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Abstract—In real-time embedded systems certain tasks are
activated according to a rotation source, such as angular tasks
in engine control unit triggered whenever the engine crankshaft
reaches a specific angular position. To reduce the workload at
high speeds, these tasks also adopt different implementations at
different rotation speed intervals. However, the current studies
limit to the case that the switching speeds at which task imple-
mentations should change are configured at design time. In this
paper, we propose to study the task model where switching speeds
are dynamically adjusted. We develop schedulability analysis
techniques for such systems, including a new digraph-based task
model to safely approximate the workload from software tasks
triggered at predefined rotation angles. Experiments on synthetic
task systems demonstrate that the proposed approach provides
substantial benefits on system schedulability.

I. INTRODUCTION

Modern real-time embedded systems may contain tasks
that respond to external events generated by a rotation source.
Hence, their activation period and deadline are dependent on
the angular speed. Also, to avoid CPU overload on the hosting
microprocessor at high speeds, they are designed to be self-
adaptive in that they switch to simplified implementations at
higher speeds [2]. Accordingly, these tasks are often referred to
as Adaptive Variable-Rate (AVR) tasks in the literature [1]. An
example is the engine control system in internal combustion
vehicles, which determines the timing and amount of fuel
injected in the engine. Certain software tasks (called angular
tasks) in the engine control are triggered at predefined rotation
angles of the engine crankshaft. They adopt different control
strategies at different engine rotation speed intervals [2]. The
most sophisticated control strategy (e.g., with multiple fuel
injections during one engine revolution) has the best perfor-
mance (in terms of, e.g., emission and fuel efficiency), but also
comes with the highest amount of computational demand.

The existing studies on systems with AVR tasks all assume
that the switching speeds (at which AVR tasks switch imple-
mentations) is fixed offfine. This means that the optimization
of switching speeds will have to be based on design-time
information, which is clearly suboptimal. Hence, we propose
the concept of AVR tasks with dynamic switching speeds, where
the switching speeds are dynamically adjusted according to
runtime information. We term the corresponding AVR tasks
as dynamic AVR tasks, or dAVR tasks. In contrast, the AVR
tasks in systems with statically configured switching speeds
are called static AVR tasks or sAVR tasks. Below we illustrate
the motivation with automotive engine control systems.

The upcoming era of Connected and Automated Vehicles
(CAVs) is envisioned to transform the transportation systems.
In this new era, vehicles can access valuable information about
the driving environment at runtime, using various sensing (e.g.,
camera, radar, lidar) and communication (such as vehicle-to-
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vehicle and vehicle-to-infrastructure) capabilities. This pro-
vides rich opportunities to substantially improve vehicle op-
erations using such real-time information [3], including path
and speed planning [4], [5], vehicle dynamics control [6], and
as a potential application of our work, engine control [7].

Specifically, the engine control parameters including the
switching speeds are configured at design time, typically using
standard driving cycles (i.e., a series of data points representing
the vehicle speed versus time). This may result in noticeably
suboptimal engine performance as the driving cycles used at
design time can be substantially different from the actual one.
With the CAV techniques making the driving profile readily
predictable [7], it becomes possible to dynamically adjust the
switching speeds according to the upcoming driving cycle.

In this paper, we study the schedulability analysis of
systems with dAVR tasks. We first review the related work.

Related Work. Systems with SAVR tasks are studied in a
number of papers in the real-time systems community, see
a recent survey [1]. The model from Buttle [2] summarized
above is adopted by most studies, with a couple of exceptions.
Kim et al. [8] propose the rhythmic task model and associated
analysis that have a few restrictions, e.g., the inter-release time
is shortened by a fixed ratio during any acceleration. Pollex
et al. [9], [10] assume angular task release and worst case
execution time (WCET) are independent, which may lead to
high pessimism in the analysis. Feld and Slomka [11] consider
the rate and offset based dependencies among the engine
control tasks, but the task WCET is assumed to be a continuous
function of the engine speed (instead of a number of discrete
modes as in [2]).

Below we summarize the related work that pertains to the
model by Buttle [2]. Much of the research for the schedu-
lability analysis focuses on dealing with the major difficulty
that both the WCETSs and inter-release times of jobs from an
angular task strongly depend on the engine rotation speed. Our
review below focus on such techniques. We note that there are
several variations on the assumptions, task models, and naming
of angular tasks (AVR, tasks with Variable Rate-dependent
Behavior, etc.), and refer the readers to [1] for details.

For systems with fixed priority scheduling, Davis et al. [12]
present a number of sufficient analysis techniques on the worst
case interference from angular tasks, such as quantization
of the continuous engine speed space. Biondi et al. [13]
propose the concept of dominant speed that can represent a
range of speeds in terms of the exact worst case interference.
This avoids quantization without loss of accuracy. An exact
response time analysis is then derived [14], [15], and a set
of techniques is proposed to optimize the switching speeds
at design time [16], [17]. Feld and Slomka [18] improve the
runtime of schedulability analysis [13]-[15], which is exact
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if the maximum acceleration and deceleration have the same
absolute value. Huang and Chen [19] assign each mode of an
angular task with a unique priority, and propose a utilization-
based schedulability test.

With respect to EDF scheduled systems, a number of suffi-
cient utilization-based schedulability tests are presented [20]—
[22]. Differently, Biondi et al. [23], [24] propose an exact
analysis based on the concept of dominant speed as in [13].
Mohageqi et al. [25] propose to partition the speed space and
transform angular tasks to digraph real-time (DRT) tasks [26].

Our Contributions. Overall, all the previous studies assume
the sAVR task model where the switching speeds are fixed
offline. Differently, we propose the dAVR task model to allow
dynamic adjustment to the switching speeds. We focus on
the schedulability analysis of systems with dAVR tasks, under
fixed priority scheduling on a uni-processor. However, such a
new model introduces significant challenges to schedulability
analysis. Specifically, unlike the prior work [13]-[15], [18],
[23]-[25], it is no longer safe to characterize the interference
from a dAVR task with a minimum inter-release time between
its consecutive jobs, assuming the angular speeds at the job
release times are all known. We summarize the contributions
and paper organization as follows.

o In Section II, we present the system model, including the
model of dAVR tasks.

e In Section III, we develop schedulability analysis tech-
niques for a periodic task interfered by dAVR tasks. Specif-
ically, we propose a new digraph-based task model (called
dynamic DRT or dDRT task model), and transform a dAVR
task to a dDRT task to approximate its interference. We prove
that the task transformation is safe, and there exists no exact
transformation. We present algorithms to find a finite number
of representative job sequences in the transformed dDRT task,
to avoid enumerating (an infinite number of) all job sequences.

e In Section IV, we describe the analysis of dAVR tasks.

e In Section V, we use synthetic systems to show the
benefits of the proposed model and analysis techniques in
terms of system schedulability.

II. SYSTEM MODEL

Our system model extends the studies on SAVR tasks
(e.g., [13], [14], [25]). The list of notations is summarized
in the table below.

Notation Definition

[ Rotation angle

W Angular speed

min Minimum angular speed

W Maximum angular speed

a Angular acceleration

o™ Minimum angular acceleration

Qe Maximum angular acceleration

[T [Periodic task ¢ |

[{Ci, T, D) | WCET, Period, Deadline ) of 7; |

T (Static or dynamic) AVR task 4

A; Angular deadline of 7

D;(w) Relative deadline of a job released by 7. at speed w

v Angular phase of all AVR tasks

€] Angular period of all AVR tasks

Qw, o, 0) Speed after rotating 6 angles with initial speed w and
constant acceleration o

Wh ~ We41 wy1 1s reachable from wy, after one angular period ©

T (g, Wkt1) Minimum time to rotate © angles, with initial speed wy,
and final speed w41

Notation Definition

T (w) Simplified notation for 7" (w, w)

T (W, Wht1) Maximum time to rotate © angles, with initial speed wy

and final speed wy 41

T (w) Simplified notation for 77 (w, w)

SM; = |[Set of execution modes of an sAVR task 7,

{(SCi", swi")}

SC;(w) WCET of a job of an sAVR task 7] released at speed w

T={"v, " ,yr} Set of reconfiguration times

T Number of reconfiguration times

Mk ={(Ci%,wi®)} |Execution mode sets of a dAVR task 7 in time interval
] [Vk, Vht1)

M; Number of execution modes of a dAVR task 7, in

interval [vg, Ya+1)

Qi = {Mik, 1)} Series of execution mode sets of a dynamic AVR task 7,
Ci(t,w) WCET of a job released by a dynamic AVR task 7, at
time ¢ and speed w
hp(i) Set of higher-priority periodic tasks than task 4
hp™ (1) Set of higher-priority AVR tasks than task 7
A Representative dAVR task for a set of dAVR tasks
(o, w) dAVR job released at time o with angular speed w
= [dAVR job sequence
(o1, 01), -, (s wn)]
A I(t) Interference function of A over an interval with length ¢
R(7;, A) Response time of 7; interfered by a set of periodic tasks
and a dAVR job sequence A
R(7i,74) Response time of 7; interfered by a set of periodic tasks

and a representative dAVR task 73

B = {Bo,B1-.-Bs} = |Speed partition

{(Bo, B1] .- (BB-1,BB]}
B

Number of speed intervals in the partition B

TE] = (V,E) dDRT task, where V is the set of vertices, and E is the
set of edges
v;.C(t) WCET function of a vertex v; in 7J

™" (v, v5) Minimum inter-release time for edge (v;, v;)

P (v, vy) Maximum inter-release time for edge (vq, v;)

(m,v) dDRT job released at time 7 with type v/

D = |dDRT job sequence

[(71,01), -, (ns vn)]

D.I(t) Interference function of D over an interval with length ¢

R(7;, D) Response time of 7; interfered by a set of periodic tasks
and a dDRT job sequence D
R(7i,7hH) Response time of T; interfered by a set of periodic tasks

and a dDRT task 77,

C={(cy el 1),

L Cp s Vn)]

dDRT job sequence set

), Legalized dDRT job sequence set

= |Critical dDRT job sequence

o (me vn)]
R(r],0,w) Response time of a job released from 7, at time o and
speed w
R(7],w) Response time of a job released from 7, at speed w

The rotation source, e.g., the engine, is described by its cur-
rent rotation angle #, angular speed w, and angular acceleration
a. Due to its physical attributes, the angular speed and accel-
eration are restricted in certain ranges, i.e., w € [wmin | max]
and « € [a™™ o™2*]. All these parameters are positive except
the minimum acceleration o™, and |o™®| = —a™® is the
maximum deceleration.

We consider a real-time system I' containing a set of tasks
scheduled with fixed priority on a uni-processor. A task in I’
is either periodic or an AVR task. For convenience, a periodic
task is denoted as 7; while an AVR task is denoted as 7;°.

A periodic task 7; is characterized by a tuple
(T;,Cy, Dy, P;), where T; is the period, C; is the WCET,
D,; < T; is the constrained deadline, and P; is the priority.
The execution of the periodic tasks, and consequently their
parameters are all independent from the rotation source.

An AVR task 7/ is triggered at predefined crankshaft angles
0; = ¥; + kO;,Vk € N, where N is the set of non-negative
integers, W; is the angular phase, and O; is the angular period.
Its angular deadline is A; = A; - ©; where A\; < 1 (hence 7;*
also has a constrained deadline). Similar to [14], we assume



the AVR tasks share a common rotation source, and they have
the same angular period and phase. Thus, we drop the task
index from the angular period and phase, and denote them as
© and V. The AVR task parameters (WCET, inter-release time,
deadline) all depend on the dynamics of the rotation source.

Dynamics of Rotation Source. We assume instantaneous
angular speed at the job release time is known at runtime [13],
[14], [25]. The speed after rotating # angles given an initial
speed w and a constant acceleration « is calculated as [13]

Qw, a,0) = Vw? + 2ab ()

Consider two angular speeds wy, and w1, such that wyq
is reachable from wy, after one angular period ©. We denote
this relationship as wy ~» wg41. wi and wg1 shall satisfy

Qwg, a™™,0) < wrp1 < Qwy, @™, 0) 2)

The minimum inter-release time between them, denoted as
T (W, wit1), is given as [25]

T (W, wip1) = ) + 5 + tY, where
U2 2
pu— wY —wy = 1 © - (W) —wp  (w )Z*erl)
1 — gmax > wmax 2qmax —2qmin )
U* . P
5 = < WU = min(w™, W),
aqmax,2 —qming2 _9nmingmaxQ
k+1 k
wh = \/ * Max _ qmin
. . (3)
Specifically, w" denotes the maximum speed such that the

rotation angle equals the angular period © by accelerating
from wyg to w* with maximum acceleration ™% and then
decelerating from w" to wg4q1 with maximum deceleration
|a™in|. However, the actual maximum speed wY is bounded
by w™aX, T™i0 (4w v q) is achieved by accelerating from wy,
to wY with a™®* (which takes time t%), staying at a constant
speed wY for a duration of t%, and then decelerating from wV
to w1 with [a™"] (using time t%). Note t% = 0 if w¥ = w*.

Similarly, the maximum inter-release time 7™ (wy,, wkt1)
is composed of a maximum deceleration, a possible duration
of constant speed, and a maximum acceleration

T (wy, wrg1) = 4 +th + té, where

2 L2
tl _ wp—wt tl _ 1 ) w;zg*(wL)z Wi —(w™)
— _qmin - wmin( T T _gqmin 2 ymax )
tl _ wk+17wL {,{JL _ maX(wnun7wl)7 if 2 0
3 omax 7 W™ otherwise

min max@

wh= \/ aEregmm, T = Oémaxwi
“)

For convenience, we also use the following simplified notations

Tmin(wk) 4 Tmin(whwk)’ Tmax(wk) 4 Trnax(wk7wk) (5)

— am‘“wkH + 2«

We denote an AVR job as (o,w) where o is its release time
and w is the angular speed at time ¢. For any two consecutive
AVR jobs (o;,w;) and (0741, wi4+1), they must satisfy

wi ~ wipr AT wy,wir) < o1 — oy < TP (wy, wiga)
6

The deadline (o, w) in the time domain, denoted as D;(w),
is the minimum tlme to rotate A; = \;O angles. That is,

Di(w) = t¢ +t¢, where
D_ 27 2
t = L2t = (MO — QQman )s %)

wP = min{w™ Q(w, ™ \;0)}
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‘ Time Interval (ms) Execution Modes

m-th mode 1 2 3
[v1,7v2) = [0, 100) M w;q (tpm) 2500 4500 6500
C '"1 (ps) 600 400 200
m-th mode 1 2 3 4
[v2,v3) = [100, 200) M 2 w]"y (rpm) 1500 2500 4500 6500
Cmy (us) 600 400 300 200
m-th mode 1 2
[v3,7a) = [200, +00) || M3 [ w5 @pm) 3500 6500
Cy (us) 600 300

TABLE I: An example dAVR task 7;".

We note a few useful properties as follows. Properties 1
and 3 are proved in [15] by noting the corresponding deriva-
tives (e.g., 7™ (wg,wr+1) With respect to wy) are always
negative. Property 2 is proved similarly in the appendix of
our technical report [33].

Property 1: T™"(wy,,wyy1) is strictly decreasing with
both wy, and wg41 [15].

Property 2: T™(wy,wky1) is strictly decreasing with
both wy and wg1.

Property 3: D;(w) is strictly decreasing with w [15].

SAVR Task Model. The static AVR (or SAVR) task model,
as proposed in the literature, assumes a fixed configuration
including the switching speeds. In this model, an SAVR task 7,
implements a set SM; of SM; execution modes. Each mode
m implements a control strategy characterized by a WCET
SC7™, and is executed when the angular speed at the task
release time is in the range (sw)" ™', sw!™]. Here ¢w) = w™®,
qwai = W™, and Vm < SM;, it is SC™ > SCmJrl and
swi < gwm'H Hence, the set of execution modes of an sSAVR
task 7, can be described as

SM; ={(SC*,sw™),m=1,...,SM;} 8

The WCET of a job of 7, only depends on the instantaneous
angular speed w at its release time. Hence, we may define a
WCET function for the SAVR task 7" as

SCi(w) = SC" if w e (sw 9)
dAVR Task Model. We now introduce the concept of AVR
tasks with dynamic execution modes, where the switching
speeds are adjusted at runtime. We assume that the reconfigura-
tion happens at times 7 = {71, - ,yr}. The reconfiguration
may be triggered by events independent from those activating
the periodic or AVR tasks. The associated AVR task 7;*, termed
as a dynamic AVR or dAVR task, has a series of execution
mode sets defined as

Qi {Migsv), k=1,...,T},
where M, = {(CI,wh),m=1,..., M}

The WCET of the job released at time ¢ with instantaneous
speed w is determined as

Ci(t7w) =

We note that an sAVR task can be regarded as a special case
of the dAVR task model, by assuming y; = 0 and 3 = 4o00.

7 swi]

(10)

ml

ik 1€ [k, Y1) Aw € (w) wiy] A1)

Example 1: Table I shows an illustrative example for the
execution mode configurations of a dAVR task 7. Within
[0,100)ms it uses an execution mode set M; 1 containing three
modes, while at time 100ms it switches to an execution mode
set M, o with four modes.



III. SCHEDULABILITY ANALYSIS OF PERIODIC TASKS

Let hp(i) (hp*()) denote the set of periodic (AAVR) tasks
with higher priority than the periodic task 7; under analysis.
With the assumption that the dAVR tasks share the same
angular period and phase, we can construct a representative
dynamic AVR task 7} to model the accumulative workload
of tasks from hp*(¢). For each time interval [y, Yr+1) within
which the execution modes for any task in hp*(i) remain the
same, the set of execution modes and their WCETs for 7 can
be constructed in the same way as those of sAVR tasks, i.e.,
with the procedure in [14]. In the following, we focus on the
analysis of 7; interfered by a set of periodic tasks hp(i) and a
(representative) dAVR task 7.

We first establish an exact schedulability analysis method,
based on an exhaustive enumeration of all job sequences of
74. We define two useful concepts for a dAVR task, namely
a dAVR job sequence and its interference function.

Definition 1 (dAVR Job Sequence): A job sequence A =
[(01,w1), ..., (0n,wy,)] released by a dAVR task 7%, written
as A € 7}, is composed of a legal sequence of jobs, such
that any two consecutive jobs (o7, w;) and (oy41,wit1), VI =
1,---,n — 1 satisfy Eq. (6).

Definition 2 (Interference Function of dAVR Job Sequence):
YVt > 0, the interference function A.I(t) of a dAVR job
sequence A = [(01,w1), ..., (0p,wy,)] in 7} is its cumulative
execution request within the interval [0, 07 + t]. That is,

n

AI(t) =Ca(or,w1) + Y (o1 +t,01) - Calor,wr)  (12)

1=2 .
where function (-, -) is defined as §(a,b) = { (1) gtk?e%vibse

We now discuss how to calculate the response time of
7;. Since the periodic tasks and the dynamic AVR tasks are
triggered by independent sources, the worst case response time
(WCRT) of 7; occurs when it is released simultaneously with
all its interfering tasks. The WCRT R(7;,.A) of 7; interfered
by a set of periodic tasks hp(i) and a dAVR job sequence
A = [(o1,w1),...,(0n,wy)] of T4 is achieved when 7; is
released together with A (i.e., at o), and all periodic tasks in
hp(i) are also released at o

R(7;, A) = min

t>0

t1Cit+ Y [Tiw Cj+ AI(t) <t
ri€hp(i) ' J
13)
Note in Eq. (13), under certain conditions (i.e., if the utilization
is > 100%) no such ¢ exists, and R(7;,.A) is defined as infinity.
The WCRT R(7;, 7}) of 7; is the maximum over all possible
dAVR job sequences of 7}

R(r,mh) = max R(7;, A) (14)
A

However, the analysis in Eq. (14) is obviously impractical
as the number of dAVR job sequences is infinite (due to the
continuous spaces for both job release time and angular speed).
In the following we develop a safe, but sufficient-only analysis.

Before detailing our techniques, we first highlight that the
existing methods developed for sAVR tasks are no longer safe
for dAVR tasks. Specifically, consider two job sequences A =
[(01,w1),..., (On,wy)] and A" = [(o1,w1),..., (0}, wn)]
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Rotation Speed

T T
o 10, I I I 1oy

A= (”\-W\>»{”J»w'l)

A (o1, w), (o), ws)
1, W1 2, W2

Interference

C.\(”'/_:-w'z) +Calor,wr) +
Ca(o2,ws) +Ca(o1,w1) +
Ca(or,wr)

R

0 t

Fig. 1: llustration of two job sequences A and A’ released by
a dAVR task, and the corresponding interference functions.

from an AVR task, such that oy < 0},Vl =2,--- ,n. In other
words, A and A’ release jobs at the same sequence of angular
speeds, but jobs in A are always released no later than A’. The
analysis presented in [14], [15], [25] will only consider .A. This
is safe for sAVR tasks, since the WCET of an SAVR job is
independent from its release time (Eq. (9)) and consequently

v, AI(t) < AI(t) (15)

This dominance relationship can be generalized to two job
sequences released at different angular speeds but still sharing
the same sequence of job WCETs. Combining Property 1, it
enables the concept of dominant speed, a speed that dominates
a range of smaller speeds whenever they always produce sAVR
job sequences with the same sequence of job WCETs [13].
Specifically, the dominant speed allows shorter inter-release
times than the dominated ones while matching their sequence
of job WCETs.

However, as in Eq. (11) the WCET of a dAVR job also
depends on its actual release time. Hence, Eq. (15) no longer
holds for dAVR tasks, and consequently the analysis developed
for sAVR task systems [13], [25] is not directly applicable. We
demonstrate with an illustrative example below.

Example 2: Figure 1 illustrates two dAVR job sequences
A = [(61,w1), (02,w2)] and A’ = [(01,w1), (0%, w2)] where
oy < ob. Let 0y = oy + T™"(wy,wy) and of = oy +
T™2% (w1, wq). We assume C4 (02, ws2) < Ca(0oh,ws), which is
possible under the dynamic AVR task model. The interference
functions of A (denoted as solid blue line) and A’ (dashed
red line) are also illustrated in the figure, which obviously
violate Eq. (15). Hence, the maximum job inter-release times
are needed to correctly bound the release times of dAVR jobs
and facilitate the calculation of the interference function.

We now present our new analysis techniques. Specifically,
to avoid enumerating the speed in the (continuous) speed
space, we partition the speed space into a finite number of
speed intervals, and transform a dAVR task to a new type of
digraph-based real-time task model (called dDRT task) where
each vertex represents each of the partitioned speed intervals,
and the edges are labeled with both minimum and maximum
inter-release times (Section III-A). We prove the speed space
partition (hence any transformation to dDRT task) is safe but
sufficient only (Section III-B). Finally, to avoid exhaustive



(40, 130] 25, 50] (18,28 (14, 20] (10, 15]

0 B265 2035 o 162 (1217

U1 () U3 V4 Us
[32,65) [20, 35] [16,22] [12,17]
Time Interval (ms) WCET (us)
U1 Vg V3 V4 Us
~1,72) = [0,100) 600 600 400 400 200
~2,7v3) = [100,200) | 600 400 300 300 200
3,74) = [200, +00) | 600 600 600 300 300
Fig. 2: The transformed dDRT task for the
dAVR task in Table I with the speed partition
B = {500, 1500,2500,3500,4500,6500} (top); and the

WCET function of each vertex (bottom).

enumeration of the job release times, we study the dominance
relationship between dDRT job sequences (Section III-C).

We note that the dominant speeds [13] implicitly partition
the speed space: they find a set of dominant speeds, each
of which represents a speed interval in terms of the worst
case interference. In this paper, we leverage the more explicit
approach of speed partition and task transformation in [25],
for its intuitive graphical representation.

A. dAVR to dDRT Transformation

The digraph real-time (DRT) task model [26], [27] uses
a directed graph to model a real-time task, where the set of
vertices represents the types of jobs, and the edges represent
possible flows of control. As a suitable model for sAVR tasks,
each vertex v; represents a speed interval that is completely
contained in the speed interval of an execution mode, hence is
characterized by a constant WCET. Each edge is labeled with a
parameter p(v;,v;) that denotes the minimum separation time
between the releases of v; and v;. By Eq. (15), this is sufficient.

However, as explained above, it is unsafe to assume jobs
are released with minimum inter-release times for dAVR tasks.
Hence, the dDRT model defines the maximum inter-release
time between vertices in addition to the minimum inter-release
time. Also, the WCET of a dAVR task is a function of time to
model the fact that the WCET of a dAVR task also depends
on the release time. This is formalized in the definition below.

Definition 3 (Dynamic DRT): A dynamic digraph real-
time task (dDRT) 7} is characterized by a directed graph
(V,E) where the set of vertices V = {wvy,vo,...} represents
the types of jobs of 77,. Each vertex v; € V (or type of job) is
characterized by a WCET function v;.C(t) where ¢ denote the
release time of the job of v;. Edges represent possible flows
of control, i.e., the release order of the jobs of 77;. An edge
(vi,v;) € Eis labeled with a range [p™™" (v;, v;), p™** (vs, v;)],
where p™" (v;,v;) (resp. p™**(v;,v;)) denotes the minimum
(resp. maximum) time between the releases of v; and v;.

By the definition, the dDRT task model is a generalization
of the DRT task model. We give an example below.

Example 3: Figure 2 illustrates an example dDRT task
with five vertices. The minimum and maximum inter-release
times are labeled along the edges. For example, the inter-
release time from vy to vs must be within [12,17]ms. The
WCET function of each vertex is shown in the table.
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We now define a speed partition and the corresponding task
transformation where (a) each speed interval is mapped to a
distinct vertex in the dDRT task; (b) the WCET of a vertex is
the same for any speed in the corresponding speed interval.

Definition 4 (Valid Speed Partition): For a dAVR task 7},
a valid speed partition B defines a set of speed intervals
{(Bo, B, (Bs-1, B8]} (Vi < B, Bi—1 < B;) that satisfy

e they partition the complete speed range (w™in, w™ax]
(hence By = w™?, Bp = wW™X);

o for any two speeds w and w’ belonging to the same speed
interval, the WCET functions are the same, i.e., Vi < B, Yw €
(ﬂifla 51'}7(4)/ € (Bifh Bz]a vt > 07 CA(t7w) = CA(ta w/)'

For convenience, we also use the ordered set of boundary
speeds to denote B, i.e., B = {fo, 1, -, Bp}. By the second
condition in Definition 4, the smallest valid speed partition for
7 consists of all switching speeds and the two speed limits

B={wiVk=1--T, Vm=1---Mpp}U{w™" ™}
' (16)

Given a valid speed partition B = {fo, 51, , BB}, the
dDRT task 77, = (V,E) can be constructed as follows.

e V is composed of a set of B vertices {v1,- - ,vp},
where the speed interval (5;_1,0;] is mapped to vertex wv;.
Each vertex v; is labeled with the WCET function C4(¢,w),
ie., v;.C(t) = Ca(t,w) where w is any speed in (3;_1, 5;].

e For each two vertices v; and v; (which may be the same),
if 5]',1 < Q(ﬁi,amax,@) and ﬂj > Q(ﬁi,l,amin,@), then
there must exist 3} € (i1, 3i] and B} € (B;—1,B;] such that
Bi ~» B;. In this case, we add an edge (v;,v;) to the set E,
and label it with [p™® (v;, v;), p™**(v;, v;)] where

pmin(’Ui,-, ’Uj) = minvﬂiwﬂ]’. {Tmin( 1/‘7 ﬁ;)}v
pmax(vi’ ’Uj) — maXVﬁng‘;{Tmax(ﬁg, J/)}

As in [25], p™(v;,v;) and p™®*(v;,v;) can be efficiently
calculated by considering only three pairs of 3] and B;-.

Example 4: Considering the dAVR task in Table I and
the speed partition B = {500, 1500, 2500, 3500, 4500, 6500}
(rpm, revolutions per minute). 5 is the smallest valid speed
partition, and Figure 2 gives the transformed dDRT task,
where vertices vy ---v5 represent the intervals (500, 1500],
(1500, 2500], (2500, 3500], (3500, 4500], (4500, 6500] respec-
tively. The inter-release times are simplified for illustration
purposes and may not match the actual rotational dynamics.

a7

B. Safety and Pessimism of the Transformation

Before studying the properties of the task transformation,
we first establish how the schedulability analysis can be
performed with the transformed dDRT task.

Definition 5 (dDRT Job Sequence): A job of a dDRT task
7} is denoted as (7, ;) where m; and v; are the job release
time and vertex (type of job) respectively. A dDRT job
sequence D = [(m1, 1), ..., (T, V)] of 7} is composed of a
sequence of n jobs such that VI < n

(i, vi41) € EAP™™ (v, vi41) < mgr — m < p™™ (v, vig1)

For convenience, we also denote D € 7p, and regard 7/, as
the set of all its job sequences.

Definition 6 (Interference Function of dDRT Job Sequence):
For a dDRT job sequence D = [(m1,v1),. .., (Tn, V)] of



71, the cumulative execution request within the time window
[r1, 71 + t] is defined as its interference function D.I(t), i.e.,

n

Vt >0, DI(t)=w.Clm)+» d(m+t,m)v.Clm) (18)
=2

With these two definitions, similar to Eq. (13) and (14),
the WCRT of a periodic task 7; interfered by a dDRT task 77,
and a set of higher priority periodic tasks hp(i) is

R(ri,7h) = max R(i, D), where
D

R(7;,D) = min t]C;+ Z

7 €hp(i)

[é}q+pﬂwgt

19)

We now study the task transformation in terms of the
following two desired properties.

Definition 7 (Safe Transformation): The transformation is
safe if for any dAVR task system the schedulability based on
the transformed dDRT task entails that of the original system.

Definition 8 (Exact Transformation): The transformation
is exact if the schedulability of any dAVR task system and
that of its transformed dDRT task system entail each other.

Theorem 1: The task transformation with any valid speed
partition is safe.

Proof. Consider any dAVR task 7 and its transformed dDRT
task 77, with any valid speed partition. For any dAVR job
sequence A = [(o1,w1),...,(0n,wy)] in T}, we construct a
dDRT job sequence D = [(m1,1), ..., (Tn, V)] in 7}, where
VI < n, m = oy and w; is in the speed interval (5;—1, ;] of
v;. D satisfies Definition 5 since VI < n,w; ~» w41, and

< T (W wig) < Mg — T = 0141 — 03
< T (wy, wigr) < PP (v, Vig1)

pmin (Vh Vl+1)

Also, v.C(m;) = Ca(oy,w;) since w; € (B;—1, 3] This implies
that V¢ > 0, A.I(t) = D.I(t) and consequently R(7;,.A)
R(7;, D). As A is an arbitrary dAVR job sequence of 7}, we
must have R(7;,73) < R(7;, 7). O

Theorem 1 demonstrates that the analysis with the trans-
formed dDRT task provides an upper bound on the WCRT
of 7; interfered by the dAVR task. However, the proposed
transformation is not exact, shown in the following theorem.

Theorem 2: The task transformation with any valid speed
partition is not exact for any rotation source with w™* >
t 25 —qmaxming
W' =1/13" O{nynaxi_o;mm
Before proving the theorem, we first introduce a lemma
on the minimum and maximum inter-release times of any two
consecutive jobs released with the same speed.

t

Lemma 3: For any w > w 2.

always holds that 7™ (w) < T™maX(w) < 270 (w).
Proof. By the definitions of 7™ (w) and 7™*(w), obviously
Tmln(w) < Tnlax(w).

Now we prove 7™ (w) < 2T™i"(w). For convenience, let
a = oM w? — ™2 h = —aMP M@, Note that o™ <

w
0, hence a > 0,b > 0. Also, since w > /23 . =a2xa” 2O

qmax 7arnin ]

— qmaxgmin@
qmax 7arnin ’

it
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a—2b>a—22p > 0. Thus, in Eq. 4), z = a — 2b > 0,
w! >0, and w’ = max(w!, w™in).

Case 1: We first consider the case when w" < w™ax
in Eq. (3) and wh > wmin jp Eq. (4). Thus, wY = w* and
4 = 01in Eq. (3), wl = w' and t5 = 0 in Eq. (4). In this case,
T™18 () and T™*(w) can be rewritten as

Tmin(w)

1 1
qmax amin

amax ;2 __aming,2__9nmingmaxQ
) Qmax _ pmin -

— o) (Va+2b—Va)

)

_ 1 1
= Qmax _gmin \ gmax

Tmax(w)
_ (anllax . ﬁ) (w _ \/amaxwz,Zx::f_zizﬁmmamaxe)
Hence,
Tmax(w) < 2Tmin(w)
o 2at 2t va—2b>3va
< 4(a+2b) + (a —2b) +4+/(a+ 2b)(a — 2b) > 9a
< 4y/(a+2b)(a —2b) > 4a — 6b
< 16a% — 64b% > 16a> + 36b% — 48ab
& a>8h o w>, /B carenno

Case 2: If w* > w™ in Eq. (3), by the definition
of T™"(w) [25], it must be no smaller than the one as if
there was no limit on the maximum angular speed (denoted
as T™M"(w)). Similarly, if 0 < w' < w™" in Eq. (4),
T™*(w) must be no larger than the one as if there was no
limit on the minimum speed (denoted as 7™**(w)). By the
proof of Case 1, T™*(w) < 27™™"(w). Hence, we have
Tmax(y) < T™aX(w) < 27™i0(w) < 27™i0(w). O

We now prove Theorem 2. Our intuition is that an inter-
release time of an edge (v;, v;) in dDRT may not be achievable
by all angular speed pairs associated with v; and v;. Conse-
quently, for some dDRT job sequence, there may not exist a
valid dAVR job sequence corresponding to it.

Proof of Theorem 2. Let B = {f, -+ ,B5-1,w™**} denote
any valid speed partition. Since w™®* > w’, by Lemma 3 and
Property 2, there must exist a sufficiently small € > 0 such that
max _ ¢ .e (Bthwmax} and Tmax(wmax) <.Ttnax(wmax _
€) < 2T™™ (w™ax), For simplicity, let py = T™" (w™*), py =
Tmax(ymax — ¢), Hence p1 < p2 < 2p1.

We now construct an example task system to show the
task transformation is pessimistic. Consider a task system
containing a dAVR task 7} and a periodic task 7; with
priority lower than 7}. The parameters of 7; are set as
Cs = 2p1 +p2 — 5k, T; = 2p1 +pa + 3k, D; = 2p1 +p2 + 2k,
where 0 < Kk < p; — %pg. The WCET function of 7} is

2K,

R,

if t €[0,p1] U [p1 + p2,2p1 + p2

Vw, Calt,w) = { otherw[ise].) JOlprtpen 2t
Let 77, denote the transformed dDRT task from 7} with
speed partition B. Figure 3 illustrates 77, where vp is the
vertex corresponding to the speed interval (8p_1,w™*], and
v, represents the speed interval (8x—1,0:] (k =0,...,B —
1). Thus, the WCET function of vg can be calculated
by vp.C(t) = Ca(t,w™®*). Moreover, p™™(vp,vg)



[p1,p™**(vB,vB)]
7T no0
vB UB—1 - v1

\/

Fig. 3: The transformed dDRT from 77 with speed partition 5.
It only shows the label over the edge (vp,vp) as is needed by
the proof of Theorem 2, and omits those for all other edges.

Tmin (wmax) = pm and pmax(,UB7 UB) > Tmax (wmax _
€) = po. This dDRT task permits a job sequence D =
[(07 UB)v (pla UB)> (pl + p27UB)7 (2]71 + D2, UB)]’ The total
workload from 7; and D satisfies
C;+D.I0) =2p1+p2—3k
> 2p1 +p2 — 3(p1 — 3p2)
= %Pz —P1>p1
Ci+DI(p1) =2p1+p2—kK

> 2p1 +p2 — (p1 — 3p2)

=P1+%p2 > Pp1+p2
Ci+D.I(p1 +p2) =2p1+p2+r>2p1 +po
Ci+D.I(2p1+p2) =2p1+p2+3k

Hence, the response time of 7; interfered by D must be
R(7;,D) > 2p1 + p2 + 3k. This means R(7;,7}5) > 2p1 +
po + 3k > D;, and 7; is deemed to be unschedulable.

However, the accumulative interference generated by 7}
within any time window of length D; must be less than 8«
(hence at most 7x). Thus, the WCRT of 7; must be no more
than 2p; + ps + 2k = D;, and 7; is actually schedulable. We
prove this by contradiction.

By Property 1, p; = T™"(w™a) is the minimum inter-
release time between any two jobs of 7}. Since D;
2p1 +p2 + 25 < 2p1 + p2 + 2p1 — p2 = 4p;, within
any time window of length D;, 7} can release at most four
jobs. If the total interference of these four jobs is 8k, each
of them must have a WCET of 2k and consequently be
released in [0,p1] U [p1 + p2,2p1 + po]. Hence, there are
two jobs released in [0,p1] and two in [p1 + po,2p1 + pal.
This requires all of them be released with speed w™?*, as
p1 = T™"(w™?*) is only achievable between two jobs both re-
leased with speed w™®*. The only such dAVR job sequence is
A =[(0,w™), (pr1,w™™), (pr+p2, w™™), (2p1+pa, w™*)].
However, in A the second and third jobs are separated by po,
while both released with speed w™2*. This is impossible as
Py = Tmax(wmax _ 6) > Tmax(wmax) (Property 2) O

Remark 1: We remark that the condition w™®* > w! =
25 . —ana™ %O in Theorem 2 is satisfied by typical

12 = Tqmax _qmin
engine dynamics. According to [14], the maximum ac-
celeration/deceleration are typically selected to be able to
accelerate/decelerate between the minimum and maximum
speeds in about 35 revolutions. By Eq. (1), w™?*
V(Wwmin)2 + 70amax@ > /70am3x0. Meanwhile, w'

25 —omaxgming \/%amax@. Hence, w™®* > 5.79 w?.

T2~ gmax_qmin

Although Theorem 2 proves that it is typically impossible
to find an exact task transformation (and an exact speed
partition), we note that the analysis on the transformed dDRT
task system has a higher accuracy (but a longer runtime) with
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a finer speed partition. In our experiments (Section V) we use
the speed partition in [13], [25] that is exact for SAVR tasks.
Specifically, for the dAVR task 7}, we generate an SAVR task
whose switching speeds are set as the union of those over
all reconfigurations in 73, i.e., Jw, (Vk=1---T, Vm =
1--- My ). We then apply the partition method in [13], [25].

C. Finding Critical dDRT Job Sequences

We now discuss how to efficiently analyze the system
schedulability based on the transformed dDRT task system. We
note that Eq. (19) still requires to enumerate all the (infinitely
many) job sequences of the dDRT task, which is obviously
impractical. In the following, we develop techniques to find a
finite set of representative dDRT job sequences without losing
any accuracy. The idea is that, if two dDRT job sequences
share the same sequence of job WCETs, the one always with
a shorter inter-release time will dominate the other in terms
of their interference functions. Hence, we may partition the
space of dDRT job release times such that the WCET of each
vertex is constant in each release time interval. We note that
it is sufficient to have each release time interval within two
consecutive reconfigurations. This idea is captured with the
following definitions and algorithms.

Definition 9 (Common-WCET dDRT Job Sequence Set):
For a dDRT task 7}, = (V,E), a common-WCET dDRT job
sequence set, denoted as C = [(c] ,cf,v1),..., (c;, ¢t vm)ls

is a sequence of release time ranges [c; , ;] and vertices v
that satisfies

1) Vlglgn,cfgcf;

2) the WCET of v, € V is the same within [c; , ¢/], i.e.,
th,tz S [C;,C;r}, VZ.C(tl) = V[.C(tQ);

3) V1 <1 < n, (v,v4) € E, 1 = ¢+

p

min(

+ + ¢
vi,vi1) and ¢ < ¢ 4 pt (v, vig).

In Definition 9, the second condition is satisfied if [¢;, ¢;']
isin [yk, Yk+1), i-€., it is contained in the interval between two
consecutive reconfigurations. The third condition means that
(v, vi41) is an edge of 7}, and [¢;, ¢/, ;] shall be reachable

from [c; , ¢ ].
Definition 10 (Critical Job Sequence of C):

D = [(m1,v1),...,(Tn,vn)] is called a job sequence of
C=l(cy,cf,v1),...,(cy, et vn)], denoted as D € C, if
4) D has the same sequence of vertices as C;
5) V1<i<n, me€lg, c?‘], i.e., each job is released
in the corresponding range in C;
D¢ = [(n§,11),..., (75, vn)] € C is called a critical job
sequence of C if
6) D¢ e 75, ie., itis a job sequence of 77, according
to Definition 5.
7 VYVDeCnrpVli<Ii<n, af —7{<m—m1 (20)
Definition 11 (Job Sequence Subset): For two job se-

quence sets C and C’, C’ is called a subset of C, denoted
asC'CC,ifvDeC,itisDeC.

With these definitions, we first claim that the length n of
the job sequence set C is always well bounded for checking
the schedulability of a periodic task 7; with deadline D;.
Specifically, it is sufficient to consider all job sequence sets



Algorithm 1 Constructing a collection of common-WCET
dDRT job sequence sets for a given path (v1,...,1,).

1: procedure CONSTRUCTJSSETS(v1,...,Vy)
2: fork=1to7T —1do
3 [, e ] [, Yrt1)s
4: €k,l — {[(6;701+:V1)]};
5: for [ =2 to n do
6: Cpp 0;
7: forall C € ¢ ;_1 do
8: (clil,cltl,yul,l) < last tuple of C;
9: 7_Lewt — Cl_ 1 +pmin(l/l 1 Vl)
10: :ext — Cl + pmax(l/l 1y Vl)
11: for]_ltoT—ldo
12: if Cnext < Vi < Vi+1 < C:L_ext then
13: ey« [%ﬁjﬂ);
14: if v, <y < Chopr < vi+1 then
15: [Cl 76?_} A [Cnextvcnext]
16: if ryJ S C;ezt < 7]+1 S Cnezt then
17: [01_707—} — [67_7,6.77t77j+1);
18: if c ;ert < FVJ < Cnezt < Yj+1 then
19: [Cl €y } &~ h]a ;;rt}?
20: Q:k,l — Q:k,l U {[(C, (Cl ,(,?_, Z/l)]};
21: return €, U---UC€p_q 5
C=[(ci,cf 1), (c; et vy)] satisfying ¢;; — c¢f < D;.

For those C with ¢, — ¢/ > D;, there is no job sequence
D € C such that the inter-release time between the last and first
jobs is no larger than D,;, and 7; will not suffer interferences
from all jobs in D if it is schedulable.

We now explain how to enumerate all necessary job
sequence sets. By Definition 9, this involves (i) generating all
valid paths (i.e., valid sequences of types of jobs) in the dDRT
with limited length n, and (ii) finding all suitable release time
ranges. The former follows that of a generic digraph such as
the DRT tasks [28]. Given a path (vq,--- , vy, ), Algorithm 1
generates all the related common-WCET job sequence sets.

Specifically, for the interval [y, Vg+1), Yk =1,--- , T —1
between two consecutive reconfigurations, we use €, ; to store
the collection of job sequence sets until vertex v;. The first
tuple (i ,cf,v1) sets the release time range as the interval
(Line 3), i.e., [c, cf] = [k, vk+1) |. Then the possible ranges
of the following jobs are sequentially set as the maximum
possible range reachable from the previous one (Lines 8-
10). However, such a range may not satisfy Condition 2 in
Definition 9. Hence, it is split by the reconfiguration times to
enforce that v; has the same WCET in each interval (Lines 11-
20). At Line 20, the job sequence set [C, (¢;, ¢}, ;)] satisfies
Definition 9, which is added to the collection & ;. Finally,
Algorithm 1 returns a collection of the common-WCET dDRT
job sequence sets as the union of €y ,,Vk. Let |€ ;| denote
the size of € ;. For any k, [, |€; ;| < (T —k)-|€x,—1|- Hence,
Algorithm 1 has O(T™) time complexity.

We illustrate Algorithm 1 with an example below.

Example 5: Given the dDRT task 75 in Figure 2, we
consider one path (v, ve,v2) with an initial tuple (0,100, vy).

'Note that the range [c;,clﬂ is closed, but [y, Yk41) is right-open. In
practice, this can be resolved by setting ¢” = yx41 — € where € is a small
enough positive number.
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i
200 time

(a) Partitioning release time ranges by the reconfiguration times
Y1 = 0,’)/2 = 100,’73 = 200.

Cll, )| (g.cg,v) | (c,c4,v8)

1 (32,100, v5) (57,100, v9)

2 (100, 150, v9)
—— (0,100,v1)

3 (100, 165, vg) |_1125.200.05)

i 109, 02) 17900, 215, v, )

(b) Resultant four common-WCET dDRT job sequence sets.

Fig. 4: An illustrative example of common-WCET dDRT job
sequence sets in the dDRT task 77, of Figure 2, for a given
path (vy,vs,v2) and an initial range ¢; = 0, ¢ = 100.

Algorithm 2 Constructing a critical dDRT job sequence D¢
for a £gkwen common-WCET dDRT job sequence set C =
[((’176171/1) 7(057 ’;t’ljn)]
: progedure CONSTRUCTCRITICALJ OBSEQUENCE(C)
(EZ<_ [(61 ’ i ) .,(E;,Eiﬂ/n)];
Gy cp, G b
for | =n to 2 do // Backward Pass

¢y max(& —p" (v—1, m), ¢y )

Gy < min(e — p™ M (vioy, ;) ¢l y):
s (s vn)l;

D¢+ [(7§,v1),. ..

m{ < C¢];

for!=1ton—1do// Forward Pass
Ty max(mf + p" (v, 1), G )

return D¢;

1:
2
3
4
5
6:
7
8
9
0

10:
11:

The release time constraint may branch to the next possible
vertex vy where the edge (vq1,vq) is labeled as [32,65].
Hence, the release time of vy is in the range [32,165].
However, it should be partitioned into two intervals [32,100)
and [100,165) since 7o = 100 is a reconfiguration time 2.
As edge (vq,v9) is labeled with [25,50], the last vertex has
two possible release time ranges [57, 150) and [125, 215] since
there are two intervals for its preceding vertex. Likewise, these
release time intervals will be further partitioned according
the reconfiguration times (72 = 100 and 3 = 200). Hence,
[57,150) is split into [57,100) and [100,150), and [125,215]
is divided into [125,200) and [200,215]. As a result, we
obtain four common-WCET dDRT job sequence sets, shown
in Figure 4(b).

In Definition 10, Eq. (20) implies that the interference
function of D¢ is always no smaller than that of D, i.e.,
Yt > 0,Dc.I(t) > D.I(t). This is because D¢ and D share the
same job WCETs, but jobs in D¢ are always released tighter
than D. Hence, for the purpose of schedulability analysis we
can use a critical job sequence D¢ of C to represent C, and

2In Examples 5 and 6, for simplicity we treat closed and half-open intervals
the same.



C Line 3 Lines 4-6 Line 8 Lines 9-10

é; | ar e [ &aF [Te | & i | w5 [ w§
1 57 100 32 75 0 43 43 75 100
2 100 150 50 100 0 68 68 100 125
3 125 200 100 165 35 100 100 132 157
4 200 | 215 150 165 85 100 100 150 | 200

TABLE II: An illustrative example on Algorithm 2: construc-
tion of critical job sequences for the four sets in Figure 4(b).

ignore all other sequences in C. Finding such a D¢ for a given
C is detailed in Algorithm 2.

Specifically, Algorithm 2 first constructs a new job se-
quence set C (Lines 2—-6). We call this process as legalization,
as we show in Lemma 7 that any D € C but D ¢ C must be
D ¢ 7} (ie., D is illegal). We note that the necessary splitting
of release time ranges by the reconfiguration times generates
C with such illegal regions.

The legalization starts with setting all vertices of C to be
those of C (Line 2). It initializes the release time range of the
last vertex as that in C (Line 3). The iteration in Lines 4—
6 performs a backward pass on the other vertices, to shorten
their release time ranges such that jobs released outside of
these ranges are always illegal. Given (5;,6?,m), Lines 5
and 6 will obtain the valid release time range of its previous
vertex v;_1 by satisfying the min/max inter-release times and
the time constraint on v;_1 in C.

_ Then Algorithm 2 constructs a critical job sequence D of
C (and consequently of C) in Lines 7-10. It sets the vertices of
D¢ as those of C (Line 7), and the release time of the first job
as late as possible (Line 8). Subsequently, it does a forward
pass (Lines 9-10) to release other jobs as early as possible,
subject to the requirement that D¢ € C.

Before proving the correctness of Algorithm 2, we first
give an example on how it works.

Example 6: Consider the third common-WCET job se-
quence set in Figure 4(b) as an example, i.e., C = [(0, 100, v1),
(100, 165, v2), (125,200, v2)]. Algorithm 2 first initializes the
release time range of the last vertex in the legalized common-
WCET job sequence set C as ¢; = 125, ¢5 = 200. It then
performs a backward pass on the other vertices to determine
their legalized release time ranges. This will find

¢, = max(¢z — p"**(v2,v2),c; ) = max(125 — 50, 100) = 100

&4 = min(& — p™™ (va, v2),¢f ) = min(200 — 25,165) = 165

¢, = max(é; — p"*(v1,v2),c¢; ) = max(100 — 65,0) = 35

& = min(éf — p™(v1,v2), ¢ ) = min(165 — 32,100) = 100
(Note that p™(vy,v3) = 32, p™™(v,ve) = 65,

PPt (vy,v) = 25, pP¥*(vy,v3) = 50.) This legalization
process will shorten the first release time range from [0, 100]
0 [35,100]: if the first job is released in [0, 35), then the job
sequence cannot be legal as the inter-release time between the
first and second jobs are always larger than p™**(vy, vy) = 65.

Algorithm 2 then uses 7§ = & = 100 for the forward pass,
to get w5 = rnax(é;,ﬂ'f + p™it (v, Ug)) = max(100, 100 +
32) 132 and 7§ max (G5, 75 + p™in(vg, v2))
max(125,132 + 25) = 157. Table 1I 111ustrates the generation
of critical job sequences for the four common-WCET job
sequence sets in Figure 4(b).
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We now provide a few lemmas on the properties of C and
D¢ generated by Algorithm 2. The following lemma shows
that the resultant C is a common-WCET dDRT job sequence
set that is also a subset of C.

Lemma 4: C satisfies Definition 9, and C cC.

Proof. C obviously satisfies Condition 3 of Definition 9, as it
contains the same sequence of vertices as C, and V2 <[ < n,

511—1 = maX(EJz: _pméx(’/l—lal’l) C; 1) 2 5; PP (v, m),
¢y =min(&" — p™"(vi-1, 1), Cz 1) < Cl —pmm(l/l—hvz).
Hence, it is sufficient to show that VI < n,c¢; < ¢ <

l < cl , which implies that C meets Conditions 1 and 2 of

Definition 9. We prove it by induction.

Initial Step (I = n). By Line 3, ¢
Obviously, this means that c,;
satisfies Condition 1 of Deﬁmtlon 9.

ci and ¢ = ¢.
o T
¢y = ¢, since C

n
n

IA

Inductive Step. Assume ¢; < ¢, < 6;* < cf where | > 2.
We consider ¢,_; and Ez+—1’ which are set to max(él_ —
P (y_1,1),¢;_ ;) and min(&" — p™(v_1, 1), ¢ ) re-
spectively. Clearly, ¢;_; < ¢,_; and 5z+—1 < Cz+—1' We now

prove &, < &' |, by considering four cases.

Case a: ¢_, =c¢_, and &, = ¢ ,. This implies that
L <&, since C satisfies Condition 1 of Definition 9.
Case b: ¢ ,=¢_,and &, =& —p™(y_1,1;). In
this case, we have

(@) ®)

P _ . s .
Cl—l _Cl—l S Cl _pmm(Vl—th) S Cz _pmm(

vi—1,u) = ¢,
where inequality (a) is from Condition 3 of Definition 9, and

(b) is the inductive assumption.
_ Case c ¢ = E; —p v—1,v;) and 6;:1 = cltl.
Similar to Case b, it is

max(

(a) (b)
+ : + ot
vi—,v) < ¢ —p™™*(vnm) <l =6,

— max
G176 (

-p

where inequality (a) is the inductive assumption, and (b) is
from Condition 3 of Definition 9.

Case d: ¢, = ¢ — p™™(y_1,1) and & | = & —
p™(v;_1,v;). We have
G_1=¢ —p"(v-1,m)
(i) ~— min (2) ~+ min _ ~+
= ¢ —p (Vl 17Vl) ¢ —Pp (Vlflyl/l)—cl 1

where (a) is due to p™™(v;_1, ;) < p™**(y;_1,1;), and (b)
is the inductive assumption. [J

Furthermore, the following property proves that the resul-
tant D¢ is a job sequence of C.

Lemma 5: D¢ € C.

Proof. Condition 4 of Definition 10 is satisfied by Line 7. We
prove by induction that VI < n,7f € [&,, .

Initial Step (I = 1). 7§, set to &, is obviously in [¢],&f].

Inductive Step. Assume wf € [¢;,¢] where I < n. We
note that 7f, ; = max(nf + p™™ (v, v141),¢,,) by Line 10.
T € (64,60 if mf, = ¢, Consider the case

. (a)
T = 7 + p™ (v, vga) > ¢y This implies 7f,, <



. (b)
[+ P (v, mga) <&y, where inequality (a) is the

inductive assumption, and inequality (b) is from Line 6. OJ
We now show by Definition 5, D¢ is a job sequence of 77,.
Lemma 6: D¢ € 17,.

Proof. It suffices to show that VI < n, p™" (v, v41) < 7§, —
7 < PP (v, vigr).

As the final value of 77, | is updated in Line 10, we have
two cases. The case that 77, = 7f + p™" (v, v41) is trivial.
If nfy, = ¢, > 77 + p™™ (v, vi41), then 77 — wf >

. (a)

p™ (v, vi41). Moreover, it must be 7f, | —7f = &, — 7] <
(b

G — ¢ < ™™ (v, vi41), where inequality (a) is because

of Lemma 5, and (b) is correct due to Line 5. O

In addition, the following lemma presents the relationship
between the two job sequence sets 77, N C and C.

Lemma 7: For any D = [(71,v1),- -+, (7n, V)] such that

DerpNC, it must be D € C.

Proof. We show by induction that VI < n, m, € [¢,,&].
Initial Step (I = n). Since D € C and ¢, = ¢, & = ¢}
(Line 3), we have m,, € [¢,,¢F].

Inductive Step. Assume m S ,cf] where | > 2. By
Lemma 4 ¢, , < & , <&, < ¢, hence there are only
three cases as below.

Case a: Ez+1 < m-1 < Cz+—1- It implies that m;_; >

&, @ ~+

-1 = G i

b
— P (v_1,m) = m — p™(vi_1, 1), which
conﬂlcts with D € 7} by Definition 5. Here equality (a) is
from Line 6 (note that & | < ¢;" ), and inequality (b) is the
inductive assumption.

Case b: ¢_; < m_1 < ¢_;. It implies that m;_; <

(@ -

b
¢, = ¢ —p™™(v—1,1) (g) m — p™*(y_1,1;), which
conflicts with D € 7}, by Definition 5. Here equality (a) is
from Line 5 (note that ¢,_, > ¢,_,), and inequality (b) is the
inductive assumption.

Case c:¢_; <m_1 < E?‘_l. It is the only possibility as
cases a and b are impossible. [

With the above four lemmas, we are now ready to prove
the correctness of Algorithm 2.

Vn)]’

Theorem 8: Given C = [(c],cf,v1),...,(cy, ¢,
Algorithm 2 generates a critical job sequence D¢
[(7§,0v1), ..., (7S, )] according to Definition 10.

Proof. By Lemmas 4-6, Conditions 4-6 of Definition 10 are
all satisfied. Also, due to Lemma 7, Condition 7 only requires
to prove that VD = [(m1,v1),..., (70, vn)] € CNTH, V1 <
Il <n,nj —7nf{ < m — m. Before proving it by induction, we
note that 7, < & = 7§,

C

1). This is trivially true since 7§ — 7§

Initial Step (I =
T, — T =

Inductive Step. Assume 7] — m§ < m — m; where | < n. We
consider 77, ;, which is set to max (7 +p™" (v, v141), €1y 1)-
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Case a:my,, = ¢, This satisfies 77 | —7] < m1—m
3 C - A C
since 7, = ¢y < M4 and 7§ > 7.

Case b: mf, = mf + p™" (v, v41) > ¢, Hence,

—ni =ma] +p"" (v, vig) — it
(a) . (b)
<m4+p"(wLvig) —m < Mg —m

c
Ti4+1

Here inequality (a) is due to «$ > m, and (b) is because
Derp. O

IV. SCHEDULABILITY ANALYSIS OF DAVR TASKS

Now consider a dAVR task 7;° interfered by a set of
periodic tasks hp(i) and a set of dAVR tasks hp*(i). For a
job (o,w) of 77, since the dAVR tasks share the same angular
period and phase, all tasks in hp* (i) also release a job at time
o. Furthermore, since 7;° has a constrained deadline, it has to
finish before its next release (and any new job from hp*(7)).
Hence, 7;° will only be interfered by one job from each task
77 € hp*(i), and the response time of (o, w) is computed as

ZCO’W

75 *Ehp* (i)

floes

We now narrow down the set of jobs of 7;° that we need
to check for its schedulability. First, by Eq. (11) the WCET of
any dAVR job for a given speed w only changes at the set of
reconfiguration times 7 = {71, ,vr}. Hence, it is enough
to only consider 7 as the set of representative release times
for dAVR jobs

R(1],0,w) = mm{t | Ci(o,w)

2D

p>

Ti€hp(i)

R(r},w) = max R(r},0,w) (22)

[2AS
Second, we denote the ordered set of switching speeds
from 7" itself and all higher priority dAVR tasks as
M; . }

W; = {wflje p* (i) U{i}, k=1---T,m=1--
and consider two consecutive switching speeds w; and wjiq
in W;. By Eq. (11) the WCET of a dAVR job remains the
same for any w € (wy, w;41]. Also, by Property 3, the deadline
D, (w) is monotonically decreasing with w. Hence, we can use
wi4+1 to represent all possible angular speeds in (wj, wjt1].
It is sufficient to only check the schedulability of jobs of 7.
released with a angular speed in W;. That is, 7;° is schedulable
if the following condition is satisfied

Yw e W;, R(7),w) < D;(w) (23)
In the end, the schedulability analysis of 7;" in Eq. (21)-(23)
only requires to check a finite number of jobs of 7.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the benefits of the proposed
approach on system schedulability, using randomly gener-
ated synthetic task systems. We adopt the parameters on a
practical engine in [16], [17]: (i) the minimum/maximum
rotational speed is 500/6500 rpm; and (ii) the maximum
acceleration/deceleration is 1.62 x 10~* rev/msec?. Hence, the
engine needs 35 revolutions to accelerate/decelerate between
the minimum and maximum speeds.



We compare three methods as follows for schedulability
analysis of dAVR task systems.

e dAVR: The analysis proposed in this paper, based on the
transformation of dAVR tasks to dDRT tasks.

e dAVR2sAVR: Since there is no existing safe analysis
for dAVR task systems, we consider a simple, sufficient-only
analysis as the baseline. Specifically, we approximate a dAVR
task 7° with an sAVR task 7, where the WCET of 7;* released
at speed w is set as the maximum WCET of 7" released at
speed w over all configurations. We then apply the analysis for
SAVR task systems proposed in [14], [15].

e UB: The necessary-only analysis from [16], [17]. It
overestimates the workload from a dAVR task 7 in the k-th
configuration as the maximum over a series of virtual execution
mode sets {(C%,wr), (C1y0", W™ )}, ¥m =1, , M —
1, i.e., one is the m-th mode with WCET C", executed in the
speed interval (wmi“,wZ’”k], the other is the simplest control

strategy with WCET C;'1* effective in (w!",, w™],

For the methods dAVR and dAVR2sAVR, we use the
speed partition in [13], [25] that is exact for schedulability
analysis of SAVR tasks. This results in, for example, on average
1122 speed intervals for the systems in Figures 5-6.

Random Task Systems. The random task systems are gen-
erated following [14]. Each system consists of 20 periodic
tasks and one dAVR task 7). Let Up and Uy4 denote the total
utilization of the periodic tasks and the maximum utilization of

T} respectively, where Uy = max Caltb) The total system
W

i (w)
utilization is U = Up + U4 and the fraction for 7} is p,
(i.e., Us = py - U). The utilization of each periodic task is
computed by the UUnifast algorithm [29] and the period is
uniformly distributed between 3 and 100ms. The periodic tasks
have implicit deadlines. The angular period and deadline of the
dAVR task are both equal to one revolution. The task priorities
are assigned with the deadline monotonic policy, where the
deadline of the dAVR task is its minimum value D 4 (w™?*).

We set the reconfiguration times {v1, . ..,7yr} of the dAVR
task as v, = (k — 1) - Tsampie for 1 < k < T, where
Tsampie = 500ms which is the sample period in most standard
driving cycles [30], [31]. Moreover, for each configuration,
we generate M execution modes as follows. We first ran-
domly select one mode for the maximum utilization U4, and
the utilizations of the other modes are set within the range
[0.85 x Ua,Us4]. The switching speeds are randomly chosen
from a uniformly distributed set between [1000,6000] rpm.
As a result, the WCET of each mode m effective in the speed
interval [w™,w™ 1) is set to the product of its utilization and
minimum inter-release time 71 (w™+1).

Results. In the following four experiments, we vary one of the
four parameters U, p,, M and T. Since our motivation is to
provide better performance while guaranteeing schedulability,
we filter out systems that is deemed unschedulable by UB. In
this sense, the schedulability ratio shown in Figures 5-8 is a
normalization w.r.t. UB (hence UB is omitted). Each data point
in the figures is the average over 1000 random task sets.

In the first experiment, the generated dAVR tasks have ten
configurations (i.e., 7' = 10) where the number of execution
modes in each configuration is randomly set between 4 and
8. The total utilization U is varied from 0.3 to 0.95 with
pu = 0.4. The schedulability ratios of the three methods

406

0p,=0.4,T=10

1.0

o o o
IS o ©
f

Schedulability Ratio

e
N
L

w—— dAVR —&- dAVR2sAVR =

i S,

0.0 T T T T T T T
0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950
u

Fig. 5: Schedulability ratio vs. system utilization U.

U=0.85T=10

1.01

g
©
L

o
)

o
o

Schedulability Ratio
o
~

o
]
L

= dAVR - dAVR2sAVR

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pu
Fig. 6: Schedulability ratio vs. dAVR utilization fraction p,,.

U=0.85p0,=0.4,T=10

o e o
o ~ ©

Schedulability Ratio

o
w»

=]
iS
L

= dAVR —@- dAVR2sAVR

0.3 T T T T
2 4 6 8 10 12

M
Fig. 7: Schedulability ratio vs. number of modes M.

U=0.850,=0.4

e
~

o
o

o
5

Schedulability Ratio

=]
iS
L

<
®---_ o

0.31 -

= dAVR —@ dAVR2sAVR

0.2

T T T T T
25 30 35 40 45
T

Fig. 8: Schedulability ratio vs. number of configurations 7.

T T T
5 10 15 20 50

are always 1 when U < 0.75, hence, Figure 5 only reports
the results for U > 0.75. As shown in the figure, dAVR al-
ways has a higher schedulability ratio (hence better analysis
accuracy) than dAVR2sAVR. For example, at U = 0.875,



the schedulability ratio of dAVR is around 24% higher than
that of dAVR2sAVR. Finally, dAVR has substantially lower
schedulability ratio compared to the necessary-only analysis
UB, which indicates that JAVR may be significantly pes-
simistic. However, we show in [32] that their experimental
control performances are always indistinguishable.

The relative comparison between the two methods
dAVR and dAVR2sAVR is also consistent in the next three
experiments. In the second experiment, the generation of the
dAVR tasks is similar to the first, but the dAVR utilization
fraction p,, is varied within [0.1,0.9] and the total utilization
is fixed at U 0.85. In the third experiment, we vary
the number of modes M of all the ten configurations while
the total utilization is U = 0.85 and the fraction of dAVR
task utilization is p, = 0.4. In the fourth experiment, we
consider a varying number of configurations 7', where the
total utilization is fixed at 0.85, each configuration has 4 — 8
execution modes, and p,, = 0.4. The results are illustrated
in Figures 6-8 respectively. As in these figures, dAVR is
always more precise than dAVR2sAVR. Also, the difference
between between dAVR and dAVR2sAVR is typically around
10% — 26%. The only exception is when p,, > 0.6 in Figure 6,
where these two methods all have a schedulability ratio close
to 1 (i.e., close to that of UB). This is because in scenarios
with a high workload from the dAVR task, the task system is
mostly either easily unschedulable (such that UB also deems
the system to be unschedulable), or easily schedulable (most
periodic tasks have a higher priority than the dAVR task and
are not affected by its high workload).

VI. CONCLUSION

In this paper, we propose the dynamic AVR task model
that reconfigure the switching speeds at runtime. To verify
the schedulability for such systems, we provided a sufficient
response time analysis by partitioning the speed space and
approximating the workload of dynamic AVR task with a new
type of digraph real-time tasks called dDRT tasks. We also
present efficient algorithms for analyzing dDRT task systems
that use one critical job sequence to represent the worst case
workload of a set of job sequences. Experiments demonstrate
that our analysis is substantially more accurate than simple
extensions of those for static AVR systems.
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