = 0, on ∂DL × [0, T ], (2.10b)

ũ = ωLu0, on DL × {t = 0}. (2.10c)

Since u ∈ L2(0, T ;L2(DL)), ωLgδz = 0 (z /∈ supp(ωL)), and u0 ∈ H2(DL), we have

f1 = −u∆ωL − 2∇ωL · ∇u ∈ L2(0, T ;H−1(DL)) and ωLu0 ∈ H1
0 (DL). (2.11)

Therefore, the standard well-posedness result for Eq. (2.10) gives rise to ũ ∈ L2(0, T ;H1
0 (DL)),

which in turn implies

u ∈ L2(0, T ;H1(D′)). (2.12)

Now, we study the regularity of u on the annulus R := D′ \D. Let ωR ∈ C∞
0 (R) be such

that ωR = 1 on D′′ \DS . Consider Eq. (2.10) with DL and ωL being replaced by R and ωR,

respectively. Then, similar to (2.11), using (2.12), we have in this case

f1 = −u∆ωR − 2∇ωR · ∇u ∈ L2(0, T ;L2(R)) and ωRu0 ∈ H1
0 (R).

Then, by Proposition 2.1 (the argument for the forward problem), we obtain

ωRu ∈ L2(0, T ;H2(R)) and ωRut ∈ L2(0, T ;L2(R)). (2.13)

Consider Eq. (2.10) with DL and ωL being replaced by D′′ and ω′′, respectively. Then,

similar to (2.11), we have in this case

f1 = −u∆ω′′ − 2∇ω′′ · ∇u and ω′′u0 ∈ H1
0 (D

′′). (2.14)

Since the derivatives of ω′′ are zero on DS , by (2.13) and (2.14), we have f1 ∈ L2(0, T ;H1(D′′))

and (f1)t ∈ L2(0, T ;H−1(D′′)). Thus, f1 ∈ C(0, T ;L2(D′′)) (Theorem 3.1, Chapter 1 in [16])

and therefore f1(0) is well defined in L2(D′′). Note that ∆(ω′′u0) + f1(0) = ω′′∆u0 ∈ L2(D′′).

Then, ũt = ω′′ut is the weak solution of the parabolic problem

ũtt −∆ũt = (f1)t, in D′′ × (0, T ]. (2.15a)

ũt = 0, on ∂D′′ × [0, T ], (2.15b)

ũt = ∆(ω′′u0) + f1(0), on D′′ × {t = 0}. (2.15c)
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Thus, by the standard well-posedness result for Eq. (2.15), we conclude ũt ∈ L2(0, T ;H1(D′′))

and ũtt ∈ L2(0, T ;H−1 (D′′)). This, together with the estimate in (2.12), leads to u ∈

C(0, T ;H1(D)) and ut ∈ C(0, T ;L2(D)), which completes the proof. �

3. The Finite Element Approximation

In this section, we define the semidiscrete finite element approximation of Eq. (1.1) and

derive estimates that will be useful to further carry out the interior error analysis for the

numerical solution.

Let Th = {Ti} be a quasi-uniform triangulation of Ω with shape-regular d-dimensional

simplexes Ti, where h = maxT∈T (diam(T )) is the mesh parameter. Denote by Sh = Sh(Ω) ⊂

H1
0 (Ω) the continuous Lagrange finite element space of degree m ≥ 1 associated with Th.

Then, the semidiscrete finite element approximation of Eq. (1.1) is to find uh(t) = uh(·, t) ∈

H1(0, T ;Sh), such that

(uh,t, v) + (∇uh,∇v) = (f, v), ∀v ∈ Sh, t > 0, and uh(0) = u0,h, (3.1)

where uh,t = ∂tuh, (v, w) =
∫

Ω vwdx, and u0,h is some approximation of u0 in Sh.

Remark 3.1. The finite element solution uh in (3.1) is well defined. When Eq. (1.1) possesses

a sufficiently smooth solution and initial condition, it can be shown that for 0 ≤ t ≤ T , the

finite element approximation globally converges in the optimal rates [28]

‖u(t)− uh(t)‖L2(Ω) ≤ Chm+1 and |u(t)− uh(t)|H1(Ω) ≤ Chm.

When the solution of Eq. (1.1) is singular due to the non-smoothness of the domain, the

convergence of uh deteriorates, similar to the behavior of the finite element solution for the

associated elliptic problem (2.3) [5]. The singular source term (the δ-function in f) can also

give rise to singular solutions in Eq. (1.1). In this case, the results in [25] imply the reduced

global approximation rate,

‖u(t)− uh(t)‖L2(Ω) ≤ Ch2−d/2−ǫ for any ǫ > 0,

where the regularity estimate u ∈ C(0, T ;L2(Ω)) was implicitly assumed. In this paper, we are

interested in the error bounds for ‖u(t)− uh(t)‖L2 and |u(t)− uh(t)|H1 in an interior subregion

D0 away from z. According to Corollary 2.1, the solution belongs to C(0, T ;L2(D0)) and further

to C(0, T ;H1(D0)) with proper initial conditions. Therefore, these norms of the error are well

defined for Eq. (1.1).

In addition, we summarize useful interior properties of the finite element space. For any

interior domain D ⊂ Ω, we define Sh(D) to be the restriction of Sh(Ω) on D and

S̊h(D) = {χ ∈ Sh(D) : supp χ ⊆ D̄},

where D̄ is the closure of D.

Then, there exist k0 > 0 and 0 < h0 < 1, such that for h ∈ (0, h0] and for D0 ⊂ D with

dist(D0, D) ≥ k0h, the following approximating properties hold (see [4, 11, 18–20, 23, 26] and

reference therein).
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1. (Interpolation Approximation) For any u ∈ Hk+1(D), 0 ≤ k ≤ m, there exists a function

χ ∈ Sh(D), such that

‖u− χ‖0,D + h‖u− χ‖1,D ≤ Chk+1‖u‖k+1,D. (3.2)

2. (Super-approximation) Let ω ∈ C∞
0 (D0). Then, for any χ ∈ Sh(D), there exists η ∈

S̊h(D), such that

‖ωχ− η‖1,D ≤ Ch‖χ‖1,D0 . (3.3)

3. (Inverse Inequality) For any nonnegative integer p and χ ∈ Sh(D), we have

‖χ‖1,D0 ≤ Ch−(p+1)‖χ‖−p,D. (3.4)

Note that the constant C involved in (3.2) – (3.4) depends on the regions of interest D0

and D. Let B(x0, r) be the d-dimensional ball with center x0 and radius r. Using the scaling

argument, one can formulate the following estimates on the reference region.

Lemma 3.1. Let D := B(x0, r) ⊂ Ω be an interior region. The dilation x̂ = (x − x0)/r

translates D into a unit size domain D̂ and Sh(D) into a new finite dimensional space Sh/r(D̂).

Then, Sh/r(D̂) satisfies the estimates (3.2)–(3.4) with h replaced by h/r, where the constants

in the estimates are independent of r.

Proof. The proof follows from a straightforward calculation. �

We end this section by considering the elliptic problem in an interior subregion D :=

B(x0, r) ⊂ Ω

−∆ψ = g in D, (3.5a)

ψ = 0 on ∂D. (3.5b)

Since D has a smooth boundary, for any k ≥ 0, the full regularity estimate [1, 2, 6, 7, 16] holds

‖ψ‖k+2,D ≤ C‖g‖k,D, (3.6)

where the constant C depends on k and the region involved.

4. The Interior Error Analysis

In this section, we obtain the interior estimates for the semidiscrete finite element approxi-

mation (3.1) to the parabolic problem (1.1).

4.1. Some lemmas

To simplify the presentation, we let D0 ⊂ D ⊂ DL ⊂ Ω be three d-dimensional concentric

balls B(x0, r0), B(x0, r) and B(x0, rL), such that z /∈ D̄L. Suppose the initial conditions in

equation (1.1) satisfy the conditions in Corollary 2.1. Thus, u ∈ C(0, T ;H1(D)) and ut ∈

C(0, T ;L2(D)). Therefore, for 0 ≤ t ≤ T , u(t) ∈ H1(D). Using integration by parts on Eq.

(1.1), we have

(ut, v) + (∇u,∇v) = (f, v) ∀v ∈ S̊h(D), t > 0. (4.1)
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Thus, by (3.1) and (4.1), we arrive at the error equation

(et, v) + (∇e,∇v) = 0, ∀v ∈ S̊h(D), t > 0, (4.2)

where e := u− uh.

To better present our analysis, instead of (4.2), we consider a more general form of the error

equation. Let E ∈ H1(D) satisfy

(et, v) + (∇E ,∇v) = 0, ∀v ∈ S̊h(D), t > 0. (4.3)

Then, we first have the interior estimate on E in negative norms.

Lemma 4.1. Recall the concentric balls D0 ⊂ D ⊂ DL ⊂ Ω above. Let 0 ≤ k ≤ m − 1 be an

integer. Then, for h sufficiently small, there exists a constant C independent of h, such that

‖E‖−k,D0 ≤ C
(

hk+1‖E‖1,D + ‖E‖−k−1,D + hk+1‖et‖−1,D + ‖et‖−k−2,D

)

. (4.4)

Proof. Let D′ be a d-dimensional ball with the same center as D0 and D, such that D0 ⊂

D′ ⊂ D. For h sufficiently small, we have dist(∂D0, ∂D
′), dist(∂D′, ∂D) > k0h. Let ω ∈

C∞
0 (D′) with ω = 1 on D0. Then for any k ≥ 0, we have

‖E‖−k,D0 ≤ ‖ωE‖−k,D = sup
06=g∈C∞

0 (D)

(ωE , g)D
‖g‖k,D

≤ C sup
ψ

(∇(ωE),∇ψ)D
‖ψ‖k+2,D

, (4.5)

where ψ is the solution of Eq. (3.5) and the last inequality is due to the estimate (3.6). For

any χ ∈ S̊h(D), by the error Eq. (4.3), we have

(∇(ωE),∇ψ)D = (∇E ,∇(ωψ))D + (E ,∇ · (ψ∇ω))D + (E ,∇ω · ∇ψ)D

=(∇E ,∇(ωψ − χ))D + (E ,∇ · (ψ∇ω))D + (E ,∇ω · ∇ψ)D − (et, χ)D

=(∇E ,∇(ωψ − χ))D + (E ,∇ · (ψ∇ω))D + (E ,∇ω · ∇ψ)D − (et, ωψ)D − (et, χ− ωψ)D.

Choosing a suitable χ and using (3.2), we have for 0 ≤ k ≤ m− 1,

(∇(ωE),∇ψ)D

≤C
(

hk+1‖E‖1,D + ‖E‖−k−1,D + ‖et‖−k−2,D + hk+1‖et‖−1,D

)

‖ψ‖k+2,D. (4.6)

Combining (4.5) and (4.6), we obtain the estimate (4.4). �

In particular, using Lemma 4.1, we obtain the interior L2 error estimate.

Lemma 4.2. Recall the concentric balls D0 ⊂ D ⊂ DL ⊂ Ω in Lemma 4.1 and E from (4.3).

Let 0 ≤ k ≤ m − 1 be an integer. Then, for h sufficiently small, there exists a constant C

independent of h, such that

‖E‖0,D0 ≤ C
(

h‖E‖1,D + ‖E‖−k−1,D + h‖et‖−1,D + ‖et‖−2,D

)

. (4.7)

Proof. Let D0 ⊂ D1 ⊂ · · · ⊂ Dk+1 = D be k + 2 d-dimensional concentric balls with

increasing radii. Setting k = 0 in (4.4), we have

‖E‖0,D0 ≤ C
(

h‖E‖1,D1 + ‖E‖−1,D1 + h‖et‖−1,D1 + ‖et‖−2,D1

)

. (4.8)
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We apply (4.4) again to ‖E‖−1,D1. By h ≤ 1 and (2.2), we have

‖E‖0,D0 ≤ C

(

h‖E‖1,D2 + ‖E‖−2,D2 + h‖et‖−1,D2 +
3

∑

l=2

‖et‖−l,D2

)

. (4.9)

Continuing this process up to Dk+1 and using ‖et‖−p−2,D ≤ C‖et‖−2,D for any p ≥ 0, we obtain

the desired result (4.7). �

Now, we consider a discrete version of E . Suppose that Eh ∈ Sh(D) is such that the equation

holds

(∇Eh,∇v) + (et, v) = 0, ∀v ∈ S̊h(D).

Namely. Eh satisfies the error Eq. (4.3). Then, we have the following estimate regarding Eh.

Lemma 4.3. Recall the concentric balls D0 ⊂ D ⊂ DL ⊂ Ω in Lemma 4.1 and Eh ∈ Sh(D)

defined above. Let 0 ≤ k ≤ m− 1 be an integer. Then, for h sufficiently small, we have

‖Eh‖1,D0 ≤ C

(

h‖Eh‖1,D + ‖Eh‖−k−1,D + ‖et‖−1,D

)

. (4.10)

Proof. Let D0 ⊂ D′ ⊂ D be three d-dimensional concentric balls with increasing radii.

For h sufficiently small, we have dist(∂D0, ∂D
′), dist(∂D′, ∂D) ≥ k0h with a constant k0 > 0.

Define the Ritz projection P : H1(D′) → S̊h(D), such that for any ϕ ∈ H1(D′),

(∇(ϕ− Pϕ),∇v) = 0, ∀v ∈ S̊h(D).

Let ω ∈ C∞
0 (D′) with ω = 1 on D0. Then, we have

‖Eh‖1,D0 ≤ ‖ωEh‖1,D′ ≤ ‖ωEh − P (ωEh)‖1,D′ + ‖P (ωEh)‖1,D′ . (4.11)

Now, for the first term on the right hand side, by (3.3), we obtain

‖ωEh − P (ωEh)‖1,D′ ≤ inf
ζ∈S̊h(D)

‖ωEh − ζ‖ ≤ Ch‖Eh‖1,D. (4.12)

For the second term on the right hand side of (4.11), we have

‖P (ωEh)‖1,D′ ≤ ‖P (ωEh)‖1,D ≤ C(∇P (ωEh),
∇P (ωEh)

‖P (ωEh)‖1,D
)D = C(∇(ωEh),∇φ)D , (4.13)

where φ = P (ωEh)/‖P (ωEh)‖1,D ∈ S̊h(D) and ‖φ‖1,D = 1. Therefore, using integration by

parts and (4.3), we have

(∇(ωEh),∇φ)D = (∇Eh,∇(ωφ))D + (Eh,∇ · (φ∇ω))D + (Eh,∇ω · ∇φ)D

=(∇Eh,∇(ωφ− χ))D + (Eh,∇ · (φ∇ω))D + (Eh,∇ω · ∇φ)D − (et, χ)D, (4.14)

where χ ∈ S̊h(D) is arbitrary. Choose χ = P (ωφ) and therefore ‖χ‖1,D ≤ C‖φ‖1,D. Then, by

(4.14) and (3.3), we obtain

(∇ωEh,∇φ)D ≤ C(h‖Eh‖1,D + ‖et‖−1,D + ‖Eh‖0,D′)‖φ‖1,D. (4.15)

For the term ‖Eh‖0,D′ in (4.15), we can further apply the estimate (4.7) in Lemma 4.2 with

E and D0 replaced by Eh and D′, respectively. Then, the estimate (4.10) follows from (4.11),

(4.12) and (4.15). �

Using Lemma 4.3, we next show that the H1 norm of Eh in an interior region is bounded

by the negative norms of Eh and of et in a slightly larger interior region.
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Lemma 4.4. With the conditions in Lemma 4.3, there exists a constant C independent of h,

such that

‖Eh‖1,D0 ≤ C(‖Eh‖−k−1,D + ‖et‖−1,D). (4.16)

Proof. Let D0 ⊂ D1 ⊂ · · · ⊂ Dk+3 = D be d-dimensional concentric balls with increasing

radii. Applying Lemma 4.3 with D0 and D replaced by Dj , Dj+1, 0 ≤ j ≤ k + 1, we obtain

‖Eh‖1,Dj
≤ C

(

h‖Eh‖1,Dj+1 + ‖Eh‖−k−1,Dj+1 + ‖et‖−1,Dj+1

)

.

Starting with j = 0 and iterating k + 2 times, one gets

‖Eh‖1,D0 ≤ C
(

hk+2‖Eh‖1,Dk+2
+ ‖Eh‖−k−1,D + ‖et‖−1,D

)

. (4.17)

By the inverse inequality (3.4), we have

hk+1‖Eh‖1,Dk+2
≤ C‖Eh‖−k−1,D. (4.18)

The inequality (4.16) then follows from (4.17) and (4.18). �

4.2. Interior error estimates

Now, we proceed to derive the estimates on the H1 and L2 norms of the finite element

approximation error (4.2) in interior regions.

Theorem 4.1. Let G0 ⊂ G ⊂ GL ⊂ Ω be interior subregions of Ω. Suppose z /∈ ḠL and h

sufficiently small. Let 0 ≤ k ≤ m be an integer. Recall the error e = u− uh in (4.2). Then, for

any χ ∈ Sh(G), there exists a constant C independent of h, such that

‖e‖1,G0 ≤ C
(

‖u− χ‖1,G + ‖e‖−k,G + ‖et‖−1,G

)

, (4.19)

‖e‖0,G0 ≤ C
(

h‖u− χ‖1,G + ‖e‖−k,G + h‖et‖−1,G + ‖et‖−2,G

)

. (4.20)

Proof. Using a covering argument, it suffices to show the estimates (4.19) and (4.20) for two

interior d-dimensional concentric ballsD0 ⊂ D ⊂ Ω. In what follows, we let D0 ⊂ D′
0 ⊂ D′ ⊂ D

be four concentric balls with increasing radii. Let ω ∈ C∞
0 (D′) and ω = 1 on D′

0.

Let P be the Ritz projection onto S̊h(D) as in Lemma 4.3. Then, we first have

‖e‖1,D0 ≤ ‖ωu− P (ωu)‖1,D0 + ‖P (ωu)− uh‖1,D0 . (4.21)

Note that for any v ∈ S̊h(D
′
0), we have

(∇(P (ωu)− uh),∇v)D′

0
= (∇(ωu − uh),∇v)D′

0
= (∇(u − uh),∇v)D′

0
= (−et, v)D′

0
.

Therefore, P (ωu) − uh satisfies the error Eq. (4.3) with D replaced by D′
0. Thus, applying

Lemma 4.4 with Eh = P (ωu)− uh and D replaced by D′
0, we have

‖P (ωu)− uh‖1,D0 ≤ C
(

‖P (ωu)− uh‖−k,D′

0
+ ‖et‖−1,D′

0

)

≤C
(

‖u− uh‖−k,D′

0
+ ‖ωu− P (ωu)‖−k,D′

0
+ ‖et‖−1,D′

0

)

≤C
(

‖u− uh‖−k,D + ‖ωu− P (ωu)‖1,D′ + ‖et‖−1,D

)

≤C
(

‖u− uh‖−k,D + ‖u‖1,D + ‖et‖−1,D

)

. (4.22)
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Meanwhile, for the first term of the right hand side in (4.21), we have

‖ωu− P (ωu)‖1,D0 ≤ C‖u‖1,D. (4.23)

Then, by (4.21), (4.22) and (4.23), we obtain

‖e‖1,D0 ≤ C(‖u‖1,D + ‖e‖−k,D + ‖et‖−1,D).

For any χ ∈ Sh(D), if we rewrite u− uh = (u− χ)− (uh − χ), we obtain

‖e‖1,D0 ≤ C(‖u− χ‖1,D + ‖e‖−k,D + ‖et‖−1,D). (4.24)

This proves the estimate (4.19). The inequality (4.20) follows from Lemma 4.2 and from similar

calculations as in (4.21)-(4.24) with a suitable modification of the subdomains involved. �

Remark 4.1. In Theorem 4.1, the constant C depends on the regions G0 and G that are

arbitrary but fixed. In practical computations, it is also important to quantify such dependence

when dist(∂G0, ∂G) is close to h. This shall give rise to local error estimates for the finite element

approximation in interior regions near the singular point z.

Corollary 4.1. Let G0 ⊂ G ⊂ GL ⊂ Ω be interior subregions of Ω. Suppose z /∈ ḠL. For

k0 > 0, suppose k0h ≤ r := dist(∂G0, ∂G) ≤ 1. Let 0 ≤ k ≤ m be an integer. Recall the error

e = u− uh in (4.2). Then, there exists a constant C independent of h and r, such that for any

χ ∈ Sh(G), we have

‖e‖1,G0 ≤ C
(

|u− χ|1,G + r−1‖u− χ‖0,G + r−k−1‖e‖−k,G + ‖et‖−1,G

)

, (4.25)

‖e‖0,G0 ≤ C
(

h|u− χ|1,G + hr−1‖u− χ‖0,G + r−k‖e‖−k,G + h‖et‖−1,G + ‖et‖−2,G

)

. (4.26)

Proof. Let D0(xi) ⊂ D(xi) ⊂ Ω be two d-dimensional concentric balls centered at xi with

radii r/2 and r, respectively. Note that Ḡ0 can be covered by a finite number of balls D0(xi)

such that xi ∈ Ḡ0, and ∪iD(xi) is a subset of G. Thus, it suffices to show the estimates (4.25)

and (4.26) for the two balls D0(xi) and D(xi). To simplify the notation, we let D0 = D0(xi)

and D = D(xi) below.

We use a local coordinate system on D, such that xi is the origin. Then, the same dilation

x̂ = (x − xi)/r as in Lemma 3.1 translates D0 and D to D̂0 and D̂ with dist(∂D̂0, ∂D̂) = 1/2.

Meanwhile, for a function v on D, we define v̂(x̂) = v(x). Therefore, by the scaling argument,

we have

‖ê‖0,D̂0
= r−d/2‖e‖0,D0 and |ê|1,D̂0

= r−d/2+1|e|1,D0 , (4.27)

and the error Eq. (4.2) becomes

r2(êt, v̂) + (∇ê,∇v̂) = 0, (4.28)

where v̂ ∈ S̊h/r(D̂). Now, using the error equation (4.28) and following the same lines in the

proof of Theorem 4.1, we obtain for any χ̂ ∈ Sh/r(D̂),

‖ê‖1,D̂0
≤ C

(

‖û− χ̂‖1,D̂ + ‖ê‖−k,D̂ + r2‖êt‖−1,D̂

)

, (4.29)

‖ê‖0,D̂0
≤ C

(

hr−1‖û− χ̂‖1,D̂ + ‖ê‖−k,D̂ + hr‖êt‖−1,D̂ + r2‖êt‖−2,D̂

)

. (4.30)
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In addition, by the definition of the H−k norm and the fact r ≤ 1, we have for 0 ≤ j ≤ k,

‖v̂‖−j,D̂ ≤ r−(d/2+j)‖v‖−j,D. (4.31)

Then, by (4.27) and (4.29)-(4.31), we obtain

r−d/2+1‖e‖1,D0 ≤ C
(

r−d/2+1|u− χ|1,D + r−d/2‖u− χ‖0,D

+r−d/2−k‖e‖−k,D + r2−d/2−1‖et‖−1,D

)

,

r−d/2‖e‖0,D0 ≤ C
(

hr−d/2|u− χ|1,D + hr−d/2−1‖u− χ‖0,D

+r−d/2−k‖e‖−k,D + hr−d/2‖et‖−1,D + r−d/2‖et‖−2,D

)

.

The proof is thus completed. �

Remark 4.2. According to Theorem 4.1, the H1 norm of the error in an interior region away

from the singular point z is bounded by the combination of the best local approximation error in

the finite element space, a negative norm of the interior error, and a negative norm of the time

derivative of the error. Note that the term ‖e‖−k,G in general is determined by the smoothness

of u, ut, and the adjoint problem (2.3) with q ∈ C∞
0 (Ω) [28]. The first two terms of the upper

bound in (4.19) also occur in the interior H1 norm error estimate for elliptic problems [20].

Meanwhile, ‖et‖−1,G is an extra term that represents the impact of the time derivative of the

error in the approximation of the parabolic problem. It can also be the dominant term in the

upper bound. The interior L2 estimate (4.20) has a similar flavor as the interior H1 estimate

(4.19).

Corollary 4.1 provides the interior error estimates when the boundary distance between the

two interior regions is small. An implication of these estimates is that if the interior region of

interest G0 is close to the singular point z (dist(∂G0, z) = O(h)), we have r = O(h). In this

case, the additional factors (functions of r) in the estimates (4.25) and (4.26) can override the

high-order convergence in ‖e‖−k,G, and consequently make the upper bounds of the local error

in G0 comparable to the upper bounds of the global error.

5. Numerical Experiments

In this section, we provide numerical test results to verify the estimates in Theorem 4.1.

To simplify the calculations, we choose in the tests the following parabolic problem with the

distributional data defined in a one-dimensional spacial domain Ω = (−π, π), such that the

singular point z = 0 is at the origin:

ut = uxx + 2δz(x), (x, t) ∈ (−π, π)× (0, T ],

u(−π, t) = u(π, t) = 0, t ∈ [0, T ], (5.1)

u(x, 0) = u0(x), x ∈ (−π, π),

where u0 is the initial condition that we will specify later. As in the semidiscrete scheme

(3.1), we discretize the spacial derivatives by using the continuous finite element methods on a

uniform partition with mesh size h on Ω. We choose the approximation u0,h ∈ Sh of the initial

condition as the L2-projection of u0 in the finite element space. Without loss of generality, in
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each test, we use meshes such that the singular point z = 0 is in the interior of an element.

Then, we report numerical results from the semidiscrete approximations using piecewise linear

(m = 1), quadratic (m = 2) and cubic (m = 3) finite element methods.

5.1. Test I

We consider the parabolic equation (5.1) with the initial condition

u0(x) =

{

π + x+ sin(x), x ∈ (−π, 0),

π − x+ sin(x), x ∈ [0, π).
(5.2)

Therefore, the exact solution is

u(x, t) =

{

π + x+ e−t sin(x), x ∈ (−π, 0),

π − x+ e−t sin(x), x ∈ [0, π).

For any t ≥ 0, we see that

u(t) ∈ H3/2−ǫ(Ω) and ut ∈ C∞(Ω), (5.3)

where ǫ > 0 is arbitrarily small. Then, using the semidiscrete scheme discussed above, we

expect to see the following convergence rates in the global L2 and H1 norms [25, 28]

‖u(t)− uh(t)‖L2(Ω) ≤ Ch1.5−ǫ and ‖u(t)− uh(t)‖H1(Ω) ≤ Ch0.5−ǫ. (5.4)

Meanwhile, for an interior region G0 = (−1,−0.5)∪ (0.5, 1) ⊂ Ω that is away from the singular

point z = 0, note that u(t) is smooth in G0. Since the adjoint elliptic problem (2.3) with

q ∈ C∞
0 (Ω) is smooth, in view of (5.3), according to the negative norm estimates in [28],

Theorem 4.1 shall give rise to

‖e‖1,G0 ≤ Chm and ‖e‖0,G0 ≤ Chm+1, (5.5)

where m is the degree of the polynomial in the finite element method.

In Table 5.1, we display the numerical results for the semidiscrete approximations of equation

(5.1) with the initial condition (5.2). Here, we denote by M the number of sub-intervals in the

partition. We see in the table that the convergence in the global L2 (resp. H1) norm is like

h1.5 (resp. h0.5) for both m = 1, 2, 3. The local error in G0 is optimal in terms of the degree

of polynomials used in the tests. It is clear that these numerical results are consistent with our

theoretical predictions in (5.4) and in (5.5), and therefore verify the theory.

Table 5.1: Test I: the convergence of the semidiscrete scheme using m = 1, 2, 3 piecewise polynomials

at time t = 0.1.

Global Domain Ω Interior Domain G0

M ‖e‖0,Ω order ‖e‖1,Ω order ‖e‖0,G0 order ‖e‖1,G0 order

m = 1 51 8.01E-03 – 3.73E-01 – 3.73E-04 – 7.70E-02 –

101 2.87E-03 1.48 2.60E-01 0.52 8.77E-05 2.08 3.90E-02 0.98

201 1.02E-03 1.49 1.83E-01 0.51 2.15E-05 2.02 1.96E-02 0.94

m = 2 51 5.01E-03 – 1.65E-01 – 1.45E-04 – 3.77E-03 –

101 1.76E-03 1.51 1.17E-01 0.49 1.65E-05 3.15 9.59E-04 1.97

201 6.28E-04 1.49 8.29E-02 0.50 2.05E-06 3.01 2.42E-04 1.99

m = 3 51 2.03E-03 – 1.03E-01 – 8.79E-05 – 1.24E-03 –

101 7.19E-04 1.49 7.34E-02 0.49 5.51E-06 3.99 1.53E-04 3.02

201 2.56E-04 1.49 5.12E-02 0.52 3.46E-07 3.99 1.89E-05 3.01
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5.2. Test II

In this test, we demonstrate the impact of the lack of regularity in ut on the interior estimates

in (4.19) and (4.20). Consider the parabolic Eq. (5.1) with the initial condition.

u0(x) = 0, x ∈ (−π, π). (5.6)

Then, based on the standard regularity estimate, we have for almost everywhere t ≥ 0,

u(t) ∈ H3/2−ǫ(Ω), (5.7)

where ǫ > 0 is arbitrarily small. In addition, using a local argument similar to the one in

Corollary 2.1, we can see that u(t) is smooth in the interior regionG0 = (−1,−0.5)∪(0.5, 1) ⊂ Ω.

Therefore, the first term ‖u − χ‖1,G in (4.19) and (4.20) is of optimal rate. Meanwhile, the

function ũ = ut satisfies the following parabolic equation with non-smooth initial data

ũt = ũxx (x, t) ∈ (−π, π)× (0, T ],

ũ(−π, t) = ũ(π, t) = 0, t ∈ [0, T ], (5.8)

ũ(x, 0) = 2δz(x), x ∈ (−π, π).

Then, the error estimates in [28] for non-smooth initial data imply that when t is relatively

large in comparison to the mesh size h, due to the smoothing property of the solution operator

of the parabolic problem, the terms in Theorem 4.1 that involve negative norms of e and et can

also be bounded by the best local approximation error. Consequently, the local convergence

of the semidiscrete scheme in G0 should resemble the optimal local convergence in Test I.

However, when t is small, the non-smooth initial data in ut can disturb the convergence in

‖e‖−k,G, ‖et‖−1,G, and ‖et‖−2,G [28]. Thus, if t is small, we expect to see poor convergence

for the interior errors ‖e‖1,G0 and ‖e‖0,G0, even though u is smooth in G0. In contrast, for the

equation in Test I, ut is always smooth, and therefore the interior estimates (5.5) were seen for

any t > 0 numerically.

We report numerical results solving (5.1) with the initial condition (5.6) in Tables 5.2 –

5.3. In these tests, since the exact solution is unknown, we use the numerical approximations

with sufficiently refined meshes (M = 1601) as the reference solution to compute the errors. In

Table 5.2, we list the global and interior convergence rates at t = 1. These results are similar to

those in Table 5.1, which are aligned with our theoretical prediction. Namely, at t = 1, with the

smoothing property of the solution operator, the global convergence rates are determined by the

regularity of the solution in (5.7); and the convergence rates in G0 are determined by the best

approximation error. In Table 5.3, we compare Test I and Test II for the convergence results in

the interior region G0 when t is small (t = 10−4). It is clear that the interior convergence rates

in Test I are optimal when t is small, while no convergence is seen in Test II. This confirms

our discussion above: due to the non-smooth initial data in (5.8), when t is small, the negative

norms of e and et in our estimates (4.19) and (4.20) can be the dominant terms in Test II; while

the interior convergence in Test I is optimal for any t > 0 due to the regularity estimates for u

and ut in (5.3).

Acknowledgments. Li Guo was supported in part by the National Natural Science Foundation

of China under the grant 11601536. Hengguang Li was supported in part by the National Science

Foundation Grant DMS-1418853, by the Natural Science Foundation of China Grant 11628104,



Interior Estimates of Semidiscrete FEMs for Parabolic Problems 473

Table 5.2: Test II: the convergence of the semidiscrete scheme using m = 1, 2, 3 piecewise polynomials

at time t = 1.

Global Domain Ω Interior Domain G0

M ‖e‖0,Ω order ‖e‖1,Ω order ‖e‖0,G0 order ‖e‖1,G0 order

m = 1 51 7.13E-03 – 6.67E-01 – 1.24E-04 – 7.26E-03 –

101 2.56E-03 1.48 4.74E-01 0.49 2.57E-05 2.27 3.68E-03 0.98

201 9.12E-04 1.49 3.37E-01 0.49 5.28E-06 2.10 1.85E-03 0.99

m = 2 51 2.68E-03 – 2.58E-01 – 8.15E-05 – 2.14E-04 –

101 9.65E-04 1.47 1.85E-01 0.48 9.91E-06 3.04 5.23E-05 2.03

201 3.46E-04 1.48 1.32E-01 0.49 1.26E-06 2.98 1.28E-05 2.01

m = 3 51 1.22E-03 – 3.61E-01 – 4.83E-05 – 7.15E-05 –

101 4.16E-04 1.55 2.55E-01 0.50 3.36E-06 4.01 8.58E-06 3.05

201 1.37E-04 1.60 1.80E-01 0.50 2.21E-07 3.93 1.08E-06 2.99

Table 5.3: The comparison between Test I and Test II: the convergence in the interior domain G0 using

linear (m = 1) and cubic (m = 3) piecewise polynomials t = 10−4.

m = 1 m = 3

M ‖e‖0,G0 order ‖e‖1,G0 order ‖e‖0,G0 order ‖e‖1,G0 order

Test I 51 1.44E-03 – 7.63E-02 – 1.19E-04 – 1.34E-03 –

101 2.77E-04 2.38 3.86E-02 0.98 7.54E-06 3.98 1.69E-04 2.98

201 5.82E-05 2.03 1.94E-02 0.99 4.73E-07 3.99 2.08E-05 3.02

Test II 51 9.61E-05 – 3.79E-03 – 1.35E-04 – 1.38E-02 –

101 8.57E-05 0.15 1.01E-02 -1.41 4.18E-05 1.69 7.59E-03 0.86

201 5.45E-04 -2.67 1.95E-02 -0.95 6.03E-05 -0.53 3.57E-02 -2.23
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