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ABSTRACT

Recent work shows that machine learning (ML) can predict
failure time and other aspects of laboratory earthquakes using
the acoustic signal emanating from the fault zone. These
approaches use supervised ML to construct a mapping between
features of the acoustic signal and fault properties such as the
instantaneous frictional state and time to failure. We build on
this work by investigating the potential for unsupervised ML to
identify patterns in the acoustic signal during the laboratory
seismic cycle and precursors to labquakes. We use data from
friction experiments showing repetitive stick-slip failure (the
lab equivalent of earthquakes) conducted at constant normal
stress (2.0 MPa) and constant shearing velocity (10 μm=s).
Acoustic emission signals are recorded continuously throughout
the experiment at 4MHz using broadband piezoceramic sensors.
Statistical features of the acoustic signal are used with unsuper-
vised ML clustering algorithms to identify patterns (clusters)
within the data. We find consistent trends and systematic tran-
sitions in the ML clusters throughout the seismic cycle, includ-
ing some evidence for precursors to labquakes. Further work is
needed to connect the ML clustering patterns to physical mech-
anisms of failure and estimates of the time to failure.

Supplemental Content: Figures and text that describe the stat-
istical features, sensitivity analysis of the moving windows,
effects of the bandwidth parameter, and additional clustering
results.

PRECURSORS TO EARTHQUAKES

Earthquake forecasting is an important problem for mitigating
seismic hazard, and it can help illuminate the physics of earth-
quake nucleation. Forecasts could be based on physical models
of the nucleation process or changes in fault-zone properties
(so-called precursors) before failure. However, with current
monitoring techniques and models of earthquake nucleation,
we are far from forecasting earthquakes or even identifying

reliable precursors despite long-standing interests in the prob-
lem (Milne, 1899; Marzocchi, 2018) and a broad range of
related and direct observations ranging from landslides (Poli,
2017), to glacial motion (e.g., Faillettaz et al., 2015, 2016), geo-
chemical signals (Cui et al., 2017; Martinelli and Dadomo,
2017), geodesy (Chen et al., 2010; Xie et al., 2016; Moro et al.,
2017), and seismology (Antonioli et al., 2005; Niu et al., 2008;
Rivet et al., 2011; Bouchon et al., 2013). The situation is some-
what better for labquakes. Laboratory friction experiments
coupled with ultrasonic measurements have been used to docu-
ment the approach to failure (Scholz, 1968; Weeks et al., 1978;
Chen et al., 1993), with important recent advances in docu-
menting precursors based on spatiotemporal changes in rock
properties before failure (Pyrak-Nolte, 2006; Mair et al.,
2007; Goebel et al., 2013, 2015; Johnson et al., 2013;
Kaproth and Marone, 2013; Hedayat et al., 2014; McLaskey
and Lockner, 2014; Scuderi et al., 2016; Jiang et al., 2017;
Rouet-Leduc et al., 2017, 2018; Hulbert et al., 2019;
Renard et al., 2018; Rivière et al., 2018).

Laboratory observations of precursors before earthquake-
like failure encompass a variety of measurements, including
high-resolution images that illuminate the failure nucleation
process. These include passive measurements of acoustic emis-
sions (AEs) (e.g., McLaskey and Lockner, 2014; Goebel et al.,
2015), active measurements of fault-zone elastic properties
(e.g., Scuderi et al., 2016; Tinti et al., 2016), and direct obser-
vations, using x-ray microtomography (micro-CT), of damage
evolution in the failure zone (Renard et al., 2017). The micro-
CT work reveals microfracture patterns and the interplay
between shear deformation and local volume strain (Renard
et al., 2017, 2018). The AE studies show that the
Gutenberg–Richter b-value decreases systematically during
the laboratory seismic cycle (Goebel et al., 2013; Rivière et al.,
2018). In addition, active source measurements of elastic wave-
speed and travel time show systematic changes throughout the
laboratory seismic cycle and distinct precursors to failure for
the complete spectrum of failure modes from slow to fast
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elastodynamic events (Kaproth and Marone, 2013; Scuderi
et al., 2016; Tinti et al., 2016). These studies include measure-
ments for dozens of repetitive stick-slip failure events showing
that elastic wavespeed and transmitted amplitude increase dur-
ing the linear-elastic loading stage and decrease during inelastic
loading.

MACHINE LEARNING AND ACOUSTIC SIGNALS
BEFORE FAILURE

Recent developments in the application of machine learning
(ML) to seismic data suggest a number of possible benefits
for seismic hazard analysis and earthquake prediction. One
approach shows systematic changes in event occurrence pat-
terns and seismic spectra that could illuminate the earthquake
nucleation process (e.g., Holtzman et al., 2018; Wu et al.,
2018). Another approach, using laboratory data similar to
those that we focus on in this article, has shown that supervised
ML can predict stick-slip frictional failure events—the lab
equivalent of earthquakes (Rouet-Leduc et al., 2017). These
works show that the timing of failure events can be predicted
with fidelity using continuous records of the acoustic emissions
generated within the fault zone (Rouet-Leduc et al., 2017,
2018; Hulbert et al., 2019). Stick-slip failure events are
preceded by a cascade of microfailure events that radiate elastic
energy in a manner that foretells catastrophic failure.
Remarkably, this signal predicts the time of failure; the slip
duration; and for some events, the magnitude of slip.
However, successful implementation of a supervised ML algo-
rithm demands access to a large labeled training dataset.
Unsupervised ML offers an alternative approach that can be
applied when labeled data are not available.

The purpose of this article is to explore the application of
unsupervised ML to characterize acoustic emissions during the

laboratory seismic cycle and search for precur-
sors to failure. This approach differs signifi-
cantly from previous work using supervised
ML in which statistical features are used to
build a function that maps an input (statistics
of the acoustic signal) to an output (e.g., time
to failure). Supervised ML involves a training
stage followed by a stage in which the algorithm
is tested against new observations. In unsuper-
vised ML, the task at hand is quite different. In
our case, the goal is to find structure (clusters)
within the seismic signal and track its evolution
throughout the seismic cycle. Clusters are char-
acterized and identified within an n-dimen-
sional feature space via an ML clustering
algorithm. We use a mean-shift ML cluster-
ing algorithm (Cheng, 1995; Comaniciu and
Meer, 2002) to assess statistical features of the
acoustic signal and compare our results with
those obtained using the commonly used k-
means clustering algorithm (Tan et al., 2006).

We apply both clustering algorithms to 43 statistical features
after conducting a principal component analysis (PCA). For
comparison to our previous work, we perform a second analysis
using only the variance and kurtosis of the acoustic signal iden-
tified as the most significant features in the supervisedML analy-
sis (Rouet-Leduc et al., 2017, 2018; Hulbert et al., 2019). That
is, they improved the accuracy of the ML regression analysis the
most out of ∼100 statistical features. Our goal is to assess how
robust these features are when attempting to identify precursors
to failure via unsupervised ML. We acknowledge that using
results from a supervised ML study as inputs to an unsupervised
ML analysis may violate the truly unsupervised nature of the
analysis. However, we argue that this approach is well warranted
because it can help connect unsupervised and supervised ML
approaches. Our work has the potential to improve the under-
standing of laboratory precursors and ultimately to improve
methods for seismic hazard analysis.

FRICTION STICK-SLIP EXPERIMENTS

We use data from frictional experiments conducted in a biaxial
deformation apparatus (Fig. 1a) using the double-direct shear
configuration (e.g., Rathbun and Marone, 2010). Two layers of
simulated fault gouge are sheared simultaneously within three
forcing blocks that contain grooves perpendicular to the shear
direction to prevent shear at the layer boundary. The grooves
are 0.8 mm deep and spaced every 1.0 mm. The initial gouge
layer thickness is ∼5 mm, and the nominal contact area is
100 × 100 mm2. The center forcing block (15 cm) is longer
than the side blocks (10 cm) so that the friction area remains
constant during shear. Our experiment used glass beads with
particle diameters in the 104- to 149-μm range to simulate
granular fault gouge (Anthony and Marone, 2005). The gouge
layers are bounded by cellophane tape around the edges, and a
thin rubber jacket is placed around the bottom half of the
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▴ Figure 1. (a) Biaxial shear apparatus with the double-direct shear configuration.
Normal and shear forces on the fault are measured with strain-gauge load cells
mounted in series with the horizontal and vertical pistons. Displacements parallel
and perpendicular to the fault are measured with direct-current displacement
transformers (DCDTs) coupled to the vertical and horizontal pistons, respectively.
(b) Sample configuration with two gouge layers placed between three steel load-
ing platens. Piezoceramic sensors (PZTs) are embedded within steel blocks that
transmit the fault normal stress.
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sample to help prevent material loss during shear. In addition,
two steel side plates are mounted over the front and back of the
layers to prevent material loss from the sides (Fig. 1a).

Before shearing, the sample assembly is placed in the appa-
ratus, and a constant normal stress boundary condition is
applied perpendicular to the gouge layers. Fault normal stress
is maintained constant during shear using a load-feedback servo
control. After the sample has compacted, the central forcing
block is driven down at a constant velocity to impose fault-zone
shear (Fig. 1a). Displacements parallel and perpendicular to the
fault are measured using direct-current displacement transform-
ers, which are coupled directly to the vertical and horizontal pis-
tons. Similarly, forces parallel and perpendicular to the fault are
measured with load cells and are mounted in series with vertical
and horizontal pistons. Stresses and displacements are recorded

continuously throughout the experiment at 1 kHz with a 24-bit,
�10-V data acquisition system.

We measure elastic waves generated within the fault zones
using an array of 36 P-polarized piezoceramic transducers
(Fig. 1). The sensors (6.35 mm in diameter and 4 mm thick)
are epoxied in the bottom of blind holes within steel blocks
that flank the side forcing blocks (Fig. 1b). The blind holes
(18 mm deep and 8 mm in diameter) are filled with epoxy
to hold the sensors and their respective cables in place
(Rivière et al., 2018). The sensor array is located∼22 mm from
the edge of the gouge layers (Fig. 1b). Acoustic emission data
are sampled continuously at 4 MHz using a 14-bit Verasonics
data acquisition system (Rivière et al., 2018). Here, we show
results from one of the 36 channels, which was chosen as rep-
resentative based on calibrations and analysis of all channels.

Our database for these experiments includes more than 50
experiments. We focus here on a few select runs, conducted at
constant normal stress of 2.0 MPa and a constant shearing
velocity of 10 μm=s. These experiments include many stick-slip
cycles. After ∼10 mm of shear (see upper x-axis label in
Fig. 2a), slip events include periodic and aperiodic behavior
(Fig. 2a,b). We analyze a section of ∼25 stick-slip cycles of
the experiment where the recurrence interval between failure
events is aperiodic (Fig. 2). These data are representative of our
complete dataset. Each stick-slip cycle is characterized by a lin-
ear-elastic loading stage followed by inelastic loading. The
departure from linear-elastic loading denotes the onset of fault
creep (Anthony and Marone, 2005; Johnson et al., 2008). We
observe a range of failure events including creep, small stick-slip
events, and larger events that define the overall lab seismic cycle
(Fig. 2c). Acoustic data for a representative lab seismic cycle are
shown along with a zoom during the linear-elastic loading
stage (Fig. 3). On average, we detect several thousand AEs,
including small (Fig. 3c) and large AEs (Fig. 3d), as defined by
their amplitudes and durations. We observe a nonlinear
increase in the amplitude and number of acoustic events as the
fault approaches failure (Fig. 3), with AE amplitude increasing
by three orders of magnitude (e.g., Rivière et al., 2018).

UNSUPERVISED ML ANALYSIS OF ACOUSTIC
SIGNALS

We implement two clustering algorithms to find systematic
trends in the continuous acoustic signal emanating from the
fault zone throughout the laboratory seismic cycle.
Clustering is an unsupervised ML analysis used to identify
structures within a dataset and partition the data into distinct
groups called clusters based on prescribed similarity measures
(Jain et al., 1999). We focus on statistics of the continuous
acoustic signal (features) and use a cluster analysis to find
groups of similar data (clusters). The clusters and their member
data points are, in general, functions of all n statistical features
that define the feature space as well as the similarity measure.

Our dataset consists of statistical features that quantify
both the amplitude and frequency content of the acoustic
emission time series. Following Rouet-Leduc et al. (2017), we

▴ Figure 2. (a) Shear stress evolution for one entire experiment.
Slip events transition from periodic to aperiodic to stable sliding
as a function of load-point displacement. We focus on (b) the
section of aperiodic labquakes. Note that interevent times vary
and that large events are often preceded by small foreshocks.
(c) Zoom of three seismic cycles with aseismic creep and fore-
shocks before the main event.

1090 Seismological Research Letters Volume 90, Number 3 May/June 2019

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/90/3/1088/4686471/srl-2018367.1.pdf
by cjm38 
on 03 May 2019



compute a total of 43 statistical features of the acoustic signal
using a moving-window approach (see the Ⓔ Supplemental
Content, available in this article for details). Our acoustic data
are recorded at 4 MHz, and we calculate statistics in a time
window 1.36 s in length. Windows overlap by 90%, and we
use a backward-looking approach to time stamp the data
for comparison with our mechanical data (e.g., stress and dis-
placement) recorded at 1 kHz. The ML analysis is conducted
using data between 2067 and 2337 s; this results in a 1979 by
43 data matrix. Details of the statistical features along with a
sensitivity analysis of window size and overlap are given in the
Ⓔ Supplemental Content.

A range of clustering algorithms are available, many of
which make predefined assumptions about the data that can
induce bias (Tan et al., 2006). Specifically, many algorithms

require the number of clusters to be known a
priori and assume each cluster is characterized
by a specific shape (e.g., an ellipse). To avoid
making these assumptions, we implemented
the mean-shift clustering algorithm from sci-
kit-learn, which seeks to identify the modes
of the dataset (Comaniciu and Meer, 2002).
In addition to mean shift, we use the scikit-learn
implementation of a k-means clustering algo-
rithm for comparison.

In mean shift, modes are found through an
iterative process of computing a mean-shift vec-
tor over a spatial region defined by a bandwidth
parameter within an n-dimensional feature
space. Because the bandwidth has to be known
a priori, we optimize the bandwidth by selecting
the value that yields the highest silhouette coef-
ficient (Rousseeuw, 1987; Tan et al., 2006; see
the Ⓔ Supplemental Content). In the follow-
ing, we give a brief summary of how this algo-
rithm works in a 2D feature space. For a more
thorough mathematical explanation of the algo-
rithm, we refer readers to Cheng (1995) and
Comaniciu and Meer (2002). The algorithm
commences by computing the mean of data
points within a window of feature space. In this
context, “window” refers to a bounded region in
the feature space. The size of this bounded
region is set beforehand via the bandwidth
parameter (Cheng, 1995; Comaniciu and
Meer, 2002). The bandwidth sets the size over
which the mean is computed within n-space and
thus controls the total number of clusters as well
as the number of data points mapped to each
cluster (see the Ⓔ Supplemental Content).
The mean of the data points within this con-
fined window corresponds to the densest region
in the window. A vector is then defined from
the center of the window to the calculated
mean, which is called the mean-shift vector.
In the next iteration, the window is shifted such

that the mean of the previous distribution of data points is now
the center of the current window. As a result of this shift,
whereas some data points move out of the window, others
move in. Again, the mean of the data points is computed
within the window, and the mean-shift vector is calculated.
This iterative process continues until the mean-shift vector
approaches zero, that is, the center of the window coincides
with the densest region in the feature space. The process of
computing the mean-shift vector over a predefined space is
repeated for every data point within the feature space (i.e.,
it is initialized for every data point). After this process is com-
pleted, each data point will be assigned to a specific region (a
mode) in the feature space that it converged to. One way of
thinking about this process is that all data points have a tra-
jectory in feature space that they follow, and their final location

▴ Figure 3. (a) Shear stress and acoustic amplitude plotted for one slip cycle
within the aperiodic section of the experiment (see Fig. 2). Gray box shows a
1.36-s moving window used to compute statistical features of the acoustic signal.
(b) Zoom of the window. Note that the signal is dominated by spikes that look like
noise at this scale. (c) Small AEs occur frequently throughout all stages of the
seismic cycle. (d) Large AEs occur during all stages of the laboratory seismic
cycle; however, they are more commonly associated with the inelastic loading
stage just before failure (see Fig. 2).
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represents the densest region in feature space based on that
path. In other words, the total number of modes found after
this step will equal the number of data points. As a final step,
the algorithm filters out modes that lie within a bandwidth of
one another. Specifically, the modes, which have the least num-
ber of data points within them, are removed. The result of this
process is a unique set of modes that model the underlying
feature space.

Our analysis consists of clustering all 43 features after per-
forming a PCA. In addition, we perform a second analysis
where we focus on variance and kurtosis, the two most impor-
tant features for predicting instantaneous friction and time to
failure of labquakes through supervisedML (Rouet-Leduc et al.,
2017). In fact, the variance alone can accurately predict the
instantaneous frictional state along with the magnitude of slip
events (Rouet-Leduc et al., 2018; Hulbert et al., 2019) as illus-
trated in Figure 4. In our analysis, we use the logarithms of the
variance and kurtosis as a way to normalize their values, given
that kurtosis ranges up to > 104, but variance is typically an
order of magnitude smaller. If clustering is performed without
normalization, the results would be biased toward kurtosis (see
the Ⓔ Supplemental Content). The purpose of this second
study is to compare the supervised and unsupervised ML
approaches. It is established that a supervised ML technique
can predict labquakes and hence that the acoustic signal con-
tains information about impending failure during all times of
the seismic cycle. In this work, we seek to determine if unsu-
pervised ML can identify patterns and precursors to failure. To
our knowledge, using unsupervised ML to identify precursors
to stick-slip failure is a new approach that has yet to be
explored. Moreover, an unsupervised ML approach could be

more applicable to field data, in which labeled data (e.g., shear
stress, time to failure) are typically unavailable.

CLUSTERING IN PRINCIPAL COMPONENT SPACE

To test the full set of 43 statistical features, we perform a PCA.
PCA offers several incentives for our analysis. First, it identifies
the most important features for explaining the data variance.
Second, it enables us to reduce the dimensionality of our prob-
lem while still exploiting all 43 features. Finally, it identifies
correlated features. After performing the PCA, we can project
our dataset into a lower dimension principal component (PC)
space and perform the clustering analysis in this space.
Specifically, PCA is an eigenvalue decomposition of the covari-
ance matrix. Before calculating the covariance matrix, the origi-
nal 1479 by 43 data matrix is normalized by subtracting the
mean and dividing by the standard deviation. The decompo-
sition of this covariance matrix gives a set of eigenvalues and
eigenvectors (PCs), both of which can be used to describe the
structure of the data. In particular, each PC is a linear combi-
nation of the original features, scaled by an eigenvector coef-
ficient (see the Ⓔ Supplemental Content). In addition, the
PCs are ordered such that by selecting the first few PCs, we
can capture most of the data variance (see Fig. 5c) while reduc-
ing the dimensionality of the problem.

Our PCA results show that the first two PCs account for
about 85% of the total data variance (Fig. 5c). This implies that
we can represent our original 43D space in a 2DPCspace (Fig. 5).
When projected into the 2DPCspace, the acoustic data appear in
groups of different shape and density. For example, a subset of
data points form distinct streaks that extend from the top left
to the bottom right of this space. A careful examination of
the temporal trends of PC 1 and PC 2 shown in Figure 5b reveal
that these data points correspond to the interseismic period. The
remaining data points in Figure 5d represent data from the coseis-
mic slip phase. These data have a different structure than the
interseismic period and plot in a different region within the fea-
ture space (i.e., on the left side of Fig. 5d). All data from Figure 2b
are plotted in Figure 5d, and thus, it is clear that these trends are
remarkably systematic across multiple labquake cycles. We use
clustering to identify such patterns in the acoustic data statistics
and study them in relation to the seismic cycle.

RESULTS

In Figure 6, we demonstrate how mean shift and k-means par-
tition both feature spaces explored in this study. The mean-
shift algorithm identifies two clusters (defined by the red and
cyan symbols) with respect to variance and kurtosis (Fig. 6a).
The red cluster is defined by areas of low variance and kurtosis
values, and the cyan cluster defines areas of high variance and
kurtosis. When using k-means, the number of clusters the algo-
rithm finds must be set a priori (Tan et al., 2006). Therefore,
we use the silhouette coefficient to find the optimal number of
clusters. That is, we select the number of clusters that results in
the highest silhouette coefficient. In variance–kurtosis space
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▴ Figure 4. Shear stress as a function of time (red dashed line)
plotted with the machine learning (ML) prediction (blue line) for
experiment p4679. Here, a supervised ML algorithm (gradient
boosted tree algorithm) is used to estimate the instantaneous
shear stress based on similar statistical features used in this
study (see the Ⓔ Supplemental Content, available in this article).
The tight correlation between measurements and the ML predic-
tion shows that the acoustic signal contains important informa-
tion regarding the physical state of the fault during all stages of
the lab seismic cycle (after Hulbert et al., 2019).
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(Fig. 6c), k-means also partitions the data into two clusters.
More interestingly, the two sets of clusters found by the
two algorithms in variance–kurtosis space are identical
(Fig. 6c). Figure 6b,d shows how both algorithms partition
the data in PC space. The mean shift identifies a total of four
clusters (denoted by yellow–magenta–green–blue symbols).
Although the boundaries between clusters may seem arbitrary
in this space, when plotted as a function of time or shear stress,
it becomes clear that these boundaries mark specific transitions
with respect to the stress state (Figs. 7 and 8). We cluster the
same data using the k-means algorithm with the number of clus-
ters set to three. Again, we determine the number of clusters
based on the maximum silhouette coefficient. Despite the
differences in the number of identified clusters, the results from
the two algorithms are effectively the same; the only differences
lie in how the algorithms partition the data associated with the
coseismic slip phase (i.e., green–blue data points). For mean
shift, the coseismic data are partitioned into two clusters (blue–
green), but with k-means, these data are partitioned into only
one cluster (green). Because we are primarily interested in iden-
tifying precursors to failure, the data associated with the coseis-
mic phase are of less importance. Furthermore, we conducted the
same analysis using a spectral clustering algorithm and achieved

similar results. Therefore, we argue that our analysis does not
depend on the choice of the clustering algorithms. From here
forward, we present all results with respect to mean shift.

As previously stated, the mean-shift analysis identifies four
clusters in PC space (Fig. 6b). To observe how clusters evolve
temporally over the course of the lab seismic cycle, we plot
data from Figure 6b as a function of time together with shear
stress (Fig. 7). Whereas the yellow and magenta clusters coincide
with the linear-elastic loading and creep stages, the green
and blue clusters coincide with the main slip events (Fig. 7).
Clustering in PC space also reveals precursory changes in the
acoustic signal as the fault approaches failure, and as result,
we observe that the interseismic period of each slip cycle is
characterized by two clusters (Figs. 7 and 8). When performing
the same analysis with respect to variance and kurtosis, we did
not observe such systematic change in clusters (Ⓔ Fig. S10).
Specifically, when clustering data in variance–kurtosis space,
we observe two clusters before the main slip event only when
there are small instabilities during aseismic creep. In contrast, the
systematic transitions of clusters in PC space are observed for
every slip cycle analyzed. In addition, both PC 1 and PC 2 show
similar precursory trends (see the Ⓔ Supplemental Content for
PC 2 results plotted with time).

▴ Figure 5. (a) Shear stress evolution and acoustic amplitude for one stick-slip cycle in experiment p4677. Gray box shows a moving
window that slides through the continuous time series (4 MHz sampling rate) and is used to compute statistical features of the acoustic
signal. We use the end time of each window for the time stamp associated with the window. (b) Temporal evolution of principal com-
ponent (PC) 1 (black) and PC 2 (red) throughout one stick-slip cycle shown in (a). Gray box with circles shows the time stamp derived from
the moving window in (a). (c) Cumulative eigenvalue percentage plotted versus number of PCs. The first two PCs account for about 85% of
the data variance. (d) Data for all slip cycles between 2067 and 2337 s (Fig. 2b) in PC 1–PC 2 space (black symbols). Highlighted in red are
data for the slip cycle shown in (a).
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Figures 7 and 8 suggest that the partitioning of the acous-
tic data into four clusters is purely a function of position within
the stick-slip cycle. Specifically, whereas the yellow and magenta
cluster corresponds to the linear and nonlinear loading stages
of the stick-slip cycle, the green and blue clusters mark the slip
event (Fig. 7). The transition from yellow to magenta clusters
occurs when the fault has reached peak strength and the shear
stress is no longer increasing. This is an interesting discovery
given that the clustering algorithm has no input on the stress
state of the fault, yet the results clearly show when the fault has
reached its peak strength (Fig. 8). Finally, the division between
the green and blue clusters occurs during the coseismic stage as

the fault evolves from a large (green cluster) to a small (blue
cluster) shear stress.

DISCUSSION

We show that an unsupervised ML approach based on a clus-
tering analysis of acoustic data define distinct clusters that evolve
systematically during the lab seismic cycle. Clustering in PC
space partitions the dataset into four clusters, including two
distinct clusters for the interseismic period (Figs. 7a,b and 8).
The temporal evolution of these clusters shows that within each
seismic cycle, there is a cluster transition when the fault begins to

▴ Figure 6. (a,b) Data for all stick-slip cycles analyzed in this study (see Fig. 2b) after clustering with a mean-shift algorithm. (a) Results
for acoustic variance and kurtosis. Whereas the red cluster encompasses all data that are not associated with a labquake, the cyan
cluster classifies the acoustic data associated with both foreshocks and mainshocks (see Fig. 2c). (b) Results for PC 1 and PC 2 after
clustering in PC space. Each point represents a linear combination of the 43 statistical features, and each color corresponds to a single
cluster. Whereas the yellow and magenta clusters classify the acoustic signal associated with the linear-elastic and inelastic loading
stages of each seismic cycle, the green and blue clusters classify the acoustic data associated with the coseismic phase. (c,d) Results
after clustering with a k-means algorithm. In each case, we determine the number of clusters by optimizing the silhouette coefficient as a
function of the number of clusters (see theⒺ Supplemental Content). Note that the results are identical for k-means and mean shift when
clustering in variance–kurtosis space. When clustering in PC space, the acoustic data associated with the interseismic period (i.e., yellow
and magenta clusters) are independent of the choice of clustering algorithm. However, the coseismic data are partitioned differently by
the two clustering algorithms (i.e., green and blue clusters).
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creep at a shear stress near its maximum value followed by sep-
arate transitions during the main failure event (Figs. 7 and 8).
The cluster transitions for PC 1 and PC 2 provide information
about what stage the fault is in within its seismic cycle, and thus,
could be identified as potential precursors to failure. Specifically,
the yellow cluster is associated with shear loading, and thus, indi-
cates that the fault is in its earliest stage of the seismic cycle
(Fig. 8). However, the magenta cluster is associated with the lat-
ter stages of the seismic cycle and denotes that the fault is creep-
ing and is close to failure (Fig. 8).

In a previous study, we found that out of ∼100 statistical
features, the variance and kurtosis are the most important fea-
tures when building the ML regression model. However, this
study demonstrates that the clustering of data based on these
two features is unable to identify precursors (Ⓔ Fig. S10). Even
though the resulting clusters define a systematic pattern during
the seismic cycle, the transition between clusters occurs after
failure and thus provides no precursory information to failure

(Ⓔ Fig. S10). The majority of the laboratory seismic cycle is
mapped into one cluster, but small segments associated with
slip events are assigned to another cluster. This implies that
even though signal variance and kurtosis are evolving through-
out the course of a stick-slip cycle, these parameters do not
change enough to result in separate clusters.

We show that the differences between clustering in PC
space and clustering in variance–kurtosis space are from the
features themselves and not the number of clusters (see the
Ⓔ Supplemental Content for details). The data suggest that
although it is possible to identify four clusters when clustering
in variance–kurtosis space, the clusters themselves are not sys-
tematic across multiple slip cycles. In particular, one of the clus-
ters is associated with only five slip cycles. Moreover, none of
the four identified clusters in the variance–kurtosis space are
correlated to fault strength. Therefore, we hypothesize that the

▴ Figure 7. (a) Temporal evolution of clusters with respect to PC
1 (see the Ⓔ Supplemental Content for results for PC 2). Shear
stress curves are color coded corresponding to their respective
cluster color defined by PC 1 and PC 2. The clusters reveal a dis-
tinct and systematic temporal trend as failure approaches.
(b) Zoom showing details of how the clusters evolve as failure
approaches. Whereas the early stages of the interseismic period
are mapped to the yellow cluster, the latter stages are mapped to
the magenta cluster. The coseismic phase is further divided into
the green and blue clusters.

▴ Figure 8. Comparison of PC 1 and PC 2 as a function of shear
stress. In (a,b), we plot data for all seismic cycles analyzed in this
study (Fig. 2b), color coded by cluster. Note that the partitioning of
data into clusters by the ML algorithm is reproducible across
multiple lab seismic cycles and labquakes. Plotting the acoustic
data as a function of shear stress illuminates the relationship
between cluster transitions (e.g., yellow to magenta), and it
becomes clear that the transition from yellow to magenta occurs
when the fault has reached its peak strength. Acoustic data asso-
ciated with the coseismic phase are mapped to the green and
blue clusters.
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differences found in the PCA result from differences in the
features themselves and not the number of clusters found.

One potential drawback of clustering in PC space is the
loss of a physical meaning behind the clusters; because each PC
is a linear combination of 43 features scaled by an eigenvector
coefficient. Our data show that the coefficients for the first
two PCs are similar for most features, implying that they
are equally important in explaining the data variance (see the
Ⓔ Supplemental Content). However, several of the amplitude-
based features in PC 1 and PC 2 have large coefficients relative
to other features, indicating that they are more important rel-
ative to the other features in explaining the data variance.

Our ML approach compares well with the traditional
approach of monitoring failure in the laboratory using the b-
value of AE events (Goebel et al., 2013; Rivière et al., 2018).
However, our approach extends to both quasiperiodic failure
events and aperiodic failure events with significant fault creep
and minor events associated with small stress drops (Fig. 8).
A key problem with application of b-value to failure prediction
is that it often shows a continuous decrease as failure approaches
(Goebel et al., 2013; Rivière et al., 2018), without any clear con-
nection to the time to failure. The clustering in variance–kur-
tosis space shows a similar limitation, but results in PC space
suggest that with additional features, the cluster transitions could
be related quantitatively to the time to failure.

A comparison of the methods explored in this study sug-
gests that clustering in PC space offers a more systematic
and reliable precursory trends to failure. The clusters defined
by the PCs show systematic changes as failure approaches.
These changes occur for every slip cycle analyzed, and they
occur at the same points during the lab seismic cycle (Fig. 8).
However, further work is needed to provide better temporal
resolution and to document precursory trends for a wider
range of conditions. One possibility is that additional informa-
tion could be found using another ML algorithm, different
statistical features, or with a more direct connection between
an unsupervised ML approach and supervised ML. These are
useful directions for further study.

CONCLUSIONS

We explore the use of unsupervised ML for characterizing
acoustic signals during the laboratory seismic cycle. We apply
an unsupervised ML technique to a known dataset, for which
supervised ML can predict the time to failure for repetitive fail-
ure events. Overall, the unsupervised approach is less informative
of the physical state of the fault than its supervised counterpart.
However, the unsupervised ML cluster analysis is successful in
identifying patterns in the statistics of acoustic signals throughout
the seismic cycle when using all 43 statistical features. Clusters
formed from the two most important features identified by
supervised ML analysis, variance and kurtosis, define transitions
but these do not provide reliable new information on impending
failure. However, the ML cluster analysis using the two primary
eigenvectors defined by a PCA of all 43 statistical features of the
continuous acoustic signal reveals clear precursors to failure. The

precursors are identified in all slip cycles analyzed and occur
when the fault has reached its peak strength.

Both of our cluster analyses are consistent with temporal
trends observed in the seismic b-value over the complete cycle
of shear loading to failure (Rivière et al., 2018). We find that
although it is possible to infer the stress state of a laboratory
fault during the laboratory seismic cycle with supervised ML,
such detailed information cannot be found when feeding
the same statistics into an unsupervised ML algorithm.
Nonetheless, the simplicity of unsupervised ML compared
with supervised approaches and the fact that it does not require
large labeled training datasets is likely to make it a valuable
complementary tool when tackling large-scale data. Our work
shows that unsupervised ML algorithms hold promise for iden-
tifying precursors to seismic failure; however, further work is
necessary to develop this approach into a reliable tool that
could have an impact in seismic hazard analysis.
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