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ABSTRACT

A macroscopic geological structure can geometrically map a local rock 
material anisotropy into a larger volume that may have different net anisotro-
pic properties on a scale to which seismic waves respond. The bulk structure’s 
anisotropy intensity, symmetry type and orientation of symmetry axes will 
generally be different from the local rock; a typical crustal rock with material 
fabric showing slow-axis transverse isotropy can be converted, for example, 
into a bulk structure that is weaker fast-axis orthorhombic or lower symmetry. 
We define this modification as “structural geometric anisotropy” (SGA). The 
seismic anisotropy signals produced by this structure are influenced by the 
length scale of seismic waves: shorter wavelengths respond to each larger 
part of the structure (path integration) whereas longer wavelengths respond 
to just the bulk average of all parts (effective medium). We present a tensor 
formulation that under certain conditions can decompose an anisotropy-filled 
structure into its macroscale structural geometry separated from infilling 
rock types. When a single representative rock material can be substituted for 
local rocks with fabric, the orientation operators that describe the structure’s 
geometry can be separately volume averaged to produce a unique “structural 
geometry operator” that can then be used to define the equivalent structure’s 
effective medium. We illustrate these principles using common geometrical 
structures and show as an example the progressive modification of seismic 
anisotropy produced by cylindrical folding. Due to the widespread distribu-
tion of crustal tectonic structures, their effects on seismic anisotropy should 
be incorporated into interpretations of seismic anisotropy. The assumption of 
slow-axis transverse isotropy in crustal volumes is not always valid.

INTRODUCTION

Seismic anisotropy is the cumulative interplay between propagating seis-
mic waves and anisotropic earth material. Unraveling this effect in deformed 
crustal rocks is complex due to 3-D geological geometry and heterogeneity, 
seismic waves of limited bandwidth or selected travel paths, field experiments 

that may not offer full azimuth/inclination coverage, and the observation of 
anisotropy as often second-order waveform or traveltime features. Yet diverse 
studies of rock fabrics, metamorphic processes, and petrophysical properties 
associated with tectonic deformation reveal the common presence of strong 
elastic material anisotropy that will produce seismic anisotropy (e.g., Chris-
tensen, 1965; Kern and Wenk, 1990; Barruol and Mainprice, 1993; Christensen 
and Mooney, 1995; Godfrey et al., 2000; Cholach and Schmitt, 2006; Lloyd et al., 
2009; Almqvist and Mainprice, 2017). Aligned cracks in the seismogenic crust 
have long been known to produce observable seismic anisotropy indicative of 
upper crustal stress fields near major faults or volcanic regions (e.g., Anderson 
et al., 1974; Hudson, 1981; Leary et al., 1990; Cochran et al., 2006; Savage et al., 
2010; Almqvist and Mainprice, 2017).

Seismic anisotropy in the crust due to deformational and metamorphic 
fabrics has become increasingly observed using a variety of seismic body 
and surface wave phases (e.g., Brocher and Christensen, 1990; Carbonell and 
Smithson, 1991; Ozacar and Zandt, 2004; Sherrington et al., 2004; Readman 
et al., 2009; Lin et al., 2011; Bostock and Christensen, 2012; Okaya et al., 2016). 
More recently, studies that calculate seismic velocities from rock fabrics im-
aged with neutron or electron backscatter diffraction techniques suggest fabric 
anisotropy can have orthorhombic or lower symmetry (Ivankina et al., 2005; 
Lloyd et al., 2009, 2011). We show in this study that fabric-filled large-scale geo-
logical structures having 2-D or 3-D geometry can also produce lower orders of 
symmetry and hence can create seismic anisotropy signals that are inherently 
not two-cycle in azimuthal periodicity. Thus we conclude the starting assump-
tion in seismic analysis methods that crustal anisotropy is slow-axis transverse 
isotropic is not always valid.

Recent studies in central Europe illustrate observations of two end-
member scales of anisotropic structures: (1) bulk (uniform) regional medium 
and (2) structural modification of local rock anisotropy. For bulk medium, 
 ́Sroda (2006) identified clear evidence of regional azimuthal P-wave anisotropy 
using CELEBRATION-2000 explosion first arrivals inverted for compressional 
velocity. This result was attributed to early Proterozoic meta-sedimentary layer-
ing tightly folded into a near-vertical orientation on a regional scale. Similarly, 
using 9-km-deep vertical seismic profiling data at the KTB deep drill hole site, 

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/doi/10.1130/GES01655.1/4599578/ges01655.pdf
by guest
on 09 January 2019

http://geosphere.gsapubs.org
http://geosphere.gsapubs.org
https://doi.org/10.1130/GES01655.1 
https://doi.org/10.1130/GES01655.1
http://www.geosociety.org
http://www.geosociety.org/pubs/openAccess.htm
http://www.geosociety.org/pubs/openAccess.htm


Research Paper

2Okaya et al.  |  Seismic structural geometric anisotropyGEOSPHERE  |  Volume 15  |  Number 1

Okaya et al. (2004) showed that despite significant interlayering (O’Brien et al., 
1997), the high-grade metamorphic Bohemian massif in southern Germany 
can be characterized on a seismic scale as a regional bulk tilted transverse 
isotropic medium.

For the other end-member of structural modification, Bleibinhaus and Geb-
rande (2006) interpreted regional horizontal fast-axis symmetry from crustal 

seismic data in the Tauern Window, Swiss Alps. This symmetry was seemingly 
enigmatic because this region is geologically composed largely of (slow-axis 
symmetry) mica-rich phyllites and gneisses. These authors recognized that in-
ternal folding can redefine the regional-scale symmetry and thus alter the seis-
mic response within their data. Figure 1A schematically illustrates how simple 
cylindrical folding of slow-axis symmetry fabric can become a net volume of 
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Figure 1. Anisotropy symmetry associated with structural folds of fabric. 
(A) Layer of fabric that is sinusoidally folded but infinitely long in the 
third dimension. Orientation of fabric for one fold wavelength shown 
using thick dashed line. Sinusoidal fold described using wavelength (L), 
fold amplitude (A), and fold limb angle (qo). If the fabric exhibits local 
material anisotropy that is slow-axis transverse isotropy, the layer can 
exhibit aggregate weak fast-axis orthorhombic symmetry, with the fast-
axis in the fold hinge direction. (B) Antiform structure of Ragua schist, 
Betic Mountains, Spain (Martínez-Martínez et al., 2002). The anisotropic 
responses will differ for a short wavelength seismic wave cutting across 
the fold (left-right) and a wave traveling parallel to its hinge (in-out of 
photograph). Long-wavelength upward teleseismic waves might not 
separately sense the hinge and limbs but respond to just the gross-scale 
(averaged) shape of the structure.
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fast-axis lower symmetry anisotropy. An implication is that the use of outcrop 
or hand sample-sized volumes to obtain seismic velocities via petrophysical or 
thin-section–based measurements may not be sufficient to characterize the re-
gional anisotropy. The larger scale structural geometry of the anisotropic rocks 
needs to be assessed.

In this study, we show that the contributions of structural geometry to mod-
ify seismic anisotropy and as possible factors during seismic data analysis are 
significant. Here, we define “structural geometric anisotropy” (SGA) (see Table 
1 for notation used within this study) as the alteration of seismic anisotropy 

that is produced by the 2-D or 3-D geometry of common crustal structures 
that contain internal rock fabric which locally is intrinsically anisotropic. Many 
common crustal rocks are elastically anisotropic owing to the inherent anisot-
ropy of the constituent minerals as well as microstructural characteristics such 
as crystallographic or shape fabric. When these rocks are deformed into large 
structures such as folds, domes or shear zones, the anisotropic elastic proper-
ties of the rock are locally rotated across the structure. As a result, the struc-
ture’s larger scale volume can have its own bulk anisotropic properties. This 
effect is different from “structural anisotropy” that refers to seismic anisotropy 

TABLE 1. NOTATION USED WITHIN THIS STUDY

Symbol or abbreviation Description

Anisotropic media
SGA Structural geometric anisotropy.
TI Transverse isotropy.
VTI, HTI, TTI Vertical-axis TI, horizontal-axis TI, tilted-axis TI.
subscript 0° Hexagonal/TI symmetry axis.
subscript 90° Symmetry plane (fabric) perpendicular to TI symmetry axis.
VP0°, VS0° P-wave, S-wave velocities propagating parallel to TI symmetry axis.
VP90°, VS90° P-wave, S-wave velocities propagating perpendicular to TI symmetry axis (S-wave vibration also within plane of fabric).
VP45° P-wave velocity in 45° direction from TI symmetry axis; this value directly defines if velocities behave as elliptical or “full” TI.
slow-axis TI symmetry Symmetry axis velocities slower than in perpendicular plane (VP0° < VP90°; VS0° < VS90°).
fast-axis TI symmetry Symmetry axis velocities faster than plane (VP0° > VP90°; VS0° > VS90°).
a-b-c Orthorhombic symmetry axes, a = lineation, a-b = foliation plane, c = normal to foliation plane.
VPa P-wave velocity in a-axis direction.
VP45ac P-wave velocity in 45° diagonal direction between a and c axes.
VSac S-wave velocity propagating in a-axis direction with particle motion in c-axis direction.
C(x,y,z) Rock elastic stiffness tensor at external coordinate position x-y-z.
Cmnop or Cij Elastic stiffness elements: m,n,o,p = 1–3; i,j = 1–6 (Voigt notation).
aij Directional cosines to relate stiffness tensor to external x-y-z coordinate frame. i,j = 1–3.
M(x,y,z); MT(x,y,z) Voigt notation transformation matrix and its transpose (6 × 6 rotation operator).

Media for this study
C*; C*mnop; C*ij Effective medium stiffness tensor; individual elements: m,n,o,p = 1–3; i,j = 1–6 (Voigt notation).
Crep; Crep

mnop; Crep
ij Representative rock stiffness tensor; individual elements.

SGO; SGO Structural geometry operator (rotation operator); abbreviation (italics); tensor in equation (bold).
EMs; EMs Structural effective medium; abbreviation (italics); tensor in equation (bold).

Sinusoidal folds
L Scale of anisotropic structure, or fold wavelength.
A, θo , A/L Fold amplitude, fold limb angle, fold aspect ratio.

Seismic waves and anisotropy
λ Wavelength of seismic wave.
P Compressional wave.
SV, SH Shear waves with vertical or horizontal particle motion.
δt, ϕ Shear-wave splitting parameters of splitting (delay) time, and direction (back-azimuth) of fast shear wave.
2θ cyclicity or pattern (4θ) Seismic information that varies twice within 360° of propagation back-azimuth (i.e., two-cycles). Similar definition for four-cycle variation.
L-Q-T Seismic raypath coordinate frame equivalent to P-SV-SH phases, respectively.
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produced by alignment of (isotropic) features or fine layering such as strata 
(e.g., Backus, 1962; Babuška and Cara, 1991).

Seismic waves are sensitive to volumes of rock at scales ranging from the 
10s to 1000s of meters. For example, Figure 1B shows a km-scale antiform 
composed of Ragua schist in the Betic Mountains, southern Spain (Martínez-
Martínez et al., 2002) that illustrates how structural geometry can affect the 
production of anisotropic seismic signals. Relatively short wavelength seismic 
waves may resolve individual parts of this structure. These waves may pick 
up different anisotropic characteristics depending on propagation direction 
across the fold limbs, parallel to the fold hinge (in-out of the photograph), or 
at an oblique angle to the limbs. However, an upcoming long-wavelength tele-
seismic wave will average through fine structure and just respond to the bulk 
structure. Representation of this fold volume as a long-wavelength effective 
medium will remove complexities of the finer scale details while still preserv-
ing the net anisotropic properties and resulting bulk seismic response.

We present in this study the role of large-scale geometry as applied to 
anisotropic fabrics and illustrate the SGA effects of several basic geometrical 
structures. We also use tensor algebra to show that under specific but major 
simplifying conditions, one can separate the geometrical orientation terms 
from a local already-anisotropic rock. This separation allows one to quantify 
the role of macroscale structure independent of the rock’s microscale material 
anisotropy when trying to understand the cause of observed seismic anisot-
ropy signals. We demonstrate this separation using simple sinusoidal folds. 
Seismic compressional and shear wave velocities derived from SGA elasticity 
reveal complex angular variation in seismic anisotropy can exist. We illustrate 
these concepts with numerical (synthetic) anisotropic wave propagation ex-
amples. The main focus of our study is to understand the effect of structural 
geometry on seismic anisotropy; we are not solving for exact volume averag-
ing or homogenization of folded structures.

SCALES OF MATERIAL ANISOTROPY

Fabrics as a Cause of Crustal Material Anisotropy

Metamorphic and deformational processes produce fabrics such as schis-
tosity that can be localized within deformational zones or form extensive pen-
etrative regions of foliated rock. Laboratory investigations (e.g., Birch, 1958; 
Christensen, 1965; Fountain and Christensen, 1989; Weiss et al., 1999) show 
that most crustal metamorphic rocks are highly anisotropic due to preferred 
orientations of anisotropic silicate minerals. Material anisotropy can be se-
vere; P-wave anisotropy in crustal foliated rocks (e.g., schists, gneisses, and 
amphibolites) may be as high as 17%–20% and S-wave anisotropy for phyllo-
silicate rocks as high as 25%–30% (Johnston and Christensen, 1995; Godfrey 
et al., 2000). In contrast, olivine-rich mantle rocks such as dunites average only 
5%–6% (Christensen and Mooney, 1995). Crustal metamorphic rocks are often 
approximated as having slow-axis transverse isotropic symmetry.

A rock’s microstructure (or fabric) can be defined by the following charac-
teristics of its constituent phases (minerals ± fluids): (1) spatial arrangement, 
(2) shapes, (3) modal abundances, (4) crystallographic preferred orientations 
and (5) shape preferred orientations. Each of these microstructural factors in-
fluences the bulk elastic properties of the rock and therefore must be taken 
into account to determine a precise rock stiffness tensor. These dependencies 
are caused by the cumulative effects of grain-scale mechanical interactions 
throughout a heterogeneous sample. We do not examine these microscale fac-
tors in this study and refer readers to studies of seismic anisotropy caused by 
microfabrics (e.g., Lloyd et al., 2009; Naus-Thijssen et al., 2011a, 2011b; Cyprych 
et al., 2017; summarized in Almqvist and Mainprice, 2017).

Production of Observable Seismic Anisotropy Signals

The alteration of a seismic signal that traveled through anisotropic earth 
can take different forms: traveltime advance or delay as a function of wavepath 
direction, alteration in particle motion, splitting of shear waves, or amplitude 
variation of a reflected or converted wave, all sensitive to wave direction. The 
wavelength of a propagating seismic wave compared to the length scale of the 
anisotropic earth feature directly affects the production of anisotropic signals. 
As is discussed below, the ratio of these length scales will determine if a wave 
accumulates signal along its path (e.g., raypath integration), responds to only 
a bulk average of fine-scale anisotropic earth, or may pass through and not 
“sense” any material anisotropy.

In addition, the amount of signal that a wave may pick up is related to 
the amount of exposure to anisotropic material in two ways: (a) the wave’s 
length of path in the material, or (b) the intensity of the material anisotropy. 
An azimuthal P-delay or shear wave splitting time can be represented as  
dt = Dpath*Dslowness. The longer the wave travels within anisotropic material, 
Dpath, the larger the produced seismic anisotropic signal. On the other hand, 
the strength of material anisotropy here is Dslowness = (1/Vslow–1/Vfast) which is 
related to anisotropy percentage. A split shear wave may be observable if path 
length or anisotropy percentage is large, even if the other is small. The relative 
raypath angles through the material are very important, particularly if the ma-
terial changes strike or dip due to structure.

Scales of Waves and Structures

When a wave of length l travels through material in which the scale of the 
anisotropic structure is L, then three cases can be considered (Fig. 2).

Case 1: L >> l. When the anisotropic structure is much longer than the 
wave, the wave responds to each encountered segment of geology, and aniso-
tropic signals will be accumulated along its path (e.g., path integration). The 
geology can be heterogeneous, the material anisotropy can change, and the 
seismic expression of anisotropy can change along the path.
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Case 2: L ≈ l. Anisotropic feature is about the same length of the wave. 
If the geological feature is isolated, then the seismic wave may pick up dis-
tinct identifiable phases, such as a reflection or transmitted conversion. This is 
similar to Case 1. If the feature is not isolated but is part of a more pervasive 
volume, the wave may respond to the net pattern. This is similar to case 3. An 
example of this latter situation is if a large layer contains local folding on the 
order of or shorter than the wave’s length. We also note that l/4 to l/8 is com-
monly used as the resolution limit for seismic reflections of thin layers (e.g., 
Widess, 1973).

Case 3: L << l. the scale of anisotropic structure is much shorter than the 
wave (the long-wavelength case). The wave will be insensitive to individual 
small features but will respond to the net aggregate volume. This situation ap-
plies when an earth volume much larger than the wave is filled with small 
scale features. Complex earth volumes can be represented as effective media; 
simplified media that remove complexities but exhibit equivalent wave prop-
agation behavior. Concepts of effective media for seismic wave propagation 
are well established with a wide range of applications. These applications in-
clude spatial averages of elastic heterogeneity using methods such as Voigt 
(1928), Reuss (1929), Hill (1952), or combinations thereof, or modern homog-
enization methods obtained from material sciences (e.g., Naus-Thijssen et 
al., 2011a, 2011b; Capdeville et al., 2010, 2013; Vel et al., 2016). Effective media 
theory is also applied to fractured rocks having crack alignment/density or flu-
ids (e.g., O’Connell and Budiansky, 1974; Anderson et al., 1974; Budiansky and 
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Figure 2. Comparison of seismic wavelength to scale of geologic feature. When the wavelength 
is much larger than earth features, the earth can be treated as an effective media. Line l/8 is the 
resolution limit for seismic reflections. EQ—earthquake; mt—mountain; res—resolution.

O’Connell, 1976, Crampin, 1981; Hudson, 1981; Douma, 1989); scattered me-
dia (Wu, 1989); and anisotropy due to subparallel thin layers that are isotropic 
(Backus, 1962) or anisotropic (Schoenberg and Muir, 1989). Equivalent media 
for aligned anisotropic mineral grains (crystallographic preferred orientations) 
can be determined using elastic tensor averaging methods (references within 
Mainprice, 2015); anisotropy of aligned isotropic bodies (shape preferred ori-
entations) requires advanced methods of homogenization (e.g., Naus-Thijssen 
et al., 2011a, 2011b; Capdeville et al., 2010, 2013; Vel et al., 2016) or statistical 
analysis (Song and Jordan, 2017). Effective media derived from intrinsic aniso-
tropic materials or from isotropic heterogeneity can produce similar seismic 
signals (Levshin and Ratnikova, 1984; Fichtner et al., 2013), highlighting the 
non-uniqueness of seismic waveform interpretation.

A primary condition for an effective medium is that the seismic wave un-
der consideration is much longer than the scale of heterogeneity (i.e., Case 
3). The heterogeneities can be compositional, and/or variations in degrees 
of anisotropy or structural orientation. Our definition of SGA applies only 
within this long-wavelength case. More specifically, we examine effective 
media for geometry of rocks that are intrinsically anisotropic. Our study here 
does not apply to structural geometry of isotropic rocks. We use established 
averaging and homogenization methods in this study in order to focus on 
structural orientation.

REPRESENTATIVE ROCK FABRICS USED IN THIS STUDY

In this study we illustrate the effects of SGA as applied to local fabrics 
that are defined using real rock samples. While later in this study we use ma-
terial symmetries that include full transverse isotropy and orthorhombic, we 
first employ elliptical transverse isotropy, one of the simplest symmetries, in 
order to demonstrate SGA effects without the complexities that lower order 
symmetries contribute. The rock samples we use represent three rock types: 
a schist (from the Orocopia Formation, southeast California), a slate (Central 
Range, Taiwan), and a gneiss (Nanga Parbat, Pakistan). Anisotropic seismic 
velocities and elastic stiffness tensors for these samples are listed in Appen-
dix 1, Tables A1 and A2, respectively. Laboratory acoustic measurements were 
obtained by N. Christensen (personal commun., 2017) for the schist and slate 
samples. Based on fabric and lineations, each has nine measured velocities 
that define orthorhombic symmetry (P-wave velocities in three axial and three 
diagonal directions plus S-wave velocities in three axial directions). As de-
scribed in Appendix 1, these orthorhombic measurements were simplified 
into full transverse isotropic (TI) symmetry by averaging the nine into five 
“measurement” velocities. This full TI symmetry was reduced to elliptical TI 
by further averaging from five to four velocities. The gneiss sample was mea-
sured by Meltzer and Christensen (2001) with five measurement velocities for 
full TI symmetry. We then defined its elliptical TI symmetry (Appendix 1). Elas-
tic tensors for all samples were calculated from the seismic velocities using 
Christoffel equations (Auld, 1973).
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Representative Rock Fabric and Its Seismic Velocity Anisotropy

In the following sections we describe the effect of structural geometry on a 
volume filled with anisotropic rock fabric. For illustrative purposes we use the 
elliptical TI version of the schist as a representative fabric that becomes mod-
ified by structure. The seismic P-wave velocities (VP) of this schist measured 
at 200 MPa (~7 km depth) are 5500 m/s normal to its foliation and 6865 m/s 
parallel to foliation; the corresponding S-wave velocities (VS) are 3160 and 
4040 m/s, respectively (Fig. 3A; Appendix 1). The diagonal VP value is set to 
the average of the two axial VP velocities based on the definition of elliptical 
TI symmetry (Auld, 1973). These velocities are used within Christoffel equa-
tions to obtain the velocities in all propagation directions (Auld, 1973). Figure 

3A illustrates these velocity variations for propagation angles as referenced 
from the foliation normal which serves as the symmetry axis. The difference 
in the two VS curves indicates the possible production of shear wave split-
ting. The relative velocities in the axial directions define a characteristic of the 
anisotropy symmetry. When the velocities associated with the symmetry axis 
direction are slower than in the perpendicular direction (foliation plane), the 
symmetry is “slow-axis” (Figs. 3A, 3B). Levin and Park (1998) discussed the 
differences between slow- and fast-axis symmetries (e.g., their “pumpkins” 
and “melons”); Brownlee et al. (2017) provided additional characteristics of 
this terminology.

We replot these velocity curves in spherical coordinates using wave direc-
tion azimuth and inclination through the rock sample. The sample is oriented 
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with its symmetry axis vertical and its foliation plane aligned horizontal with 
the “equator” of the sphere (“Orig” in Fig. 3B). Christoffel equations are used 
to solve for the P- and S-wave particle motions (e.g., Auld, 1973; Mainprice, 
1990). We display the velocities and particle motions on the sphere surfaces 
by showing VP and translating the two VS into the equivalent amount of shear 
wave splitting (dt) per kilometer of propagation path. The S-wave particle mo-
tion bar (red) is the fast-S direction. Here, dt is an alternative to VS percentage 
as a way to illustrate the amount of VS anisotropy. The velocity patterns on the 
sphere surfaces are a direct expression of the underlying rock elastic tensor 
and easily convey the tensor’s anisotropy symmetry and tilt orientation.

With the rock sample oriented with its symmetry axis vertical, its velocity 
sphere patterns represent vertical-axis TI (VTI) symmetry or seismic radial an-
isotropy (Fig. 3B). The faster VP directions are clearly visible along the equator 
as are the larger S-wave splitting times. If the fabric and its elastic tensor 
are rotated by 90° so that the foliation plane is vertical, this orientation is 
horizontal-axis TI (HTI) symmetry or seismic azimuthal anisotropy. The 2q az-
imuthal variations are noticeable not only along the equator but at oblique 
propagation directions. An inclined elastic tensor representing geological dip 
has tilted-axis TI (TTI) symmetry. Even though the fast zones are not aligned 
with the sphere axes, the characteristic of TI symmetry is easy to identify 
within the velocity patterns (Fig. 3B).

The elastic stiffness tensor for this representative fabric is: C11 = 132.666, 
C33 = 85.154, C55 = 28.109, C66 = 45.945, and C13 = 46.372 (in GPa), using Voigt 
notation with indices mapped to coordinate axes using 1 = x, 2 = y, and 3 = z. 
Other elements are C22 = C11, C44 = C55, C23 = C13, and C12 is calculated from C11 
and C66 (see Appendix Table A2). All other elements are set to zero, and the 
tensor is diagonal symmetric. We apply elastic tensor decomposition in order 
to obtain a descriptive measure of the amounts of anisotropy within the tensor 
(Baerheim, 1993; Browaeys and Chevrot, 2004). This decomposition identifies 
tensor element patterns that match those of five orders of anisotropic symme-
try (i.e., hexagonal, orthorhombic, tetragonal, monoclinic, and triclinic) after 
removing the isotropic contribution. Beneath each tensor sphere in Figure 3 
and in the remaining figures, we provide three values that represent the TI, or-
thorhombic, and sum of all remaining lower symmetries as percentages of the 
original tensor. The net sum of these three values represents the total amount 
of anisotropy, and the net sum subtracted from 100% represents the isotropic 
component. The elastic tensor for the representative fabric shown in Figures 
3A and 3B is 81.3% isotropic and 18.7% TI, with no amounts of orthorhombic or 
lower symmetries. The use of decomposition values when comparing two ten-
sors allows for the difference in their anisotropy to be more easily identified.

EXAMPLE OF SGA: CYLINDRICAL FOLDS

In this section, we illustrate the modification to anisotropy that geometry 
can impart, using the example of a rock fabric that is sinusoidally folded (cy-
lindrical fold). We define a layer filled with our representative fabric that starts 

out with horizontal foliation, then fold it and examine its bulk anisotropic prop-
erties. The sinusoidal folds are defined in the x-z cross-sectional plane using 
z(x) = Asin(2px/L) where L is fold wavelength, A is amplitude, and its shape is 
characterized by the fold limb angle q0 = tan–1(2pA/L). We assume the folds are 
infinitely long in the third dimension, y, defining cylindrical folds (Fig. 1A). We 
create a finely discretized numerical volume of length L with each subvolume 
containing our schist, tilted to conform to the shape of the fold. The bulk fold 
properties are represented by an averaged elastic tensor calculated by sum-
ming the subvolumes’ tilted tensors across one wavelength of fold.

For a fold described with fold limb angle q0 = 45°, we calculate its net vol-
ume tensor using the Voigt, Reuss, Hill, and asymptotic expansion homogeni-
zation (Naus-Thijssen et al. 2011a, 2011b; Vel et al., 2016) methods mentioned 
above. Figure 3C shows the seismic velocities obtained from these tensors. 
Symmetry decomposition percentage values (TI/orthorhombic/lower order) 
are also shown. There are three relevant observations. First, the anisotropy 
symmetry patterns for the fold are significantly different than that of the 
unfolded rock and its VTI-HTI-TTI orientations (Fig. 3B). The unfolded rock is 
18.7% TI with no orthorhombic or lower contributions. Regardless of the av-
eraging method, the fold has developed a larger component of orthorhombic 
symmetry (4.7%–6.1%) and a decreased amount of TI symmetry (6.3%–6.8%). 
This fold of unit wavelength has horizontal fast-axis orthorhombic symmetry, 
where one axis is much faster than the other two that are similar to each other, 
even though the internal rock is locally slow-axis TI. The sinusoidal tilting of 
the foliation in the x-z plane tends to moderate the averaged velocities in this 
cross-sectional plane, whereas the velocities in the y (fold hinge) direction are 
unchanged, producing the fast-axis orthorhombic symmetry. Second, the fold 
contains a lower amount of total anisotropy compared to the rock fabric that 
fills it. This is expressed in the anisotropic components of the symmetry de-
composition. The rock fabric has net 18.7% anisotropic components. The fold 
has net 11.5%–12.5% anisotropy across the averaging methods. The structural 
folding has muted the anisotropy that would be measured from a local sam-
ple of the fabric. Third, comparison of tensor averaging methods reveals only 
second-order differences among the averaged results. These differences are 
less significant compared to the first-order change produced by the structural 
folding (SGA) of the original anisotropic rock.

Severity of Folding

We calculate the effective media for a series of folds of increasing steep-
ness as expressed by fold limb angle. The numerical values of these effective 
medium tensors are provided in the Supplemental Material1. We show the SGA 
velocities of this series in Figure 4. At a limb angle of q0 = 0° the medium is 
essentially the same as the original unfolded VTI rock (Fig. 3). The progres-
sion of fold limb angle from horizontal to vertical (Fig. 4C) correlates with the 
horizontal bulk schistosity becoming turned on-end. However, the fold elastic 
tensor does not simply rotate from horizontal to vertical slow-axis symmetry 

1Supplemental Material. Five files are provided. 
(1) A text readme file describing the supplemental 
material files. (2) A table of elastic tensor 
coefficients for effective media used in this paper 
(spreadsheet file). (3) A series of plots displaying 
cylindrical fold structural geometric anisotropy 
(PDF file). (4) A table of the rotation matrix for an 
elastic tensor in 21 x 1 vector format (PDF file). 
(5) Computer source code to define and apply a 
rotation of a 21 x 1 elastic tensor vector (text file). 
Please visit https://doi.org/10.1130/GES01655.S1 
or access the full-text article on www.gsapubs.org 
to view the Supplemental Material.
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but changes from vertical slow-axis (q0 = 0°), weakly orthorhombic with vertical 
slow-axis as expressed in the 2.1%–4.8% orthorhombic component of sym-
metry decomposition (q0 = 30–45°), horizontal fast-axis TI (q0 = 60°; 0% orthor-
hombic component), orthorhombic with horizontal slow-axis (q0 = 75°; 4.2% 
orthorhombic component), to strong horizontal slow-axis (q0 = 90°). The overall 
amounts of anisotropy for the folds are less than that of the representative 
fabric that fills them. These systematic changes are well illustrated in Figure 
4 and in an animation of velocity spheres for all fold limb angles between 0 
and 90° (see Supplemental Material [footnote 1]). Propagation directions of 
strongest shear wave splitting change as fold limb angle increases. As can be 
seen in Figure 4, seismic anisotropy signatures and azimuthal patterns differ 
significantly based on fold severity.

ANISOTROPIC SYNTHETIC SEISMOGRAMS ILLUSTRATE EFFECT 
OF FOLDING

Elastic tensors and velocity spheres describe the bulk characteristics of a 
structure that is filled with anisotropic material, but seismic waves that travel 
through the structure offer a more direct demonstration of anisotropic effects. 

We illustrate the seismic response of the above fold cases using synthetic 
anisotropic wave propagation in an earth model that contains a horizontal 
layer internally filled with folds. In examples presented here, we compare azi-
muthal variation in seismograms through the folds and then the effects of fold 
wavelength (differing fold limb angles). We also show synthetic seismograms 
in unfolded VTI and HTI layers for calibration.

The earth model has map dimensions of 60 × 60 km plus 30 vertical km, 
discretized at 100 m grid spacing (Fig. 5). The model contains two layers, of 
which the shallower layer (0–10 km depth) contains anisotropic material that 
will be folded at different fold wavelengths. The lower background layer (10– 
30 km) has seismic velocities defined by a 1D isotropic P-wave gradient from 
5600 to 6800 m/s with S-wave velocities defined using a Poisson’s ratio of 
0.25 and density of 2670 kg/m3. We used a 3-D finite difference elastic wave 
propagation code that uses full elastic tensors and allows for full heteroge-
neity in composition and anisotropy symmetry/orientation (e.g., Okaya and 
McEvilly, 2003). A point source was positioned at the center in map view at a 
depth of 5 km (Fig. 5A). The source used a 3 s to 2 Hz narrow band waveform 
whose wavelength is ~2.5 km at a propagation velocity of 6 km/s (Fig. 5D). This 
source was propagated first as an explosive P-wave for 20 s at 0.005 s sam-
pling in the synthetic calculations, then as a radial SV source. For each source,  
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three-component seismograms were collected every one arc-km (1°) along a 
circle array of radius 20.0 km centered over the source point (Fig. 5A). This 
source-to-array geometry produces oblique raypaths of nominal 75° incidence 
angle. The propagation code used an absorbing boundary condition at the top 
surface in order to suppress P-SV conversions and surface waves. Finally, we 
note that this synthetic modeling example was very idealized and resulted in 
exaggerated amounts of seismic anisotropy signals, such as arrival times and 
shear wave splitting delay times.

Unfolded Material Anisotropy Layers for Reference

For calibration, the first earth model scenario has no folding within the 
anisotropic layer. The layer is filled with the representative fabric uniformally 
oriented with vertical symmetry axis so that the fabric is only horizontal. Fig-
ure 3B-VTI thus represents the local rock at each individual model node as 
well as the bulk properties of the entire layer; the layer has radial symme-

try. The synthetic seismograms collected along the circle array are shown in 
Figures 6A and 6B. The three-component x-y-z seismograms are rotated into 
L-Q-T, a raypath coordinate frame (Plesinger et al., 1986) that maps compres-
sional energy (P-wave) into the ray-parallel direction (L), radial shear wave 
energy (SV) into the sagittal plane (Q), and the second shear wave (SH) into 
the transverse direction (T). These phases appear in the synthetic seismo-
grams as functions of source-to-receiver azimuth. For this VTI model, each 
phase has constant arrival time in agreement with the layer’s radial symme-
try. The transverse SH (T) is the earlier arriving shear wave as was predicted 
in Figures 3A and 3B. The highly exaggerated split time delay of the slow-
er-traveling SV (Q) phase is caused by the pure horizontal orientation of the 
anisotropic fabric.

In contrast, we made the opposite end member earth model that has the 
anisotropic layer filled with vertical fabric schist striking parallel to the Y-axis 
direction (Fig. 3B-HTI), representing azimuthal anisotropy. The synthetic seis-
mograms produced by the P and SV sources are shown in Figures 6I and 6J. 
The P-wave arrival (L) is earlier in the 0° and 180° azimuthal directions in the 
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Figure 5. Two-layer earth model for synthetic seis-
mograms that illustrate effect of fabric folding. Top 
horizontal layer between 0 and –10 km is filled 
with the representative fabric that is sinusoidally 
folded (Fig. 3A). The folds are in the x-z plane for 
five wavelength cases: horizontal, (B) 10.883 km, 
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Synthetic seismograms recorded along circle array 
(green triangles) for a point source at –5 km depth 
(yellow star). (D) Source waveform is 3 s to 2 Hz.
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circle array, forming a 2-cycle arrival pattern. Similarly, Q (qS1 in Fig. 3A) also 
shows a 2-cycle pattern with the same fast direction.

Folds Defined by Tilted Tensors across Volumetric Nodes

Figure 4C illustrates the geometry of folds with increasingly steep fold limb 
angle (increasingly large amplitude-to-wavelength ratio). We modeled three 
fold scenarios of q0 = 30°, 60°, and 75°, representing lateral wavelengths of 
10.883, 3.628, and 1.684 km, respectively (Figs. 5A–5C). Fold amplitude was set 
at 1 km. Figures 6C–6H show the circle-array seismograms for the sequence of 
these three-fold scenarios. For q0 = 30°, the P-wave phase (L) shows little arrival 
time variation as a function of azimuth (Fig. 6C). As q0 increases across 60° to 
75°, the P-wave phase picks up more arrival time variation (Figs. 6E and 6G). 
The variation becomes maximal when the fold limb angle is vertical and the 
anisotropy fabric possesses full azimuthal seismic anisotropy (Fig. 6I).

The length of the S-wave source is short with respect to the wavelength 
of the 30° folds (Fig. 6D) and responds to individual fold limbs, crests, and 
troughs. This fold model results in complex Q and T shear-wave arrival pat-
terns. As q0 increases to 60°–75° (Figs. 6F and 6H), the fold wavelengths ap-
proach and become shorter than the source pulse length. The shear-wave 
arrivals remain complex. Scattering increases due to the compactness of 
the fold crests and troughs. From steep (q0 = 60°) to vertical folds, the fast 
shear wave switches from T to Q (SH to SV). The dt null directions change 
azimuthal directions.

The anisotropy behavior in these seismograms is in agreement with Chris-
toffel solutions as shown in the effective medium velocity spheres (Fig. 4). 
The incidence angle obliqueness of the modeled source-to-circle array paths 
translates to a wave direction exiting the spheres at 15° north of the equator 
in all azimuthal directions. Careful examination of the fast-S particle motion 
bars along this “latitude” in Figure 4 help identify the Q-T and SV/SH wave 
behavior. For example, for q0 = 75° the particle motion bars indicate fast SV 
motion in 0° and 180° azimuthal directions and fast SH in narrow azimuthal 
windows centered at 90° and 270°. As a result, the first arriving S-wave does 
not have simple 2q azimuthal behavior; in the synthetic seismograms the Q 
and T phases (that is, SV and SH) alternate as to which arrives first (Fig. 6H).

STRUCTURAL GEOMETRIES AND THEIR ANALYTICAL 
MATHEMATICAL FUNCTIONS

Because the production of seismic anisotropy is related to directional de-
pendence of seismic waves with respect to rock properties, structural geome-
tries can be particularly important in the analysis of seismic data. Mathemati-
cal functions have been suggested to describe idealized structural geometries. 
These functions can approximate shapes and provide tilt information for de-
fining anisotropy-filled structures within discretized digital volumes. Figure 7 

shows representative examples of structural geometries and descriptive equa-
tions. Functions that describe folds can be grouped into non-periodic functions 
such as polynomials, power functions and ellipse equations (Hudleston, 1973; 
De Paor, 1996; Bastida et al., 1999; Aller et al., 2004; Bastida et al., 2005) and pe-
riodic functions such as trigonometric functions represented as Fourier series 
and Bessel functions (Currie et al., 1962; Stabler, 1968; Hudleston, 1973; Bastida 
et al., 1999; Jeng et al., 2002; Bastida et al., 2005) (Fig. 7). The power function  
z = [1 - (1–4x/L)n]1/a can describe folds such as chevron (n = 1, a = 1), parabolic 
(n = 2, a = 1), ellipsoidal (n = 2, a = 2) and box (n > 2, a = 1).

Other classes of structure that may commonly be encountered are doubly 
plunging folds, gneiss domes, salt domes and metamorphic core complexes 
(e.g., Whitney et al., 2004). Each of these can be treated by functions of the 
form z = f(x,y), for example Gaussian functions or 3-D refolding of the sinusoi-
dal or power functions (Fig. 7). For azimuthally symmetrical shapes exhibited 
by many dome and basin structures, surfaces of revolution can be generated 
by rotating the two-dimensional curves about an axis of symmetry. Asymme-
try, irregularity, or higher-order spatial patterns can be superimposed onto 
these functions. Scaling of functions can describe internal fabrics when con-
cordant. Separate functions can be used when the trends of internal fabrics 
are different from the bounding structure. Spatial and volumetric analyses of 
fabric tilt patterns are possible because of the use of differentiable functions.

The SGA effective medium of each structure can be calculated using the 
volume average of a series of subvolume tilted elastic tensors. For example, 
the Voigt average is expressed as:

	 C*ijkl = (1/V) ∫ {aim ajn ako alp}(x,y,z) Cmnop(x,y,z) dV.	 (1A)

where C*ijkl is the effective medium (averaged tensor), Cmnop (x,y,z) is the origi-
nal untilted rock tensor within a subvolume dV, and aim ajn ako alp is the product 
of directional cosines that relate the tilted tensor axes to the untilted rock co-
ordinates (or to a global frame if the rocks are originally defined in that frame). 
This 81-element tensor notation is unwieldy, and the average expressed using 
Voigt notation is more common:

	 C* = (1/V) ∫ M(x,y,z) C(x,y,z) MT(x,y,z) dV,	 (1B)

where C* is the averaged tensor and C(x,y,z) is the subvolume original rock 
tensor, both in 6x6 Voigt notation. The transformation matrix M(x,y,z) and its 
transpose MT (Bond, 1943) are 6x6 rotation operators whose elements contain 
directional cosines that define local structural tilt (see Auld, 1973; Okaya and 
McEvilly, 2003).

For each structure illustrated in Figure 7, we calculated its SGA effective 
medium for a unit shape based on a characteristic length or height, assuming 
the structure is filled with our representative fabric whose foliations conform 
to the shape. The corresponding anisotropic seismic velocities are obtained 
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from the effective medium tensors and are also shown in Figure 7. The shear 
zone and monocline shown in Figure 7 have similar geometrical characteris-
tics—a kink within an overall direction but with different orientations. The fab-
ric in the shear zone is near vertical with a subhorizontal kink related to severity 
of shearing (Fig. 7A). The net fabric trend in the shear zone produces steeply 
tilted TTI symmetry with a trace of orthorhombic symmetry (1.3%). In contrast, 
the monocline is subhorizontal with a gentle-to-steep kink, and its bulk fab-
ric-filled anisotropy is gently tilted TTI symmetry (Fig. 7B). The possible orthor-
hombic-symmetries of sinusoidal folds (Fig. 7C) were described in the previ-
ous sections. A plunging fold is elongate based on its lateral aspect ratio. Its 
bulk anisotropy exhibits orthorhombic symmetry (2.5%) with its fast direction 
parallel to the major fold axis and the slowest direction normal to the dome 
top (Fig. 7D). The largest dt is produced by horizontally propagating S-waves 
across the fold axis. S-waves propagating upward produce small amounts of 
splitting with fast direction parallel to the fold axes. In contrast to plunging 
folds, a dome of fabric has vertical fast-axis TI symmetry (Fig. 7E). Its uniaxial 
shape is expressed in its 6.2% TI and 0% orthorhombic symmetry components. 
Shear-wave splitting dt is largest for horizontal propagation directions and with 
vertical fast-directions. Null splitting is produced in the vertical propagation 
direction. These schematic structures in Figure 7 exhibit a wide range of SGA 
symmetries even though they are all filled with the same slow-axis TI rock. The 
effective medium tensors for these structures are provided in Supplemental 
Material (footnote 1).

SEPARATION OF GEOMETRY FROM ROCK ANISOTROPY

In the above structural examples, we illustrated SGA that is filled with rock 
that itself is already anisotropic. This question then arises: how much of the 
resulting seismic anisotropy is contributed by the geometry and how much is 
due to the local rock itself? If the rock anisotropy is changed within the struc-
ture (e.g., change in symmetry or percent intensity), does the bulk anisotropy 
change significantly? Different variations can be explicitly calculated using one 
of the elastic tensor volume averaging or homogenization methods. However, 
if we assume that the rock filling a structure is already anisotropic and can be 
treated as uniform throughout, then it is possible to separate in the volume av-
eraging the structural orientation from this local rock. This assumption enables 
an examination of the changes in anisotropic velocities when one is changed 
while the other is held fixed.

Separation of Geometry and the Uniform Rock Anisotropy

If the anisotropic rocks within a structure are uniform or the seismic scale 
of interest allows for averaging of smaller scale heterogeneity (the long-
wavelength case, L << l, described in “Scales of Waves and Structures”), the 
various rocks within the structure can be replaced with a single representative 

rock that fills the structure. So far in our study, we have been using a repre-
sentative fabric from a real rock sample, but this generalized rock could be 
defined in several ways: (a) be assigned from an individual rock sample as we 
have done, (b) combine petrophysics lab measurements or thin-section-based 
calculations of properties from several outcrops sites, (c) be a generalized rock, 
or (d) already be averaged from some other set of rock information. We denote 
this representative rock’s elastic stiffness as the tensor Crep.

Under this significant assumption, the volume average in Equation 1A us-
ing the representative rock is

	 C*ijkl = (1/V) [ ∫ {aim ajn ako alp}(x,y,z) Crep
mnop dV ].	 (2A)

Because Crep is the same throughout the volume, we can move the rock 
tensor outside of the volumetric sum using the commutative law of tensor 
algebra. This produces

	 C*ijkl = (1/V) [ ∫ {aim ajn ako alp}(x,y,z) dV ] Crep
mnop.	 (2B)

The volume averaging is applied only to the tilting terms, and we define 
this as a structural geometry operator (SGO):

	 SGO = (1/V) ∫ {aim ajn ako alp}(x,y,z) dV.	 (2C)

so that

	 C* = SGO Crep = EMs.	 (2D)

Because the volume-averaged tensor C* represents an effective medium 
that contains a structure, we name this to be a structural effective medium, 
EMs. This formulation in Equation 2D allows the volume of bulk material 
within a geological terrane or feature to be separable into two components—a 
generalized type of rock that has its own elastic stiffness and the overall geo-
metrical shape that systematically reorients the rock with respect to a geo-
graphical reference frame. This separation of volume averaged orientations 
and a constant but anisotropic rock tensor was similarly applied by Song and 
Jordan (2017) in order to study the effective media of mantle shape preferred 
orientations anisotropy.

This expression in Equation 2D has several important points. (1) Propa-
gating seismic waves will respond to the structural effective medium (EMs), 
which will have its own anisotropic seismic velocities. This EMs is the stiffness 
tensor used directly in the elastic wave equation. (2) The anisotropic symme-
try of the EMs might not be the same as that of the filling representative rock 
Crep. (3) Various geological structures have different SGO, and each will be a 
function of size or geometrical parameters such as spatial wavelength, ampli-
tude, curvature, scaling, and self-similarity. Because of this, the EMs of differ-
ent structures will differ even if filled with the same Crep rock. (4) For the same 
structure, a change in the rock type Crep will affect the EMs and subsequent 
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seismic wave behavior. These changes pertain to the type of local rock an-
isotropy: elliptical or weak versus full anisotropy; TI or lower-order symme-
try; and fast or slow-axis. Different patterns of azimuthal variation in seismic 
velocities will result. (5) In practice, the SGO may be efficiently evaluated by 
discretizing an earth volume into equal-volume voxels and averaging the local 
rotation operators. However, in selected cases the SGO can also be obtained 
analytically for simple geometries that are defined using elementary func-
tions. (6) Because the SGO and Crep are separable under the condition that 
the representative rock is the same throughout the volume of interest, their 
macroscale and mesoscale contributions to a bulk material anisotropy (EMs) 
can be independently examined.

We note that the derivation of EMs in Equation 2 is based on Voigt tensor 
averaging of stiffnesses. A similar derivation is possible using Reuss compli-
ance averaging or Reuss-Voigt-Hill combinations. Because the Voigt and Re-
uss methods represent upper and lower bounds of averaging results, the Voi-
gt-based and Reuss-based EMs are also upper and lower bounds, respectively 
(Bunge, 1985; Vel et al., 2016). As illustrated in Figure 3C, anisotropic seismic 
velocities derived from the Reuss-based EMs will be slightly slower than those 
derived from the Voigt-based EMs.

We also note that the above points are valid for an anisotropic Crep. When 
Crep is isotropic, the SGO will be applied to this isotropic rock and the resulting 
EMs will also be isotropic.

Practical Implementation to Construct an SGO and Calculate an EMs

While effective media can be calculated by averaging tensors using 6 × 6 
Voigt notation, the commutative law does not hold for this notation (Thomsen, 
2002) and the rotation matrices M and MT cannot be separated from Crep in 
Equation 1B. As a result, SGO cannot be calculated using Voigt notation.

An alternative notation to the full 81-element index is the elastic stiffness 
tensor defined as a 21 × 1–element vector. This format is closely related to Voigt 
notation in that it uses the 21 unique elements that exist in a Voigt Cij tensor 
(i,j = 1–6). Browaeys and Chevrot (2004) used a similar vector representation 
in order to decompose arbitrary symmetry elastic tensors into their constitu-
ent higher order symmetry components. Our definition of the 21 × 1 stiffness 
vector is described in Appendix 2. A volume averaged effective medium tensor 
is thus expressed as:

	 C*21 × 1 = (1/V) [ ∫ ROT(x,y,z) 21 × 21 C(x,y,z) 21 × 1 dV ].	 (3)

The commutative law in matrix algebra can be applied to Equation 3 be-
cause our rock stiffness is constant, resulting in the separation of the structural 
geometry and the representative rock:

	 EMs 21 × 1 = SGO 21 × 21 Crep 21 × 1.	 (4)

The SGO operator can be created via the summation of subvolume rotation 
matrices ROT(x,y,z) 21 × 21. This 21 × 21 SGO rotation operator is large but not as 
unwieldy as the full (81 × 81) rotation matrix in ijkl notation. Numerical imple-
mentation is straightforward. We provide a table of all elements in the rotation 
matrix ROT(x,y,z) 21 × 21 as defined using directional cosines in Supplemental Mate-
rial (footnote 1). We also provide a set of software subroutines that can be used 
to calculate this rotation of a stiffness vector.

Analytical Solutions to Define an SGO: Example of Sinusoidal Folds

When the structural shape can be represented by simpler curve equations 
such as analytical geometry functions, it may be possible to derive an analyt-
ical solution for the SGO. This approach would replace the need to carry out 
explicit volume summations in order to define the SGO for different variations 
of the same structural shape. For example, Figure 4 shows sinusoidal folds of 
differing fold limb angle q0. Because the folds are based on the simple function 
z(x) = Asin(2px/L), it is possible to obtain analytical expressions for this SGO 
which itself is a function of the fold parameters. We used the software package 
Mathematica to solve for the summation defining the SGO as a function of the 
shape parameter A/L that is related to q0. Applying this analytical solution to 
the representative fabric that has TI symmetry (e.g., a stiffness tensor contain-
ing five independent elements), a general solution of the structural effective 
medium for these sinusoid folds (Equation 4) becomes:

EMs 11 (1+B)/D3 2B/D3 (B(2D–3)+D–1)/D3 4B/D3 0

EMs 12 1/D 1–1/D 0 0 –2/D

EMs 13 B/D3 (2B(D-1)+D)/D3 B/D3 –4B/D3 0 Crep
11

EMs 22 1 0 0 0 0 Crep
13

EMs 23 = 1–1/D 1/D 0 0 –2(1–1/D) * Crep
33

EMs 33 (B(2D–3)+D-1)/D3 2B/D3 (1+B)/D3 4B/D3 0 Crep
44

EMs 44 0 0 0 1/D 1–1/D Crep
66

EMs 55 B/D3 –2B/D3 B/D3 1–4B/D3 0

EMs 66 0 0 0 1–1/D 1/D

(5)

where non-dimensional geometry parameters are B = 2p2(A/L)2 and D = 
[1+4p2(A/L)2]½. These results are dependent on the fold aspect ratio (A/L) but 
are scale-independent. Because the folds are defined within the x-z plane, 
all elastic constants associated with x and z become modified. While Crep has 
only five elastic constants due to its TI symmetry; the general solution for this 
type of fold’s EMs has nine elements, indicating the fold volume can vary into 
orthorhombic symmetry. This analytical solution can be used to examine the 
effects of fold severity onto the resulting effective media. The fold examples in 
Figure 4 were obtained using this analytical solution.
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Synthetic Seismograms from Structural Effective Media

We demonstrate the equivalence of a structural effective medium to its 
equivalent but actually folded fabric. In Figures 6G and 6H we showed the 
synthetic seismograms produced by a layer of short wavelength folded fab-
ric (l = 1.684 km, q0 = 75°). Here we replaced the actual tilted nodes in the 
modeling earth volume with a uniform layer of this fold’s equivalent EMs. 
The EMs was obtained by applying Equation 5 to our original representative 
fabric tensor (Fig. 3A; Appendix 1). The resulting nonzero EMs stiffness coef-
ficients for q0 = 75° are: EMs11 = 95.842, EMs12 = 44.934, EMs13 = 42.213, EMs22 = 
132.670, EMs23 = 42.213, EMs33 = 118.940, EMs44 = 41.363, EMs55 = 29.628, EMs66 =  
32.692, in GPa.

The resulting synthetic seismograms through this EMs layer are shown in 
Figure 8, next to the seismograms for the tilted tensor model (repeated from 
Figures 6G and 6H). The seismograms produced through the EMs model in Fig-
ure 8B are simpler in that they do not contain scattered energy due to the ac-
tual fold crests and troughs of their counterparts in Figure 8A. The L-Q-T phases 
produced by the EMs layer are identical to those from the tilted tensor version. 
The azimuthal anisotropy in both results is also similar.

Different TI Symmetry Rock Types for Crep

Up to this point in our study we have used a representative fabric in order 
to illustrate folding effects. If the unfolded rock used in Figure 4 were different, 
its rock elastic tensor and velocity spheres would be different, but the same 
sequence of SGO rotations would be applied, with the result that similar EMs 
tensor modification would occur during increased fold intensity. In Set 1 of 
Figure 9, fold effective media were recalculated after replacing the represen-
tative schist with a slate (“TAIELL”) and a gneiss (“NPELL” in Appendix 1). We 
used the elliptical TI symmetry version of these two rock types. In both cases, 
folds filled with these rocks range between TI to orthorhombic symmetry with 
horizontal to vertical fast axis symmetry. Propagation zones of faster VP (Fig. 
9A) and shear wave splitting directions (Fig. 9B) are similar to those of the 
representative schist fabric (Fig. 4 and “OROELL” in Fig. 9). For these three rock 
types, the symmetry decomposition values reveal the effects of folding. For 
the three types, folding produces the largest amounts of orthorhombic sym-
metries at q0 = 45° and 75°. Nearly pure TI symmetry is restored at q0 = 60° but 
with a symmetry axis that is horizontal, rotated 90° from the unfolded fabric. In 
all fold cases, the amounts of anisotropy are muted compared to the original 
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Figure 8. Synthetic seismograms produced by structural effective media. (A) P- and SV-source seismograms of an earth layer containing tilted-node qo = 75° folds (taken 
from Figs. 6G and 6H). (B) Seismograms from the same earth model but with the tilted nodes replaced with a uniform layer of EMs equivalent to the qo = 75° folds. The 
seismic phase patterns of azimuthal arrival time and shear wave splitting are similar in both cases.
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Figure 9 (continued on following page). Seismic properties of fold structural geometric anisotropy effective media for a suite of representative rocks of varying mate-
rial anisotropy symmetries. Rock types described in Appendix 1 and are arranged vertically in three sets of decreasing symmetry (elliptical transverse isotropic, full 
transverse isotropic, and orthorhombic). Velocity spheres illustrate (A) P-wave velocities and (B) S-wave splitting times. Bars on surfaces are particle motion directions 
(black) and splitting magnitudes (red). Symmetry decomposition values for TI/orthorhombic/sum of all lower symmetries are listed beneath each sphere. (C) Shape 
of folds illustrated along with fold amplitude-to-wavelength (A/L) ratio. Effective media of horizontal layers (qo = 0°) has same tensors and velocities as original rock 
type. The effects of increased folding are similar across rock types. Maximum alterations occurs at qo = 45° and 75° where EMs symmetry is muted orthorhombic.
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fabrics. These changes are related to the geometry of cylindrical folds, not due 
to the rock anisotropy. The tensor values for these EMs folds are available in the 
Supplemental Material (footnote 1).

DISCUSSION

Macroscale Shapes

The role of geological structure on seismic anisotropy can be profound. 
While the local rock may exhibit fast or slow-axis behavior, we have shown 
that structure can map a slow-axis rock into a fast-axis regional material and 
even change the order of symmetry of the structure’s bulk EMs. The effects 
of structural geometry are primarily at the macroscale whereas the specifics 
of rock stiffness are at the micro-to-mesoscale. Despite these differing scales, 
both the structure and the representative rock combine to produce the EMs’s 
directional anisotropy, and the role of each must be studied.

The sinusoid folds presented above illustrate the effect that geometrical 
structures can impart on rock material anisotropy. An unfolded anisotropic 
layer possessing slow-axis transverse isotropic symmetry can be converted 
into moderated fast-axis orthorhombic symmetry with up to 90° reorientation 
of symmetry axis (e.g., Fig. 4 and the animation in the Supplemental Mate-
rial [footnote 1]). Inclusion of third dimensional structure onto these folds, 
such as doubly plunging synform/antiforms, doming, or other modification, 
has the potential to produce an even more varied bulk effective medium (Fig. 
7). However, as the degree of 3-D structural complexity increases, the struc-
tural orientations can become so heterogeneous that the resulting effective 
medium becomes weakly anisotropic to isotropic (e.g., Naus-Thijssen et al., 
2011a). Analytical or numerical construction of a structural geometry operator 
(SGO) facilitates the examination of the separate contributions of rock and 
geometry anisotropy.

Effect of Rock Properties #1: Elliptical versus Full TI Anisotropy

In previous examples of structures filled with fabric, we have used rock ma-
terial that has elliptical transverse isotropy. Real crustal rocks are more likely 
to be non-elliptical (e.g., full TI). This more complete form of TI anisotropy pro-
duces seismic wavefronts that in 3-D are not purely ellipsoidal. This results in 
directional variation in seismic velocities that are also less ellipsoidal with a 
component of 4q cyclicity (Backus, 1965). The complete definition of transverse 
isotropic or hexagonal symmetry requires a fifth independent velocity that is 
commonly a diagonal P-wave velocity (Auld, 1973; Okaya and Christensen, 
2002; Appendix 1).

Figures 3 and 10 compare the differences between elliptical and full TI 
using the same representative (schist) fabric. A diagonal VP was made in 
the original laboratory measurements and is slower than the average of the 

two axial VP (N. Christensen, personal commun., 2017). This affects the an-
gular variation of qVP and qVS2; qVP remains slower over a wider range of 
propagation angles. The two qVS wave velocities (Fig. 10A) are quite differ-
ent from the elliptical case (Fig. 3A). At ~50°, these velocities “crossover” as 
to which is faster. A smaller angle range (~65°–90°) exists with appreciable 
shear wave splitting (vertical blue lines). The spheres in Figure 10B show the 
smaller range of propagation angles for S-splitting in this case. The shear 
wave crossover produces a “halo” of null dt at mid-latitude incidence angles 
and marks the propagation directions of a major switch in which shear wave 
polarization is the “fast-S” arrival. Symmetry decomposition shows that the 
degree of TI symmetry is stronger than the elliptical TI version even though 
the four axial VP and VS velocities are the same. This non-elliptical anisot-
ropy when mapped into a geological structure will produce a more complex 
bulk seismic anisotropy behavior.

The full, non-elliptical forms of our three rock types (schist, slate, and 
gneiss; Appendix 1) were mapped into fold structures. The effective media 
of these folds are illustrated in Set 2 of Figures 9A and 9B. The P-wave an-
isotropy is vertical slow-axis for the unfolded forms (q0 = 0°) of all three rock 
types (OROFULL, TAIFULL, and NPFULL, respectively). Increased folding 
converts all three into weak horizontal fast-axis orthorhombic symmetry at 
45° and 75° fold limb angle, as expressed in their symmetry decomposition 
values. These turn back into non-elliptical transverse isotropy but with hori-
zontal slow-axis at 60° and when the layering becomes vertical. The S-wave 
splitting exhibits significant directional variation (Fig. 9B, Set 2). OROFULL 
and TAIFULL originally have null dt halos at mid-latitude incidence angles. 
These halos when mapped into the folds weaken the overall values of shear 
wave anisotropy compared to their elliptical anisotropy counterparts (Figs. 4 
and 9B, Set 1). Sample NPFULL does not have a null dt halo but instead has 
a mid-latitude halo of maximum dt (Okaya and Christensen, 2002). This max-
imum dt halo when mapped into folds increases the overall value of shear 
wave splitting and degree of fast S-wave particle polarization. In all of these 
rock cases, structural folding modifies in a similar manner the rock tensors 
into their respective bulk fold EMs.

Effect of Rock Properties #2: Lower Order of Material Symmetry

In all prior sections above, fold examples have been filled with material 
anisotropy possessing transverse isotropy. Two of our rock samples, the 
schist and slate, were originally measured with orthorhombic symmetry (Set 
3 in Appendix 1). We recalculated the fold EMs using orthorhombic symme-
try; the resulting fold anisotropic velocities are shown in Set 3 of Figure 9. 
Orthorhombic behavior of VP is clearly visible for horizontal fabric of both 
samples. This results in weak horizontal fast axis TI symmetry for folding of 
60° limb angle before becoming strong orthorhombic vertical fabric. The di-
rectional patterns of dt and fast direction are more complicated in compari-
son to their elliptical TI counterparts (Set 3 versus Set 1 in Fig. 9B). However, 
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the change in anisotropy symmetry as related to increased folding (the SGO 
operator) is similar. Figure 9 illustrates that folding modifies the effective 
medium symmetries in similar ways regardless of the unfolded rock type or 
its original level of symmetry.

Implications of Structural Geometric Anisotropy

Many studies of crustal seismic anisotropy use analysis methods that as-
sume that the anisotropic crust contains slow-axis elliptical transverse isot-
ropy. As we demonstrated here with simple sinusoid folds and other sche-

matic structures, this might not be a valid assumption if structure produced by 
tectonic deformation is present. When geological structures reorient rock an-
isotropy, seismic measurements of anisotropy may not necessarily fit simple 
2q-like patterns. These seismic data may have what appears to be significant 
scatter but might be better fit by considering lower symmetry and/or a switch 
in fast/slow axis behavior. The breadth of the geological patterns relative to 
the seismic wavelength and location of seismic stations needs to be taken into 
account—whether path integration or effective medium effects are influencing 
the seismic measurements.

In addition, the type of seismic phase being used and its associated wave 
propagation directionality (raypath back-azimuth/inclination) are important. 
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Figure 10. Seismic properties of a full (non-
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Crustal seismic anisotropy studies typically use a single or limited number 
of phase types, ranging from P or S direct waves, Ps conversions (receiver 
functions), teleseismic SKS shear waves, and station-to-station correlated 
ambient noise for surface waves. These seismic phases propagate in fairly 
restricted directions in the context of the velocity spheres in our study. If the 
structural geometric anisotropy is quite varied in direction, an individual type 
of seismic wave reveals a limited amount of information about the full anisot-
ropy provided by the structure. Future anisotropy studies and next-generation 
seismic field experiments may need to combine information using several 
wave types in order to piece together the full anisotropy beyond transverse 
isotropy assumptions.

CONCLUSIONS

We summarize this study with these points:
• Structures formed by tectonic deformation can contain a 3-D distribu-

tion of local anisotropic material producing structural geometric anisot-
ropy (SGA). The net anisotropy of the structure can be different from 
the local rock’s anisotropy. Whereas we typically approximate rocks 
rich in aligned phyllosilicates as having slow-axis transverse isotropy, 
structure can alter this symmetry into regional media that can be fast-
axis and/or orthorhombic or lower symmetry. Thus the origin of crustal 
seismic anisotropy signals may need to factor in larger scale SGA in 
addition to material crystallographic preferred orientations or shape 
preferred orientations.

• Seismic anisotropy produced by geological structures is sensitive to the 
length scale of the seismic wave relative to the size of the structure. A 
relatively short wavelength will respond to individual components of 
a relatively large structure (path integration) whereas a relatively long 
wavelength might only respond to the bulk average of all components of 
a relatively small structure (effective medium).

• For calculations of effective media, when larger volumes can be consid-
ered to contain the same rock elastic tensor (representative Crep) tensor, 
the commutative law of tensor multiplication allows Crep to be placed out-
side of the summation within the tensor averaging. When this operation 
is possible, the set of tilt operators can be volumetrically averaged by 
themselves. The average of the tilt operators becomes a bulk tilt operator 
(structural geometry operator or SGO) that maps the local rock Crep into 
the associated structure’s effective medium (EMs).

• An SGO is strictly related to the structural geometry and has no inherent 
information about the rock elasticity to be mapped into the structure. The 
modification to seismic anisotropy due to the structure can be examined 
independent of what rock fills the structure (that is, independent of the 
rock’s anisotropy intensity or symmetry).

• An SGO can sometimes be determined analytically from curve functions; 
otherwise, it can be derived numerically for more complex structures. 

Analytical calculations using the Voigt and Reuss approximations yield 
results close to those produced by recently developed physics-based ten-
sor averaging methods.

• For cylindrical folds (not folded in the third dimension), their bulk volume 
anisotropy can be muted orthorhombic symmetry when filled with locally 
slow-axis transverse isotropic rocks, depending on fold steepness. Using 
a more complex local starting rock may produce an even lower ordered 
symmetry effective medium.

• Analysis of crustal seismic anisotropy data using the assumption of (slow-
axis) elliptical transverse isotropy may produce overly simplistic interpre-
tations when regional or pervasive fabric structure is present.

APPENDIX 1. ROCK SAMPLE SEISMIC VELOCITIES AND  
ELASTIC TENSORS

Seismic velocities for three rock samples used in this study are listed in Table A1. These ve-
locities were used to construct elastic stiffness tensors of different levels of symmetry (Table A2). 
These tensors were used as representative tensors in the main text that were modified by ge-
ometry in order to produce structural effective media (e.g., Figs. 4, 7, and 9). These tensors were 
used within Christoffel equations to obtain phase velocities in all propagation directions that are 
displayed as spheres in the figures.

We obtained rock velocities from N. Christensen (personal commun., 2017) and Meltzer and 
Christensen (2001), who carried out petrophysical laboratory measurements. Two rock samples, 
the Orocopia schist (southeast California) and Taiwan Central Ranges slate, were measured for 
orthorhombic symmetry based on strong fabric and lineations (N. Christensen, personal com-
mun., 2017). The Nanga Parbat gneiss was measured for full hexagonal symmetry but not for 
orthorhombic symmetry (Meltzer and Christensen, 2001). We used their values that were mea-
sured at 200 MPa confining pressure, representing a depth of several km where cracks are pre-
dominantly closed.

A full set of independent measurements defining an order of symmetry can be converted to 
higher order by averaging measurement directions. In this study we calculated the full transverse 
isotropic (TI) equivalent of the orthorhombic Orocopia schist and Central Range slate samples by 
averaging selected velocities using these procedures. (1) We identified a sample’s orthorhombic 
axes that defined its fabric plane (a-b in Table A1) and its normal (c), with a oriented parallel to lin-
eation if present. (2) We assigned the c axis to become the TI symmetry axis (0° in Table A1). The a-b 
fabric plane became the perpendicular plane (90°) to the TI symmetry axis. For P-wave velocities 
(VP), orthorhombic VPc was assigned to TI’s VP0°, and the average of VPa and VPb became TI’s VP90°. 
For S-wave velocities, VSab was assigned to TI’s VS90° and the average of VSac and VSbc became 
TI’s VS0°. The fifth TI measurement, VP45°, was obtained by averaging the orthorhombic VP45ac 
and VP45bc. These five TI velocities define full hexagonal/TI symmetry that might not have simple 
two-cycle variation with 360° direction (e.g., Auld, 1973; Okaya and Christensen, 2002).

We then converted the full TI symmetry velocities including the Nanga Parbat gneiss sample 
using this procedure. (1) All TI axial VP and VS velocities were preserved. (2) The fifth measure-
ment, VP45°, was replaced with the average of the two new axial VP velocities (VP0°, VP90°). This 
reassignment of the diagonal VP to become just the average of the axial VP velocities has the effect 
of simplifying this anisotropy into elliptical TI symmetry. In this situation, a point source will pro-
duce P- and S-waves that propagate outward with elliptical shaped wavefronts. In contrast, within 
a full TI symmetry medium the wavefronts will deviate from elliptical wavefront in all non-axial 
directions (Auld, 1973).

The elastic stiffness tensors use the Voigt notation Cij where i,j = 1–6. Here, subscript 1 is 
aligned with symmetry a axis, 2 is aligned with b axis, and 3 is aligned with c axis. These tensors 
are decomposed into their symmetry components using the method of Browaeys and Chevrot 
(2004). This method identifies the percentage amounts of symmetry classes that sum into the 
tensor. In Table A2 we show the isotropic component, then list a three-value sequence of TI, orthor-
hombic, and all lower-order symmetries. This latter sequence represents the amount of anisotropy 
within the tensor.
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TABLE A2. ELASTIC STIFFNESS TENSORS CORRESPONDING TO ROCK FABRIC ANISOTROPY IN TABLE A1

Rock sample Symmetry Figures

Elastic stiffness tensors*
(GPa)

Decomposition
(%)

C11 C22 C33 C12 C13 C23 C44 C55 C66 Iso TI/Ortho/Lower

Orocopia schist 
(California, USA); 
density 2815 kg/m3

Orthorhombic 9 137.541 127.879 85.154 38.665 24.974 24.413 28.466 27.755 45.945 77.6 19.5/2.8/0.1
Full TI w/ VP45° 9,10 132.666 = C11 85.154 * 24.765 = C13 = C55 28.109 45.945 77.8 22.2/0/0

Elliptical TI 3,4,7,9 132.666 = C11 85.154 * 46.372 = C13 = C55 28.109 45.945 81.3 18.7/0/0

Central Ranges slate 
(Taiwan); density 
2712 kg/m3

Orthorhombic 9 133.116 116.352 81.027 26.304 30.752 30.333 25.096 23.457 46.236 76.4 18.2/5.1/0.3
Full TI w/ VP45° 9 124.593 = C11 81.027 * 30.805 = C13 = C55 24.278 46.236 77.6 22.4/0/0

Elliptical TI 9 124.593 = C11 81.027 * 48.740 = C13 = C55 24.278 46.236 78.3 21.7/0/0

Nanga Parbat gneiss 
(Pakistan); density 
2692 kg/m3

  
Full TI w/ VP45° 9 94.782 = C11 70.642 * 45.574 = C13 = C55 27.793 33.861 83.9 16.1/0/0

Elliptical TI 9 94.782 = C11 70.642 * 24.874 = C13 = C55 27.793 33.861 88.5 11.5/0/0

Note: Tensor coeffi cients from original velocity measurements in bold. Figures—identifi es which fi gures use which tensors. Symmetry decomposition percentages based on method of Browaeys 
and Chevrot (2004). Iso—isotropic component of symmetry. “TI/Ortho/Lower” are transverse isotropic (hexagonal), orthorhombic, and sum of all lower order symmetry components.

*C12 = C11-2C66

TABLE A1. SEISMIC VELOCITIES FOR THREE FOLIATED CRUSTAL ROCKS

Rock sample Symmetry Figure 
Seismic velocities

(m/s)

Orocopia schist 
(California, USA); 
density 2815 kg/m3

VPa VPb VPc VP45ab VP45ac VP45bc VSab VSac VSbc
Orthorhombic OROORTH 6990 6740 5500 6840 5930 5840 4040 3140 3180

VP90° VP0°  VP45° (ν45) VS90° VS0°

Full TI w/ VP45° OROFULL 6865 5500  5885 (28%) 4040 3160
Elliptical TI OROELL 6865 5500  6182.5 (50%) 4040 3160

Central Ranges slate 
(Taiwan); density 2712 
kg/m3

VPa VPb VPc VP45ab VP45ac VP45bc VSab VSac VSbc
Orthorhombic TAIORTH 7006 6550 5466 6707 5929 5792 4129 2941 3042

VP90° VP0°  VP45° (ν45) VS90° VS0°

Full TI w/ VP45° TAIFULL 6778 5466  5861 (30%) 4129 2992
Elliptical TI TAIELL 6778 5466  6122 (50%) 4129 2992

Nanga Parbat gneiss 
(Pakistan); density 
2692 kg/m3

VP90° VP0°  VP45° (ν45) VS90° VS0°

Full TI w/ VP45° NPFULL 5926 5116  5852 (91%) 3542 3209
Elliptical TI NPELL 5926 5116  5521 (50%) 3542 3209

Note: Original petrophysical measurements in bold. Simplifi ed anisotropy symmetries obtained by averaging velocities in axial or “measurement” directions. ν45 
percentage = (VP45°–VP0°)/(VP90°–VP0°) × 100% and is indication of departure from elliptical transverse isotropic (TI) approximation (50%) (Okaya and Christensen, 2002).
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For Figure 9 in main text and Figure A1 here, we group elliptical TI velocities as rock type Set 
1, full TI as Set 2, and orthorhombic velocities as Set 3. Figure A1 shows a seismic velocity plot for 
each rock/symmetry combination in Table 1 for 360° propagation direction.

For elliptical TI symmetry (Set 1 “ELL” samples), the P-wave and qVS1 (transverse motion or 
SH) velocities are elliptical over 360° directions (Fig. A1). The qVS2 (sagittal equivalent to SV) is 
circular (constant in value). Shear wave splitting over 360° directions is indicated by the difference 
in the two shear wave curves.

The most noticeable feature of full TI symmetry (Set 2 “FULL” samples, Fig. A1) is that qVS2 can 
either cross over with the other S-wave curve or may become slower in the diagonal directions. 
In either case, shear wave splitting is more varied over 360°. For the Set 3 orthorhombic versions 
(ORTH) of the schist and Taiwan slate, velocities in the three axial planes (a-b, a-c, and b-c) are 
shown in the bottom two rows of Figure A1. The 360° velocity curves in Figure A1 are related to the 
velocity spheres shown in Figures 3, 4, 9, and 10.

APPENDIX 2. ROTATION USING 21 × 1 TENSOR NOTATION

An elastic stiffness tensor written in 6 × 6 Voigt notation can be rewritten as a 21 × 1 vector. 
Rotation of this 21 × 1 tensor is:

c′11

= ROT21 × 21 ×

c11

c′12 c12

c′13 c13

c′14 c14

c′15 c15

c′16 c16

c′22 c22

c′23 c23

c′24 c24

c′25 c25

c′26 c26

c′33 c33

c′34 c34

c′35 c35

c′36 c36

c′44 c44

c′45 c45

c′46 c46

c′55 c55

c′56 c56

c′66 c66

(B1)

where the elements come from Voigt coefficents: 

	 Cij =

c11 c12 c13 c14 c15 c16

— c22 c23 c24 c25 c26

— — c33 c34 c35 c36

— — — c44 c45 c46

— — — — c55 c56

— — — — — c66 .
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Figure A1. Seismic velocity curves for 360° propagation angles through three rock samples 
used in this study. ORO—Orocopia schist; TAI—Taiwan Central Ranges slate; NP—Nanga Parbat 
gneiss. Red = P-wave velocities; green = qVS2 (sagittal plane or SV); red = qVS1 (transverse or 
SH). Difference in blue/green curves indicative of shear wave splitting magnitudes. Set 1 row: El-
liptical approximation for hexagonal symmetry (ELL) applied to the three rock samples. Sagittal 
VS is constant while transverse VS and VP are elliptical. Set 2 row: Full hexagonal symmetry by 
using realistic VP45° values (FULL). Transverse VS is elliptical but sagittal VS has significant off-
axis character. Set 3, top row: Orthorhombic Orocopia schist velocities in its three axial planes. 
Set 3, bottom row: Orthorhombic Taiwan slate axial planes.
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A volume-averaged effective media tensor is produced using the normalized sum of the prod-
uct between the rotation matrix and the stiffness vector:

	 [C*]21 × 1 = (1/V) ∫ { [ROT(x,y,z)] 21 × 21 [C(x,y,z)] 21 × 1 } dV.	 (B2)

When the vector is the same for all points being summed, the commutative law in matrix algebra 
allows the stiffness vector to be moved outside of the summation. Hence the structural effective 
media tensor (Equation 4 of main text) in vector form is:

	 [EMs]21 × 1 = { (1/V) ∫ [ROT(x,y,z)] 21 × 21 } dV [Crep
(x,y,z)] 21 × 1.	 (B3a)

	 = [SGO] 21 × 21            [Crep
(x,y,z)] 21 × 1.	 (B3b)

The 21 × 21 rotation matrix is large but well-defined. Each element in the rotation matrix is 
formed from the directional cosines aij, (i,j = 1–3) relating the rotated coordinate axes to that of the 
original. We provide a listing of this entire rotation matrix via Supplemental Material (see footnote 
1). The upper left corner of this matrix begins with these terms:

ROT11 = a11
4                                          ROT12 = 2 a11

2a12
2                                         ROT13 = 2 a11

2a13
2

ROT21 = a11
2a21

2 	 ROT22 = a12
2a21

2 + a11
2a22

2	 ROT23 = a13
2a21

2 + a11
2a23

2

ROT31 = a11
2a31

2 	 ROT32 = a12
2a31

2 + a11
2a32

2	 ROT33 = a13
2a31

2 + a11
2a33

2.

We also include in online Supplemental Material (footnote 1) several Fortran code subroutines 
that define and perform the rotation of a 21 × 1 tensor given a set of directional cosines. These 
subroutines can be used to calculate the effective media of a geometrical structure filled with het-
erogeneous elastic tensors or modified into other programming languages. The codes can easily 
be converted to C, python, or Matlab scripts. The subroutine codes include:
(a) Transfer between Voigt 6 × 6 elastic tensor and 21 × 1 stiffness vector:
	 subroutine sub_C6x6_to_C21x1(voigt6x6_in,c21x1_out)
	 subroutine sub_C21x1_to_C6x6(c21x1_in,voigt6x6_out)
(b) Define 21 × 21 rotation matrix elements given 3 × 3 directional cosines.
	 subroutine sub_set_rotmatrix(dircos,rotmatrix_21x21)
(c) Perform rotation by vector multiplication |R| = |ROTMAT| |C|
	 subroutine sub_perform_c21_rotation(c21_in,rotmat_21x21,r21_out)
The above subroutines can be packaged together in order to rotate a Voigt elastic tensor:
c umbrella subroutine to rotate a 6x6 elastic stiffness tensor using 21-element vectors.
c             (1) Define 21x21 rotation matrix given 3x3 directional cosines.
c             (2) Transfer 6x6 stiffness to 21x1 vector.
c             (3) Rotate stiffness vector, producing rotated R21x1 stiffness.
c             (4) Transfer rotated stiffness vector into 6x6 stiffness.
c
      subroutine rotate_stiffness_6x6(c6x6_in,dircos,r6x6_out)
      implicit none
      real*8  c6x6_in(6,6), r6x6_out(6,6), dircos(3,3)
      real*8  c21_in(21),r21_out(21)
      real*8  rotmatrix_21x21(21,21)
      call sub_set_rotmatrix(dircos,rotmatrix_21x21)
      call sub_C6x6_to_C21x1(c6x6_in,c21_in)
      call sub_perform_c21_rotation(c21_in,rotmatrix_21x21,r21_out)
      call sub_C21x1_toC6x6(r21_out,r6x6_out)
      return
      end
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