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Abstract
This paper considers the problem of design optimization for real-time systems sched-
uledwith fixed priority, where task priority assignment is part of the decision variables,
and the timing constraints and/or objective function linearly depend on the exact value
of task response times (such as end-to-end deadline constraints). The complexity of
response time analysis techniques makes it difficult to leverage existing optimization
frameworks and scale to large designs. Instead, we propose an efficient optimization
framework that is three orders of magnitude (1000 times) faster than Integer Linear
Programming (ILP) while providing solutions with the same quality. The framework
centers around three novel ideas: (1) an efficient algorithm that finds a schedulable
task priority assignment for minimizing the average worst-case response time; (2) the
concept of Maximal Unschedulable Deadline Assignment (MUDA) that abstracts the
schedulability conditions, i.e., a set of maximal virtual deadline assignments such that
the system is unschedulable; and (3) a new optimization procedure that leverages the
concept of MUDA and the efficient algorithm to compute it.

Keywords Average worst-case response time · Maximal Unschedulable Deadline
Assignment (MUDA) · Schedulability condition abstraction · Design optimization

1 Introduction

The design optimization of real-time systems is to find, at design time, a suitable
design candidate that is (a) predictably correct, i.e., with design-time guarantees that
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requirements on critical metrics (such as timing, control quality, and memory) are
satisfied; and (b) (optionally) optimal with respect to a given optimization objective
function. In this paper, we focus on real-time systems with fixed priority scheduling.
We consider the problems where the task priority assignment is part of the decision
variables, and the task worst-case response times (WCRTs) are involved in the design
constraints and/or objective function.

We discuss a few application scenarios. The first is the direct minimization of the
averageWCRTover (a subset of) the tasks (Arzén et al. (2000); Samii et al. (2009)), i.e.,
the system performance is measured by the promptness of task completion given that
task schedulability is guaranteed. The second is the design of control systems, where
the control error is approximately proportional to the response time of the controller
task (Lincoln and Cervin 2002; Bini and Cervin 2008). The third is that modern
cyber-physical systems are characterized by complex functionality deployed on a
distributed platform, where timing constraints and performance metrics are expressed
on end-to-end paths (Davare et al. 2007). The worst-case end-to-end delay for each
time-critical path equals the sum of the WCRTs and periods of all tasks and messages
in the path. Examples include active safety features in automotive that spans over
several Electronic Control Units (ECUs) connected by communication buses such as
Controller Area Network (CAN).

Since the subproblemof taskWCRTcalculation is shown tobeNP-hard (Eisenbrand
and Rothvoß 2008), the overall problem complexity is NP-hard. A straightforward
approach is to formulate the design optimization as a mathematical program. This
approach may be appealing since modern mathematical program solvers, such as
CPLEX for integer linear programs (ILP), incorporate many sophisticated techniques
to efficiently prune the search space, and are typically much better than plain branch-
and-bound. However, despite the efficiency of modern solvers, it is still very difficult
to scale to large scale industrial systems.

Surprisingly, our framework runs 1000 times faster than CPLEXwhile maintaining
the solution quality. The framework is carefully crafted based on a few problem-
specific insights that are difficult to match for generic constraint solvers such as
CPLEX. The first is that the WCRT calculation, although NP-hard, is actually very
efficient in practice (Davis et al. 2008). However, the corresponding ILP formulation
requires a possibly large number of integer variables (in the order of O(n2), where
n is the number of tasks) (Zeng and Di Natale 2013). The second is that there are
algorithms which can efficiently find a schedulable priority assignment if one exists,
such as rate monotonic policy for periodic tasks with preemptive scheduling (Liu and
Layland 1973) or Audsley’s Algorithm for many task models (Audsley 2001), both of
which run in polynomial time to the number of tasks. The intelligence in such prob-
lem specific algorithms, carefully studied by real-time systems experts (e.g., Audsley
2001; Davis and Burns 2007, 2009), may not be captured in solvers like CPLEX.

Hence, we propose an optimization framework that judiciously leverage the power
of commercial ILP solver (for generic branch-and-bound based search) and develop a
problem-specific algorithm (to efficiently find the optimal solution for a subproblem).
We establish an abstraction layer that hides the detail of WCRT analysis from the ILP
solver but still faithfully respects its accuracy.We envision such a drastically improved
optimization capability will have profound impacts for the considered class of real-
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time systems. For example, it may enable a new, agile and fluid design flow in which
the designers can interact with the optimization tools.

Specifically, our work makes the following contributions.

– We study the problem of minimum averageWCRT and show that it has an efficient
optimal solution.

– We leverage the above algorithm, and introduce the concepts of virtual deadline
and Maximal Unschedulable Deadline Assignment (MUDA), the latter is a set of
maximal virtual deadlines for individual tasks and weighted sum of task WCRTs
such that the task system is unschedulable.

– We devise an optimization framework based on the concept of MUDA, which
prudently combines the efficient algorithm for calculating MUDA and ILP for
generic branch-and-bound.

– We apply our optimization framework to two industrial case studies and show that
the proposed technique runs 1000× faster over standard approach while main-
taining optimality.

The rest of the paper is organized as follows. Section 2 summarizes the task
model and optimization problem considered in this paper. Sections 3 and 4 study the
problem of minimizing average WCRT and its weighted version, respectively. Sec-
tion 5 introduces the concepts of virtual deadline and MUDA, while Sect. 6 presents
the optimization framework built upon it. Section 7 discusses the applicability of
the framework to other optimization objectives. Section 8 presents the experimental
results. Section 9 discusses the related work. Finally, Sect. 10 concludes the paper.

Comparing to the conference version published at RTSS 2017 (Zhao and Zeng
2017b), this paper contains the following extensions.

– In Sect. 3, we also consider the accurate schedulability analysis for non-preemptive
scheduling. We show that in this case WCET Monotonic Strategy is not optimal
by providing a counterexample in Table 1.

– In Sect. 4, we prove that under a certain condition Scaled-WCET Monotonic is
guaranteed to be optimal (Theorem 8). Also, we provide an example (in Table 3)
showing that Scaled-WCET Monotonic is not optimal when the condition is vio-
lated. We then add Algorithms 2 and 4. These two algorithms, together with
Algorithm 3, explain the details of the sifting adjustment. We also demonstrate
how the algorithms work using the counterexample provided in Table 3.

– We add a new Sect. 7, where we discuss the applicability of the proposed optimiza-
tion framework to other optimization objectives. Specifically, we present a family
of objectives known as maximizing minimum laxity that the proposed technique
can also efficiently handle. Comparably, we discuss a type of objectives expressed
in the form of linear summation of virtual deadlines, which the proposed tech-
nique may have difficulty with. We provide an in-depth analysis from different
perspectives on the objectives with respect to the efficiency of our algorithms.

– We enhance the section on experimental evaluation as follows. In Sect. 8.3, we
discuss how the memory constraints of the fuel injection system case study can be
formulated as additional design constraints compatible with the proposed frame-
work. We add a new set of experiments (Sect. 8.4), where we apply the proposed
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technique on optimizing the newly discussed laxity based objectives for the exper-
imental vehicle system case study, and compare it with a direct ILP formulation.

2 Systemmodel and notations

We consider a real-time system Γ containing a set of periodic or sporadic tasks
{τ1, τ2, . . . , τn} with constrained deadline. Each task τi is characterized by a tuple
〈Ci , Ti , Di 〉, where Ci is its worst-case execution time (WCET), Ti is the minimal
inter-arrival time, and Di ≤ Ti is the deadline. Without loss of generality, we assume
these parameters are all positive integers. Each task τi is assigned with a fixed priority
πi that is subject to the designers’ decision. The higher the number πi , the higher the
priority. Hence, πi > π j denotes that τi has a higher priority than τ j . For convenience,
we also denote τi > τ j if πi > π j . We consider two possible scheduling policies:
preemptive scheduling and non-preemptive scheduling. These scheduling policies are
widely adopted in practical systems, such as the automotive AUTOSAR/OSEK real-
time operating systems (RTOS) standard, the modern RTOSes including LynxOS and
QNX Neutrino, and the controller area network (CAN) protocol and its recent exten-
sion CAN-FD (CAN with flexible data-rate).

For preemptive scheduling, the worst-case response time (WCRT) of task τi is the
smallest fixed point solution of the following formula (Tindell et al. 1994)

Ri = Ci +
∑

∀ j∈hp(i)

⌈
Ri

Tj

⌉
C j (1)

where hp(i) represents the set of higher priority tasks than τi .
For non-preemptive scheduling, the worst-case blocking time τi will suffer is the

largest WCET among all lower priority tasks (Davis et al. 2007)

Bi = max∀τ j∈lp(i)
{C j } (2)

where lp(i) represents the set of lower priority tasks than τi . The WCRT of τi is the
largest among all instances in the busy period. The length of the busy period Li for a
task τi is given by the least fixed point of the following equation

Li = Bi +
⌈
Li

Ti

⌉
Ci +

∑

∀ j∈hp(i)

⌈
Li

Tj

⌉
C j (3)

Hence, the number of jobs of τi in the busy period is

qmax
i =

⌈
Li

Ti

⌉
(4)

We index these jobs as q = 0, . . . , qmax
i −1. The waiting time (also called queuing

delay) of the q-th job in the busy period, the longest time that it stays in the waiting
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queue before starting execution, is denoted as wi (q). The worst-case response time
Ri (q) of the q-th job and wi (q) are calculated as

⎧
⎪⎨

⎪⎩

wi (q) = Bi + qCi +
∑

∀τ j∈hp(i)

⌈
wi (q)

Tj

⌉
C j

Ri (q) = wi (q) − qTi + Ci

(5)

The WCRT of τi is calculated as

Ri = max
q=0,...,qmax

i −1
Ri (q) (6)

The exact analysis in Eqs. (2)–(6) is particularly sophisticated in that the number of
jobs qmax

i in the busy period is unknown a priori. Hence, it is difficult to design an opti-
mization algorithm using such an analysis. In this paper, we adopt the following safe
WCRT analysis for tasks with constrained deadline (Davis et al. 2007). Specifically,
the waiting time of task τi is approximated as

wi = max(Bi ,Ci ) +
∑

∀ j∈hp(i)

⌈
wi

Tj

⌉
C j (7)

Here Bi denotes the maximum blocking time from lower priority tasks. The analysis
is based on the observation that τi can either suffer the blocking of a lower priority
task or the push through interference from the previous job of the same task, but not
both. For convenience, we denote

B̃i = max(Bi ,Ci ) = max∀ j∈lp(i)∪{i}C j (8)

and call B̃i as the adjusted blocking time of τi .
Finally, the WCRT of a non-preemptive task τi can be bounded as

Ri = Ci + wi (9)

The analysis in Eqs. (7)–(9) is only sufficient but not necessary, in the sense that
it may over-estimate the WCRT of a non-preemptive task. However, we adopt this
analysis instead of the exact one, for two reasons. One is that its accuracy is very good
in practice, especially for CAN (Di Natale and Zeng 2013). The other is that we can
derive some nice properties from such an analysis to provide an efficient optimization
algorithm (see Sect. 3).

We consider a design optimization problem where the design variables include the
task priority assignment. As part of the feasibility constraints, the tasks are required
to be schedulable. Besides, the problem also requires the precise information on the
WCRTs of (a subset of) the tasks.
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Formally, the problem can be expressed as the following mathematical program-
ming problem

min
∑

∀i∈Ω

βi · Ri

s.t. Tasks are schedulable

G(X) ≤ 0

(10)

HereX represents the vector of decision variables that include the task priority assign-
ment P and the task WCRTs R. The objective function is a weighted sum of the task
WCRTs, where βi ≥ 0 is the weight for task τi . G(X) ≤ 0 is the set of linear con-
straints on X that the solutions in the feasibility region shall satisfy, in addition to the
schedulability of each task. For convenience, we denote Ω = {τi : βi > 0}, i.e., the
set of tasks contributing to the objective. We assume that G(X) is non-decreasing with
task WCRTs, i.e., it imposes an upper bound on the task WCRTs.

The problem in (10) is a suitable representation of a wide variety of applications.
For example, the control cost in real-time control systems depends on the WCRTs
of the control tasks, which can typically be linearized (Mancuso et al. 2014). The
end-to-end delay of distributed features in automotive systems is the sum of WCRTs
and periods for all tasks and messages in the path (Davare et al. 2007), which may be
subject to end-to-end deadline (i.e., formulated in the constraint G(X) ≤ 0) or serve
as the objective function. In the experiments, we will illustrate with two industrial case
studies formulated in the above form.

3 Minimizing averageWCRT

In this section, we first study a specific instance of (10), known as the minimum
average WCRT problem. In this case, the weights of all tasks are the same, and the
constraints consist of only the system schedulability that all tasks meet their deadline.
The mathematical form of the problem is expressed as follows

min
∑

∀i∈Ω

Ri

s.t. Tasks are schedulable

(11)

where Ω ⊆ Γ is the subset of tasks included in the objective for minimizing average
WCRT. In the next section, we generalize the result and design an algorithm for cases
where tasks have different weights.

We find that there is a simple optimal algorithm for (11), as detailed in Algorithm 1.
It only needs to explore a quadratic number O(n2) of priority orders out of the n!
possible ones, where n is the number of tasks. This algorithm is a revision of Audsley’s
algorithm (Audsley 2001) by augmenting it with a simple strategy termed as “WCET
Monotonic”. Similar to Audsley’s algorithm, it iteratively assigns a task to a priority
from the lowest level to the highest. At each priority level, it checks if there is any
unassigned task in Γ \Ω is schedulable (Lines 3–8). If yes, it assigns this task with the
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Algorithm 1 Priority assignment to minimize average WCRT
1: function MinAvgWCRT(Task set Γ , Concerned set Ω)
2: for each priority level k, from lowest to highest do
3: for each unassigned τi in Γ \Ω do
4: if τi is schedulable at priority level k then
5: Assign priority k to τi
6: Continue to the next priority level
7: end if
8: end for
9: for each unassigned τi in Ω in non-increasing WCET order do
10: if τi is schedulable at priority level k then
11: Assign priority k to τi
12: Continue to the next priority level
13: end if
14: end for
15: return unschedulable
16: end for
17: return schedulable
18: end function

current priority level. Otherwise, it chooses the unassigned task in Ω with the longest
WCET among those schedulable at this level (Lines 9–14).

In the following, we first provide a set of sufficient conditions under which Algo-
rithm1 is optimal. Consider a task systemand an associatedWCRTanalysisM. Assume
that M is compliant with Audsley’s algorithm, i.e., it satisfies the following three con-
ditions identified in Davis and Burns (2009).

– TheWCRT Ri of any task τi calculated by M does not depend on the relative order
of tasks in hp(i);

– Similarly, the calculation of Ri by M does not depend on the relative order of tasks
in lp(i);

– Ri is monotonically increasing with hp(i), i.e., if τi is dropped to a lower priority
(and hence hp(i) becomes larger) while the relative order of other tasks remains
the same, Ri will only increase.

Now let τs and τl be any two tasks such that Cl ≥ Cs . Namely, τl is the long task
and τs is the short task. Consider any feasible priority order in which τl has higher
priority than τs . The main idea in the following theorem is to ensure that swapping the
priority levels of τl and τs , if schedulable, will not increase the average WCRT. We
study the two priority assignments before and after the swapping, denoted respectively
as B and A in Fig. 1. Here A stands for After and B stands for Before. A and B only
differ in the priorities of τl and τs . The three sets of tasks H, M, and L, i.e., the sets
of tasks with priority higher than, in between, and lower than τl and τs respectively,
remain the same.

Theorem 1 Consider a task system Γ and an associated WCRT analysis M that is
compliant with Audsley’s algorithm. As in Fig. 1, we swap two tasks τs and τl withCs ≤
Cl , such that bothA and B, the priority orders after and before swapping respectively,
are schedulable. If M additionally satisfies the following two conditions (where RA

i
and RB

i denote the WCRTs of τi in priority assignments A and B respectively)
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Fig. 1 Swapping τl with a lower priority task τs where Cl ≥ Cs , if maintaining schedulability, reduces the
average WCRT

RB
l + RB

s ≥ RA
l + RA

s

∀τm ∈ M, RB
m ≥ RA

m

(12)

then Algorithm 1 is optimal for the problem in (11).

Proof The WCRT of any task inH ∪ L remains the same, since the sets of its higher
priority and lower priority tasks are unchanged, and the analysis is compliant with
Audsley’s algorithm. This, combined with the conditions in (12), means that the aver-
age WCRT only decreases after the swapping.

Now consider at any point in Algorithm 1 where it tries to find an unassigned
task to allocate the current priority level k. Let S be the set of unassigned tasks
that are schedulable at this priority level. Further partition S into two disjoint sets
C ∪ T = S where C ⊆ Ω and T ⊆ Γ \Ω . Assume that S 
= ∅ (otherwise the system
is unschedulable). There are two cases.

Case 1 T 
= ∅. We now show that for any τp ∈ T , there exists an optimal priority
assignment that assigns τp at the current priority level k. Consider any optimal priority
assignment P that assigns a different task τq at priority k and τp at a higher priority.
Construct another priority assignment P′ by inserting τp immediately behind τq in
the priority order. Since τp /∈ Ω , the increased WCRT of τp will not affect the total
WCRT in Ω . However all other tasks will have equal or smaller WCRT since their
priority is either shifted up by one level or remains the same. Hence, the cost of P′
cannot be larger than that of P, indicating that P′ is also optimal.

Case 2 T = ∅. Let τp be a task in C that has no smaller WCET than any other task
in C. Similarly, we show that there always exists an optimal priority assignment that
assigns τp at the current level k. Consider any optimal priority assignment P that
assigns a different task τq at level k and τp at a higher priority. τq has to be from C
(since T = ∅), hence its WCET cannot be smaller than τp. Now construct another
priority assignment P′ by swapping τp and τq in the priority order. Since Cp ≥ Cq ,
by (12) the cost of P′ can only be equal to or smaller than that of P, indicating that P′
is also optimal.

The rest of the proof follows that of theAudsley’s algorithm (Davis andBurns 2009),
as Algorithm 1 always constructs an optimal priority assignment by minimizing the
cost at each priority level. 
�
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We now study whether the WCRT analysis methods in Eqs. (1)–(9) satisfy the
conditions in Theorem 1. We note that they are already known to be compliant with
Audsley’s algorithm (Davis et al. 2016). For preemptive scheduling, we first observe
the property of monotonicity with priority order as formally stated in Lemma 2. We
then demonstrate that the WCRT analysis in (1) satisfies the conditions in (12), as
stated in Theorem 3.

Lemma 2 In any feasible priority assignment for systems with preemptive scheduling,
the WCRT of a lower priority task τi is always no smaller than that of a higher priority
task τ j .

Proof We define the WCRT delay function Ri (·) for τi as

Ri (x) = Ci +
∑

∀k∈hp(i)

⌈
x

Tk

⌉
Ck

For τi and any higher priority task τ j ,

∀x > 0, Ri (x) ≥ Ci +
⌈
x

Tj

⌉
C j +

∑

∀k∈hp( j)

⌈
x

Tk

⌉
Ck

≥ C j +
∑

∀k∈hp( j)

⌈
x

Tk

⌉
Ck

= R j (x)

The delay function and WCRT satisfy the following property

∀x > 0, Ri (x) ≥ R j (x) ⇒ Ri ≥ R j (13)

since Ri (resp. R j ) is the first fixed point solution to the equation x = Ri (x) (resp.
x = R j (x)). 
�
Theorem 3 Theorem1holds for preemptive systemswith theWCRTanalysis inEq. (1).

Proof First, RB
l ≥ RA

s , as RB
l and RA

s have the same set of higher priority tasks H,
and Ri calculated in (1) is monotonically increasing with Ci .

Second, we prove RB
s = RA

l . Let R∗ = min{RB
s , RA

l }. Obviously R∗ ≤
min{Ds, Dl} ≤ min{Ts, Tl}. Hence, R∗ is the first fixed point solution of the fol-
lowing equation

R∗ = Cs + Cl +
∑

∀ j∈H∪M

⌈
R∗

Tj

⌉
C j (14)

We observe that R∗ is a fixed point solution to the following equation for calculating
RB
s

RB
s = Cs +

⌈
RB
s

Tl

⌉
Cl +

∑

∀ j∈H∪M

⌈
RB
s

Tj

⌉
C j (15)

123



676 Real-Time Systems (2019) 55:667–707

Also, since R∗ ≤ RB
s , and RB

s is the first fixed point solution to the above equation, it
must be R∗ = RB

s . Likewise, R
∗ = RA

l . Thus, R
B
s = RA

l , and RB
s + RB

l ≥ RA
s + RA

l .
Now consider any task τm ∈ M. By Lemma 2 and the above proven equation

RB
s = RA

l , R
A
m ≤ RA

l = RB
s ≤ Ts . Hence, τm only suffers one interference from τs in

A. Since Cl ≥ Cs , the amount of interference from τl to τm in B will only be larger
than that from τs inA. This, combined with the fact that the set of higher priority tasks
for τm only differs from τl in B to τs in A, implies RB

m ≥ RA
m . 
�

In the following, we show that Theorem 1 also holds for the analysis in Eqs. (7)–(9)
for non-preemptive scheduling. We first establish a property similar to Lemma 2, but
for the waiting time calculated in (7). It relies on the definition of the waiting delay
function as below.

Definition 1 The waiting delay function of a task τi in systems with non-preemptive
scheduling is defined as

Wi (x) = B̃i +
∑

∀k∈hp(i)

⌈
x

Tk

⌉
Ck

Similar to (13), wi and Wi (x) have the following property

∀x > 0, Wi (x) ≥ W j (x) ⇒ wi ≥ w j (16)

Lemma 4 In any priority assignment for systems with non-preemptive scheduling that
is feasible according to the sufficient test in Eqs. (7)–(9), if τi has lower priority than
τ j , there is wi ≥ w j .

Proof We consider τi and its immediate higher priority task τi−1.

∀x > 0, Wi (x) ≥ B̃i +
⌈

x

Ti−1

⌉
Ci−1 +

∑

∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

≥ B̃i + Ci−1 +
∑

∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

≥ max{B̃i ,Ci−1} +
∑

∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

= max{Bi−1,Ci−1} +
∑

∀k∈hp(i−1)

⌈
x

Tk

⌉
Ck

= Wi−1(x)

By induction, this relationship can be generalized to τi and any higher priority task τ j .
Hence, the waiting time wi of τi is no smaller than that of any higher priority task. 
�

The following two lemmas establish that the first condition in (12) is satisfied by
the sufficient WCRT analysis for non-preemptive scheduling.
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Lemma 5 In Fig. 1, it is wA
l ≤ wB

s for the analysis in Eqs. (7)–(9) for non-preemptive
scheduling.

Proof The waiting time wB
s is computed as follows

wB
s = B̃B

s +
⌈

wB
s

Tl

⌉
Cl +

∑

∀ j∈H⋃M

⌈
wB
s

Tj

⌉
C j (17)

Similarly for wA
l , it is computed as

wA
l = B̃A

l +
⌈

wA
l

Ts

⌉
Cs +

∑

∀ j∈H⋃M

⌈
wA
l

Tj

⌉
C j (18)

On the right hand side of (18) we substitutewA
l withwB

s . SincewB
s ≤ Ts , we derive

the following quantity

w∗ = B̃A
l +

⌈
wB
s

Ts

⌉
Cs +

∑

∀ j∈H⋃M

⌈
wB
s

Tj

⌉
C j

= B̃A
l + Cs +

∑

∀ j∈H⋃M

⌈
wB
s

Tj

⌉
C j

(19)

We now prove that w∗ ≤ wB
s . We consider the following two cases.

Case 1 max
∀τ j∈L

C j ≥ Cl .

In this case, B̃A
l = B̃B

s = max
∀τ j∈L

C j . Also, since
⌈

wB
s
Tl

⌉
Cl ≥ Cs , we have w∗ ≤ wB

s .

Case 2 max
∀τ j∈L

C j < Cl .

In this case, there is B̃A
l = Cl and B̃B

s ∈ [Cs,Cl ]. Since
⌈

wB
s
Tl

⌉
Cl ≥ Cl = B̃A

l and

B̃B
s ≥ Cs , it is again w∗ ≤ wB

s .
Combining the two cases, there is w∗ ≤ wB

s . With wB
s ≤ Ds ≤ Ts , this means that

wB
s ≥ B̃A

l +
⌈

wB
s

Ts

⌉
Cs +

∑

∀ j∈H⋃M

⌈
wB
s

Tj

⌉
C j (20)

The above equation implies that the first fixed point solution of (18) must be no larger
than wB

s , i.e., w
A
l ≤ wB

s . 
�

Lemma 6 In Fig. 1, we have wB
l = wA

s for the analysis in Eqs. (7)–(9) for non-
preemptive scheduling.
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Proof It can be easily seen that

B̃B
l = B̃A

s = max
∀ j∈L∪M∪{τl ,τs }

{C j }

Thus, wA
s and wB

l are computed as the first fixed point of the same equation as below

w = max
∀ j∈L∪M∪{τl ,τs }

{C j } +
∑

∀k∈H

⌈
w

Tk

⌉
Ck (21)

This implies that wA
s = wB

l . 
�

With the above three lemmas, we now are ready to formally prove Theorem 1 for
non-preemptive scheduling.

Theorem 7 Theorem 1 holds for the analysis in Eqs. (7)–(9) for non-preemptive
scheduling.

Proof By Lemmas 5 and 6

RA
s + RA

l − (RB
s + RB

l ) = (wA
l − wB

s ) + (wA
s − wB

l ) ≤ 0 (22)

This proves the first condition in (12) is satisfied.
Now consider τm of intermediate priority level, i.e., τm ∈ M. By Lemma 4, there

is wA
m ≤ wA

l . By Lemma 5, wA
m ≤ wA

l ≤ wB
s ≤ Ds ≤ Ts . Therefore after swapping,

τm suffers exactly one instance of interference from τs . We use N denote the set of
tasks in M with priority higher than τm . Hence, in priority assignment A, the set of
tasks with priority higher than τm isH ∪ N ∪ {τs}, and wA

m is

wA
m = B̃A

m +
⌈

wA
m

Ts

⌉
Cs +

∑

∀ j∈H∪N

⌈
wA
m

Tj

⌉
C j

= B̃A
m + Cs +

∑

∀ j∈H∪N

⌈
wA
m

Tj

⌉
C j

(23)

Likewise, in priority assignment B, the set of tasks with priority higher than τm is
H ∪ N ∪ {τl}, and wB

m is

wB
m = B̃B

m +
⌈

wB
m

Tl

⌉
Cl +

∑

∀ j∈H∪N

⌈
wB
m

Tj

⌉
C j (24)

We now prove wA
m ≤ wB

m , by considering the following two cases for B̃B
m .
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Case 1 Cl < B̃B
m .

In this case, swapping Cl to a lower priority than τm does not change its blocking
time, and B̃A

m = B̃B
m . From the Eqs. (23)–(24) for calculating wA

m and wB
m , the right

hand side of the equations, i.e., the waiting time functions satisfy the property that

∀x > 0, W
B
m(x) = B̃B

m +
⌈
x

Tl

⌉
Cl +

∑

∀ j∈H∪N

⌈
x

Tj

⌉
C j

≥ B̃A
m + Cs +

∑

∀ j∈H∪N

⌈
x

Tj

⌉
C j

= W
A
m(x)

Hence, by (16), we have wA
m ≤ wB

m .

Case 2 Cl ≥ B̃B
m .

In this case, it can only be that B̃A
m = Cl . Also, B̃B

m ≥ Cs . Thewaiting time functions
satisfy the following equation

∀x > 0, W
B
m(x) = B̃B

m +
⌈
x

Tl

⌉
Cl +

∑

∀ j∈H∪N

⌈
x

Tj

⌉
C j

≥ Cs + B̃A
m +

∑

∀ j∈H∪N

⌈
x

Tj

⌉
C j

= W
A
m(x)

Again, by (16), wA
m ≤ wB

m .
Merging the above two cases, the second condition in (12) is also satisfied, which

concludes the proof of the theorem. 
�
In contrast to the sufficient-only analysis, for the exact analysis of non-preemptive

scheduling in Eqs. (2)–(6), the WCETMonotonic strategy is not optimal. We demon-
strate with the counterexample in Table 1.

Example 1 For the task system in Table 1, WCET Monotonic will produce a priority
assignment τ2 > τ3 > τ1 > τ4 > τ5, with an objective of

∑
i Ri = 776. Differently,

Table 1 An example task system
to show the suboptimality of
WCET monotonic with accurate
analysis on non-preemptive
scheduling

τi Ti Di Ci

τ1 300 300 29

τ2 100 100 27

τ3 150 150 2

τ4 350 350 73

τ5 250 250 49
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the optimal priority assignment is τ2 > τ3 > τ4 > τ5 > τ1, and the optimal objective
is 771. The WCRT of each task under the two priority assignments is presented in
Table 2.

In the example, each task has a busy period no larger than its period. This highlights
that the WCET Monotonic policy is not optimal even if it is sufficient to analyze
the WCRT of the first job in the busy period. We note that in this case, the exact
analysis [Eqs. (2)–(6)] and the sufficient only analysis [Eqs. (7)–(9)] only differ on
their consideration of the push through interference. Still, this makes a distinction in
the optimality of the WCET Monotonic policy.

Specifically, in the example, the WCET Monotonic policy and the optimal priority
order vary in their priority assignments on τ4 and τ1. By the accurate analysis, at
priority level 3, τ4 suffers a blocking time of max{C1,C5} = 49 whereas τ1 suffers
a blocking time of max{C4,C5} = 73. As a result, at priority level 3, τ1 will suffer
interferences of two jobs from τ2 as opposed to one for τ3, and the worst-case queuing
delay of τ1 is substantially longer than that of τ4. In this special scenario, it is more
beneficial to have τ4 at priority level 3.

We now recompute the WCRTs for the two priority assignments using sufficient
only analysis, where each task is also assumed to suffer the push through interference
(which equals its WCET). The results are also summarized in Table 2. At priority
level 3, τ4 has the same amount of adjusted blocking time max{C4,C5,C1} = 73
as τ1, making its worst-case queuing delay the same as that of τ1 (which reflects
Lemma 6). At priority level 1, τ1 now suffers an adjusted blocking time equal to
its own WCET C1 = 23 and interference from τ4 at higher priority. Similarly, τ4
suffers an adjusted blocking time equal to its own WCET C4 = 73 and interference
from τ1 at higher priority. The worst-case queuing delay turns out to be the same
for both tasks. Thus the sums of WCRTs of τ4 and τ1 are the same for both priority
assignments (265 + 202 = 158 + 309). However, the WCRT of τ5 becomes smaller
when scheduling the smallerWCET task τ1 at higher priority. Intuitively, in the optimal
priority assignment, τ5 suffers interference from higher priority task τ4 and a blocking
time equal to its own WCET. However in WCET Monotonic priority assignment, τ5
suffers interference fromhigher priority task τ1 and blocking due to τ4. SinceC1 ≤ C5,
the overall queuing delay becomes smaller. As a result, WCET Monotonic priority
assignment gives smaller average WCRT.

Table 2 WCRTs of optimal and WCET monotonic priority assignments

τi Optimal order WCET monotonic

πi Accurate-Ri Sufficient-Ri πi Accurate-Ri Sufficient-Ri

τ1 1 209 265 3 158 158

τ2 5 100 100 5 100 100

τ3 4 102 102 4 102 102

τ4 3 151 202 1 207 309

τ5 2 209 229 2 209 209

123



Real-Time Systems (2019) 55:667–707 681

4 Minimizing weighted averageWCRT

The optimality of WCET Monotonic strategy does not hold if tasks have different
weights in problem (10). In fact, this general form of problem allows the designer to
differentiate the importance of tasks, for example, the impact of their response times
on the control performance. Consider the swapping in Fig. 1 but the weight βl of τl
is significantly higher than other tasks. Then scheduling τl at a lower priority incurs
substantial cost that may outweigh the collective benefit from τs and tasks inM, and
Theorem 1 is not valid anymore. In this section, we propose a heuristic solution to
the problem that is near optimal as demonstrated in the experiments. It consists of
two ideas. The first is a Scaled-WCET Monotonic strategy, which mimics the WCET
Monotonic strategy but divides the task WCET by the weight and use this scaled
WCET to order tasks. The second is a refinement scheme to search for better solutions
in the neighborhood.

Similar to the non-weighted case, theweighted problemcanbe interpreted as finding
an evaluation order for use inLine 9 ofAlgorithm1,which specifies the preferred order
within the unassigned tasks to be checked for the current priority level. We introduce
the concept of scaled WCET: for each task τi , its scaled WCET C̃i is defined as

C̃i = Ci

βi
(25)

We use the non-increasing scaled WCET as the evaluation order, as it intuitively puts
a task with smaller weight or longer WCET to a lower priority.

In the following, we show that Scaled-WCET Monotonic strategy is optimal for
preemptive scheduling when the system satisfies the following condition

∑

∀τi

Ci ≤ min∀τi
Di (26)

Condition (26) implies two properties: (i) the system is schedulable with any priority
ordering; (ii) a task suffers exactly one job of interference from any higher priority
task. The WCRT of τi can thus be computed as

Ri =
∑

∀τ j∈hp(i)
Ci (27)

Theorem 8 Scaled-WCET Monotonic policy is optimal for optimizing the weighted
average WCRT of tasks with preemptive scheduling when condition (26) is satisfied.

Proof Let τi and τ j be two tasks of adjacent priorities, where τi is the higher priority

task and Ci
βi

≥ C j
β j
. It is sufficient to show that swapping the priority of τi and τ j cannot

increase the weighted average WCRT.
Let H be the set of tasks with higher priority than both τi and τ j . Let RA

i and RB
i

denote the WCRTs of τi after and before swapping the priority order respectively.
Similarly, let RA

j and RB
j be the WCRTs of τ j after and before swapping the priority
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Table 3 An example task system
to show the suboptimality of
Scaled-WCET Monotonic

τi Ti Di Ci βi C̃i = Ci
βi

τ1 20 20 4 2 2

τ2 20 10 6 1 6

τ3 20 20 1 1 1

order respectively. Since τi and τ j have adjacent priorities, swapping their priority
order does not affect the WCRTs of other tasks. Thus the change in the weighted sum
of WCRTs after swapping can be computed as

(βi R
A
i + β j R

A
j ) − (βi R

B
i + β j R

B
j )

=
⎛

⎝βi
∑

∀τk∈H
Ck + β j

∑

∀τk∈H∪{τi }
Ck

⎞

⎠ −
⎛

⎝βi

∑

∀τk∈H∪{τ j }
Ck + β j

∑

∀τk∈H
Ck

⎞

⎠

= β jCi − βiC j ≥ 0
(28)

This indicates that swapping the priority order of τi and τ j can only improve the
objective of minimizing the weighted average WCRT. 
�

However, Scaled-WCET Monotonic strategy is not guaranteed to be optimal when
Condition (26) does not hold. We illustrate with the example system in Table 3.

Example 2 For the example system in Table 3, the optimal priority ordering of the
above system is τ1 > τ2 > τ3, which has the minimized weighted WCRT summation
of

2 × 4 + 1 × (4 + 6) + 1 × (1 + 4 + 6) = 29 (29)

In contrast, the Scaled-WCET Monotonic strategy will produce a priority assignment
τ3 > τ2 > τ1, which has a weighted WCRT summation of

2 × (1 + 4 + 6) + 1 × (1 + 6) + 1 × 1 = 30 (30)

In this example, τ2 cannot be assigned the lowest priority due to its constrained
deadline and thus must have higher priority than either τ1 or τ3. Whichever task of τ2
or τ3 is scheduled at the lowest priority, its WCRT has to account for τ2’s interference.
However,when τ1 is scheduled at the lowest priority, its higherweightβ1 = 2 increases
the impact of τ2 on the objective.

To handle such cases that Scaled-WCET Monotonic strategy may be suboptimal,
we introduce a sifting adjustment scheme that can further improve it based on the
following observations. First, typically only the priority order of a very small portion
of tasks is suboptimal, while the rest is still optimal. Second, suboptimality is usually
caused by (i) a high-weight task is assigned with a priority that is too low; (ii) a
low-weight task is assigned with a priority that is too high.
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Algorithm 2 Sifting operations for adjusting priority orders
1: function SiftUp(τi , P)
2: for each τ j ∈ hp(i), lower priority first do
3: Insert τ j at the immediate lower priority than τi
4: if system remains schedulable then
5: return Success
6: else
7: Restore the priority of τ j
8: end if
9: end for
10: return Failure
11: end function
12: function SiftDown(τi , P)
13: for each τ j ∈ lp(i), higher priority first do
14: Insert τ j at the immediate higher priority than τi
15: if system remains schedulable then
16: return Success
17: else
18: Restore the priority of τ j
19: end if
20: end for
21: return Failure
22: end function

Algorithm 3 Tuning up priority levels
1: function TuneUp(Task set Γ , P)
2: Popt = P
3: for each τi ∈ Γ do
4: P = Popt

5: while SiftUp(τi ,P) succeeds do
6: if P is better than Popt then
7: Popt = P
8: end if
9: end while
10: end for
11: P = Popt

12: end function

Thus our idea is to systematically adjust upward (downward) the priority level of
potentially misplaced high (low) weight task to avoid local suboptimal solutions. For
this, we define the following two operations SiftUp(τi ,P) and SiftDown(τi ,P).
Specifically,SiftUp(τi ,P)finds the lowest possible priority task τ j in hp(i) such that
τ j can be inserted after τi (i.e., with a priority immediately lower than τi ) while main-
taining system schedulability. τ j is then inserted after τi . Similarly, SiftDown(τi ,P)

finds the highest possible priority task τ j in lp(i) that can be put ahead of τi whilemain-
taining system schedulability. The pseudocode for the two operations is summarized
in Algorithm 2.

Based on the two operations, we design two greedy adjustment algorithmsTuneUp
and TuneDown, which are performed after Algorithm 1. Consider TuneUp as an
example, where the procedure is detailed in Algorithm 3. Specifically, for each task τi
in the system, it repetitively applies the SiftUp(τi ,P) operation as often as possible
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(i.e., until there is no task in hp(i) that can be inserted after τi while maintaining
schedulability). Each time SiftUp(τi ,P) succeeds, the new priority order P is com-
pared with the current best order Popt. If P has a smaller cost than Popt, then Popt is
updated as P. At the end of the procedure, the best order Popt is returned. TuneDown
is the same asTuneUp except thatSiftUp(τi ,P) is replacedwithSiftDown(τi ,P)

in Line 5.
TuneUp and TuneDown can be applied together to jointly improve priority assign-

ment. Specifically, the adjusted priority assignment by one procedure can potentially
provide room for further improvement by the other. Thus we introduce the following
Algorithm 4, which integrates both tuning procedures to iteratively improve priority
assignments.

Algorithm 4 Sifting adjustment
1: function SiftingAdjustment(Task set Γ , P)
2: Popt = P
3: while true do
4: P = Popt

5: TuneUp(Γ ,P)

6: TuneDown(Γ ,P)

7: if P is the same as Popt then
8: break
9: end if
10: Popt = P
11: end while
12: end function

In the algorithm, the order of Lines 5 and 6 can be altered. Each time the priority
assignment is improved by either TuneUp or TuneDown, it is passed to the other
for further improvement. The procedure stops when neither is capable of finding any
improvement.

Example 3 We now demonstrate the proposed sifting adjustment algorithm on the
example system in Table 3. The algorithm takes as input the initial priority assignment
by Scaled-WCET Monotonic strategy P : τ3 > τ2 > τ1. At Line 5, the algorithm
first applies TuneUp on the priority assignment. For simplicity, consider the iteration
(Lines 4–9 inAlgorithm3) that processes the lowest priority task τ1. In thefirst iteration
of the while loop, SiftUp operation will identify τ3, which can be scheduled at the
immediate lower priority level than τ1. The priority assignment is then adjusted to
τ2 > τ1 > τ3. However the new priority assignment does not improve upon the
currently best priority assignment. Thus it is not stored into Popt . The algorithm then
proceeds to the next iteration of the while loop, where SiftUp will identify τ2,
which can be scheduled at the immediate lower priority level than τ1. The priority
assignment is thus adjusted to τ1 > τ2 > τ3. The new adjusted priority assignment
has smaller cost and is stored to Popt . After TuneUp returns, the adjusted priority
assignment is given to TuneDown for further processing. Since it is already optimal,
SiftingAdjustment eventually returns the adjusted priority assignment as the
final result.
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5 The concept of MUDA

We now consider the full version of the problem in (10), where there are additional lin-
ear constraints on task WCRT besides schedulability of individual tasks. Algorithm 1
is generally inapplicable here due to the additional constraints. A straightforward
solution is to formulate it in standard mathematical programming framework such
as Integer Linear Programming (ILP). However, this approach does not scale up to
medium- or large-sized systems.

In the following, we present an efficient algorithm that runs several magnitudes
faster than ILP. It is based on the following observations. First, the major difficulty
of using ILP for solving (10) lies in the formulation of WCRT, which requires many
integer variables (Zeng and Di Natale 2013). However, as detailed in the previous two
sections, the subproblem of finding a schedulable priority assignment that minimizes
the (weighted) average WCRT can be efficiently solved. Thus, our main idea is to
free ILP solver from the burden of computing taskWCRT. The proposed optimization
framework is an iterative procedure that judiciously combines the power of ILP solver
and the algorithms in the previous two sections, Sects. 3 and 4.

In this section, we introduce the concept of Maximal Unschedulable Deadline
Assignment (MUDA), which is used to interact between the ILP solver and the algo-
rithms in Sects. 3 and 4. In the next section, we detail the MUDA guided optimization
framework. Throughout the two sections, we use the small example system in Table 4
with preemptive scheduling to illustrate. The objective is to minimize the average
WCRT for all tasks (i.e., all βi = 1).

Definition 2 A virtual deadline (VD) is a tuple 〈τi , d〉 where d is an integer no larger
than the deadline Di of task τi . It represents a stricter deadline requirement for τi , i.e.,
Ri ≤ d.

Although the concept of virtual deadline is proposed in, e.g., Baruah et al. (2012), it is
used for scheduling, i.e., to be enforced at runtime under certain scenarios. Differently,
we use it purely for design optimization, which does not affect the scheduling.

Definition 3 A weighted average deadline (WAD) is a tuple 〈Ω, d〉 where Ω ⊆ Γ is
the set of concerned tasks in the objective of problem (10), and d is an integer no larger
than

∑
i∈Ω βi · Di . A WAD 〈Ω, d〉 denotes a constraint upper bounding the objective

of the optimization problem (10), i.e.,

∑

i∈Ω

βi · Ri ≤ d (31)

Table 4 An example task
system Γe for Sects. 5 and 6

τi Ti Di Ci βi

τ1 10 10 2 1

τ2 20 20 3 1

τ3 40 40 10 1

τ4 100 100 3 1
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Definition 4 A deadline assignment set R is a collection of one VD for each task
τi and one WAD, i.e., R = {〈τ1, d1〉, ..., 〈τn, dn〉, 〈Ω, dΩ 〉}, which represents the
conjunction (logic-AND, denoted by either the “{” or the “∧” symbol) of constraints
as follows ⎧

⎪⎨

⎪⎩

Ri ≤ di , ∀〈τi , di 〉 ∈ R
∑

j∈Ω

β j · R j ≤ dΩ, 〈Ω, dΩ 〉 ∈ R (32)

Example 4 Consider a deadline assignment set R = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 20〉,
〈τ4, 100〉, 〈Ω, 35〉}. It represents the conjuncted set of constraints

(R1 ≤ 10) ∧ (R2 ≤ 20) ∧ (R3 ≤ 20) ∧ (R4 ≤ 100)

∧(R1 + R2 + R3 + R4 ≤ 35)

Definition 5 R1 is said to dominate R2, denoted as R1 � R2, if and only if the
constraints represented by R1 are looser than or the same as those of R2. More
specifically, the VD and WAD in R1 are component wise no smaller than in R2. R1
is said to strictly dominate R2, denoted as R1 � R2, if R1 � R2 and at least one
component inR1 is larger than R2.

Example 5 Consider the following deadline assignment sets

R1 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 20〉, 〈τ4, 100〉, 〈Ω, 35〉}
R2 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 20〉, 〈τ4, 100〉, 〈Ω, 40〉}
R3 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 40〉, 〈τ4, 100〉, 〈Ω, 35〉}
R4 = {〈τ1, 10〉, 〈τ2, 16〉, 〈τ3, 20〉, 〈τ4, 100〉, 〈Ω, 170〉}

(33)

We have R2 � R1 and R3 � R1, since R1 denotes stricter requirements than both
R2 and R3. However, neither R4 nor R1 dominates each other, since R1 is more
relaxed on the VD of τ2, but is stricter on the WAD.

Definition 6 A system Γ is R-schedulable (or informally, R is schedulable) if there
exists a priority assignment P such that the task WCRTs satisfy the constraints repre-
sented by R.

Example 6 Consider two deadline assignment sets as follows

R1 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 20〉, 〈τ4, 100〉, 〈Ω, 35〉}
R2 = {〈τ1, 10〉, 〈τ2, 3〉, 〈τ3, 40〉, 〈τ4, 100〉, 〈Ω, 35〉} (34)

Γe isR1-schedulable since in theWCETmonotonic priority order τ1 > τ2 > τ4 > τ3,
the task WCRTs are R1 = 2, R2 = 5, R3 = 20, and R4 = 8, which satisfy the
constraints represented byR1. However, Γe is notR2-schedulable. This is because to
satisfy R2 ≤ 3, τ2 must have the highest priority. Also τ1 must have higher priority
than τ3 (due to C3 > D1). With these priority orders in place, the priority assignment
τ2 > τ1 > τ4 > τ3 minimizes the sum (= 36) of WCRTs, where the task WCRTs are
R1 = 5, R2 = 3, R3 = 20 and R4 = 8. However, they still violate the WAD in R2.
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Obviously the following holds for deadline assignment sets with dominance rela-
tionship.

Theorem 9 If Γ is R-schedulable, it is schedulable for any R′ � R. If Γ is not
R-schedulable, it is not schedulable for any R′ � R.

Proof This follows directly from the monotonicity of schedulability w.r.t. deadline
assignments. If the system isR-schedulable, then it is still schedulable with increased
task deadlines (i.e., with a dominatingR′ � R). Note that the schedulability analysis
(as summarized in Sect. 2) is sustainable with respect to the deadline (Baruah and
Burns 2006). 
�
Definition 7 A deadline assignment set U is a Maximal Unschedulable Deadline
Assignment (MUDA) if and only if

– Γ is not U-schedulable; and
– Γ isR-schedulable for any strictly dominating R � U .

By Theorem 9, to verify the second condition of MUDA, it suffices to test only those
Rs that increment (i.e., increase by one) any WAD or VD in U .

Example 7 R2 in Example 6 is not a MUDA for the following reasons. For U =
{〈τ1, 10〉, 〈τ2, 4〉, 〈τ3, 40〉, 〈τ4, 100〉, 〈Ω, 35〉}which dominatesR2, Γe is not schedu-
lable. However, U is a MUDA. It suffices to verify that Γe is schedulable for both of
the following deadline assignment sets

U1 = {〈τ1, 10〉, 〈τ2, 5〉, 〈τ3, 40〉, 〈τ4, 100〉, 〈Ω, 35〉}
U2 = {〈τ1, 10〉, 〈τ2, 4〉, 〈τ3, 40〉, 〈τ4, 100〉, 〈Ω, 36〉} (35)

(We note that 〈τ1, 10〉, 〈τ3, 40〉, or 〈τ4, 100〉 cannot be increased, since they already
equal the respective task deadlines.)

Algorithm 1 can efficiently check whether Γ isR-schedulable for any givenR. For
every VD element 〈τi , d〉 inR, set the deadline of τi to be d. Compute the minimum
weighted sum of WCRTs of tasks in Ω using Algorithm 1. If the minimized weighted
sum is smaller than dΩ , then Γ is R-schedulable. A MUDA can be computed from
an unschedulable deadline assignment setR using Algorithm 5. It uses binary search
to find the maximal value that each deadline component d in R can be increased to
while maintaining unschedulability. The algorithm requires O(n · log dmax) number
ofR-schedulability tests where dmax = max{d1, . . . , dn, dΩ }. Note that the algorithm
utilizes the fact that the schedulability analysis (as summarized in Sect. 2) is sustainable
with respect to the deadline (Baruah and Burns 2006), i.e., the system schedulability
only becomes better with larger deadlines.

Note that an unschedulable deadline assignment R may contain more than one
MUDAs. To compute multiple different MUDAs from the sameR, our solution is to
carefully perturb the input R to Algorithm 5 to avoid computing repetitive MUDAs.
The observation is that Algorithm 5 computes MUDA by maximally increasing the
deadlines in R. Thus if a MUDA U is computed from an unschedulable deadline
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Algorithm 5 Algorithm for computing MUDA
1: function MUDA(System Γ , deadline assignment set R)
2: for each 〈τi , d〉 or 〈Ω, d〉 ∈ R do
3: Use binary search to find out the largest value that d can be increased towhile keepingΓ unschedu-

lable
4: end for
5: returnR
6: end function

assignment R, it must be U � R. Contra-positively, if U � R, then U cannot be
computed from R by Algorithm 5. Specifically, let U1 be an MUDA computed by
Algorithm 5. To compute a different MUDA U2, it suffices to perturb the input R
such that U1 � R. A straightforward way is to find 〈τi , di 〉 ∈ U and 〈τi , d ′

i 〉 ∈ R that
satisfy d ′

i ≤ di < Di and then set d ′
i = di + 1. We give an example below.

Example 8 Consider the following deadline assignment set

R = {〈τ1, 2〉, 〈τ2, 3〉, 〈τ3, 10〉, 〈τ4, 3〉, 〈Ω, 18〉} (36)

which is obviously unschedulable as each task deadline is set to the WCET. We now
apply Algorithm 5 twice to compute two different MUDAs. Suppose the first MUDA
computed is the following.

U1 = {〈τ1, 4〉, 〈τ2, 4〉, 〈τ3, 40〉, 〈τ4, 100〉, 〈Ω, 170〉} (37)

To avoid computing the same U1 for the second MUDA, we select the virtual deadline
assignment 〈τ1, 4〉 ∈ U1 and set the corresponding one inR to be 〈τ1, 5〉. Specifically,
the input R for computing the second MUDA is perturbed to be

R′ = {〈τ1, 5〉, 〈τ2, 3〉, 〈τ3, 10〉, 〈τ4, 3〉, 〈Ω, 18〉} (38)

Since obviously U1 � R′, it is guaranteed that U1 will not be computed again.

This strategy can be generalized to the problem of computing a different MUDA
with respect to a set of existingMUDAsU = {U1, · · · ,Uk}. In this case, it is sufficient
to perturb the input R such that Ui � R,∀i = 1, · · · , k.

However the perturbation must be carefully performed such that it does not cause
the inputR to become schedulable. In this paper, we propose the following recursive
procedure Algorithm 6, which systematically traverse through all possible perturba-
tions and find the one that i) maintains unschedulability and ii) guarantees to avoid
computing repetitive MUDAs.

The algorithm takes as input the task system Γ , a deadline assignment R, a set of
collected MUDAs U, and a parameter k which controls the total number of MUDAs
to be computed. The algorithm first checks if the number of MUDAs collected in
U has reached k or the input deadline assignment R is schedulable, in both cases
the algorithm has no need to proceed and simply returns. Otherwise, the algorithm
starts computingMUDAs. As discussed, it is necessary to ensure that MUDAs already
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Algorithm 6 Algorithm for computing multiple MUDAs
1: function ComputeMUDAs(System Γ , deadline assignment set R, collected MUDAs U, k)
2: if |U| ≥ k or Γ is R-schedulable then
3: return
4: end if
5: if no more unvisited U to pick from U then
6: Unew = MUDA(Γ , R)
7: U = U ∪ {Unew}
8: end if
9: Pick next U from U

10: if U � R then
11: ComputeMUDAs(Γ , R, U)
12: else
13: for 〈τi , di 〉 ∈ U do
14: if di < Di then
15: set d ′

i = di + 1 where 〈τi , d ′
i 〉 ∈ R

16: ComputeMUDAs(Γ ,R, U)
17: restore the value of d ′

i
18: end if
19: end for
20: end if
21: end function

computed inUwill not be re-computed, or equivalently U � R,∀U ∈ U. This is done
by picking an unvisited U ∈ U and checking if U � R (Lines 9 and 10). If U � R,
the algorithm tries all possible perturbations (Lines 13–15) before proceeding to the
next recursion level. If not, the algorithm directly proceed to the next recursion level
(Line 11). In the next recursion level, the algorithm similarly picks the next unvisited
U ∈ U. If all U ∈ U has been processed, the algorithm proceeds to compute a new
MUDA Unew safely and adds it to U (Lines 5–8).

6 MUDA guided optimization

We now present the optimization framework based on the concept of MUDA for
solving the problem (10). We first observe that (10) can be equivalently formulated as
a problem of finding the set of deadline assignment variables d = [d1, . . . , dn, dΩ ],
such that (a) dΩ is minimized; (b) Γ is schedulable with the deadline assignment set
R = {〈τ1, d1〉, . . . 〈τn, dn〉, 〈Ω, dΩ 〉}; (c) G(X) ≤ 0 is satisfied assuming Ri = di .
Formally, we re-formulate the problem as follows

min dΩ

s.t. Ci ≤ di ≤ Di ,∀τi ∈ Γ

dΩ ≥
∑

i∈Ω

βi · Ci

Ri = di ,∀τi ∈ Γ

G(X) ≤ 0

Γ isR − schedulable

(39)
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Intuitively, any unschedulable deadline assignment set R (and in particular any
MUDA) denotes a combination of deadline assignments that cannot be simultaneously
satisfied by any feasible priority assignment. Hence, R = {〈τ1, d∗

1 〉, . . . , 〈τn, d∗
n 〉,

〈Ω, d∗
Ω 〉} denotes the disjunction (logic-OR, denoted with either the “‖” or the “∨”

symbol) of constraints that any feasible deadline assignment {〈τ1, d1〉, . . . , 〈τn, dn〉,
〈Ω, dΩ 〉} must satisfy ∥∥∥∥∥

di > d∗
i ∀〈τi , d∗

i 〉 ∈ R
dΩ > d∗

Ω 〈Ω, d∗
Ω 〉 ∈ R

(40)

In this sense, any unschedulable deadline assignment set R partially shapes the fea-
sibility region of the problem. We call (40) the induced schedulability constraints by
R.

The feasibility region of d = [d1, d2, . . . , dn, dΩ ] can be defined by the set of
all MUDAs of Γ . However computing all of them is obviously impractical as the
number of MUDAs is exponential to the number of tasks. We note that in many cases,
the objective is sensitive to only a small set of MUDAs. Thus, we devise a MUDA
guided optimization frameworkwhich judiciously and gradually addsMUDAs into the
problem until its optimal solution is found. The algorithm is illustrated in Figure 2. The
calculation of WCRT is never explicit in the ILP formulation. Instead, it is abstracted
into the form of MUDAs as an alternative representation of the feasibility region.

Step 1: Priority assignment evaluation order In this step, we find an evaluation
order in Line 9 of Algorithm 1, which we will later use as R-schedulability test in
MUDA computation (Step 5). For the case of average WCRT, the optimal evaluation
order is WCET monotonic, i.e., in non-increasing order of task WCET. For the case
of weighted average WCRT, we use the algorithm in Sect. 4. Specifically, we first
ignore extra design constraints and consider only schedulability. Then we apply the
initial order by scaled-WCET in Algorithm 1 to obtain a first solution P. We utilize
the sifting adjustment to improve P into P′, and then employ P′ as the evaluation order
in all subsequent MUDA calculations. If it fails to find any schedulable order, the
procedure terminates since the problem is infeasible.

Step 2: Initial ILP The initial ILP Π contains only the constraints G(X) ≤ 0, but
not that Γ isR-schedulable.

min dΩ

s.t. Ci ≤ di ≤ Di ,∀τi ∈ Γ

dΩ ≥
∑

i∈Ω

βi · Ci

Ri = di ,∀τi ∈ Γ

G(X) ≤ 0

(41)

Step 3: Solving Π . Solve the ILP problem Π . Let d∗
Ω denote the objective value. If

Π is infeasible, it implies that the original system Γ is unschedulable under the extra
design constraints G(X) ≤ 0, and the procedure terminates.
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Fig. 2 The MUDA guided iterative optimization framework
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Step 4: di relaxation Solve another ILP problemΠ ′ constructed fromΠ as follows.

max
∑

∀τi∈Γ

di

s.t. the constraints in Π are satisfied

dΩ = d∗
Ω

(42)

The main purpose of this step is to relax the deadline assignment of individual tasks
that are not involved in the constraints while maintaining the same objective value.

Step 5: MUDA computation Let d∗ = [d∗
1 , . . . , d∗

n , d∗
Ω ] be the solution from Π ′.

Construct a deadline assignment set R from d∗ as follows.

R = {〈τ1, d∗
1 〉, . . . , 〈τn, d∗

n 〉, 〈C, d∗
Ω 〉} (43)

If Γ is R-schedulable, then the returned solution is optimal (see the remark below).
Otherwise, compute a set of MUDAs from R, add the induced schedulability con-
straints as in (40) to Π , and go to Step 3.

Remark 1 In Step 5, given any unschedulable deadline assignment, it is generalized
to MUDA to rule out similar mistakes. This reduces the number of iterations, each of
which needs to solve costly ILP problems. Also, the framework keeps in Π a subset
of all constraints, i.e., it maintains an over-approximation of the feasibility region.
Hence, if the solution from solving Π (which is optimal for Π ) is indeed feasible,
then it must be optimal for the original problem as well.

Example 9 We now illustrate the procedure on the system Γe in Table 4. Besides task
schedulability, an additional constraint shall be satisfied R2+ R3 ≤ 20. Since all tasks
have the same weight, the evaluation order is WCET monotonic. The problem is then
reformulated as the following ILP Π .

min dΩ

s.t. Ci ≤ di ≤ Di ,∀i = 1, . . . , 4

dΩ ≥
4∑

i=1

βi · Ci = 18

Ri = di ,∀i = 1, . . . , 4

R2 + R3 ≤ 20

(44)

The algorithm then iterates between Step 3 and Step 5.
Iteration 1 Solving the ILP Π in (44), and the solution is

d∗ = [d∗
1 , d∗

2 , d∗
3 , d∗

4 , d∗
Ω ] = [2, 3, 10, 3, 18]

Now note that d1 and d4 are not involved in the objective function or any design
constraint, but they are assigned the lowest possible value. Also for d2 and d3, the
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solution gives d2 + d3 = 13 while the maximum allowed bound for their sum is 20.
Thus the deadline assignments can be further relaxed by solving the following problem
Π ′ as described in Step 4.

max d1 + d2 + d3 + d4
s.t. Ci ≤ di ≤ Di ,∀i = 1, . . . , 4

dΩ ≥
4∑

i=1

βi · Ci = 18

Ri = di ,∀i = 1, . . . , 4

R2 + R3 ≤ 20

dΩ = 18

(45)

Solving problem (45) returns following adjusted solution.

d∗ = [d∗
1 , d∗

2 , d∗
3 , d∗

4 , d∗
Ω ] = [10, 10, 10, 100, 18]

This new deadline assignment has the same d∗
Ω while satisfying all the constraints

in Π , but is more relaxed in deadline assignments of individual tasks (i.e., d1–d4).
Construct the corresponding deadline assignment set R1 as

R1 = {〈τ1, 10〉, 〈τ2, 10〉, 〈τ3, 10〉, 〈τ4, 100〉, 〈Ω, 18〉

SinceΓe is notR1-schedulable, the following twoMUDAsare computed.Theyboth
are still unschedulable, but they dominateR1 thus inducing more relaxed constraints
than R1.

U1,1 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 40〉, 〈τ4, 100〉, 〈Ω, 34〉}
U1,2 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 19〉, 〈τ4, 100〉, 〈Ω, 43〉}

The induced schedulability constraints of the above twoMUDAs are shown as follows,
which are added to Π .

{
(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 41) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 35)

(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 20) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 44)

Iteration 2 Solving the augmented ILP Π and Π ′ returns the following solution

d∗ = [d∗
1 , d∗

2 , d∗
3 , d∗

4 , d∗
Ω ] = [10, 10, 10, 100, 44]

Construct the corresponding deadline assignment set R2 as

R2 = {〈τ1, 10〉, 〈τ2, 10〉, 〈τ3, 10〉, 〈τ4, 100〉, 〈Ω, 44〉}
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Γe is not R2-schedulable. Thus we compute two MUDAs as below.

U2,1 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 13〉, 〈τ4, 100〉, 〈Ω, 170〉}
U2,2 = {〈τ1, 10〉, 〈τ2, 20〉, 〈τ3, 16〉, 〈τ4, 100〉, 〈Ω, 52〉}

The following induced constraints are updated to the ILP Π .

{
(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 14) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 171)

(d1 ≥ 11) ∨ (d2 ≥ 21) ∨ (d3 ≥ 17) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 53)

Iteration 3 Solving the ILP Π returns the following solution

d∗ = [d∗
1 , d∗

2 , d∗
3 , d∗

4 , d∗
Ω ] = [10, 3, 17, 100, 44]

Construct the corresponding deadline assignment set R3 as

R3 = {〈τ1, 10〉, 〈τ2, 3〉, 〈τ3, 17〉, 〈τ4, 100〉, 〈Ω, 44〉}

Γe is not R3-schedulable, and the MUDA below is computed

U3,1 = {〈τ1, 10〉, 〈τ2, 4〉, 〈τ3, 19〉, 〈τ4, 100〉, 〈Ω, 44〉}

The following induced constraints are added to the ILP Π .

(d1 ≥ 11) ∨ (d2 ≥ 5) ∨ (d3 ≥ 20) ∨ (d4 ≥ 101) ∨ (dΩ ≥ 45)

Iteration 4 Solving the updated ILP Π and Π ′ returns the following solution

d∗ = [d∗
1 , d∗

2 , d∗
3 , d∗

4 , d∗
Ω ] = [10, 3, 17, 100, 45]

Construct the corresponding deadline assignment set R4 as

R4 = {〈τ1, 10〉, 〈τ2, 3〉, 〈τ3, 17〉, 〈τ4, 100〉, 〈Ω, 45〉}

Γe is nowR4-schedulable. The returned priority assignment τ2 > τ1 > τ3 > τ4 is the
optimal solution, and the minimized sum of WCRTs is 45.

7 Applicability to other objectives

The idea behind the proposed optimization framework is to efficiently abstract the
feasibility region of schedulability using MUDA implied constraints. In this sense,
the framework is not limited to optimizing the weighted average deadline dΩ . In this
section, we extend our discussion to its performance on other forms of optimization
objectives. Specifically, we first study the objective known as maximizing minimum
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laxity, for which the proposed technique can also handle efficiently. We then discuss
another type of objective function expressed as a linear summation of virtual deadlines,
i.e.,

∑
∀τi

βi di , which is substantially difficult for the proposed technique.
A commonly used metric in real-time systems design optimization is the minimum

laxity of all tasks. The laxity of a task is defined as the difference between its WCRT
and deadline, namely, Li = Di − Ri . The amount of laxity of a task reflects its
robustness to unknown random interference in a complicated environment. Thus it is
desirable to maximize the minimum laxity of all tasks in the system. The problem can
be formally expressed as

max min∀τi
Di − Ri

s.t. Tasks are schedulable

G(X) ≤ 0

(46)

For systems subject to end-to-end latency deadline constraints (i.e., the sum of
WCRTs of tasks on a communication chain must not exceed a certain bound), it is
also possible to define laxity w.r.t an end-to-end path: the laxity of an end-to-end path
is the difference between the end-to-end latency and the end-to-end latency deadline.
For example, consider a distributed automotive system using synchronous activation
(Zheng et al. 2007). The end-to-end latency of a path p is defined as

Ep =
∑

∀τi∈p

(Ri + Ti ) (47)

The end-to-end laxity of a path is therefore

L p = Dp − Ep (48)

Similarly, it is desirable to maximize the minimum end-to-end laxity of all paths
to increase robustness. The corresponding optimization problem can be formally
expressed as

max min∀p L p

s.t. Tasks are schedulable

G(X) ≤ 0

(49)

The proposedMUDA-guided optimization can be readily adapted to solve the above
optimization problems, i.e., by replacing the original objective min dΩ in (39) with the
corresponding objective in the target problem. In our experimental evaluation, we will
show that the proposed framework can also achieve significant speedup comparing to
a straightforward ILP formulation (see Sect. 8.4).

We now consider an objective in the form of

min
∑

∀τi

βi di (50)
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The objective is in fact just an alternative expression of minimizing weighted summa-
tion of WCRTs. It can be similarly handled by the proposed framework by replacing
the objective function (39) with (50). However, in our empirical study, we observe
that the proposed technique performs rather poorly for the above form of objective.
In the following we provide a detailed analysis on why this subtle difference changes
the average performance of our algorithm.

When the objective function is written asmin
∑

∀τi
βi di , the ILP solver will attempt

to assign a small value to each individual virtual deadline di instead of the single
weighted average deadline dΩ . Although this achieves a similar goal of minimizing
the weighted average WCRT, the resulting deadline assignment returned by the ILP
solver is much less likely to be schedulable, which makes it harder for the framework
to terminate early.

Consider Example 9 in Sect. 6. Let the objective function in (44) be min d1 + d2 +
d3 + d4 instead of min dΩ . At the end of iteration 1, the ILP solver will return the
following deadline assignment

R′ = {〈τ1, 2〉, 〈τ2, 3〉, 〈τ3, 10〉, 〈τ4, 3〉, 〈Ω, 170〉

as opposed to the original one

R = {〈τ1, 10〉, 〈τ2, 10〉, 〈τ3, 10〉, 〈τ4, 100〉, 〈Ω, 18〉

Though both being unschedulable,R′ is much worse in the sense that the deadline
assignments are much harder to meet. In other words, ILP solver will always tend to
return deadline assignments that are likely to fail the schedulability test in Step 5 of
Fig. 2, which increases the number of iterations. From the perspective of mathematical
programming, consider the projected feasibility region of problemΠ in each iteration
onto variables d1, . . . , dn . If the projected region is an over-approximation of the
exact one [i.e., that of problem (39)], it will allow some unschedulable but small-
valued deadline assignments. In this case, the ILP solver will always tempt to return
them as the solution, since they correspond to smaller objective values. As a result, in
order for the algorithm to terminate with a schedulable deadline assignment, it needs
to compute a sufficient amount ofMUDAs for modeling the exact projected feasibility
region, which can be prohibitively large when n is big (i.e, for large task systems).

The problem is much less severe for objective min dΩ . Intuitively, the ILP solver
will only assign small value to dΩ , but assign other deadlines d1, . . . , dn with values
as relaxed as possible. This makes the resulting deadline assignment more likely to
succeed in passing the schedulability test of Step 5 in Fig. 2. Similarly, from the
perspective of forming the feasibility region, the algorithm only needs to compute
MUDAs that are sufficient to model the exact projected feasibility region onto variable
dΩ . This, in practice, usually requires a very small number of MUDAs. At the same
time, however, it should also be noted that the fundamental reason that we are able
to convert the objective min

∑
∀τi

βi di to min dΩ is the availability of Algorithm 1.
Otherwise, it is not possible to compute MUDAs involving dΩ , which are necessary
to model the projected feasibility region.
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We now use a similar way of reasoning to explain why laxity based optimization
objectives can also be handled efficiently. Although the minimum laxity seems to be
related to all variables di ’s, which will require an accurate modeling of the projected
feasibility region on d1, . . . , dn , yet in most cases in practice, it is usually only a small
number of critical tasks that are affecting the minimum laxity (i.e, tasks with very
tight deadlines). Most of the other tasks can be given relatively more relaxed virtual
deadlines without affecting the minimum laxity of the system. The way the proposed
framework works naturally discovers these critical tasks. For example, after a few
iterations, the algorithmmaydiscover that it is always some common set of taskswhose
deadlines cannot bemet (the algorithm alwaysmaintains an over-approximation of the
feasibility region and thus will always give optimistic estimation of minimum laxity
first, which mainly affects the schedulability of critical tasks). Thus, the algorithm
will be guided to compute MUDAs only relevant to them. In this sense, the algorithm
naturally focuses onmodeling the projected feasibility regions onto di s of critical tasks
only.

In summary, our observation is that the proposed technique is most effective when
the number of variables that the optimization objective is sensitive to is small.

8 Experimental results

In this section,wepresent the results of experimental study.Wefirst evaluate the quality
of the heuristics on minimizing weighted average WCRT with only schedulability
constraints (Sect. 4). Two industrial case studies are then used for evaluating the
MUDA guided optimization technique in minimizing weighted average WCRT with
extra design constraints. The first is an experimental vehicle system with advanced
active safety features, and the second is a simplified version of fuel injection system.

8.1 Quality of heuristics for min weighted averageWCRT

In this experiment, we focus on measuring the average suboptimality by the proposed
heuristics in Sect. 4. We note the one in Sect. 3 is proven optimal. The following three
methods are compared.

– Scaled-WCET Monotonic:Algorithm 1, with non-increasing scaled-WCET
as the evaluation order in Line 9.

– Scaled-WCET Monotonic + Sifting: Scaled-WCET Monotonic
with both Tune-down and Tune-up adjustments applied afterwards.

– ILP: Formulating the problem as an integer linear program and solving it with
CPLEX.

ILP guarantees to return global optimal solutions upon termination, which can then
be used to calculate the suboptimality of the othermethods, defined as sub−opt

opt ×100%,
where sub is the solution from Scaled-WCET Monotonic or Scaled-WCET
Monotonic + Sifting, and opt is the optimal solution from ILP. We use ran-
domly generated periodic systemswith varying number of tasks and systemutilization.
Each task is assigned a period following the log-uniform distribution in the range [10,
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Fig. 3 Suboptimality for minimizing weighted average WCRT versus utilization

1000], and a utilization using theUUnifast-Discard algorithm (Davis and Burns 2009).
The weight for each task is a random number between 1 and 10,000. This is the typ-
ical range for coefficients of control cost (Mancuso et al. 2014). We consider both
preemptive scheduling (denoted as P in the figures) and non-preemptive scheduling
(denoted as NP in the figures). Each point in the figures is the average result of 1000
randomly generated task sets.

We first fix the number of tasks to 20 and vary the total utilization. The results are
plotted in Fig. 3, where the suboptimality of the heuristics generally increases with
utilization. This is because task WCRTs are more sensitive to priority assignment
in systems with higher utilization. However, the suboptimality is kept to be very
small. For example, for both preemptive scheduling and non-preemptive scheduling,
Scaled-WCET Monotonic is about 1%worse thanILP at 90%utilization. Sifting
adjustment further improves the solution quality, as the average suboptimality is below
0.1% for both P and NP.

We then fix the system total utilization at 90% and vary the number of tasks. As
in Fig. 4, the Scaled-WCET Monotonic heuristic and its sifting adjustment are
again able to provide close-to-optimal solutions.

We now redraw the above results using Tukey type box plots to illustrate the dis-
tribution of the suboptimaltiy. Figures 5 and 6 show the results for Scaled-WCET
Monotonic. Eachboxplot displays the distribution of suboptimality based on thefive
number summary: first quartile (Q1), median (Q2), third quartile (Q3), andmaximum
andminimum values that are still within the range [Q1−1.5×(Q3−Q1), Q3+1.5×
(Q3− Q1)]. However, since Scaled-WCET Monotonic + Sifting achieves
optimality for more than 75% of the test cases in both Figs. 3 and 4 (i.e., Q1 and Q3
are both 0), its box plots appear empty and we omit them. Instead, we only give its
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Fig. 5 Box plots for Scaled-WCET Monotonic (P)

maximum sub-optimality. For Fig. 3, the maximum sub-optimality is 7% for preemp-
tive, and 10% non-preemptive scheduling. For Fig. 4, the maximum sub-optimality
is 25% for preemptive, and 14% non-preemptive scheduling. Note that since most of
the cases Scaled-WCET Monotonic + Sifting gives the optimal solution,
its average suboptimality is always lower than 0.2%.
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Fig. 6 Box plots for Scaled-WCET Monotonic (NP)

We also compare the proposed techniques with a default priority assignment as
follows. For preemptive scheduling, we use deadline monotonic priority assignment,
which is optimal for finding a schedulable priority assignment. For non-preemptive
scheduling, we use Audsley’s algorithm with the following revision: at each priority
level, instead of randomly picking any schedulable task, it always selects the task with
the longest deadline among all schedulable ones. Intuitively, this revised Audsley’s
algorithm follows the deadline monotonic policy as much as the system schedulability
allows.

The default priority assignment has substantial suboptimality. For the systems in
Fig. 3, the default priority assignment is 57–67% and 15–46% worse than the opti-
mal solution for preemptive scheduling and non-preemptive scheduling respectively.
For the systems in Fig. 4, the suboptimality is 30–63% and 7–40% for preemptive
scheduling and non-preemptive scheduling respectively. This highlights the necessity
to develop a problem-specific approach, as the default solution may be of low quality.

8.2 Experimental vehicle systemwith active safety features

The first industrial case study is an experimental vehicle system with advanced active
safety features. It consists of 29 Electronic Control Units (ECUs) connected through 4
CAN buses, 92 tasks, and 192 CANmessages (Davare et al. 2007). Tasks are preemp-
tive and CAN messages are scheduled non-preemptively. End-to-end delay deadlines
are imposed on 12 pairs of source-sink tasks, which contain a total of 222 unique
paths. The allocation of tasks and messages onto corresponding execution platforms
are given. The problem is to find a priority assignment that minimizes the average
WCRT of all tasks and messages, subject to the end-to-end deadline constraints and
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Table 5 Result on min average
WCRT for the experimental
vehicle (“N/A” denotes no
solution found)

Method Objective Time Status

MUDA-Guided 305,828 234.9 s Terminate

ILP N/A ≥ 24 h Timeout

Table 6 Result on min weighted
average WCRT for the
experimental vehicle

Method Objective Time Status

MUDA-Guided 7,995,881 3.36 s Terminate

ILP 7,995,881 51,616.65 s Terminate

the schedulability of individual tasks/messages. As discussed in (Davare et al. 2007),
the end-to-end delay of a path is the sum of the WCRTs and periods for all tasks and
messages in the path.

We compare the proposed MUDA-based technique (denoted as MUDA-Guided)
with a straightforward ILP formulation (denoted as ILP). The results are summarized
in Table 5. The proposed algorithm MUDA-Guided finds the optimal solution within
just 235 seconds while the ILP solver fails to find any feasible solution within 24 h.

We now modify the problem to get a weighted version. Each task is assigned a
weight of one plus the number of critical paths the task is involved. This metric has
the benefit of being more aware of the critical tasks. The results are summarized in
Table 6. Both the proposed approach (MUDA-Guided) and ILP return the same
optimal solution, however, MUDA-Guided is 10, 000× faster.

8.3 Fuel injection system

The second industrial case study is the task system implementing a Simulink model of
fuel injection system (Natale et al. 2010). It contains 90 tasks with preemptive schedul-
ing, and 106 communication links. The communication link carries data between two
tasks with harmonic periods, as required by Simulink. The total system utilization is
94.1%.

To protect the shared resource and preserve the same behavior as in the Simulink
model, a wait-free buffer is introduced whenever the executions of the writer task and
the reader task may overlap. Hence, the total memory cost incurred by the wait-free
buffers is positively dependent on the task WCRTs: the wait-free buffer is avoided if
there is no preemption between the writer and reader [(i.e., by ensuring that theWCRT
of the lower rate task in the communication is no larger than the period of the higher
rate task (Natale et al. 2010)]. The scenario is demonstrated in Fig. 7, where τ j and τi
are the lower and higher rate tasks respectively. It can be seen that as long as τ j can
finish before the next activation of τi , no preemption occurs. This remains to be true
even when τ j is assigned the higher priority. The condition can be re-interpreted as
whether τ j can be schedulable when assigned a constrained deadline d j ≤ Ti .

We first discuss how to formulate the memory requirement as additional constraint
G(X) ≤ 0 that is compatible with the proposed framework. For each pair of commu-
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Fig. 7 The scenarios in which preemption does and does not occur

nicating task 〈τi , τ j 〉 (where τ j is the lower rate task), we introduce a binary variable
bi, j defined as follows

bi, j =
{
0 no preemption between τi and τ j
1 otherwise

(51)

bi, j is subject to the following constraint

d j ≤ Ti + bi, j × Dj (52)

Specifically, when bi, j = 0, the above constraint enforces that d j ≤ Ti , which is
equivalent to the condition for ensuring the absence of preemption. When bi, j = 0,
the constraint becomes d j ≤ Ti + Di , which is trivial as di ≤ Di shall always hold.

The memory requirement constraint can then be written as

∑

∀〈τi ,τ j 〉
mi, j · bi, j ≤ M (53)

where mi, j is the memory requirement of deploying a wait-free buffer for communi-
cation pairs τi and τ j and M is the total amount of memory.

G(X) ≤ 0 is then the aggregation of constraints (52) for all communication pairs
〈τi , τ j 〉 and (53).

We consider the problem of minimizing the average and weighted average WCRT
of all tasks subject to the constraint of available memory for wait-free buffers. The
weight of each task is randomly generated between 1 and 10,000. We compare the
proposed approach MUDA-Guidedwith an ILP formulation (denoted asILP). To test
the efficiency of the techniques under different tightness of design constraints, we give
four settings onmemory constraints. The result are summarized in Tables 7 and 8.ILP
is unable to find any feasible solution in 24 h except for two most relaxed memory
constraint settings. On the other hand, MUDA-Guided solves all problem settings
within a few minutes, either finding a much better solution than ILP or detecting
infeasibility.
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Table 7 Result on min average WCRT for the fuel injection system (“N/A” denotes no solution found)

Memory MUDA-Guided ILP

Objective Time Status Objective Time Status

8900 Infeasible 138.21 s Terminate N/A ≥ 24 h Timeout

8950 14,090,418 183.68 s Terminate N/A ≥ 24 h Timeout

9000 13,392,124 5.11 s Terminate 16,862,700 ≥ 24 h Timeout

9100 13,384,171 1.20 s Terminate 13,487,800 ≥ 24 h Timeout

Table 8 Result on min weighted average WCRT for the Fuel injection system (“N/A” denotes no solution
found)

Memory MUDA-Guided ILP

Objective Time Status Objective Time Status

8900 Infeasible 483.87 s Terminate N/A ≥ 24 h Timeout

8950 4.67e+10 352.34 s Terminate N/A ≥ 24 h Timeout

9000 4.13e+10 22.62 s Terminate N/A ≥ 24 h Timeout

9100 4.12e+10 0.95 s Terminate N/A ≥ 24 h Timeout

Table 9 Result on maximizing
laxity among tasks for the
experimental vehicle

Method Objective Time Status

MUDA-Guided 7791 2.84 s Terminate

ILP 7754 ≥ 24 h Timeout

Table 10 Result on maximizing
laxity among end-to-end paths
for the experimental vehicle

Method Objective Time Status

MUDA-Guided 9589 21.64 s Terminate

ILP 63 ≥ 24 h Timeout

8.4 Optimization of laxity based objectives

We now apply our algorithms on the problems with other objectives, i.e., (i) maxi-
mizing the minimum laxity among all tasks, and (ii) maximizing the minimum laxity
among all the end-to-end paths. We use the vehicle system case study and compare
our technique with direct formulations in ILP.

The results are summarized in Tables 9 and 10 respectively. For both versions of
the optimization problems, the proposed technique is capable of finding the optimal
solutions in less than half a minute, while ILP timeouts and only finds suboptimal
solutions within the time limit of 24 h. This demonstrates that our approach is able to
efficiently handle several optimization objectives as discussed in Sect. 7.
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9 Related work

There has been a large body of work for priority assignment in real-time systems
scheduled with fixed priority. The seminal work from Liu and Layland (1973) shows
that for periodic task system where task deadline equals period, rate-monotonic (RM)
priority assignment is optimal for schedulability in the sense that there is no system
that can be scheduled by some priority assignment but not by RM. When tasks have
constrained deadline (i.e., no larger than period), deadline monotonic (DM) policy is
shown to be optimal for schedulability (Audsley et al. 1991). For tasks with arbitrary
deadline, Audsley’s algorithm (Audsley 2001) guarantees to give a feasible priority
assignment if one exists. It only needs to explore a quadratic O(n2) number of priority
assignments (among the total of n!) where n is the number of tasks. Audsley’s algo-
rithm is optimal in terms of schedulability for a variety of task models and scheduling
policies, as summarized in the authoritative survey by Davis et al. (2016). The three
necessary and sufficient conditions for its optimality are presented in Davis and Burns
(2009). Besides schedulability, Audsley’s algorithm can be revised to optimize several
other objectives, including the number of priority levels (Audsley 2001), lexicograph-
ical distance (the perturbation needed to make the system schedulable from an initial
order) (Chu and Burns 2008; Davis et al. 2016), and robustness (ability to tolerate
additional interferences) (Davis and Burns 2007).

For complex problems on priority assignment optimization where Audsley’s algo-
rithmdo not apply, the current approaches include (a)meta heuristics such as simulated
annealing (e.g., Tindell et al. 1992; Bate and Emberson 2006) and genetic algorithm
(e.g., Hamann et al. 2004; Mehiaoui et al. 2013); (b) problem specific heuristics (e.g.,
Saksena andWang 2000; Zeng et al. 2014;Wang et al. 2016); and (c) directly applying
existing optimization frameworks such as branch-and-bound (BnB) (e.g., Wang and
Saksena 1999) and ILP (e.g., Natale et al. 2010; Zeng and Di Natale 2012). These
approaches either do not have any guarantee on solution quality, or suffer from scal-
ability issues and may have difficulty to handle large industrial designs. Differently,
a framework based on the concept of unschedulability core, i.e., the irreducible set
of priority orders that cause the system unschedulable, is proposed for systems that
Audsley’s algorithm is optimal for schedulability (Zhao and Zeng 2017a, 2018b).
Furthermore, it is generalized to systems where the schedulability of a task not only
depends on the set of higher/lower priority tasks, but also on the response times of
other tasks (hence Audsley’s algorithm is not directly applicable) (Zhao and Zeng
2018a). However, the approach in Zhao and Zeng (2017a, 2018a, b) does not han-
dle problems studied here, i.e., those involving the task WCRTs in the objective or
additional constraints.

With respect to design optimization problems which are sensitive to the actual task
response times, a branch-and-bound algorithm is developed to optimize both priority
and period assignments (Mancuso et al. 2014). In the paper, a linear lower bound
is adopted as an approximation to response time. The problem of optimizing period
assignment for distributed systems is formulated in geometric programming frame-
work, where the task WCRT is approximated with a linear function on task rates
(Davare et al. 2007). Lukasiewycz et al. (2016) study the problem of ID (i.e., priority)
obfuscation for CAN messages. The optimization procedure contains a first stage of
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minimizing the average task WCRT by formulating the problem as a Quadratically
Constrained Integer Quadratic Program. In Shin and Sunwoo (2007), a genetic algo-
rithm is used for the problem of priority and period assignment that minimize the
sum of end-to-end delays in networked control systems. Zhu et al. (2013) consider
the problem of finding task allocation and priority assignment that maximize the min-
imum end-to-end laxity in distributed systems. The approach is to divide the problem
into two stages, each of which is then formulated as an ILP program. Also, problem
specific heuristics are developed under various settings (such as Zeng et al. 2010), but
none of them provide any guarantee on solution quality. Our approach differs from all
the above in that it designs a customized, exact optimization procedure specialized for
the minimization of (weighted) average WCRT. It has been extended to simultaneous
optimization of period and priority assignment (Zhao et al. 2018).

10 Conclusion

In this paper, we propose an optimization framework for task systemswith constrained
deadlines and preemptive/non-preemptive scheduling. We propose a new concept,
Maximal Unschedulable Deadline Assignment, that defines a set of virtual deadline
assignments to tasks such that they are not all schedulable. We develop an iterative
framework that maintains a relaxed version of the original problem and leverages this
concept to quickly rule out unschedulable solutions.We discuss the applicability of the
framework with respect to several optimization objectives, including the minimization
of weighted averageWCRT andmaximization of minimum laxity. The proposed tech-
nique significantly reduces the runtime while providing close-to-optimal solutions, as
indicated in the case studies. As future work, we plan to investigate other types of
real-time systems with different task models and scheduling policies.
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