
Real-Time Systems (2019) 55:598–638
https://doi.org/10.1007/s11241-019-09331-1

A comparison of schedulability analysis methods using
state and digraphmodels for the schedulability analysis of
synchronous FSMs

Chao Peng1 · Haibo Zeng2 ·Marco Di Natale3

Published online: 1 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Synchronous reactive models are widely used in the development of embedded
software and systems. The schedulability analysis of tasks obtained as the code imple-
mentation of synchronous finite state machines (FSMs) can be performed in several
ways. One possible option is to leverage the correspondence between the execution of
actions in an FSM and the execution of jobs in a digraph task model, thereby applying
all the analysis methods developed for these digraph task systems. Another option is
to directly leverage the state information and use dynamic programming methods to
compute the worst possible sequence of (state dependent) reactions for a given FSM
model. In this paper we compare these analysis methods in terms of accuracy and
runtime.

Keywords Embedded systems · Synchronous reactive (SR) models · Schedulability
analysis · Request/interference bound functions

B Haibo Zeng
hbzeng@vt.edu

Chao Peng
pengchao06@gmail.com

Marco Di Natale
marco@sssup.it

1 National University of Defense Technology, Changsha, Hunan, China

2 Virginia Polytechnic Institute and State University, 302 Whittemore (0111), Virginia Tech,
Blacksburg, VA 24061, USA

3 Scuola Superiore Sant’Anna, Via Moruzzi, 1, Pisa 56124, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-019-09331-1&domain=pdf
http://orcid.org/0000-0003-1162-759X

Real-Time Systems (2019) 55:598–638 599

1 Introduction

In the development of embedded controllers, the use of the synchronous reactive
(SR) modeling formalism (Lee and Varaiya 2011) is becoming widespread. Exam-
ples of tools supporting SR models include SCADE (Esterel Technologies 2014) and
Simulink (Mathworks 1994). In this paper, we focus on Simulink models for conve-
nience, but the results apply to other tools.

A Simulinkmodel is a network of blocks. Each block processes a set of input signals
and produces a set of output signals. For the purpose of this work, we are interested
in the subset of Simulink/Stateflow models that allows the automatic generation of a
code implementation, that is, blocks with discrete time input and output signals in a
model with a fixed-step solver. Simulink blocks are of two types. Dataflow blocks are
invariably executed at their periods (which are integer multiples of the system-wide
base period). Other blocks are Mealy type extended finite state machines (FSMs),
called Stateflow blocks. In Stateflowblocks, each eventmay cause a state transition and
trigger the execution of a set of actions (functions defined by designers).The events that
trigger the reaction of the block are obtained from value transitions of periodic signals,
and therefore can only occur at the periodic times when these signals can change their
values. If no trigger event is specified, the Stateflowblock reacts according to themodel
base rate. Hence, each Simulink block, when executed, computes two functions: the
state update function (possibly omitted in Dataflow blocks), which updates the next
block state based on the current state and the values of the input signals, and the output
update function, computing the new values for the output signals as a function of the
current state and the inputs.

When implementing a Simulink model (Natale et al. 2010; Zeng and Di Natale
2011) and in particular those containing Stateflow blocks (Zhao et al. 2017), the
implementation should be feasible (e.g., with respect to time and memory constraints)
while preserving the logical-time execution semantics (the rate and order of execu-
tion for the blocks and the communication flows). The commercial code generation
tool Embedded Coder/Simulink Coder (Mathworks 1994) automatically generates a
semantics-preserving implementation, which assumes a single periodic task imple-
mentation for each Stateflow block code, scheduled with fixed priority. The period
of the task is the greatest common divisor of the periods of the trigger signals. Each
time the task is activated, it checks for any active trigger and, if there is any, processes
them.

In this work, we assume the existence of a semantics-preserving implementation
where each synchronous FSM is realized as a single task scheduled by static priority.
This assumptionmatches the common implementation of commercial code generation
tools, and we focus on the problem of system schedulability that concerns whether
each task meets its deadline. However, a multi-task implementation of a Stateflow
block can provide more flexibility and efficiency in terms of schedulability (Di Natale
and Zeng 2012; Zhu et al. 2013).

In our previous work (Zeng and Natale 2012), we outlined the possible correspon-
dence of the execution of reactions in a synchronous FSM to the execution of jobs
in a digraph task model. In Sect. 4 of this paper, we elaborate on the transformation

123

600 Real-Time Systems (2019) 55:598–638

of FSM to the digraph task model (Stigge et al. 2011) and summarize the possible
analysis options.

Digraph tasks are a very general task model for which schedulability analysis is
still tractable (pseudo-polynomial time) for bounded-utilization systems with earliest
deadline first (EDF) scheduling (Stigge et al. 2011). The exact analysis under static
priority scheduling is shown to be strongly coNP-hard (Stigge and Yi 2012). This is
because of the need to check the combination of job releases (paths in the task graph)
from different tasks. A combinatorial abstract refinement technique (Stigge and Yi
2013, 2015a) is proposed to significantly speed up the exact analysis by iteratively
refining the abstraction of paths. Approximate analysis is presented in (Guan et al.
2014), with pseudo-polynomial complexity and bounded speedup factors. Also, to
improve the efficiency of calculating the request and demand bound functions for
digraph tasks, results from max-plus algebra are leveraged to demonstrate the linear
periodicity of the two functions (Zeng and Di Natale 2013, 2015; Peng and Zeng
2018).

A different approach consists in the explicit consideration of state dependencies
and the event activation offsets. In this case, the analysis are performed by exploring
the possible state traversals in the hyperperiod of the trigger events, and considering
all the possible busy periods defined by the event activation offsets. Knowledge of the
activation offsets allows to reduce the pessimismwith respect to the existing offset-free
model of digraph task analysis.

1.1 Our contribution and paper outline

In this paper, we present the analysis framework for calculating the exact and approx-
imate response times of synchronous finite state machine models through a digraph
model abstraction, or directly, through state analysis. As synchronous FSMs are trig-
gered by synchronized periodic events, unlike the analysis in Stigge et al. (2011) where
task digraphs are assumed to have arbitrary offsets, our analysis considers periodic
tasks with synchronized offsets.

We present the semantics of synchronous finite state machines in Sect. 2, followed
by a short introduction to max-plus algebra, which provides the mathematical founda-
tion that is used to speed up the computation of the execution time requests in a given
time interval by a given FSM. Next, we present the methods for transforming the FSM
into a digraph model Sect. 4. We also discuss analysis methods for the transformed
digraph tasks, including techniques for speeding up the computation by leveraging the
periodicity of the request and interference bound functions. In Sect. 5 we introduce
an analysis method based on the explicit consideration of the state dependencies and
the consideration of the activation event arrival times (and offsets). In both cases, the
analysis method is based on an abstraction of execution time matrix that allows to
leverage periodicity in the request and interference bound functions and to compute
them for large time intervals by exploiting dynamic programming. In the case of state-
based analysis, the execution matrix is defined by the state space, instead of the size
of the task digraph, giving rise to interesting questions about the relative accuracy and
speed of the two methods. To settle this issue, in Sect. 6, we use randomly generated

123

Real-Time Systems (2019) 55:598–638 601

systems of synchronous finite state machines to evaluate these analysis techniques and
compare their accuracy and runtime.

2 Synchronous finite state machines

The synchronous execution model considered in this paper consists of a set of mealy
finite state machines (FSMs). Each FSM block is characterized by a set of input
signals, a set of trigger events, and a set of output signals. The internal behavior of a
Simulink Stateflow block follows the semantics and notation of extended (hierarchical
and concurrent) state machines (Harel 1987).

Following the original Statecharts specification (Harel 1987), the actual Stateflow
semantics also allow concurrent states, superstates, entry actions, exit actions, while
actions, join transitions, and others. Also, in Stateflow (as in most extended FSM
formalisms), transitions can be triggered by a logical combination of events. An FSM
with hierarchical superstates with AND/OR composition can be transformed into an
equivalent flat FSM whose states are obtained from the set product of the states of the
composedmachines. Examples can be found in the seminal paper (Harel 1987), and the
procedure is defined in Lee and Varaiya (2011) for parallel and series compositions.
Of course, the resulting number of states can be very high and a general type of
transformation may not exist when all the other Stateflow semantic extensions are
considered. For simplicity, in this paper we assume standard (flat) FSMs, in which
each transition is associated with a single event.

Formally, an FSM is defined by a 7-tuple F = (S, sα, I,O,E,A,V), where S =
{s1, s2, . . . s|S|} is the set of states, sα ∈ S is the initial state, I = {i1, i2, . . . i|I|} is
the set of input signals, O = {o1, o2, . . . o|O|} is the set of output signals, and V is
the set of internal variables. Each i j (o j) is also denoted as α j (as their direction is
not relevant in this paper). Each signal α j is associated with a period Tα j that must
be an integer multiple of the system base period Tb, i.e., Tα j = kα j · Tb where kα j

is an integer. Signal values only change at multiples of its period and are persistent
between updates. In this sense, α j is a function defined over a discrete time domain
that is consistent with Tb.

E is the set of activation or trigger events. Each event e j occurs at (rising or falling)
edges of a signal α j , and therefore appears only at time instants belonging to a time
base with period Te j = Tα j , an integer multiple of Tb. At each time i · Te j the event
may be present (if there is an edge on the signal) or absent (otherwise). Fig. 1 shows
an example following the Stateflow graphical notation for the input/output view of an
FSM, i.e., denoted with inputs, outputs, and trigger event signals.

To better define the internal behavior at each instant i · Tb, even when no event is
present, the notion of stuttering behavior is conventionally added (Lee and Varaiya
2011 is a textbook describing stuttering as well as some of the composition rules
for transforming hierarchical state machines to flat FSMs). Formally, an absent event,
denoted as⊥, is added to the set of input events and assumed as present at all multiples
of the base period when no event is present. The reaction of the Stateflow chart to the
absent event is the following: the state does not change, neither do the output signal
values.

123

602 Real-Time Systems (2019) 55:598–638

Fig. 1 An example of FSM
input/output view in Stateflow.
The events are computed from
(periodic) signals

1

2

1

2

1

2 e

s

s

e

i 1

i 2

i 3

i 4
o

o

5 ms

2 ms

s1

s3

s2e / {a ; o }2 2 2

e / {a ; o }1 1 1

e / {a ; o }2 4 2

e / {a ; o }1 3 1

0.15

1

20.3

0.25

0.1

Fig. 2 An example of FSM. The guard conditions are empty thus are omitted

A is the set of transitions. Each transition θ j ∈ A consists of a 6-tuple θ j =
(src(θ j), snk(θ j), e(θ j), g j , a j , p j), where a j is the action, src(θ j) is the source state,
snk(θ j) is the sink state, e(θ j) ∈ E is the trigger event, g j is the guard condition (an
expression of the input and output signals and internal variable values), and p j is the
evaluation order. The evaluation order determines the order by which the conditions
for the transitions are evaluated (according to event presence and guard conditions),
and consequently which transition should be taken when two or more transitions can
be taken out of a state at the same time instant. The event triggering a specific action
a j may also be labeled as e(a j).

Because of guards there may be cases in which, despite an event is present, the
transition is not taken. However, events are already conditionally generated based on
signals, and guards have no safety effect on worst case timing analysis. In our paper,
guards are included for a better match to real-world FSM models (Stateflow).

For timing analysis, we assume each action a j is characterized by its worst case
execution time (WCET) Caj (Please refer to Wilhelm et al. 2008 for a survey of
WCET techniques). The hyperperiod of an FSM HF is the least common multiple of
all the periods of its events. The system hyperperiod H is defined as the least common
multiple of all the (hyper)periods of the blocks (of type Dataflow or Stateflow).

Figure 2 shows an example of the notation used to describe the states and transitions,
along with the event, guard condition, and action associated to each transition. The

123

Real-Time Systems (2019) 55:598–638 603

execution time (in grey) and execution order (red/dark, near the source state) of each
transition are also denoted in the figure.

The evaluation order associated with transitions makes the FSM behavior deter-
ministic. For example, in the FSM of Fig. 2, if events e1 and e2 have periods 2 ms
and 5 ms, they will occur simultaneously every 10 ms. In the following, we use ms
as the default time unit, unless otherwise specified. If the system is in state s2, the
order associated with the outgoing transitions indicates that the transition with action
a4 (order 1) will be taken, not the transition with action a3 (order 2).

In synchronous FSMs all events occur with periods that are multiples of the base
period and with the same phase. Therefore, sets of events arrive at exactly the same
time (hence the name synchronous FSMs). Also, the task implementing an FSM is
checked for overruns at the beginning of its execution. Hence, every reaction must
complete before the next trigger event arrives (i.e., with constrained deadline). We
use TF to denote the ordered set of time instants that are integer multiples of event
periods of FSM F

∀t ∈ TF , ∃ei ∈ E and j ∈ N such that t = j × Tei

where N is the set of non-negative integers. By the semantics of Stateflow, the release
times and absolute deadlines of F are members of the set TF .

When an FSM is translated into code, for each possible state and input signal,
the task implementing the reactions must define the state update and output update
functions with the corresponding actions (the two functions are sometimes merged).
In this paper, we assume a single-task implementation for each FSM, and the terms
FSM and task are used interchangeably. Multi-task implementations are possible
(Di Natale and Zeng 2012; Zhu et al. 2013) and, while we believe our analysis can be
easily extended to such implementations, the formal proof is beyond the scope of this
work and left to future extensions.

In the following section, we introduce max-plus algebra and the matrix calculus on
it. Max-plus algebra is used in the following sections as a computation tool, to speed
up the computation of the execution time requested by (higher priority) tasks and the
evaluation of the schedulability conditions.

3 Max-plus algebra and periodicity onmatrix power sequences

Amax-plus algebra (Baccelli et al. 1992) is defined over the domainR∗ = R
⋃{−∞},

with operations maximum (denoted by the max operator ⊕) and addition (denoted
by the plus operator ⊗) defined as

x ⊕ y = max(x, y), x ⊗ y = x + y (1)

It is easy to verify that−∞ is neutral with respect to⊕, i.e. x⊕(−∞) = x,∀x ∈ R
∗.

Likewise, 0 is neutral with respect to ⊗, x ⊗ 0 = x,∀x ∈ R
∗.

Similar to traditional algebra, in max-plus algebra, a matrixX and its elements xi, j
are defined over the domainR∗. The matrix operations overR∗ are defined in the same

123

604 Real-Time Systems (2019) 55:598–638

way as the matrix operation over any field. For example, Z = X ⊕ Y is defined by
taking the maximum operation of the corresponding elements of the matrices X and
Y, i.e. zi, j = xi, j ⊕ yi, j .

For matrices X ∈ R
∗(m, k) and Y ∈ R

∗(k, n), the result of the multiplication is a
matrix Z ∈ R

∗(m, n), where its elements are

zi, j = (xi,1 ⊗ y1, j) ⊕ · · · ⊕ (xi,k ⊗ yk, j) = k
max
l=1

(xi,l + yl, j) (2)

The k-th power of a square matrix X ∈ R
∗(n, n) is iteratively defined by X(k) =

X(l) ⊗ X(k−l) (max-plus multiplication) with X(1) = X.
In the remaining of the section and the following two sections, we summarize

results on how the powers of max-plus matrices can be used to compute the worst
case request/interference functions from a set of actions for a given time interval.
Since the length of the time interval corresponds to the power of the matrix, finding
efficient ways to compute these matrices is very important. The following definitions
and results provide insight on how to partition the computation of the elements of
matrix powers with a large exponent into a recurrent part plus some possible initial
terms.

Definition 1 A sequence x∗ = (x (r)), r ∈ N
+ is defined as almost generally periodic

if there exists a pair of integers d and p and a set of numbers q(k) ∈ R
∗, k = 1, . . . , p

such that

∀k = 1, . . . , p,∀r > d, r ≡ k mod p, x (r+p) = x (r) + p × q(k)

The smallest number p (d) with the above properties is called the generalized period
(generalized defect) of x∗, denoted as p = gper(x∗) (d = gde f (x∗)). q is called the
generalized factor of x∗, denoted as q = g f ac(x∗).

Definition 2 The matrix X = (xi, j) is defined as almost generally periodic if for each
element xi, j in its power sequence X∗ = (X (r)), r ∈ N

+ the sequence x∗
i, j is almost

generally periodic. The matrix g f ac(X∗) = (g f ac(x∗
i, j)) is called the generalized

factor matrix of X, the number gde f (X) = max gde f (x∗
i, j) is called its generalized

defect, and gper(X) = lcm{gper(x∗
i, j)} is its generalized period.

The following theorem states that the periodicity property is applicable for every
matrix.

Theorem 1 (Molnárová 2005; Zeng and Natale 2012) Every matrix over max-plus
algebra (hence the execution request matrix of any FSM) is almost generally periodic.

In Molnárová (2005) shows that the problem of computing the gper and g f ac
terms is NP-hard by providing a polynomial-time transformation from a known NP-
complete problem to this computation problem. Nevertheless, the complexity is a
function of the size of the matrix, but is asymptotically independent from the power
of the matrix. Fortunately, with respect to irreducible matrices (whose corresponding

123

Real-Time Systems (2019) 55:598–638 605

digraphs are strongly connected, i.e., any node of the digraph can be reached from
any other one), there are polynomial-time algorithms for calculating an upper bound
of the generalized defect and the generalized period and factor. More specifically, for
irreducible matrices, Hartmann and Arguelles (1999) derive an upper bound on the
generalized defect and develop an O(n3) algorithm to compute it. Gavalec (2000)
gives an O(n3) algorithm for computing the generalized period and Young et al.
(1991) present an O(nm log n) algorithm for the generalized factor where m is the
edge number of the corresponding digraphs. Moreover, Zeng and Di Natale (2013,
2015) discuss the periodicity property of (irreducible or reducible) matrices and the
corresponding digraphs.

4 Analysis using digraph taskmodel

In this section, we discuss the schedulability analysis of FSMs by leveraging existing
results on digraph taskmodels. Following the traditional real-time schedulability anal-
ysis, the work on digraph tasks considers the execution of FSM reactions in the time
domain, identified as tasks or jobs. The digraph task model is not state-oriented but
represents the atomic units of execution and their activation assumptions or execution
dependencies.

Along this line of research, a series of graph-based models with different expres-
siveness and analysis complexity is proposed. A classification of the task models that
are typically used in schedulability analysis can be attempted based on the concept of
task graph. A task in the model is represented by a graph, where the vertices represent
different kinds of jobs, and the edges are the possible flows of control. Each vertex (or
type of job) is characterized by its WCET and relative deadline. Each edge is labeled
with the minimum separation time between the release of the two vertices it connects.

Among the proposed task graph models, the digraph model (Stigge et al. 2011)
allows arbitrary directed graphs (hence arbitrary cycles) to represent the release struc-
ture of jobs, which significantly increases the expressiveness. The extended digraph
model (Stigge and Yi 2015b) adds global minimum inter-release constraints between
any two vertices, including those that have no connecting edge (or functional depen-
dency). An extended digraph task can be transformed into a plain digraph task with
the same schedulability property (Stigge and Yi 2015b). The model of timed automata
with tasks (Norström et al. 1999) is a generalization of all the above models, with
complex dependencies between job release times and task synchronization. However,
its schedulability analysis is very expensive and even undecidable in certain variants
of the model (Fersman et al. 2007).

We refer the readers to a recent survey (Stigge and Yi 2015b) for a discussion on
the expressiveness and complexity of schedulability analysis for task graph models. In
the following, we focus our attention to the schedulability of digraph task model since
it is expressive enough to capture the structure of synchronous finite state machines.
However, the existing analysis techniques summarized in this section are all inaccurate,
as they are developed for systemswith arbitrary offsets.On theother hand, synchronous
FSMs are better analyzed with techniques for static offsets, as in the next section.

123

606 Real-Time Systems (2019) 55:598–638

Fig. 3 Notations for a real-time
task digraph

4.1 Digraph taskmodels and schedulability analysis

We first introduce the formal definition of the digraph task model (from Stigge et al.
2011).

Definition 3 A digraph task τ is a directed graph D(τ) = (V,E) where the vertices
V = {v1, v2, . . .} represent the types of jobs that can be released for τ , and the edgesE
(E ⊆ V×V) represent possible flows of control, i.e., the release order of the jobs of τ .
Each vertex vi ∈ V (or type of job) is characterized by an ordered pair 〈 e(vi), d(vi) 〉,
where e(vi) and d(vi) denote its WCET and relative deadline, respectively. Each edge
(vi , v j) ∈ E is labeledwith a parameter p(vi , v j) that denotes theminimum separation
time between the releases of vi and v j .

A path π ∈ D(τ) is a sequence of vertices (v1, v2, . . . , vl) (vi ∈ V) where each
(vi , vi+1) is an edge in E. In this work, we assume the digraph task with constrained
deadlines (Stigge et al. 2011; Guan et al. 2014), i.e., ∀(vi , v j) ∈ E, d(vi) ≤ p(vi , v j).
Hence, for each edge, the absolute deadline of a job is no larger than the release time
of the subsequent job.

Figure 3 shows an example task digraph, which has constrained deadlines. We
briefly summarize the schedulability analysis techniques of digraph task models
(Please refer to Stigge and Yi 2013; Guan et al. 2014; Stigge and Yi 2015a; Zeng
and Di Natale 2015; Peng and Zeng 2018 for details on these techniques). To formally
analyze the schedulability of a digraph task system under static priority, we recapture
the concepts of request and interference functions to abstract the execution of a path.

Definition 4 (Stigge and Yi 2013, 2015a; Guan et al. 2014) For a digraph task τ , the
maximal cumulative execution request from a path π = (v1, . . . , vl) in D(τ) within
any time interval of length t is defined as its request function (RF) τ.r fπ (t), i.e.,

τ.r fπ (t) = max{e(π ′)|π ′ is a prefix of π and p(π ′) < t}

123

Real-Time Systems (2019) 55:598–638 607

where e(π) =
∑l

i=1
e(vi) and p(π) =

∑l−1

i=1
p(vi , vi+1).

Definition 5 (Guan et al. 2014) For a digraph task τ , the maximal amount of executed
load fromapathπ = (v1, . . . , vl) inD(τ)within any time interval of length t is defined
as its interference function (IF) τ.i fπ (t), i.e.,

τ.i fπ (t) = max{ee(π ′)|π ′ is a prefix of π and p(π ′) < t}

where ee(π) =
l−1∑

i=1

e(vi) + min(e(vl), t − p(π)) and p(π) =
l−1∑

i=1

p(vi , vi+1).

The request and interference functions are used to calculate the exact response time
for digraph tasks with arbitrary offsets. For any vertex v with its interfering digraph
task set Γ (the set of digraph tasks with higher priority than the digraph task of v), its
exact response time can be expressed by Guan et al. (2014)

R(v,D(Γ)) = max
σ∈D(Γ)

{

min
t>0

{

t |e(v) +
∑

π∈σ

r fπ (t) ≤ t

}}

(3)

where D(Γ) denotes the set of all possible path combinations (one path from each
digraph task inΓ), andσ denotes one such path combination inD(Γ). A digraph task is
schedulable if and only if all its vertices v satisfy R(v, Γ) ≤ d(v). As an alternative, we
can replace RFwith IF in Eq. (3) to calculate the exact response time (Guan et al. 2014).
This schedulability condition is necessary and sufficient (or exact) for digraph tasks
with arbitrary offsets, but its verification is extremely complicated since it requires to
check all the possible path combinations from higher priority digraph tasks.

The concepts of request bound function (RBF) and interference bound function (IBF)
are introduced to avoid the path combination problem in the exact analysis, as each
digraph task is characterized with a single RBF or IBF function (as opposed to one for
each possible combination of action paths in the exact analysis) (Guan et al. 2014).

Definition 6 (Baruah 2003; Guan et al. 2014; Zeng and Natale 2015) For a digraph
task τ , the maximum cumulative execution time request by its jobs that have their
release times within any time interval of length t is defined as its request bound
function τ.rb f (t), formally τ.rb f (t) = max

π∈D(τ)
r fπ (t).

Definition 7 (Guan et al. 2014) For a digraph task τ , themaximumamount of executed
load by its jobs that have their release times within any time interval of length t is
defined as its interference bound function τ.ib f (t), formally τ.ib f (t) = max

π∈D(τ)
i fπ (t).

Similarly, the approximate response times for a vertex vwith an interference digraph
task set Γ can be expressed by

123

608 Real-Time Systems (2019) 55:598–638

<0.3, 1>

0 2 4 5 6 81 3 7 9

e
e
2

1

<0.15, 5>
1

25

1

1

a1

a2 a3

a4

<0.1, 1>

<0.25, 1>

Fig. 4 A digraph task model for the FSM in Fig. 2 and the event arrivals in the hyperperiod

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

RRBF (v, Γ) = min
t>0

{

t |e(v) +
∑

τ∈Γ

τ.rb f (t) ≤ t

}

RI BF (v, Γ) = min
t>0

{

t |e(v) +
∑

τ∈Γ

τ.ib f (t) ≤ t

} (4)

Hence, a digraph system is schedulable if all its vertices v satisfy RRBF (v, Γ) ≤ d(v)

(or RI BF (v, Γ) ≤ d(v)). The condition is sufficient but not necessary. We adopt
the notations from Guan et al. (2014): If the response time calculated by method A
(denoted as RA) is always upper bounded by the one derived from method B (denoted
as RB), i.e., RA ≤ RB , we say that A dominates B, written as A � B. If RA and RB are
always the same, we denote the equivalent relation as A = B. These analysis methods
have the following property (Guan et al. 2014):

IF � IBF

= �

RF � RBF

In the following, we discuss how to construct the corresponding digraph task for an
FSM. In synchronous FSMs, each action is characterized by itsWCET.The structure of
the FSMand its activation events constrain the possible sequences of action executions.
Two representations are possible: one with actions (i.e., to treat each action as a
job in the digraph); the other with action instances (i.e., each action instance in the
hyperperiod is a job). Without loss of generality, all event offsets in the FSM are
assumed to be 0.

4.2 Modeling the FSM as a digraph with actions

We use the FSM in Fig. 2 as an example. Fig. 4 shows the event stream pattern in the
first hyperperiod, and the corresponding digraph task model based on actions.

123

Real-Time Systems (2019) 55:598–638 609

Fig. 5 A more accurate digraph
task model for the FSM in Fig. 2

e || e1 22ee 1e || e1 2 e 1 e 1 e 1

t=10

...

...

...

...

t=2 t=4 t=6 t=8t=0 t=5

2

4

3

1

a

a

a

a

A1,2

A3,2

A1,0

A3,0

A

A2,0

4,0

A

A

A

A

1,10

3,10

4,10

2,10

A1,4

A3,4

A

A2,5

4,5

A1,6

A3,6

A1,8

A3,8

Theminimum inter-arrival time between e1 and e2 is 1, the greatest common divisor
of the periods of the two events. Thus, the edges (a1, a4), (a2, a1), and (a3, a2) are
labeled with 1. a1 and a3 are both triggered by e1, thus the edge (a1, a3) is labeled
with 2, the period of e1. Similarly, (a4, a2) is labeled with 5, the period of e2. Because
of the synchronous assumption of SR models, the deadline of an action is defined as
the minimum distance to the next trigger event, which is equal to the minimum label
among all the outgoing edges. For example, the 〈WCET, deadline〉 pair for vertex a2
is 〈0.3, 1〉.

4.3 Modeling the FSM as a digraph with action instances

The task digraph in Fig. 4 is a pessimistic approximation of the FSM action activation
model, as the periodic pattern of event streams is not adequately captured. For example,
consider the three actions a2, a1, and a4 activated at time 0, 1, and 2 respectively, which
implies that the event sequence e2, e1, e2 occurs at the times 0, 1, 2. This is clearly
impossible considering the event pattern in Fig. 4.

A more accurate task model can be obtained by identifying each action occurrence
according to the time when its trigger events happen in the hyperperiod. For each
action ai , we generate an infinite sequence of vertices in a digraph model, where each
vertex Ai,ti,k corresponds to the instance of ai triggered by an event at time ti,k , i.e.,
it represents an action instance (ai , ti,k). We denote it as Ai,ti,k = (ai , ti,k) and use
them interchangeably. As its trigger event e(ai) is periodic, ti,k = k × Te(ai), ∀k ∈ N.
For example, in Fig. 5 illustrating the more accurate digraph task model for the FSM
in Fig. 2, there will be a set of vertices A2,t2,k , t2,k = 0, 5, 10, . . . representing the
possible executions of a2 at times t2,k = 5 × k. The next action following a2 is a1.
Since events may also be inactive (the machine may stutter), following A2,0 (action a2
executed at time 0), action a1 could then be executed at 2, 4, 6, and so on. Thus, in this
task graph there should be an edge from A2,0 to A1, j for j = 2, 4, 6, . . .Generally, for
each Ai,ti,k , the action ai+1 possibly following ai can be triggered by the event e(ai+1)

at time ti+1 =
(
k +

⌊
ti

Te(ai+1)

⌋)
× Te(ai+1), for all positive integers k (∀k ∈ N

+).

123

610 Real-Time Systems (2019) 55:598–638

The digraph model with action instances is shown in Fig. 5. The minimum inter-
arrival time label on each edge (Ai,k − A j,l) is omitted, but can be easily computed as
(l − k). Since there is an infinite number of possible action instances, schedulability
analysis requires the reduction of the digraph.

The digraph model can be simplified by removing the edges that are not critical to
the schedulability analysis, and by folding vertices according to the periodic pattern of
the event arrivals in the hyperperiod. We first introduce the concept of tight and loose
edges, and prove that the removal of loose edges does not affect the schedulability
analysis.

Definition 8 An edge (Ai,ti,k , A j,t j,q) in the digraph model is tight if there is no other
edge (Ai,ti,k , A j,t j,p) in the model such that ti,k < t j,p < t j,q (with p < q). This
means that t j,q is the earliest time a j can be triggered following ai at time ti,k . All
other edges are defined as loose.

Definition 9 An action sequence σ is defined as a sequence of action instances. In
each action instance Ai,ti = (ai , ti) ai is an action in the FSM, and ti is the time event
e(ai) occurs. For notational convenience, we assume the action instances in sequence
σ are indexed incrementally from 1, i.e., σ = [A1,t1 , . . .].
Definition 10 An action sequence σ = [A1,t1, . . .] is legal if
– snk(ai) = src(ai+1); and
– ai+1 is triggered by e(ai+1) at time ti+1 > ti , i.e., ti+1 = (k+� ti

Te(ai+1)
�)×Te(ai+1),

∀k = N
+.

A legal action sequenceσ = [A1,t1, . . .] is a path inwhich a tight edge (Ai,ti , Ai+1,ti+1)

connects any two consecutive action instances (ai , ti) and (ai+1, ti+1).
As mentioned, the schedulability analysis relies on the quantification of functions

like request (bound) function. We now demonstrate how the digraph can be reduced
by removing all the loose edges without affecting the exact and approximate schedu-
lability analysis. We first introduce the dominance relationship (Stigge and Yi 2013,
2015a) for two paths.

Definition 11 Given two paths π and π ′, π dominates π ′, denoted as π � π ′, if and
only if

∀t ≥ 0, r fπ (t) ≥ r fπ ′(t)

or, in an equivalent way

∀t ≥ 0, i fπ (t) ≥ i fπ ′(t)

A path π is a critical path, if there exists no other path π ′ such that π ′ � π .

In Stigge and Yi (2013, 2015a) the authors demonstrate that for the exact schedu-
lability analysis we only need to focus on these critical paths (or critical request
functions). For any path π including some loose edges, we demonstrate that there

123

Real-Time Systems (2019) 55:598–638 611

Fig. 6 The simplified digraph
task model of Fig. 5

t=0
ee 1e || e1 2 e 1 e 1 e 1

t=2 t=4 t=6 t=8
2

t=5

1

a
3

a4

a2

a

A3,8

4,0

A1,0
A A

3,0

A

A2,0

1,2

A

A

3,2

1,4

A3,4

A

A2,5

4,5

1,6

A3,6A

A1,8

Fig. 7 Request bound functions
of the digraph models in Fig. 4
(dotted line) and in Fig. 6 (solid
line)

0 2 4 5 6 8 971 3
0.3

0.55 0.65

0.95
1.2 1.30.95

1.2

1.6
1.85

0.8
0.9

1.45
1.3

always exists another path π ′ constructed by replacing the loose edges with the cor-
responding tight edges, e.g., π = (A1,0, A3,4, A2,5) and π ′ = (A1,0, A3,2, A2,5) in
Fig. 5, such that π ′ � π . Hence, any path π with loose edges is not critical and remov-
ing all the loose edges is safe for the purpose of schedulability analysis. In addition,
since the RBF (IBF) function searches the maximum value among the request (inter-
ference) functions of all the paths, it does not change when all the loose edges in the
digraph task model are removed.

The digraph obtained after removing all loose edges repeats every hyperperiod.
Thus, it is sufficient to reason about the possible transitions and actions triggered
by the events in one hyperperiod. For each event, we generate a set of vertices in
the digraph, each vertex corresponds to the action triggered by the specific event. In
general, there are

∑
ai

HF
Te(ai)

vertices in the digraph model. For example, for the two

possible arrivals of event e2 at time 0 and 5, we create two vertices A2,0 and A2,5
to represent the possible executions of a2 within the hyperperiod (HF = 10 in the
example). Figure 6 shows the reduced digraph model for the FSM F in Fig. 2. In the
figure, the back edges to A2,0 and A4,0 are clearly connected to instances in the next
hyperperiod. The minimum inter-arrival time labeled on edge (Ai,k, A j,l) is (l − k)
mod HF .

4.4 Comparisons on the RBF, IBF, andDBF

The action instance digraph in Fig. 6 can give more accurate RBF/IBF than the
action-based graph in Fig. 4, as shown in Figs. 7 and 8 respectively. For example,

123

612 Real-Time Systems (2019) 55:598–638

Fig. 8 Interference bound
functions of the digraph models
in Fig. 4 (dotted line) and in
Fig. 6 (solid line)

0 2 4 5 6 8 971 3

0.65

0.95

1.30.95
1.2

1.6

0.8

1.45
1.3

0.3
0.55

0.4

0.9

1.2

1.85

1.05

1.7

1.05

Fig. 9 Demand bound functions
of the digraph models in Fig. 4
(dotted line) and in Fig. 6 (solid
line)

0 2 4 5 6 8 971 3
0

0.3

0.650.55

0.95

1.2 1.3

1.6

0.95
1.2

0.65

rbf(10) (or ibf(10)) is 1.3, against a pessimistic estimate of 1.85 using the model of
Fig. 4.

In addition, the digraph of Fig. 6 allows a more accurate definition of deadlines for
the actions. In a synchronous FSM the deadline of an action should be no larger than
the trigger time of the following action. Consider action a2: in Fig. 4 its deadline is
always 1, but there are instances such as A2,0 with looser deadlines. The concept of
demand bound function quantifies the difference that originates fromdifferent deadline
assignments.

Definition 12 (Baruah 2003; Zeng and Natale 2015) The demand bound function
(DBF) τ.db f (t) of a digraph task τ is the maximum cumulative execution times by its
jobs that have their release times and deadlines within any time interval of length t .

Intuitively, the RBF captures the maximum cumulative execution request, while the
DBF quantifies the amount of execution time from jobs that are released and must be
completed within a given time interval. The RBF (Guan et al. 2014) and DBF (Stigge
et al. 2011) functions can be computed by a pseudo-polynomial algorithm. In Fig. 6,
two instances of the same action have different deadlines: A2,5 has a deadline of 1, and
the deadline of A2,0 is 2 as the next action is triggered 2 time units later. The DBF for
the digraph in Fig. 6 is lower than the one in Fig. 4, as shown in Fig. 9. For example,
dbf(10) is 1.3 for the model in Fig. 6, against a value of 1.85 using the model of Fig. 4.

Once the digraph model is generated, we can check the system schedulability under
a conventional static-priority schedulability analysis. Equation (4) requires that the
RBF/IBF functions are available. The calculations of rb f (t) and ib f (t) have pseudo-
polynomial complexity using the technique proposed in Guan et al. (2014). However,
this technique may be not efficient for large t . The computation can be made more
efficient by leveraging the periodicity of the RBF function (Zeng and Di Natale 2013,
2015).

123

Real-Time Systems (2019) 55:598–638 613

Fig. 10 The transformed unit
digraph for the digraph of Fig. 4.
The deadlines are omitted as
they are irrelevant for execution
matrix

4.5 Executionmatrix for digraph tasks

The concept of execution matrix is introduced in Zeng and Di Natale (2015) to express
the amount of execution time that a given set of tasks or actions may request in one
time unit. The execution matrix can express the time that is required for transitioning
between any two digraph locations (for a digraph model) or any two states (in a state
execution model). To compute the execution matrix for a given digraph, it is first
necessary to transform the digraph into a Unit Digraph (Zeng and Di Natale 2015)
in which each job is separated by the predecessor and the successor by edges with
unit delay. The transformation rule that guarantees the equivalence of the transformed
graph with respect to the original graph is described in Zeng and Di Natale (2015).

Using the digraph models in Fig. 4 as an example, the transformed unit digraph
is in Fig. 10. Each activation interarrival is now one unit of time and the execution
model can be represented by an execution matrix X(1) in which each element xi, j
represents the execution time to go from job i to job j in one unit of time. The worst
case execution time that may be required in any time interval Δd of integer length d
can now be computed as follows. Assume the worst case execution times to go from
any job i to any job j for any intervals of length p and q (with p + q = d) are known
and stored in execution matricesX(p) andX(q) respectively, the execution matrixX(d)

can be computed as

xdi, j = max{x p
i,k + xqk, j } (5)

which is the matrix product X(p) ⊗X(q) in max-plus algebra. By recursive reasoning,
the worst case execution time in any interval of length d can be obtained as the matrix
power of X(1) in max-plus algebra (Baccelli et al. 1992).

The digraph of Fig. 10, and consequently of Fig. 4, has a larger utilization (0.1625)
than the original FSM (0.13). This is consistent with the findings in Sect. 4.4, that the
model in Fig. 4 overestimates the function rb f (t), especially for large t . Its execution
request matrix is a 9 × 9 irreducible matrix, as there are 9 nodes in the unit digraph.

123

614 Real-Time Systems (2019) 55:598–638

X(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−∞ 0.1 −∞ 0.1 −∞ −∞ −∞ −∞ −∞
−∞ −∞ 0 −∞ −∞ −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0.25
−∞ −∞ −∞ −∞ 0.15 −∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ 0 −∞ −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 0
0.3 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

Once theworst case execution time request is represented using an executionmatrix,
several results of max-plus algebra theory can be applied. If the digraph is strongly
connected, then the values of the matrix powers are periodically recurring. In the
example of Fig. 4 the digraph is strongly connected. Thus, ∀k ∈ N and k ≥ 11,

X(k+4) = X(k) + 4 × 0.1625 (7)

The digraph in Fig. 6 has the same utilization as the original FSM. However, unlike
Fig. 4, it is not strongly connected since removing all the loose edges results in some
unreachable vertices (e.g., A1,0). To compute the periodicity parameters, we first mod-
ify it to be strongly connected by adding loose edges, e.g., (A2,0, A1,4), (A2,5, A1,0)

and (A2,5, A1,8). This addition does not change the RBF and DBF functions (by the
definition of loose edge). Its execution request matrix X̄(1) is a 50 × 50 irreducible
matrix. Thus, ∀k ∈ N and k ≥ 23,

X̄(k+10) = X̄(k) + 10 × 0.13 (8)

5 State-based schedulability analysis

We now discuss the schedulability analysis based on the study on the state transitions
in the FSMs triggered by events with static offsets. We emphasize that all the analysis
techniques presented in Sect. 4 (including the “exact analysis” in Stigge and Yi 2013,
2015a) are possibly inaccurate: they assume that task activation offsets are arbitrary and
unknown. However, in synchronous FSMs tasks have the same static offset, as events
are all synchronized (because of the SR semantics) even if they trigger different FSMs.
This requires the quantification of execution requests on a given interval (with given
start time and end time) (Zeng andNatale 2012), as opposed to request and interference
functions that are only specified for a generic interval of a given length (Stigge and Yi
2013, 2015a; Guan et al. 2014). Without loss of generality, we assume that all event
offsets are 0.

5.1 Exact response time analysis

The exact response time analysis follows the general framework of systems with
static offsets (Tindell 1994), where the feasibility of each action instance is checked

123

Real-Time Systems (2019) 55:598–638 615

1 2 3 4 5 t
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7 rfσ1 [0, t)

rfσ2 [0, t)

ifσ1 [0, t)

ifσ2 [0, t)

0

Fig. 11 Illustration of the RF and IF functions, for the two action sequences σ1 = [(a2, 0), (a1, 2), (a3, 4)]
and σ2 = [(a1, 2), (a3, 4)] of the FSM in Fig. 2

by considering a set of representative busy periods. We denote the worst case response
time of an action instance Ak,tk = (ak, tk) as R(Ak,tk), i.e., themaximum time between
the release time (tk) and the finish time of Ak,tk . To calculate R(Ak,tk), it is necessary
to quantify the interferences from higher priority tasks. Like the analysis with arbitrary
offsets (Stigge and Yi 2013), the accurate analysis requires the definition over a given
path in the digraph task (or equivalently, an action sequence in the FSM). We refine
the definitions of request and interference functions for systems with static offsets as
below.

Definition 13 For an FSM F , the request function (RF) of a legal action sequence
σ = [A1,t1, . . .] during a time interval Δ = [s, f) (s inclusive and f exclusive),
denoted as r fσ (Δ), is defined as the maximum cumulative execution time requests
from action instances of σ that have their trigger times within Δ. That is,

– tl = min{tk |tk ≥ s} and tm = max{tk |tk < f }, with tl ≤ tm ;
– r fσ (Δ) = ∑m

k=l Cak .

If there exists no such a pair of tl and tm , r fσ (Δ) = 0.

Definition 14 For an FSM F , the interference function (IF) of a legal action sequence
σ = [A1,t1 , . . .] during a time interval Δ = [s, f), denoted as i fσ (Δ), is defined as
the maximum executed loads from action instances of σ that have their trigger times
within Δ. That is,

– tl = min{tk |tk ≥ s} and tm = max{tk |tk < f }, with tl ≤ tm ;
– i fσ (Δ) = ∑m−1

k=l Cak + min(Cam , f − tm).

The request and interference functions for systems with arbitrary offsets (Stigge
and Yi 2013; Guan et al. 2014), are defined over any time interval of a given length t .
They can be expressed as

r fσ (t) = r fσ [t1, t1 + t), i fσ (t) = i fσ [t1, t1 + t) (9)

where t1 denotes the release time of the first action instance in σ .
We illustrate the two functions in Fig. 11 with example action sequences from

the FSM in Fig. 2. As in the figure, given the start time s, r fσ [s, t) (i fσ [s, t)) is a

123

616 Real-Time Systems (2019) 55:598–638

non-decreasing discontinuous staircase (continuous slanted staircase) function with
respect to t . The horizontal segments of r fσ [s, t) are left-open and right-closed, and
the slope of the segments of i fσ [s, t) is either 0 (horizontal segments) or 1 (slanted
segments).

The RF and IF functions allow to compute the worst case response time of an action
instance Ak,tk = (ak, tk) by considering all the possible combinations of the legal
action sequences from the tasks Γ with priority higher than ak . Only higher priority
tasks need to be considered since the scheduler is preemptive (hence no blocking delay
from lower priority tasks), and there is no delay caused by other action instances from
the same FSM (since all the actions must complete before the next one is activated).

Let Ω(F) denote the set of all the legal action sequences in the FSM F , and
Ω(Γ) := Ω(F1) × Ω(F2) × · · · indicate the set of all combinations of legal action
sequences from the higher priority FSMs Γ = {F1,F2, . . .}. A combination of action
sequences σ̄ = {σ1, σ2, . . .} ∈ Ω(Γ) is an element of Ω(Γ), where σi ∈ Ω(Fi). Let
R(Ak,tk , σ̄) denote the response time of the action instance Ak,tk under the interfer-
ences from σ̄ , we have

R(Ak,tk) = max
σ̄∈Ω(Γ)

{R(Ak,tk , σ̄)} (10)

That is, the exact response time of Ak,tk can be calculated by searching for the
maximum value among R(Ak,tk , σ̄) for all the possible path combinations σ̄ . In the
following, we focus on the calculation of R(Ak,tk , σ̄). For convenience, the combina-
tion of σ̄ and [Ak,tk], the action sequence containing only Ak,tk , is denoted as σ̄+. We
first extend the concept of busy period (Lehoczky 1990; Tindell 1994) and define it
over σ̄+.

Definition 15 A busy period [s, f) of σ̄+ is defined as follows:

– It starts at some time s when an action instance originated from σ̄ and Ak,tk is
triggered. All the instances from σ̄ that are triggered strictly before s are ignored
(i.e., assumed to have finished their executions).

– It is a continuous time interval during which no other tasks with lower priority can
start execution.

– It ends at the earliest time f when there are no instances triggered in [s, f)waiting
to be executed.

The start times of all the busy periods that are relevant for the calculation of
R(Ak,tk , σ̄) can be easily determined. The set includes any trigger time s for any
action instance from σ̄ that occurs earlier than tk , plus tk itself.

Given a start time s, the corresponding finish time f can be calculated using the
RF function:

f = min
t>s

{t |r fσ̄+[s, t) ≤ t − s} (11)

123

Real-Time Systems (2019) 55:598–638 617

where r fσ̄+(Δ) = ∑
σi∈σ̄+ r fσi (Δ). Alternatively, f can be calculated using the

IF function (where i fσ̄+(Δ) = ∑
σi∈σ̄+ i fσi (Δ)):

f = min
t>s

{t |i fσ̄+[s, t) ≤ t − s} (12)

Similar to the case of arbitrary offsets (Guan et al. 2014), RF and IF functions are
equivalent for the purpose of computing the finish time f (and the exact response time
of Ak,tk). Simply speaking, r fσ (Δ) and i fσ (Δ) only differ at the slanted segment of
i fσ (Δ) (with slope 1). Thus, the time instant f , at the intersection of i fσ̄+(Δ) and the
line with slope 1, can only lie in the horizontal segments of i fσ̄+(Δ). Such segments
must coincide with those of r fσ̄+(Δ).

Given a start time s of the busy period of σ̄+ = {σ̄ , [Ak,tk]}, the finish time f can
be computed with Eq. (11) or (12), and the response time of Ak,tk is

R(Ak,tk , σ̄ , s) = f − tk (13)

The equation is a trivial extension of Eq. (1) in Tindell (1994): intuitively Ak,tk can
only finish at f due to the higher priority task instances from σ̄ triggered inΔ = [s, f).

The response time R(Ak,tk , σ̄) is the maximum over all the possible busy periods
that start no later than tk .

R(Ak,tk , σ̄) = max
s≤tk

{R(Ak,tk , σ̄ , s)} (14)

For example, consider an action instance Ak,tk where Cak = 0.4 and tk = 2.1.
We assume its interfering combination σ̄ = {σ1, σ2} where σ1 and σ2 refer to the
two interfering FSMs, for which the RF and IF functions are shown in Fig. 11. The
trigger times are {0, 2, 4} and {2, 4} for the two higher priority action sequences σ1, σ2
respectively. Hence, the set of possible start times to be considered is {0, 2, 2.1} (4 is
not included since it is larger than the trigger time 2.1 of ak). By Eq. (13)

⎧
⎨

⎩

R(Ak,tk , σ̄ , 0) = 0.3 − 2.1 = − 1.8
R(Ak,tk , σ̄ , 2) = 2.6 − 2.1 = 0.5
R(Ak,tk , σ̄ , 2.1) = 2.5 − 2.1 = 0.4

The negative response time− 1.8 indicates that the corresponding busy period finishes
before Ak,tk . The response time R(Ak,tk , σ̄) is 0.5, the maximum over those of the
busy periods.

To calculate the response time, we must consider all the possible combinations
of action sequences from the interfering task set Γ , and generate the corresponding
request functions. This computation has exponential complexity due to the exponential
number of possible combinations of action sequences from each FSM (or paths of
the corresponding digraph task) (Stigge and Yi 2013). The optimization techniques
presented in Stigge and Yi (2013, 2015a) can be used to speed up the analysis, but the
worst case complexity remains the same.

We first refine the concept of dominance relation on the request functions (Stigge
and Yi 2013, 2015a) with a given time interval.

123

618 Real-Time Systems (2019) 55:598–638

Definition 16 For two request functions r fσ and r fσ ′ (where σ and σ ′ are two legal
action sequences), r fσ dominates r fσ ′ on the time interval Δ = [s, f), written as
r fσ �Δ r fσ ′ , if and only if

∀[s′, f ′) ⊆ [s, f) : r fσ [s′, f ′) ≥ r fσ ′ [s′, f ′)

The critical request function set (or F .CRFΔ) for an FSM F is the maximum set of
request functions r fσ (σ ∈ F) such that there exits no other action sequence σ ′ with
r fσ ′ �Δ r fσ .

Let CRFΔ(F) denote the set of critical request functions of the FSM F , and
CRFΔ(Γ) := CRFΔ(F1) × CRFΔ(F2) × · · · indicate the set of all combinations
of critical request functions from the task set Γ . Then Eq. (10) for calculating the
response time of Ak,tk can be simplified without losing any accuracy

R(Ak,tk) = max
σ̄∈CRF[0,R(Ak,tk

))(Γ)
{R(Ak,tk , σ̄)} (15)

This means that we only need to generate the critical request functions within the time
interval Δ = [0, R(Ak,tk)), with a significant reduction in time complexity.

In practice, the finish time R(Ak,tk) of Δ, the time interval for checking dominance
relationship, can be safely replaced with the upper bound on R(Ak,tk). For example,
the one developed in Sect. 5.2 can be used. Furthermore, since any action must be
finished before the next action, the start time of the time intervalΔ can use any release
time of A j,t j , as long as the end state of a j is the start state of ak .

In addition, the combinatorial abstraction refinement technique proposed in Stigge
and Yi (2013, 2015a) can be used to simplify the computation of Eqs. (10) and (15).
The idea is based on an iterative procedure that refines the abstraction of paths until
the schedulability condition is satisfied.

Although the above techniques, similar to those in Stigge and Yi (2013, 2015a),
can help reduce the runtime, the complexity remains to be strongly coNP-hard (Stigge
and Yi 2012). In the next subsection, we present an approximate analysis that avoids
the exhaustive enumeration of all the combinations of the action sequences.

5.2 Approximate response time analysis

The approximate analysis uses one request bound function or interference bound
function for each FSM to abstract the workload for all the action sequences. Such
an abstraction results in pseudo-polynomial complexity. We first define the RBF and
IBF for an FSM over a time interval with given start and finish times.

Definition 17 The request bound function (RBF) of an FSM F during a time interval
Δ = [s, s + t), denoted as F .rb f (Δ), is the maximum sum of execution times by the
actions of F that have their trigger time within Δ. That is

F .rb f (Δ) = max
σ∈Ω(F)

{F .r fσ (Δ)} . (16)

123

Real-Time Systems (2019) 55:598–638 619

0 2 4 5 6 81 10973

0.55

0.95

0.3

0.65

0.4

0.9

1.2

0.65

1.05
1.3

Fig. 12 rb f [0, 10) (dotted line) and rb f (10) (solid line) of the FSM in Fig. 2

0 2 4 5 6 8 101 7 93

0.55 0.65
0.9 0.95

1.2 1.3

0.65

1.05

0.4

0.3
0.4

Fig. 13 ib f [0, 10) (dotted line) and ib f (10) (solid line) of the FSM in Fig. 2

Definition 18 The interference bound function (IBF) of an FSMF during a time inter-
valΔ = [s, s+t), denoted asF .ib f (Δ), is themaximumamount of executedworkload
from the actions of F that have their trigger time within Δ. That is

F .ib f (Δ) = max
σ∈Ω(F)

{i fσ (Δ)} . (17)

Similar to rb f (t) and ib f (t) defined over intervals of given length t , rb f [s, s +
t) and ib f [s, s + t) are both monotonically increasing with respect to t . By their
definitions, these functions satisfy the following relationships:

rb f (t) = max
s

{rb f [s, s + t)}, ib f (t) = max
s

{ib f [s, s + t)} (18)

Figure 12 shows the rb f [0, 10) function in the first hyperperiod of the FSM in
Fig. 2. As a comparison, rb f (10) for any time interval of length 10 is also shown in
the figure. Fig. 13 shows a similar comparison between ib f [0, 10) and ib f (10).

We now use these functions to derive safe upper bounds on the response times
of an action instance Ak,tk . Similar to that with the IF and RF functions, the analysis
with the IBF and RBF functions requires to check a set of representative busy periods.
Considering the set of higher priority tasks Γ , the set of start times can be safely
estimated as the union of TF , ∀F ∈ Γ . The finish time f of the busy period for a
given start time s is

fRBF = min
t>s

{

t |
∑

∀F∈Γ

F .rb f [s, t) + δ(s, t, tk) · Cak ≤ t − s

}

f I BF = min
t>s

{

t |
∑

∀F∈Γ

F .ib f [s, t) + δ(s, t, tk) · Cak ≤ t − s

} (19)

123

620 Real-Time Systems (2019) 55:598–638

where the function δ(s, t, x) is defined as

δ(s, t, x) =
{
1, if x ∈ [s, t);
0, otherwise.

(20)

Using the RBF, the response time of Ak,tk during the busy period starting at s and
the approximate response time of Ak,tk are

RRBF (Ak,tk , s) = fRBF − tk
RRBF (Ak,tk) = max

s≤tk
{RRBF (Ak,tk , s)} (21)

Likewise, the response time estimates using IBF are

RI BF (Ak,tk , s) = f I BF − tk
RI BF (Ak,tk) = max

s≤tk
{RI BF (Ak,tk , s)} (22)

We now study the relationship between the exact and approximate response times.
For any action sequence combination σ̄ in Ω(Γ), it is r fσ̄ (Δ) ≤ ∑

F∈Γ F .rb f (Δ).
The finish times in Eq. (11) and, consequently, the response time estimates of
Ak,tk , are monotonically increasing with the RF function. Hence, ∀s, ∀σ̄ , we have
RRF (Ak,tk , σ̄ , s) ≤ RRBF (Ak,tk , s). This implies RRF (Ak,tk) ≤ RRBF (Ak,tk). If we
indicate the state based analysis methods with the suffix-SO to distinguish them with
respect to the digraph based analysis, the following dominance relations apply

IF-SO � IBF-SO

= �

RF-SO � RBF-SO

In order to verify schedulability, we must consider all the possible busy periods of
σ̄+. Because of the periodicity of the trigger events, a busy period starts at an integer
multiple of the event period within the system hyperperiod H . For example, consider
a system including 2 blocks: a high priority Dataflow block with period 4, and the low
priority Stateflow block in Fig. 2 (with event periods {2, 5}). The start times of the
busy periods to be considered are {0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18}.

The functions rb f [s, f) and ib f [s, f) can be computed by Eqs. (16) and (17)
respectively, which require to enumerate all the action sequences. However, there
exists a more efficient solution based on dynamic programming, as discussed in the
next subsection.

5.3 Calculation of rbf() and ibf()

In this subsection, we show how to compute rb f (Δ) and ib f (Δ). Compared to Stigge
et al. (2011), there are two possible improvements for synchronous FSMs. First, the
possible event pattern repeats every hyperperiod, and the same applies to the RBF and

123

Real-Time Systems (2019) 55:598–638 621

IBF functions. This leads to the concept of execution request matrix, and to the defini-
tion of the RBF and IBF functions for one hyperperiod (with the refinement by a pair of
start and end states). Second, the algorithm for computing RBF and IBF can be further
improved by leveraging the periodicity of the execution request matrix. Because of
the periodicity of the trigger events, if we move (left or right) the time intervalΔ by an
integer number of hyperperiods, the functions rb f (Δ) and ib f (Δ) remain the same.
Formally, ∀k ∈ N,

{F .rb f [s + kHF , f + kHF) = F .rb f [s, f)
F .ib f [s + kHF , f + kHF) = F .ib f [s, f)

(23)

Furthermore, the trigger times and absolute deadlines for the action instances ofF can
only belong to the ordered set TF . Hence, we only need to consider the calculations
of rb f [s, f) and ib f [s, f) for all s, f ∈ TF , s ∈ [0, HF).

We now refine the concepts of rb f (Δ) and ib f (Δ) for a given pair of start and end
states.

Definition 19 Given the start and end states si and s j , the request bound function
F .rb fi, j (Δ), is defined as the maximum cumulative execution times of any legal
action sequence [(ak, tk), k = 1, . . . , n] of F such that

– the source state of the first transition is si ; and
– the sink state of the last transition is s j ; and
– t1 ≥ s and tn < f ; and
– F .rb fi, j (Δ) = max{∑n

k=1 Cak }.
If s j is not reachable from si , then F .rb fi, j (Δ) is defined as −∞.

Definition 20 Given the start and end states si and s j , the interference bound function
F .ib fi, j (Δ), is defined as themaximumamountworkload of any legal action sequence
[(ak, tk), k = 1, . . . , n] of F such that

– the source state of the first transition is si ; and
– the sink state of the last transition is s j ; and
– t1 ≥ s and tn < f ; and

– F .ib fi, j (Δ) = max
{∑n−1

k=1 Cak + min(Can , f − tn)
}
.

If s j is not reachable from si , then F .ib fi, j (Δ) is defined as −∞.

The domain for the possible RBF and IBF values is R∗ = R
⋃{−∞}. By these

definitions,

F .rb f (Δ) = max
i, j

{F .rb fi, j (Δ)}, F .ib f (Δ) = max
i, j

{F .ib fi, j (Δ)} (24)

Also, rb fi, j (Δ) is additive, i.e. ∀i, j,∀t ∈ [s, f],

F .rb fi, j [s, f) = max
m

{F .rb fi,m[s, t) + F .rb fm, j [t, f)} (25)

123

622 Real-Time Systems (2019) 55:598–638

Fig. 14 Reachability graph in the first hyperperiod of the FSM in Fig. 2

However, ib fi, j (Δ) is additive only for some specific points of t , i.e., ∀i, j,∀t ∈
{t |t ∈ TF , s ≤ t ≤ f },

F .ib fi, j [s, f) = max
m

{F .ib fi,m[s, t) + F .ib fm, j [t, f)} (26)

For t ∈ TF , it is also ib fi,m[s, t) = rb fi,m[s, t), and the computation of ib fi, j (Δ)

can be derived from the combination rb fi,m[s, t) and ib fm, j [t, f).
Thus, rb fi, j [s, f) for a long interval [s, f) can be computed from its values for

shorter intervals [s, t) and [t, f), and dynamic programming can be used for an effi-
cient calculation of rb fi, j (Δ). The computation of rb fi, j (Δ) requires searching the
reachable states within the possible sequences of events.We build a reachability graph
where each state si corresponds to an infinite sequence of vertices. Each vertex Si,t−i
corresponds to the source state si before any action triggered by the event at time ti ,
∀ti ∈ TF . The edge (Si,t−i

, S j,t−i+1
) is added when:

– ti+1 is the next time instant after ti in the set TF ;
– there is a transition θk = {si , s j , eθk , gk, ak, pk} ∈ A from si to s j in the FSM,
and the edge is labeled with Cak ;

– ti is an integer multiple of Te(ak).

Intuitively, edge (Si,t−i
, S j,t−i+1

) corresponds to a transition from si to s j at time ti .
Furthermore, stuttering edges from Si,t−i

to Si,t−i+1
(denoted by the symbol ⊥ and

labeled with 0) are added to represent the possible stuttering behavior. As an example,
Fig. 14 shows the reachability graph of the FSM in Fig. 2.

Every path from Si,t−i
to S j,t−j

in the reachability graph corresponds to a possible

legal action sequence from si to s j during the interval [ti , t j). Thus, rb fi, j [ti , t j) can be
computed as the longest path from Si,t−i

to S j,t−j
. This problem can be solved in cubic

time to the size of the graph (i.e., cubic to the length of the time interval) by negating
the weight of the edges and leveraging the classic Floyd-Warshall algorithm (Floyd
1962) for solving the all-pairs shortest path problem.

123

Real-Time Systems (2019) 55:598–638 623

Let ns = � s
H � and n f = � f

H �. rb f (Δ) can be decomposed as

rb fi, j [s, f) = max
k,l

{rb fi,k[s, ns H) + rb fk,l [ns H , n f H) + rb fl, j [n f H , f)}
= max

k,l
{rb fi,k[s, ns H) + rb fk,l [ns H , n f H) + rb fl, j [0, f − n f H)}(27)

This equation is a special case of (25), i.e., the RBF function can be decomposed into
functions defined over three intervals, namely [s, ns H), [ns H , n f H), and [n f H , f).
rb fi,k[s, ns H) and rb fl, j [n f H , f) can be computed directly by finding the longest
path between the two states in the reachability graph, since the intervals [s, ns H) and
[n f H , f) are within one hyperperiod. Clearly, it is inefficient to build the reachability
graph for multiple hyperperiods to calculate directly rb fk,l [ns H , n f H).

For simplicity, we denote the request bound function within k hyperperiods for
a pair of given start and end states as x (k)

i, j = rb fi, j [0, kH), and the n × n matrix

X(k)(F) = (x (k)
i, j , i, j = 1, . . . , n) where n = |S| is the number of states in the FSM.

We define X(1)(F) as the execution request matrix of the FSM F , and simply denote
it as X. As a special case of Equation (25), we have

∀i, j,∀1 ≤ l < k, x (k)
i, j = max

m

{
x (l)
i,m + x (k−l)

m, j

}
(28)

Equation (28) can be used to compute the RBF function for intervals spanning
multiple hyperperiods instead of building large reachability graphs. This results in a
significant improvement, typically one to two orders of magnitudes. Hence, Eq. (27)
can be expressed as the following:

rb fi, j [s, f) =max
k,l

{
rb fi,k[s, ns H) + x

(n f −ns)
k,l + rb fl, j [0, f − n f H)

}
(29)

Given the execution request matrix, we can use the periodicity property introduced in
Sect. 3 (e.g., Theorem 1) to further speedup the calculation of Eq. (28).

6 Experimental results

In this section, we use randomly generated systems of synchronous finite state
machines to evaluate the schedulability analysis techniques and compare their accu-
racy and runtime. The list of analysis techniques is as follows:

– RF/IF-SO the state-based exact analysis using RF/IF, where tasks have static offsets
(Sect. 5.1).

– RF/IF-AO1 the analysis using RF/IF with arbitrary offsets for the digraph with
action instances (Sect. 4.3).

– RF/IF-AO2 the analysis using RF/IF with arbitrary offsets for the digraph with
actions (Sect. 4.2).

– IBF-SO the state-based approximate analysis using IBF with static offsets
(Sect. 5.2).

123

624 Real-Time Systems (2019) 55:598–638

– RBF-SO the state-based approximate analysis using RBF with static offsets
(Sect. 5.2).

– IBF-AO1 the approximate analysis using IBF with arbitrary offsets. In this case,
three approaches of different complexity can be used to compute the exact ib f (t):

– IBF-AO1-(18) using Eq. (18), which requires to first compute ib f [s, s+ t) for
any s ≥ 0.

– IBF-AO1-Digraph using the algorithm in Guan et al. (2014) on the digraphs
with action instances.

– IBF-AO1-FSM using a modification of the algorithm in Guan et al. (2014) on
reachability graphs (e.g., Fig. 14).

– RBF-AO1 the approximate analysis using RBF with arbitrary offsets. Similar to
IBF-AO1, three approaches are used to compute the rb f (t): RBF-AO1-(18), RBF-
AO1-FSM and RBF-AO1-Digraph.

– IBF-AO2 the approximate analysis using IBF with arbitrary offsets for the digraph
with actions. The algorithm in Guan et al. (2014) is used to compute the IBF func-
tion.

– RBF-AO2 the approximate analysis using RBFwith arbitrary offsets for the digraph
with actions using the algorithm in Guan et al. (2014).

For theRF/IF-AO1 andRF/IF-AO2 analyses using digraphs, we used the techniques
proposed in Stigge andYi (2013, 2015a) to improve the efficiency of the computations.
The same techniques are also used for RF/IF-SO. Dynamic programming techniques
are applied to improve the efficiency of the analysis methods with prefix IBF- or RBF-.

We first use a relatively simple set of FSMs, to allow for the evaluation of a signif-
icant number of cases using the computationally expensive analysis (such as IF-SO
and RF-SO), as in Sects. 6.1 and 6.2. The periodicity property of the execution request
matrix on the state machines or the digraph tasks is used in subsequent experiments
with a much larger hyperperiod and more complex set of activation events (Sect. 6.3).
Finally, we study the scalability of the approximate analysis methods (Sect. 6.4).

6.1 Comparing RBF-SOwith exact analysis methods

The first set of experiments compares RF/IF-SO with RF/IF-AO1 and RF/IF-AO2,
to evaluate the effect on different digraph models and different task offset settings. In
addition,RBF-SO is compared to evaluate the impact of IBF/RBF approximations. Due
to the complexity of the analyses with IF/RF, we generate relatively simple random
systems. For each FSM, the number of states is randomly distributed as follows: 20%
of the FSMs has only one state, 20% of them has two states, 20% with three states,
20% with five states, 10% with ten states, 5% with fifteen states, and the remaining
5% has twenty states. Transitions are randomly connected between states such that
the average number of outgoing edges is 3. Two types of event periods are used for
this set of experiments:

Type-I Event periods are randomly drawn from the set {10, 20, 25, 50}.
Type-II Event periods are randomly drawn from the set {10, 20, 30, 40, 50, 60}.

123

Real-Time Systems (2019) 55:598–638 625

(a) Acceptance ratio vs. system utilization (n = 20)

(b) Acceptance ratio vs. number of tasks (U = 40%)

Fig. 15 The acceptance ratios of RF/IF-SO, RF/IF-AO1, and RF/IF-AO2 with Type-I event periods

The WCETs of actions are assigned such that the utilization of the FSM is uniformly
distributed. The priorities of FSMs are assigned using the rate monotonic policy based
on their base period (gcd of the event periods in the FSM). Two parameters are used as
variables in the generation of the task systems: the total utilization U and the number
of tasks n. 1000 random system are generated for each configuration and a timeout of
200 seconds was applied to all runs.

The acceptance ratio between the number of schedulable systems and the total
number of generated systems is used to compare the accuracy of the analyses. The
experiments in Figs. 15 and 16 use Type-I event periods, while the ones in Figs. 17
and 18 adopt Type-II event periods.

We first set the number of tasks to n = 20 and vary the system utilizationU from 5
to 95%, as in Figs. 15a and 17a. Then the number of tasks n is varied from 5 to 26 with

123

626 Real-Time Systems (2019) 55:598–638

(a) Runtime vs. system utilization (n = 20)

(b) Runtime vs. number of tasks (U = 40%)

Fig. 16 The analysis runtimes of RF/IF-SO, RF/IF-AO1, and RF/IF-AO2 with Type-I event periods

a 40% system utilization, as in Figs. 15b and 17b. The results indicate that RF/IF-SO
and RBF-SO have similar accuracy: the maximum difference between them is less
than 5%. For Type-I event periods RBF-SO is almost as accurate as RF/IF-SO since
the maximum difference is less than 1%. Compared with RF/IF-AO1 and RF/IF-AO2,
RBF-SO has a noticeably higher acceptance ratio across all the settings. As observed in
these graphs, the relative comparison for the analysis accuracy among these methods
remains the same regardless of the value of the system parameters.

Figures 16 and 18 illustrate the corresponding average runtime of the four analysis
methods. RF/IF-SO is about two orders of magnitude slower than RBF-SO, since it
needs to perform the schedulability analysis by checking all the possible combinations
of action sequences. In addition,RF/IF-AO1 andRF/IF-AO2 have lower accuracy than
RBF-SO, with much worse scalability (the two analysis methods have significantly

123

Real-Time Systems (2019) 55:598–638 627

(a) Acceptance ratio vs. system utilization (n = 20)

(b) Acceptance ratio vs. number of tasks (U = 40%)

Fig. 17 The acceptance ratios of RF/IF-SO, RF/IF-AO1, and RF/IF-AO2 with Type-II event periods

larger runtime than RBF-SO for larger task sets). In most cases, RBF-SO has the
smallest runtime as it only needs to consider one RBF function for each FSM instead
of a larger number of action sequence (or path) combinations. Compared to Type-I,
the runtimes for Type-II event periods are significantly larger for the same system
parameters, since the system hyperperiod is much longer.

6.2 Comparing RBF/IBF based approximate analyses

In this set of experiments, the systems are generated as in Sect. 6.1, but the FSMs have
a larger number of states and a larger set of possible event periods. Each FSM has a
random number of states such that 20% of the FSMs have five states, 20% ten states,

123

628 Real-Time Systems (2019) 55:598–638

(a) Runtime vs. system utilization (n = 20)

(b) Runtime vs. number of tasks (U = 40%)

Fig. 18 The analysis runtimes of RF/IF-SO, RF/IF-AO1, and RF/IF-AO2 with Type-II event periods

20% fifteen states, 20% twenty states, 10% twenty-five states, and the remaining 10%
fifty states. Two types of event periods are used in the set of experiments:

Type-III The base period of each FSM is randomly extracted from the set {1, 2, 5, 10,
20, 25, 50, 100}, and the event periods within the same FSM are computed
as the product of the base period and a factor randomly chosen from the set
{1, 2, 5, 10}.

Type-IV Similar to Type-III but the base period of each FSM is generated by the
product of one to two factors, each randomly drawn from three harmonic
sets (2,4), (6,12), (5,10).

We compare the approximate analysis techniques: IBF-SO, RBF-SO, IBF-AO1, RBF-
AO1, IBF-AO2, andRBF-AO2. In the case of the last four analysismethods, the analysis
runtime is computed for all the possible approaches for calculating IBF or RBF.

123

Real-Time Systems (2019) 55:598–638 629

(a) Acceptance ratio vs. system utilization (n = 20)

(b) Acceptance ratio vs. number of tasks (U = 40%)

Fig. 19 The acceptance ratios of approximate analysis methods with Type-III event periods

Figures 19, 20, 21, and 22 illustrate the comparison on their acceptance ratios and
runtimes with the two types of event periods. In Figs. 19 and 21 we only show IBF-SO
and omit the other IBF based analysis (IBF-AO1 and IBF-AO2), as they are practically
indistinguishable with respect to their RBF based counterparts (RBF-SO, RBF-AO1,
and RBF-AO2, respectively).

The runtime of IBF-SO is noticeably larger than RBF-SO. This is a result of the
higher complexity to calculate IBF than RBF, due to the need to compute the intersection
of the slanted segment of one IFwith the horizontal segment of another. There is a very
limited accuracy improvement when using IBF-SO (as expected). RBF-SO provides
results that are very close to the exact analysis, as was the case for the first set of
experiments (Sect. 6.1). IBF-AO1 and RBF-AO1 provide results that are very close
in terms of acceptance ratio. Likewise for IBF-AO2 and RBF-AO2. These results

123

630 Real-Time Systems (2019) 55:598–638

(a) Runtime vs. system utilization (n = 20)

(b) Runtime vs. number of tasks (U = 40%)

Fig. 20 The analysis runtimes of approximate analysis methods with Type-III event periods

indicate that for such randomly generated systems, the analyses based on IBF and
RBF have similar quality, but the former always require a longer runtime. In Fig. 20,
the methods with arbitrary offsets IBF-AO1, RBF-AO1, IBF-AO1-(18) and RBF-AO1-
(18) respectively have the longer runtimes than the corresponding analyses with static
offsets since they need to first calculate the IBF and RBF with static offsets before
obtaining the functions with arbitrary offsets by Eq. (18). On the contrary, in Fig. 22,
IBF-AO1-(18) and RBF-AO1-(18) respectively have the smaller runtimes than the
corresponding analyses with static offsets since IBF-SO and RBF-SO have to verify
a much larger number of action instances for the Type-IV setting. Clearly, this is not
an efficient approach, as the direct calculation of the FSM reachability graph (as with
IBF-AO1-FSM and RBF-AO1-FSM) is much faster. Among the three approaches for
computing IBF-AO1 and RBF-AO1, IBF-AO1-Digraph and RBF-AO1-Digraph have

123

Real-Time Systems (2019) 55:598–638 631

(a) Acceptance ratio vs. system utilization (n = 20)

(b) Acceptance ratio vs. number of tasks (U = 40%)

Fig. 21 The acceptance ratios of approximate analysis methods with Type-IV event periods

the smallest runtimes, that is, they provide the most efficient way to calculate IBF and
RBF by using the digraph with action instances. However, IBF-AO1-FSM (RBF-AO1-
FSM) is almost as efficient as IBF-AO1-Digraph (RBF-AO1-Digraph).

Compared to RBF-SO, both RBF-AO1 and RBF-AO2 use the digraph model with
arbitrary offsets, and have larger pessimism. However, their runtimes are shorter.RBF-
AO2 has the lowest accuracy but the smallest runtime because of the simplest graph
model. Moreover, the results show that a digraph with action instances allows for
more accurate results, since RBF-AO1 gives a significantly higher acceptance ratio
than RBF-AO2.

123

632 Real-Time Systems (2019) 55:598–638

(a) Runtime vs. system utilization (n = 20)

(b) Runtime vs. number of tasks (U = 40%)

Fig. 22 The analysis runtimes of approximate analysis methods with Type-IV event periods

6.3 Analysis of large busy periods leveraging the periodicity

The periodicity of the request and interference bound functions computed from the
execution matrix can be used to improve the runtime of the exact and approximate
analysis methods when the hyperperiod is large and the event periods differ signifi-
cantly. In this set of experiments, we evaluate the runtime of the analysis when the
periodicity parameters are computed according to four methods: IBF-SO, RBF-SO,
RBF-AO1-Digraph and RBF-AO2. The suffix denotes the use of the periodicity prop-
erty (-P) or a standard analysis (-NoP). The experiment setting is similar to the previous
set of experiments, but the base period of each FSM has a larger range. Two types of
event periods are used in this set of experiments:

123

Real-Time Systems (2019) 55:598–638 633

(a) Runtime vs. system utilization (n = 20)

(b) Runtime vs. number of tasks (U = 40%)

Fig. 23 The analysis runtimes of analysis methods with and without periodicity property where the event
periods are set as Type-V

Type-V Similar to Type-III, but the base period of each FSM is randomly extracted
from the set {1, 2, 5, 10, 20, 25, 50, 100, 1000, 2000}.

Type-VI Similar to Type-III, but the base period of each FSM is generated by the
product of one to three factors, each randomly drawn from three harmonic
sets (2,4), (6,12), (5,10).

Finally, transitions are connected such that the executionmatrices are irreducible since
the periodicity property can only be exploited for irreducible matrices (i.e., strongly
connected digraphs).

Figures 23 and 24 show the runtimes of these analysis methods with andwithout the
use of the periodicity property. The runtimes of IBF-SO-NoP and RBF-SO-NoP are
higher than IBF-SO-P and RBF-SO-P respectively, which means that the calculation

123

634 Real-Time Systems (2019) 55:598–638

(a) Runtime vs. system utilization (n = 20)

(b) Runtime vs. number of tasks (U = 40%)

Fig. 24 The analysis runtimes of analysis methods with and without periodicity property where the event
periods are set as Type-VI

of the IBF and RBF functions with static offsets can indeed be made more efficient.
In contrast, the runtime of RBF-AO2-NoP is smaller than RBF-AO2-P, which means
that the computation of the periodicity parameters is unlikely to improve the runtime
of RBF-AO2 when all the transformed digraphs are strongly-connected. We believe
that this happens since in general the transformed digraph models contain a very large
number of vertices and edges which result in very long computation times for the
periodicity parameters. RBF-AO1-Digraph-P and RBF-AO1-Digraph-NoP have very
close runtimes because only a small percentage (0.25%) of the transformed digraphs in
RBF-AO1-Digraph are strongly-connected. Even if the digraphs inRBF-AO1-Digraph
are modified by adding loose edges (see Sect. 4.5) to make them strongly connected,

123

Real-Time Systems (2019) 55:598–638 635

Fig. 25 Runtime versus number of states (n = 20 and U = 40%)

the runtime of the periodicity analysis on these strongly-connected digraphs is still
high.

6.4 Scalability

In the final set of experiments, we study the scalability of the approximate analysis
methods. In the second set of experiments (Sect. 6.2), the analyses with the IBF func-
tions have very similar accuracy to those using RBF functions in terms of evaluating the
feasibility conditions, but with longer runtimes. Hence, we only focus on the four anal-
yses methods with the RBF functions: RBF-SO, RBF-AO1-FSM, RBF-AO1-Digraph,
and RBF-AO2. The experiment setting is similar to the second set of experiments,
but each Stateflow has a number of states that is fixed and goes from 25 to 500. The
number of tasks/FSMs is 20, and the system utilization is 40%. The event periods are
as in Type-III. Because of the very long runtimes of these experimental runs, only 10
simulations for each number of states have been performed.

Figure 25 illustrates the impact of the number of states on the runtimes of the
approximate analysis methods. As expected, although at the price of the worst accu-
racy, RBF-AO2 has the smallest runtime among all methods. RBF-AO1-Digraph has
a smaller runtime compared with RBF-AO1-FSM, but the two methods are very close
in terms of required analysis runtime. Finally, RBF-SO has the longest runtime, since
the calculation of rb f [s, f) is more complicated than the one of rb f (t) on the digraph
models and it is sensitive to a large number of states (for any FSM with more than 25
states).

7 Conclusion

In thiswork,we presented the analysis framework for calculating the exact and approx-
imate response times of synchronousfinite statemachinemodels through existingwork

123

636 Real-Time Systems (2019) 55:598–638

on a digraph model abstraction or through new methods based on state analysis. The
analysis methods applied in the digraph model are assumed to have arbitrary offsets,
while the new analysis considers periodic tasks with synchronized offsets by lever-
aging the state information. We performed a series of experiments to compare the
digraph-based and state-based methods in terms of accuracy and runtime. Moreover,
we demonstrated that it is possible to utilize the periodicity property to decrease the
analysis time.

Acknowledgements This paper is partially supported by NSF Grant Nos. 1739318 and 1812963.

References

Baccelli F, Cohen G, Olsder GJ, Quadrat JP (1992) Synchronization and linearity: an algebra for discrete
event systems. Wiley, Hoboken

Baruah SK (2003) Dynamic-and static-priority scheduling of recurring real-time tasks. Real Time Syst
24(1):93–128

Di Natale M, Zeng H (2012) Task implementation of synchronous finite state machines. In: Proceedings of
the conference on design, automation, and test in Europe, pp 206–211

Esterel Technologies (2014) The Trusted Design Chain Company: scade suite. http://www.esterel-
technologies.com/products/scade-system/

FersmanE,Krcal P, PetterssonP,YiW(2007)Task automata: schedulability, decidability and undecidability.
Int J Inf Comput 205(8):1149–1172

Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345
Gavalec M (2000) Linear matrix period in max-plus algebra. Linear Algebra Appl 307(1):167–182
Guan N, Gu C, Stigge M, Deng Q, Yi W (2014) Approximate response time analysis of real-time task

graphs. In: IEEE real-time systems symposium (RTSS), pp 304–313
Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):231–274
Hartmann M, Arguelles C (1999) Transience bounds for long walks. Math Oper Res 24(2):414–439
Lee EA, Varaiya P (2011) Structure and interpretation of signals and systems. Addison Wesley, Boston
Lehoczky JP (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: 11th IEEE

real-time systems symposium, vol 90, pp 201–209
Mathworks (1994) The mathworks simulink and stateflow user’s manuals. http://www.mathworks.com
Molnárová M (2005) Generalized matrix period in max-plus algebra. Linear Algebra Appl 404:345–366
Natale MD, Guo L, Zeng H, Sangiovanni-Vincentelli A (2010) Synthesis of multi-task implementations of

simulink models with minimum delays. IEEE Trans Ind Inf 6(4):637–651
Norström C, Wall A, Yi W (1999) Timed automata as task models for event-driven systems. In: sixth

international conference on real-time computing systems and applications, pp 182–189
Peng C, Zeng H (2018) Response time analysis of digraph real-time tasks scheduled with static priority:

generalization, approximation, and improvement. Real Time Syst 54(1):91–131
Stigge M, Ekberg P, Guan N, Yi W (2011) The digraph real-time task model. In: 16th IEEE real-time and

embedded technology and applications symposium, pp 71–80
Stigge M, Yi W (2012) Hardness results for static priority real-time scheduling. In: 24th Euromicro con-

ference on real-time systems (ECRTS), pp 189–198
StiggeM,YiW (2013) Combinatorial abstraction refinement for feasibility analysis. In: 34th IEEE real-time

systems symposium (RTSS), pp 340–349
StiggeM, YiW (2015) Combinatorial abstraction refinement for feasibility analysis of static priorities. Real

Time Syst 51(6):639–674
StiggeM,YiW (2015)Graph-basedmodels for real-timeworkload: a survey. Real Time Syst 51(5):602–636
Tindell K (1994) Adding time-offsets to schedulability analysis. In: Department of Computer Science,

University of York, Report No. YCS-94-221
Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S,Whalley D, Bernat G, Ferdinand C, Heckmann R,

MitraT,Mueller F, Puaut I, Puschner P, Staschulat J, StenströmP (2008)Theworst-case execution-time
problem: overview of methods and survey of tools. ACM Trans Embed Comput Syst 7(3):36:1–36:53

123

http://www.esterel-technologies.com/products/scade-system/
http://www.esterel-technologies.com/products/scade-system/
http://www.mathworks.com

Real-Time Systems (2019) 55:598–638 637

Young NE, Tarjant RE, Orlin JB (1991) Faster parametric shortest path and minimum-balance algorithms.
Networks 21(2):205–221

ZengH, Di NataleM (2011)Mechanisms for guaranteeing data consistency and flow preservation in autosar
software on multi-core platforms. In: 6th IEEE international symposium on industrial and embedded
systems, pp 140–149

Zeng H, Di Natale M (2013) Using max-plus algebra to improve the analysis of non-cyclic task models. In:
25th Euromicro conference on real-time systems (ECRTS), pp 205–214

Zeng H, Di Natale M (2015) Computing periodic request functions to speed-up the analysis of non-cyclic
task models. Real Time Syst 51(4):360–394

Zeng H, Natale MD (2012) Schedulability analysis of periodic tasks implementing synchronous finite state
machines. In: 24th Euromicro conference on real-time systems (ECRTS), pp 353–362

Zhao Y, Peng C, Zeng H, Gu Z (2017) Optimization of real-time software implementing multi-rate syn-
chronous finite state machines. ACM Trans Embed Comput Syst 16(5s):175:1–175:21

Zhu Q, Deng P, Di Natale M, Zeng H (2013) Robust and extensible task implementations of synchronous
finite state machines. In: Design, automation test in Europe conference exhibition (DATE), pp 1319–
1324

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Chao Peng received the B.E. and M.E. degrees in computer science
and technology from Tsinghua University and National University
of Defense Technology, China, in 2010 and 2012, respectively. He
is currently working toward the Ph.D. degree in computer science
and technology at National University of Defense Technology. His
research interests include schedulability analysis and optimization of
real-time systems, and interconnection network.

Haibo Zeng is with Department of Electrical and Computer Engi-
neering at Virginia Tech, USA. He received his Ph.D. in Electrical
Engineering and Computer Sciences from University of California
at Berkeley. He was a senior researcher at General Motors R&D
until October 2011, and an assistant professor at McGill Univer-
sity until August 2014. His research interests are embedded systems,
cyber-physical systems, and real-time systems. He received four best
paper/best student paper awards in the above fields.

123

638 Real-Time Systems (2019) 55:598–638

Marco Di Natale received the Ph.D. degree from Scuola Superiore
SantAnna and was a visiting researcher with the University of Cali-
fornia, Berkeley in 2006 and 2008. He is a full professor in the Scuola
Superiore SantAnna. He is currently visiting Fellow for the United
Technologies corporation. He’s been a researcher in the area of real-
time and embedded systems for more than 20 years, being author or
co-author of more than 200 scientific papers, winner of six best paper
awards and one best presentation award. He is a senior member of the
IEEE.

123

	A comparison of schedulability analysis methods using state and digraph models for the schedulability analysis of synchronous FSMs
	Abstract
	1 Introduction
	1.1 Our contribution and paper outline

	2 Synchronous finite state machines
	3 Max-plus algebra and periodicity on matrix power sequences
	4 Analysis using digraph task model
	4.1 Digraph task models and schedulability analysis
	4.2 Modeling the FSM as a digraph with actions
	4.3 Modeling the FSM as a digraph with action instances
	4.4 Comparisons on the RBF, IBF, and DBF
	4.5 Execution matrix for digraph tasks

	5 State-based schedulability analysis
	5.1 Exact response time analysis
	5.2 Approximate response time analysis
	5.3 Calculation of rbf() and ibf()

	6 Experimental results
	6.1 Comparing RBF-SO with exact analysis methods
	6.2 Comparing RBF/IBF based approximate analyses
	6.3 Analysis of large busy periods leveraging the periodicity
	6.4 Scalability

	7 Conclusion
	Acknowledgements
	References

