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Abstract

Let @ C R% 1 < d < 3, be a bounded d-polytope. Consider the parabolic equation
on 2 with the Dirac delta function on the right hand side. We study the well-posedness,
regularity, and the interior error estimate of semidiscrete finite element approximations of
the equation. In particular, we derive that the interior error is bounded by the best local
approximation error, the negative norms of the error, and the negative norms of the time
derivative of the error. This result implies different convergence rates for the numerical
solution in different interior regions, especially when the region is close to the singular
point. Numerical test results are reported to support the theoretical prediction.

Mathematics subject classification: 65M15, 65M60
Key words: Parabolic problems, Distributional data, Finite element methods, Interior
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1. Introduction

Let Q c R 1 < d < 3, be a bounded d-polytope and Q7 := Q x (0,T]. Namely, Q is a line
segment for d = 1, a polygon for d = 2, and a polyhedron for d = 3. Denote by d,(z) = §(x — z)
the Dirac delta function at z € ). We consider a parabolic problem with the homogeneous
Dirichlet boundary condition

ug — Au = f, in Qrp, (1.1a)
u=0, on 0% x[0,T], (1.1b)
u(+,0) = uo, on Qx {t=0}, (1.1c)

where ug € L*(Q) and f = g6, for g € L?(0,T;C(9)). The finite element approximations
for parabolic equations with sufficiently smooth solutions have been well investigated in the
literature (see, e.g., [3,21,29]). The study of numerical methods for parabolic equations with
less regular data has become increasingly popular in recent years. We refer to [5,14,15] for
equations with singular solutions due to the non-smoothness in the domain and in the coefficient
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of the differential operator. Some recent results on point-wise approximations can be found
in [12,13] for fully discrete methods (finite element method in space and discontinuous Galerkin
method in time). For numerical analysis on parabolic problems with Dirac delta functions, we
mention [8,25] and references therein. In these works, the global convergence of the numerical
scheme on the entire domain was obtained approximating the singular solution.

Partial differential equations with the §-function sources have many applications in astro-
physics and oil reservoir simulations. Especially in the latter case, an interesting model is the
two-phase flow displacement in porous medium which can be described by a parabolic system.
Moreover, the injection and production wells can be represented by point sources and sinks,
respectively, which can be approximated by J-singularities with different strengths. In such
problems, the exact solutions are not smooth and high-order numerical schemes can yield poor
convergence or strong oscillations in a vicinity (pollution region) of the singularity. In [30],
Yang and Shu applied discontinuous Galerkin methods to solve linear hyperbolic equations
with J-function source terms in one space dimension and the size of the pollution region was
proved to be of order O(h?), where h is the mesh size.

Note that the distributional data in Eq. (1.1) can lead to singular solutions, for which the
global approximation may not be of high-order accuracy even when high-order finite element
methods are used. Meanwhile, the numerical approximation in certain interior regions is often
more interesting in practice. In this paper, we study the interior error estimate of the semidis-
crete finite element method for Eq. (1.1). In particular, we first derive the well-posedness of the
weak solution for Eq. (1.1) in suitable Sobolev spaces (Theorem 2.1). This result extends the
well-posedness result in [8,16] on convex domains to general polytopal domains. Then, we show
that away from the singular point z, the solution possesses higher interior regularity (Corollary
2.1), which justifies the use of the L? and H' norms of the error in such interior regions for our
error analysis. The main result regarding the interior error estimate is summarized in Theorem
4.1, in which we obtain that the L? and H' norms of the error in an interior region away from z
are determined by three components: the best local approximation error from the finite element
space, the negative norms of the interior error, and the negative norms of the time derivative
of the local error. Namely, the interior convergence may be of higher order compared with the
global convergence, which is affected by the regularity of v and u;. Applying this result to
regions close to z, we further formulate an interior estimate (Corollary 4.1) that depends on
the distance to the singular point. This implies that as the region gets closer to z, the interior
convergence rate can slow down and eventually resemble the global convergence rate.

For elliptic boundary value problems, the finite element interior estimates have been studied
in a series of papers [20,22-24]. These results show that the error in an interior region is
bounded by the best local approximation error and the error in negative norms. Thus, the
interior error estimates in this paper extend these results to parabolic problems by including
additional effects from the time derivative of the solution. We also mention that for parabolic
equations, an interior finite element analysis was derived in [27] using the energy method on
uniform meshes with specific conditions. In this paper, we use a more direct method to obtain
the interior error analysis, especially when distributional data is present. In addition, our results
apply to general quasi-uniform meshes.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and
derive the well-posedness and regularity results for the parabolic problem (1.1). In Section
3, we formulate the semidiscrete finite element approximation and recall useful properties of
the numerical scheme. In Section 4, we obtain the interior error estimates for the parabolic
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equation (1.1). In Section 5, we report numerical test results to verify the theory.

Throughout the paper, for two regions A and B, A C B means that A is an interior proper
subset of B (i.e. dist(0A,dB) > 0), while A C B means that A is a subset of B (A can be equal
to B). The generic constant C' > 0 in our analysis may be different at different occurrences. It
will depend on the underlying domain, but not on the functions or the mesh size involved in
the estimates.

2. Well-osedness and Regularity
In this section, we introduce the notation and derive related regularity results for Eq. (1.1).

2.1. The Notation

For an integer m > 0 and D C R4, 1 < d < 3, let H™(D) be the Sobolev space with the
norm and the seminorm

1/2 1/2
lollmp = > 10°0lZap) and  [vlmp = | D 10%IFap) |
la|<m la|=m
where a = (a1, ,aq) € Z%o is the multi-index with |a| = >, ,,a;. Denote by L?(D) =

H°(D) the standard L? space over D. Moreover, we denote by HJ"(D) the completion of
C§°(D) in H™(D). For a non-integer s > 0, the space H*(D) and H§(D) are defined by
interpolation. More details on the Sobolev space can be found in [9,17,19]. Specifically, for
D C Q and m < 0 being an integer, the negative norm is defined as

olmp=  syp (D
0#£p€C§*(D) llell—m,p

where (v, p)p = | p Vpdz. For any negative integer m, the following two properties hold :
1. If Dy and D5 are two disjoint sets, then

[vl17, b, + 19115, 5, = 1017, b, 0, - (2.1)

2. If Dy C D5, then

[ollm. Dy < [[0llm. D, (2.2)

Meanwhile, we recall the function spaces involving time. Let X be a Banach space with
norm ||| x. Then, we denote by L?(0,T; X ) and H'(0,T; X) the spaces of measurable functions
v :[0,T] — X such that

T

T 2
ol 0y = [ ot <o ol = [ (101 + loollx) a < .

where v; = 0yv; and denote by C(0,T'; X) the space of continuous functions v : [0, 7] — X with
the norm

lollowr = max o(t)]x < ox.

In addition, we define the space

G(Q) = {v, ve HY(Q), Av e L2(Q)}.
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Remark 2.1. Since the domain Q in Eq. (1.1) is a d-polytope, we here briefly recall the
regularity property for the associated elliptic problem. For ¢ € L?(2), the elliptic problem

—Av=¢q in €, v=0 on 0, (2.3)

has a unique solution in Hg (). The regularity of the solution, however, depends on both the
regularity of ¢ and the geometry of the domain 2. For a sufficiently smooth function ¢, we
usually have v € H!*2(Q) when Q has a non-smooth boundary (d = 2,3), where o > 1/2
is the regularity index determined by the domain. In particular, the index a < 1 in the
following cases. (I) 2 contains a reentrant corner (d = 2). (II) £ contains part of an edge
(d = 3) with dihedral angle > 7 . (III) Q contains a vertex (d = 3) with certain opening
angle such that the solution is singular (v ¢ H?) in the neighborhood of the vertex. Unlike the
two-dimensional case, the relation between the vertex angle and the solution regularity does
not follow a simple formula, but can be computed numerically. Consequently, for the global
regularity, if Q is convex, G(Q) = H?(Q) N H}(Q); and if Q is non-convex, G(2) C H'T*(Q)
for some a > 1/2 [10]. Meanwhile, in an interior region D C 2, the solution of (2.3) possesses
higher regularity [|v]| gr+2(py < Cllqll gr(q), for k> 0.

2.2. The Equation

Consider the forward problem associated with Eq. (1.1)

v — Av = q, in Qr, (2.4a)

v =0, on 09 x[0,T], (2.4b)

v = Vg, on Qx {t=0}, (2.4c)
and the backward problem

v + Av = g, in Qx]10,7T), (2.5a)

v =0, on 0N x[0,T], (2.5b)

v=0, on Qx{t=T}. (2.5¢)

Then, we have the following well-posedness and regularity results.

Proposition 2.1. Suppose ¢ € L*(0,T; L?*(Q)) and vo € HL(Q). Then, each of the problems
(2.4) and (2.5) admits a unique solution v € L*(0,T;G(R)), such that v; € L*(0,T; L?()).

Proof. For the forward problem (2.4), the conclusion follows from the regularity estimates
(Theorem 5.1.1, [10]). Meanwhile, with the change of variable 7 =T —t and 9(7) := v(t), Eq.
(2.5) becomes

By — AD = —§, i Qr, (2.62)
5 =0, on  AQ x [0,T], (2.6b)
=0, on Qx{r =0}, (2.6¢)

which is a well-posed forward problem. Therefore, the same argument for (2.4) applies to (2.6),
and consequently leads to the desired regularity estimates for the backward problem (2.5).

Now, we show Eq. (1.1) has a well-posed solution.
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Theorem 2.1. Suppose ug € L*(Q) and f = gd., where g € L?(0,T;C(Q)). Then, the
parabolic problem (1.1) admits a unique weak solution u € L?(0,T; L*(Q)) that satisfies

T
—(u,v)ap — (U, AV)q, = / uov(x,0)dx —|—/ / fodxdt, Yve X, (2.7)
o Ja

Q
where (u,v)ay = [o, uvdzdt and X := {v, v € L*(0,T;G(Q)) N H'(0,T; L*(Q)) and v(T) =
0}.

Proof. Case I. We first consider the case when f € L2(0,T;L%*(Q2)). Let V := {v, v €

L2(0,T; HY(Q)NH(0,T; H1(Q)) and v(T) = 0}. Then, equation (1.1) has a unique solution
u € L*(0,T; H}(2)) (Theorems 2.1 and 4.2, Chapter 3 of [16]) satisfying

—(u, Av +vt)q, = / uov(z,0)dx + (f,v)a,, YveV. (2.8)
Q

Since X C V, this solution u € L?(0,T; H}(Q)) C L*(0,T; L*()) satisfies (2.7) for v € X.
Now, we show the uniqueness. Assume there is another solution u; € L2(0,T; L*(Q2)) of Eq.
(1.1) satisfying (2.7). Consider w = u—u; € L*(0,T; L?(f2)). Let v be the solution of Eq. (2.5)
with ¢ = w. Then, by Proposition 2.1, v € X; and Eq. (2.7) gives rise to (w,w)q, = 0. Thus,
L2(0,T; L?(Q)) > w = 0 and therefore the solution u € L?(0,T; L?(£2)) is unique.

Case II. We consider the case f = gd, with g € L*(0,T;C(€)). Denote by M(f2) the dual
space of C(f2), such that

lvllary = sup /wvdac.
Q

llwlle@y=1

Let {0,}, 6, € C(9), be a sequence converging weakly to §, in M () such that
16nll 1) < Clldzllm(e)- (2.9)

Such sequence {0} can be constructed, for example, using mollifiers as in [6]. Let u, be the
solution of Eq. (1.1) with d, replaced by d,, (namely the right hand side g6,, € L2(0,T; L%(Q2))).
Therefore, by the standard well-posedness result, u,, € L*(0,T; H}(2)) € L?(0,T; L?(2)). For
any g € L%(0,T; L?(9)), let v € X be the solution of Eq. (2.5). Then, by the argument in Case
I, we have

(¢, un)ar = (v + Av,up)op = — /Q uov(z, 0)dx — (g0n, v)ar

< Nuoll 2y lv(z, 0)| L2y + Cllgll L2075 ) |10n L2 @) 101l L2 (0,715 () -

Note that v € X implies v € C(0,T; L%(€2)). Thus, by Proposition 2.1,

[v(@,0)[[z2(0) < [vllco.r:L2@) < Cllvllarorc2@) < Cllgllreo,r;229)-

Meanwhile, by the fact G(Q) C H'**(Q) for a > 1/2 (Remark 2.1), the Sobolev Embedding
Theorem, and Proposition 2.1, we have

[vllz20,m;2(0)) < Cllvllr20,1:69) < CllallLz2o,7;12(0)-

Therefore, using (2.9), we deduce

(¢ un)ar < Cllqll20,1:22(0)) (||U0||L2(Q) + ||9HL2(0,T;L°°(Q))H5z||M(Q))-
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This implies that {u,} is a bounded sequence in L?(0,T; L?(£2)), and therefore contains a
subsequence {u,, } that is weakly convergent to a function in L?*(0,T;L?(£2)). Denote this
function by u. Then, a standard calculation shows that u satisfies Eq. (2.7) with f = ¢gd.. The
proof is hence completed. O

Then, we have the interior regularity estimate for Eq. (1.1).

Corollary 2.1. Let D C Dp C Q be two d-dimensional concentric balls with increasing radii,
such that z ¢ Dr. For the parabolic problem (1.1), suppose that ug € H?(Dr) N L?(). Then,
we have u € C(0,T; HY(D)) and u; € C(0,T; L*(D)).

Proof. First, we let D C Dg C D" C D' C Dy, be five d-dimensional concentric balls with
increasing radii. Let wy € C§°(Dr) be such that wy = 1 on D’. Similarly, let w” € C5°(D")
be such that w”’ =1 on Dg.

By Theorem 2.1 and equation (1.1), @ := wru € L?(0,T; L?(Dy)) and it satisfies

Uy — At = f1 = wpf — ulwp — 2Vwy, - Vu, in Dy, x (0,71, (2.10a)
=0, on 0Dy x[0,T], (2.10Db)
U = wru, on Dy x{t=0}. (2.10c)

Since u € L%(0,T; L*(Dy)), wrgd. = 0 (2 ¢ supp(wy)), and ug € H*(Dy,), we have
fi = —ulAwp — 2Vwr, - Vu € L2(0,T; H (D)) and wrug € Hy(Dr). (2.11)

Therefore, the standard well-posedness result for Eq. (2.10) gives rise to @ € L2(0,T; H}(Dy)),
which in turn implies

u € L*0,T; H'(D")). (2.12)

Now, we study the regularity of v on the annulus R := D’ \ D. Let wr € C§°(R) be such
that wg = 1 on D"\ Dg. Consider Eq. (2.10) with Dy, and wy, being replaced by R and wg,
respectively. Then, similar to (2.11), using (2.12), we have in this case

fi = —ulAwpg — 2Vwg - Vu € L*(0,T; L*(R)) and wgruy € H(R).
Then, by Proposition 2.1 (the argument for the forward problem), we obtain
wru € L?(0,T; H*(R)) and wpu; € L*(0,T; L*(R)). (2.13)

Consider Eq. (2.10) with Dy and wy, being replaced by D" and w”, respectively. Then,
similar to (2.11), we have in this case

fi = —uAw” —2Vw” - Vu and w"ug € Hy(D"). (2.14)

Since the derivatives of w” are zero on Dg, by (2.13) and (2.14), we have f; € L?(0,T; H*(D"))
and (f1); € L*(0,T; H-*(D")). Thus, f; € C(0,T;L*(D")) (Theorem 3.1, Chapter 1 in [16])
and therefore f1(0) is well defined in L?(D"). Note that A(w”ug) + f1(0) = w”Aug € L%(D").
Then, @; = w”u; is the weak solution of the parabolic problem

ﬂtt — A’ELt = (fl)t7 in D" x (O,T] (215&)
up = 0, on OD" x [0,T7, (2.15b)
ar = A(w"uo) + f1(0), on D" x{t=0}. (2.15¢)
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Thus, by the standard well-posedness result for Eq. (2.15), we conclude @; € L?(0,T; H*(D"))
and @, € L2(0,T; H-! (D")). This, together with the estimate in (2.12), leads to u €
C(0,T; HY(D)) and u; € C(0,T; L*(D)), which completes the proof. O

3. The Finite Element Approximation

In this section, we define the semidiscrete finite element approximation of Eq. (1.1) and
derive estimates that will be useful to further carry out the interior error analysis for the
numerical solution.

Let 7, = {T;} be a quasi-uniform triangulation of © with shape-regular d-dimensional
simplexes T;, where h = maxpey(diam(T")) is the mesh parameter. Denote by S, = Sp(Q2) C
H}(Q) the continuous Lagrange finite element space of degree m > 1 associated with 7j,.
Then, the semidiscrete finite element approximation of Eq. (1.1) is to find up(t) = un(-,t) €
H(0,T;Sh), such that

(un,t,v) + (Vup, Vu) = (f,v), Yo e Sp, t>0, and wup(0) = ugn, (3.1)
where up, 1 = Opup, (v,w) = fQ vwdz, and ug j, is some approximation of ug in Sj,.

Remark 3.1. The finite element solution wup, in (3.1) is well defined. When Eq. (1.1) possesses
a sufficiently smooth solution and initial condition, it can be shown that for 0 < ¢ < T, the
finite element approximation globally converges in the optimal rates [28]

() — un(®)l| 2 < CR™ and  [u(t) — un(t)| g1 () < CH™

When the solution of Eq. (1.1) is singular due to the non-smoothness of the domain, the
convergence of uy deteriorates, similar to the behavior of the finite element solution for the
associated elliptic problem (2.3) [5]. The singular source term (the d-function in f) can also
give rise to singular solutions in Eq. (1.1). In this case, the results in [25] imply the reduced
global approximation rate,

lu(t) = un(t)| 2 < Ch2=d/2=e for any € > 0,

where the regularity estimate u € C(0,7T; L?(Q2)) was implicitly assumed. In this paper, we are
interested in the error bounds for ||u(t) — up(t)|| 2 and |u(t) — up(t)| g1 in an interior subregion
Dy away from 2. According to Corollary 2.1, the solution belongs to C(0,T; L?(Dy)) and further
to C(0,T; H(Dg)) with proper initial conditions. Therefore, these norms of the error are well
defined for Eq. (1.1).

In addition, we summarize useful interior properties of the finite element space. For any
interior domain D C Q, we define S (D) to be the restriction of S;(€2) on D and

Su(D) = {x € Si(D) : supp x C D},

where D is the closure of D.

Then, there exist ko > 0 and 0 < hg < 1, such that for h € (0, ho] and for Dy C D with
dist(Dg, D) > koh, the following approximating properties hold (see [4,11,18-20,23,26] and
reference therein).
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1. (Interpolation Approximation) For any u € H**1(D), 0 < k < m, there exists a function
X € Sp(D), such that

lu = xllo.p + Allu = xll1.p < CH**|ullk41, - (3.2)

2. (Super-approximation) Let w € C§°(Dy). Then, for any x € Sp(D), there exists n €
Sr(D), such that

lwx = nll1,.p < Chllx|l1,p,- (3.3)

3. (Inverse Inequality) For any nonnegative integer p and x € S (D), we have

Ixll.p0 < CR™ Vx| —p.p. (3-4)

Note that the constant C' involved in (3.2) — (3.4) depends on the regions of interest Dy
and D. Let B(xg,r) be the d-dimensional ball with center g and radius r. Using the scaling
argument, one can formulate the following estimates on the reference region.

Lemma 3.1. Let D := B(xzg,r) C Q be an interior region. The dilation & = (x — x0)/r
translates D into a unit size domain D and Sr(D) into a new finite dimensional space S;L/T(D).
Then, Sy,.(D) satisfies the estimates (3.2)—~(3.4) with h replaced by h/r, where the constants
in the estimates are independent of r.

Proof. The proof follows from a straightforward calculation. O

We end this section by considering the elliptic problem in an interior subregion D :=
B(zg,7) C Q

—AYp=g in D, (3.5a)
Pp=0 on 0D. (3.5b)
Since D has a smooth boundary, for any k > 0, the full regularity estimate [1,2,6,7,16] holds

[¢llkt2,0 < Cllgllx.p, (3.6)

where the constant C' depends on k and the region involved.

4. The Interior Error Analysis

In this section, we obtain the interior estimates for the semidiscrete finite element approxi-
mation (3.1) to the parabolic problem (1.1).

4.1. Some lemmas

To simplify the presentation, we let Dy C D C Dy C Q be three d-dimensional concentric
balls B(zo,70), B(xo,7) and B(xo,71), such that z ¢ Dy. Suppose the initial conditions in
equation (1.1) satisfy the conditions in Corollary 2.1. Thus, u € C(0,T; H*(D)) and u; €
C(0,T; L?(D)). Therefore, for 0 <t < T, u(t) € H'(D). Using integration by parts on Eq.
(1.1), we have

(us,v) + (Vu, Vo) = (f,v) Vv e Su(D), t > 0. (4.1)
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Thus, by (3.1) and (4.1), we arrive at the error equation
(er,v) + (Ve,Vv) =0, Vv e Sy(D), t >0, (4.2)

where e :=u — uy,.
To better present our analysis, instead of (4.2), we consider a more general form of the error
equation. Let £ € H'(D) satisfy

(er,v) + (VE,Vv) =0, Yue Sp(D), t>0. (4.3)
Then, we first have the interior estimate on £ in negative norms.

Lemma 4.1. Recall the concentric balls Dy C D C Dy C Q above. Let 0 < k <m —1 be an
integer. Then, for h sufficiently small, there exists a constant C independent of h, such that

1E0-k00 < C(HFYEND + €] 410+ B e 1o + el kap).  (4.4)

Proof. Let D’ be a d-dimensional ball with the same center as Dy and D, such that Dy C
D’ ¢ D. For h sufficiently small, we have dist(0Dy,dD’), dist(90D’,0D) > koh. Let w €
C§°(D') with w = 1 on Dy. Then for any k > 0, we have

€00 _ oy (VwE) V)

, 45
PR Y P (4.5)

1€l -k, Dy < |wE[|-k,p = sup
0#£9€Cs° (D) ||9|

where 1) is the solution of Eq. (3.5) and the last inequality is due to the estimate (3.6). For
any x € Sp(D), by the error Eq. (4.3), we have

(V(wE), VY)p = (VE,V(wi))p + (£, V - (¥Vw))p + (€, Vw - V) p

=(VE,V(wy =x))p + (£, V- (¢Vw))p + (£, Vw - Vi) p — (er, X)p

=(VE,V(w¢ =x))p + (£, V- (¥Vw))p + (£, Vw - V) p — (er,wt)p — (€1, X — wi)p.
Choosing a suitable x and using (3.2), we have for 0 < k <m — 1,

(V(wE), Vi)p
<C(W*YEllwp + 1€ k1.0 + et 42,0 + B e 10 [¥llkran. (46)

Combining (4.5) and (4.6), we obtain the estimate (4.4). O

In particular, using Lemma 4.1, we obtain the interior L? error estimate.

Lemma 4.2. Recall the concentric balls Dy C D C Dy, C Q in Lemma 4.1 and € from (4.3).
Let 0 < k < m — 1 be an integer. Then, for h sufficiently small, there exists a constant C
independent of h, such that

1€]

0.0, < C(hl€]

10+ €l -k-1.0 + Blledl] 1.0 + ledl 2.0 ) (4.7)

Proof. Let Dy C Dy C --- C Dgy1 = D be k + 2 d-dimensional concentric balls with
increasing radii. Setting k = 0 in (4.4), we have

1€ll0.00 < C(RlEND, + €]l -1, + hllec 1.0, + lletl] 2.0, ). (4.8)
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We apply (4.4) again to ||€]|-1,p,- By h <1 and (2.2), we have

3
1,0 + 1€l 2,0, + Blledl| 1,0, + > ||€t|z,D2)~ (4.9)
=2

1€lo0, < c<h||5|

Continuing this process up to Di41 and using ||et||—p—2,p < C||et||-2,p for any p > 0, we obtain
the desired result (4.7). O

Now, we consider a discrete version of £. Suppose that &, € S, (D) is such that the equation
holds

(VER, V) + (er,v) =0, Yo € Sp(D).
Namely. &, satisfies the error Eq. (4.3). Then, we have the following estimate regarding &,.

Lemma 4.3. Recall the concentric balls Dy C D C Dy C  in Lemma 4.1 and &, € S,(D)
defined above. Let 0 < k < m — 1 be an integer. Then, for h sufficiently small, we have

1Enll o0 < c(h||5h|

N I |et|1,D>. (4.10)

Proof. Let Dy C D’ C D be three d-dimensional concentric balls with increasing radii.
For h sufficiently small, we have dist(0Dg,dD’), dist(0D’,0D) > koh with a constant kg > 0.
Define the Ritz projection P : H'(D') — Sj,(D), such that for any ¢ € H(D'),

(V(p — Pg), Vo) =0, Vo e S,(D).
Let w € C§°(D’) with w =1 on Dy. Then, we have
[€nll1,po < llwénll1,pr < |wEh — P(wéh)ll1,pr + [ P(wEn)l1,p- (4.11)
Now, for the first term on the right hand side, by (3.3), we obtain

|wEh — P(wén)l1,pr < . inf |[Jw& — (|| < Chl|énll1,p- (4.12)
€Sk
For the second term on the right hand side of (4.11), we have
VP(wE
IP@E 1o < | PE b < C(VP(wE), a8y o(V (w8, Vo)p,  (4.13)
| P(wén)ll1,p

where ¢ = P(w&)/|P(w&)lli.po € Sh(D) and ||¢|l1.p = 1. Therefore, using integration by
parts and (4.3), we have

(V(w&r),Vo)p = (V&L V(we))p + (En, V- (¢Vw)) D + (En, Vw - Vo)
=(V&r, V(wo —x))p + (En, V - (¢VW))p + (En, Vw - V@)D — (€1, X) D (4.14)

where x € Sj,(D) is arbitrary. Choose y = P(w¢) and therefore ||x|1.p < C||¢|l1.p. Then, by
(4.14) and (3.3), we obtain

(Vwén, Vo)p < C(hl|Enll1,p + lled]| 1,0 + [|En]

0.0)[|[]1,p- (4.15)

For the term ||&xllo,ps in (4.15), we can further apply the estimate (4.7) in Lemma 4.2 with
& and Dy replaced by &, and D', respectively. Then, the estimate (4.10) follows from (4.11),
(4.12) and (4.15). O

Using Lemma 4.3, we next show that the H! norm of &, in an interior region is bounded
by the negative norms of &, and of e; in a slightly larger interior region.
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Lemma 4.4. With the conditions in Lemma 4.3, there exists a constant C independent of h,
such that

1€l

1,00 < C|Erll=k=1,0 + lletl|=1,D)- (4.16)

Proof. Let Do C D1 C --- C Diys = D be d-dimensional concentric balls with increasing
radii. Applying Lemma 4.3 with Dy and D replaced by D;, Djy1, 0 < j < k4 1, we obtain

[€nll1,p; < C(hHEhHLDHl + [[€nll—k—1,0;41 + Hetll—l,DHl)-
Starting with 7 = 0 and iterating k + 2 times, one gets
1€ul11.00 < C(W*21EnlI1D1ss + €0l k1.0 + lled] 1.0 ) (4.17)

By the inverse inequality (3.4), we have
hk+1 H5h|

1,Dg42 < Cthkafl,D- (4.18)

The inequality (4.16) then follows from (4.17) and (4.18). O

4.2. Interior error estimates

Now, we proceed to derive the estimates on the H! and L? norms of the finite element
approximation error (4.2) in interior regions.

Theorem 4.1. Let Gy C G C G C Q be interior subregions of Q. Suppose z ¢ G and h
sufficiently small. Let 0 < k < m be an integer. Recall the error e = u — uy, in (4.2). Then, for
any X € Sp(Q), there exists a constant C independent of h, such that

el < C(Jlu—x

060 < C(llu—x|

16+ lell-ra + llecll-1.6); (4.19)

le] 16+ llell-k.a + hlled| 1,6 + Hetll—z,c>- (4.20)

Proof. Using a covering argument, it suffices to show the estimates (4.19) and (4.20) for two
interior d-dimensional concentric balls Dy C D C 2. In what follows, we let Dy C D C D’ C D
be four concentric balls with increasing radii. Let w € C§°(D’) and w =1 on D).

Let P be the Ritz projection onto S (D) as in Lemma 4.3. Then, we first have

llell,pe < flwu = Plwu)lls,py + [[P(wu) = unll,po- (4.21)
Note that for any v € S,(D}), we have
(V(P(wu) = un), Vo)p; = (V(wu —up), Vo) p, = (V(u — un), Vv)py = (—et,v)py .-

Therefore, P(wu) — uy, satisfies the error Eq. (4.3) with D replaced by D{. Thus, applying
Lemma 4.4 with &, = P(wu) — up and D replaced by Dy, we have

| P(wu) = unll1,p, < C(HP(WU) — upl|—k,py + HetH—l,Dg)
SC(HU —up|| &,y + [lwu — P(wu)|| %,y + Hetl\q,pg))

<C(Ilu = unll-x,p + Jwu — Plww)]

1o+ lledll-1p)

<C(Ilu = unll-x0 + llullo + lletl 1.0 )- (4.22)
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Meanwhile, for the first term of the right hand side in (4.21), we have
lwu — P(wu)|l1,p, < Cllull1,p- (4.23)
Then, by (4.21), (4.22) and (4.23), we obtain
lell1.po < Cllullip + llell-x.p + llecl|-1.0)-
For any x € Sp(D), if we rewrite u — up, = (u — x) — (up — ), we obtain

el

1,00 < C([lu = xll1,p + llell k.0 + lledl|-1,p)- (4.24)

This proves the estimate (4.19). The inequality (4.20) follows from Lemma 4.2 and from similar
calculations as in (4.21)-(4.24) with a suitable modification of the subdomains involved. O

Remark 4.1. In Theorem 4.1, the constant C' depends on the regions Gy and G that are
arbitrary but fixed. In practical computations, it is also important to quantify such dependence
when dist(0Gy, G) is close to h. This shall give rise to local error estimates for the finite element
approximation in interior regions near the singular point z.

Corollary 4.1. Let Gy C G C G C Q be interior subregions of Q. Suppose z ¢ Gr. For
ko > 0, suppose koh < r := dist(0Go,0G) < 1. Let 0 < k < m be an integer. Recall the error
e =wu—uyp in (4.2). Then, there exists a constant C independent of h and r, such that for any
X € Sk(G), we have

lellao < € (Ju=xlue +r~ lu=xlo.c + 77" lel-ra + letll-16). (4.25)
lellogo < € (hlu = xlvo + b u = xllog +r*llell -k + hllecl-1a + lled] 26).  (4.26)

Proof. Let Do(x;) C D(z;) C 2 be two d-dimensional concentric balls centered at x; with
radii 7/2 and r, respectively. Note that G can be covered by a finite number of balls Do (z;)
such that z; € Gy, and U;D(x;) is a subset of G. Thus, it suffices to show the estimates (4.25)
and (4.26) for the two balls Dy(x;) and D(z;). To simplify the notation, we let Dy = Do(x;)
and D = D(z;) below.

We use a local coordinate system on D, such that z; is the origin. Then, the same dilation
& = (z —x;)/r as in Lemma 3.1 translates Dy and D to Dy and D with dist(9Dg, dD) = 1/2.
Meanwhile, for a function v on D, we define ©(&) = v(x). Therefore, by the scaling argument,
we have

=2

1ello, 5, = =r e

0,0, and [é]; p = 1,00 (4.27)

and the error Eq. (4.2) becomes
r2(é,0) + (Vé, Vo) = 0, (4.28)

where ¢ € S), /,.(ﬁ). Now, using the error equation (4.28) and following the same lines in the
proof of Theorem 4.1, we obtain for any ¥ € Sh/,.(ﬁ),

lelp, < C (N = Rl p+ el 5+ 72 Necl s p ). (4:29)

ello,5, < C(Art1la = Xl p + el p +hrléel o p +72lel s p5).  (4:30)
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In addition, by the definition of the H~* norm and the fact » < 1, we have for 0 < j < k,
loll_, 5 < v~ lo] .. (4.31)
Then, by (4.27) and (4.29)-(4.31), we obtain
=2 lellp, < (1= u = xl1.p + = lu = xlo.
7 E el p + 22 ey 1 )
r=2eflo,p, < C(hr_d/QW — Xlp + hr™? u = xllo,p
172 el g+ b2 ey 1 p + e 2,0 ).

The proof is thus completed. O

Remark 4.2. According to Theorem 4.1, the H' norm of the error in an interior region away
from the singular point z is bounded by the combination of the best local approximation error in
the finite element space, a negative norm of the interior error, and a negative norm of the time
derivative of the error. Note that the term |le||_x, ¢ in general is determined by the smoothness
of u, ut, and the adjoint problem (2.3) with ¢ € C§°(Q) [28]. The first two terms of the upper
bound in (4.19) also occur in the interior H' norm error estimate for elliptic problems [20].
Meanwhile, ||e¢||—1,¢ is an extra term that represents the impact of the time derivative of the
error in the approximation of the parabolic problem. It can also be the dominant term in the
upper bound. The interior L? estimate (4.20) has a similar flavor as the interior H' estimate
(4.19).

Corollary 4.1 provides the interior error estimates when the boundary distance between the
two interior regions is small. An implication of these estimates is that if the interior region of
interest Gy is close to the singular point z (dist(0Go, z) = O(h)), we have r = O(h). In this
case, the additional factors (functions of r) in the estimates (4.25) and (4.26) can override the
high-order convergence in |e| ¢, and consequently make the upper bounds of the local error
in Gy comparable to the upper bounds of the global error.

5. Numerical Experiments

In this section, we provide numerical test results to verify the estimates in Theorem 4.1.
To simplify the calculations, we choose in the tests the following parabolic problem with the
distributional data defined in a one-dimensional spacial domain Q = (—m, ), such that the
singular point z = 0 is at the origin:

Ut = Ugg + 20,(x), (z,t) € (—m,m) x (0,T],
u(—m,t) =u(m,t) =0, tel0,T], (5.1)

u(z,0) = up(x), € (—m, ),

where ug is the initial condition that we will specify later. As in the semidiscrete scheme
(3.1), we discretize the spacial derivatives by using the continuous finite element methods on a
uniform partition with mesh size h on Q2. We choose the approximation ug , € Sy, of the initial
condition as the L2-projection of ug in the finite element space. Without loss of generality, in
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each test, we use meshes such that the singular point z = 0 is in the interior of an element.
Then, we report numerical results from the semidiscrete approximations using piecewise linear
(m = 1), quadratic (m = 2) and cubic (m = 3) finite element methods.

5.1. Test I

We consider the parabolic equation (5.1) with the initial condition

T+ x +sin(x), x € (—m,0),
7w —x +sin(z), x € [0,7).

Therefore, the exact solution is
m+az+e tsin(z), x€(—m0),

u(x, t) =
T—x+e tsin(z), z€][0,7).
For any t > 0, we see that
u(t) € H¥?7¢(Q) and u; € C®(Q), (5.3)

where € > 0 is arbitrarily small. Then, using the semidiscrete scheme discussed above, we
expect to see the following convergence rates in the global L? and H' norms [25, 28]

[|u(t) — uh(t)HL2(Q) < Ch'5™¢ and [|u(t) — uh(t)HHl(Q) < ChO5<, (5.4)

Meanwhile, for an interior region Gy = (—1,—0.5) U (0.5,1) C €2 that is away from the singular
point z = 0, note that u(¢) is smooth in Gy. Since the adjoint elliptic problem (2.3) with
g € C5°(2) is smooth, in view of (5.3), according to the negative norm estimates in [28],
Theorem 4.1 shall give rise to

lell.co < CA™ and leflo.c, < Ch™ T, (5.5)

where m is the degree of the polynomial in the finite element method.

In Table 5.1, we display the numerical results for the semidiscrete approximations of equation
(5.1) with the initial condition (5.2). Here, we denote by M the number of sub-intervals in the
partition. We see in the table that the convergence in the global L? (resp. H') norm is like
h'5 (vesp. h%-®) for both m = 1,2,3. The local error in Gy is optimal in terms of the degree
of polynomials used in the tests. It is clear that these numerical results are consistent with our
theoretical predictions in (5.4) and in (5.5), and therefore verify the theory.

Table 5.1: Test I: the convergence of the semidiscrete scheme using m = 1,2, 3 piecewise polynomials
at time ¢t = 0.1.

Global Domain 2 Interior Domain Gy
M lello,a order |le]|1,0 order llello,co order |le]|1,q, order
m=1 51 8.01E-03 — 3.73E-01 - 3.73E-04 - 7.70E-02 -
101 2.87E-03 1.48 2.60E-01  0.52 8.77TE-05 2.08 3.90E-02 0.98
201 1.02E-03 1.49 1.83E-01 0.51 2.15E-05 2.02 1.96E-02 0.94
m=2 5l 5.01E-03 - 1.65E-01 — 1.45E-04 — 3.7TE-03 -
101  1.76E-03 1.51 1.17E-01  0.49 1.65E-05 3.15 9.59E-04 1.97
201  6.28E-04 1.49 8.29E-02 0.50 2.05E-06 3.01 2.42E-04 1.99
m=3 51 2.03E-03 - 1.03E-01 — 8.7T9E-05 — 1.24E-03 -
101  7.19E-04 1.49 7.34E-02  0.49 5.51E-06 3.99 1.53E-04 3.02
201 2.56E-04 1.49 5.12E-02  0.52 3.46E-07  3.99 1.89E-05 3.01
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5.2. Test 11

In this test, we demonstrate the impact of the lack of regularity in u; on the interior estimates
in (4.19) and (4.20). Consider the parabolic Eq. (5.1) with the initial condition.

uo(z) =0, x € (—m,m). (5.6)
Then, based on the standard regularity estimate, we have for almost everywhere ¢ > 0,
u(t) € H¥?7¢(Q), (5.7)

where ¢ > 0 is arbitrarily small. In addition, using a local argument similar to the one in
Corollary 2.1, we can see that u(t) is smooth in the interior region Gy = (-1, —0.5)U(0.5,1) C .
Therefore, the first term ||u — x|/1,¢ in (4.19) and (4.20) is of optimal rate. Meanwhile, the
function @ = u; satisfies the following parabolic equation with non-smooth initial data

Ut = Ugy (x,t) € (—m,m) x (0,77,
a(—m,t) = a(m,t) =0, t €10,T], (5.8)
a(z,0) = 2d,(z), x € (—m,m).

Then, the error estimates in [28] for non-smooth initial data imply that when t is relatively
large in comparison to the mesh size h, due to the smoothing property of the solution operator
of the parabolic problem, the terms in Theorem 4.1 that involve negative norms of e and e; can
also be bounded by the best local approximation error. Consequently, the local convergence
of the semidiscrete scheme in Gy should resemble the optimal local convergence in Test I.
However, when t is small, the non-smooth initial data in u; can disturb the convergence in
llell=k,c, lletll=1,a, and ||et]|—2,¢ [28]. Thus, if ¢ is small, we expect to see poor convergence

for the interior errors |lel|1,q, and ||

equation in Test I, u; is always smooth, and therefore the interior estimates (5.5) were seen for

0,Go, even though u is smooth in Gg. In contrast, for the

any t > 0 numerically.

We report numerical results solving (5.1) with the initial condition (5.6) in Tables 5.2 —
5.3. In these tests, since the exact solution is unknown, we use the numerical approximations
with sufficiently refined meshes (M = 1601) as the reference solution to compute the errors. In
Table 5.2, we list the global and interior convergence rates at ¢ = 1. These results are similar to
those in Table 5.1, which are aligned with our theoretical prediction. Namely, at t = 1, with the
smoothing property of the solution operator, the global convergence rates are determined by the
regularity of the solution in (5.7); and the convergence rates in Gy are determined by the best
approximation error. In Table 5.3, we compare Test I and Test II for the convergence results in
the interior region Gy when ¢ is small (t = 107%). It is clear that the interior convergence rates
in Test I are optimal when ¢ is small, while no convergence is seen in Test II. This confirms
our discussion above: due to the non-smooth initial data in (5.8), when ¢ is small, the negative
norms of e and e; in our estimates (4.19) and (4.20) can be the dominant terms in Test IT; while
the interior convergence in Test I is optimal for any ¢ > 0 due to the regularity estimates for u
and u in (5.3).
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Table 5.2: Test II: the convergence of the semidiscrete scheme using m = 1, 2, 3 piecewise polynomials

at time ¢t = 1.
Global Domain 2 Interior Domain Gy
M lello,a order |le]|1,0 order llello,co order |le]|1,c, order
m=1 51 7.13E-03 - 6.67E-01 — 1.24E-04 -~ 7.26E-03 —
101  2.56E-03 1.48 4.74E-01 0.49 2.57E-05 2.27 3.68E-03 0.98
201 9.12E-04 1.49 3.37TE-01  0.49 5.28E-06 2.10 1.85E-03  0.99
m=2 5l 2.68E-03 — 2.58E-01 — 8.15E-05 — 2.14E-04 —
101 9.65E-04 1.47 1.85E-01 0.48 9.91E-06 3.04 5.23E-05 2.03
201 3.46E-04 1.48 1.32E-01 0.49 1.26E-06  2.98 1.28E-05 2.01
m=3 51 1.22E-03 - 3.61E-01 - 4.83E-05 - 7.15E-05 -
101 4.16E-04 1.55 2.55E-01  0.50 3.36E-06 4.01 8.58E-06 3.05
201 1.37E-04 1.60 1.80E-01  0.50 2.21E-07  3.93 1.08E-06  2.99

Table 5.3: The comparison between Test I and Test II: the convergence in the interior domain Gy using

linear (m = 1) and cubic (m = 3) piecewise polynomials ¢ = 107
m=1 m=3
M lello,co order |le]|1,q, order llello,co order |le|l1,q, order
Test 1 51 1.44E-03 - 7.63E-02 — 1.19E-04 - 1.34E-03 -
101 2.77E-04  2.38 3.86E-02  0.98 7.54E-06  3.98 1.69E-04 2.98
201 5.82E-05 2.03 1.94E-02 0.99 4.73E-07  3.99 2.08E-05 3.02
Test I 51 9.61E-05 - 3.79E-03 - 1.35E-04 - 1.38E-02 -
101  8.57E-05 0.15 1.01E-02 -1.41 4.18E-05 1.69 7.59E-03 0.86
201 5.45E-04 -2.67 1.95E-02 -0.95 6.03E-05 -0.53 3.57TE-02 -2.23
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