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ABSTRACT

Photoacoustic imaging (PAI) is an imaging modality for obtaining absorption coefficient at every location inside
the tissue based on the detected photoacoustic signals. PA image reconstruction aims to determine the initial PA
pressure everywhere inside the tissue. The pressure is proportional to both absorption coefficient and light
fluence. Provided that fluence is homogenous, the reconstructed image will be an accurate mapping of the
absorption coefficient of the tissue. Here we presented a method for obtaining uniform fluence inside the region
of interest. We created a large dataset of fluence maps for different source locations, diameters and numerical
apertures with Monte Carlo simulations, then used this dataset to solve an optimization problem for finding the
source configuration which results in the best fluence distribution.
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1. INTRODUCTION

Photoacoustic imaging (PAI) is an emerging imaging modality which shows great potential for preclinical
research and clinical practice [1-4] including brain imaging in both small animals [5-8] and humans [9-11].
Photoacoustic imaging (PAI) uses short laser pulses to illuminate the tissue, then the absorbed light energy turns
into acoustic waves. Reconstructed images from photoacoustic (PA) signals are interpreted as distribution of
absorption inside the tissue which further can be used for obtaining concentrations of chromophores. Different
methods have been used to improve the PA signals and reconstructed images [12-15]. The PA pressure is
proportional to both absorption coefficient, pu,(r) and light fluence distribution, F(r), inside the tissue. Provided
that F(r) is homogenous or uniform, the reconstructed image will be an accurate representation of the absorption
coefficient of the tissue at a particular region. The goal of this study is to devise a PA-imaging system for
imaging the entire human infant brain in which the light fluence distribution is uniform or as close as possible to
it inside the head or at least inside some desired regions.

This device consists of a hemispherical helmet which houses a large number of optical fibers and ultrasound
detectors. Several parameters are considered for optimization problem namely, the position of the optical fibers,
diameter and the numerical aperture (NA) of the fibers. Using Monte Carlo simulation we create a large dataset
of fluence maps for optical fiber for different diameters and numerical apertures. Then this dataset is used to



solve an optimization problem to find the configuration which produce a fluence as close as possible to a
uniform distribution.

2. MATERIALS AND METHODS

2.1 Simulations and dataset generation

We used an infant head atlas model [16] which was segmented into six different regions, namely, extra cranial
tissue (ECT) which is the combination of scalp and skull, cerebro-spinal fluid (CSF), gray matter, white matter,
brain stem and cerebellum. We combined the cerebellum with gray matter and brain stem with white matter
resulting in four different tissue types (Fig. 1). Voxels have a volume of 0.86 mm?. Optical properties tissues
were selected similar to that of 800 nm light [17].

Then we devised an equidistant configuration on a hemisphere with 260 optical fibers and 120 ultrasound
transducers (Fig. 2(a)). This hemisphere can be considered as a helmet which can be put on the infant’s head as
illustrated in Fig. 2(b). The gap between the helmet and head will be filled with ultrasound gel or water for
impedance matching. We used water in the simulations. Locations of optical fibers are shown as red dots in Fig.
2(b) and each source has its own ID (srcID). To create our dataset we changed the diameter of the optical fibers
and numerical apertures of the fibers. We considered ten different diameters from 0.5 to 5 mm in 0.5 mm steps
and 5 different numerical apertures with NA=0.11, 0.22, 0.3, 0.39 and 0.5. These values are selected since they
are available in practice. Then, Monte Carlo simulations are performed to obtain the fluence maps for each set
of parameters and all 260 sources, amounting to a total simulation number of 13,000. For each run 100 million
photons are simulated on GPU using MCX software [18]. After all simulation were completed we had a large
dataset for each source and different parameters. Total fluence then could be calculated by adding the specified
source to the current fluence map or subtracting it from the current from fluence map. It is as if we are turning
on or off a specific source with specified parameters, namely the diameter and NA.
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Figure 1. Infant head model used for simulations. Different colors represent different tissue types (blue: ECT,
green: CSF, orange: gray matter and brown: white matter). (a) para-sagittal and (b) para-coronal cross-sections.



2.2 Optimization problem

Suppose we have N light sources, the positions of these light sources are fixed and the diameters are the same.
We want to decide the diameter and the srcIDs to be turned on to obtain a uniform distribute fluence. We try to
formulate this problem as an optimization problem

min|F(x)- £,

xeX

LZ
(1

where x is a N+1 vector, the first N entries are binary variable, with 1 and 0 to indicate the corresponding srcID
should be turned on and turned off, the last entry is the diameter to be chosen. To set up the problem we should

specify the desired fluence map FO0, the fluence map function F(x), the cost function ”F (x)— F, 2 and the

constrains of variable x.

The Genetic Algorithm (GA) is a classic algorithm, which is a bio-inspired and population based technology for
complex problems [19-21]. The algorithms are applicable to a wide range of optimization problems. This
flexibility makes them attractive for many optimization problem in practice. GAs iteratively update a
population of individuals. On each iteration, the individuals are evaluated using a fitness function. A new
generation of the population is obtained by probabilistically selecting fitter individuals from the current
generation. Some of these individuals are admitted to the next generation unchanged. Others are subject to
genetic operators such as crossover and mutation to create new offspring. Here is a sketch of a typical GA in
pseudocode in Fig. 3.
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Figure 2. Helmet configuration design. (a) The configuration of optical fibers (red dots) and ultrasound transducers
(blue circles), (b) placement of the helmet on the head with optical fibers sitting on the helmet.



Algorithm: GA(n,x, )
1: % Initialize generation 0:
2 k:=10;
3: Pj: = a population of n randomly generated individuals;

4: Evaluate P:
5. Compute fitness(i) for each i € Py:
6: fori=1tod do

7 % Create generation k + 1:

8: % 1. Copy:

9: Select (1 — x) x n members of Py and insert into Priq;

10: % 2. Crossover:

11: Select x x n members of Py; pair them up; produce offspring; insert the offspring into Ppyq;
12: % 3. Mutate:

13: Select g x n member of Pjy;; invert a randomly-selected bit in each;

14: Evaluate P ,: Compute fitness(i) for each i € Py;

15: % Increment:

16: ki=k+1;
17: end for
18: while fitness of fittest individual in Py is not high enough;

19: return the fittest individual from FPj;

Figure 3. Genetic Algorithm (GA)

3. RESULTS

3.1 Fluence maps

As said before, we can have resulting total fluence for each source configuration from our dataset. These fluence
maps are used in the optimization problem when we are searching for the best configuration which gives us the
fluence closest to the desired fluence fy. Fig. 4 shows resulted fluence maps for two different source
configurations. We can select our regions of interest so we have the fluence map only for those regions. Fig. 4
shows the fluence map in only the gray and white matter tissues.



Z(mm)

i
i
H
H
g
!

Y{mm)
;i %

~ — o 2 I T
e w T . X{mm}

X{mm)

(@)

Z{mm)
s BBE

el

Lo
%
.
-
-
-
\3
5,

b i -l -

N o g e N Fa 0
> v ~ e

a™y ,ﬁr’" e R ;

P
o«

Yimm)

p
N,

A o
L
(o |ophe ) \ m\n 7 m o S
N s

P

h!
N
W

o
0

Y(mm) w X(mm) L P T Xmm)

(b)

Figure 4. Fluence maps for different source configurations. (a) (left) shows the optical fibers and their IDs. Fiber
no. 85 is turned on indicated with a yellow circle. (Middle) Fluence map for gray and white matter and (right) is

the same fluence map but from a cross-sectional cut. (b) the same as previous but for a different set of fibers
indicated with yellow circles.

3.2 Optimum answer for a special case

Here we demonstrate the result of the optimizations problem for one specific case, a uniformly distributed
fluence with constant total fluence over the whole region. First, we fix Fy such that the total fluence is 800, the

corresponding fluence map is shown in Fig. 5(a). Using the genetic algorithm, we obtained the following
optimal result,

x=[010001100101001001011100101010011
100000100111110101011010100111010



100111000101111011110011010111011
010100101101101011100100111011011
0101010100110001110111010111, 1.6];

This result means that the diameter of the light sources should be 1:6 mm, and 88 light sources should be turned
on. Note that in this case numerical aperture was not an optimization parameter and for all optical fibers

NA=0.3. Fig. 5(b) shows the obtained fluence map for this answer.
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Figure 5. Optimization problem. (a) Desired (initial) fluence map, (b) the best fluence map returned from GA
method which is obtainable with the available dataset.

4. CONCLUSION

Having a uniform fluence distribution inside the imaging object, makes the reconstructed photoacoustic images
a more accurate representation of absorption coefficient. In this study we presented a method for achieving
uniform illumination. Using Monte Carlo simulations we created a large dataset of fluence maps for 260 optical
fibers for different diameters and numerical apertures. Using this dataset we tried to obtain a fluence map as
close as possible to our desired fluence map which was uniform. Although, the entirely uniform distribution
could not be obtained, this was the closest answer with the available dataset. At this point the numerical aperture
was not an optimization parameter and it was fixed at NA=0.3. In the other hand, while different diameters were



used for optimization, yet, all fibers had the same diameter meaning that the diameter of all fibers were
changing together. In the future works we want to change the NA and diameter of each fiber individually. This
could improve the answer to the optimization problem.
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