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ABSTRACT

A macroscopic geological structure can geometrically map a local rock
material anisotropy into a larger volume that may have different net anisotro-
pic properties on a scale to which seismic waves respond.The bulk structure’s
anisotropy intensity, symmetry type and orientation of symmetry axes will
generally be different from the local rock; a typical crustal rock with material
fabric showing slow-axis transverse isotropy can be converted, for example,
into a bulk structure that is weaker fast-axis orthorhombic or lower symmetry.
We define this modification as “structural geometric anisotropy” (SGA). The
seismic anisotropy signals produced by this structure are influenced by the
length scale of seismic waves: shorter wavelengths respond to each larger
part of the structure (path integration) whereas longer wavelengths respond
to just the bulk average of all parts (effective medium). We present a tensor
formulation that under certain conditions can decompose an anisotropy-filled
structure into its macroscale structural geometry separated from infilling
rock types. When a single representative rock material can be substituted for
local rocks with fabric, the orientation operators that describe the structure’s
geometry can be separately volume averaged to produce a unique “structural
geometry operator” that can then be used to define the equivalent structure’s
effective medium. We illustrate these principles using common geometrical
structures and show as an example the progressive modification of seismic
anisotropy produced by cylindrical folding. Due to the widespread distribu-
tion of crustal tectonic structures, their effects on seismic anisotropy should
be incorporated into interpretations of seismic anisotropy. The assumption of
slow-axis transverse isotropy in crustal volumes is not always valid.

B INTRODUCTION

Seismic anisotropy is the cumulative interplay between propagating seis-
mic waves and anisotropic earth material. Unraveling this effect in deformed
crustal rocks is complex due to 3-D geological geometry and heterogeneity,
seismic waves of limited bandwidth or selected travel paths, field experiments

that may not offer full azimuth/inclination coverage, and the observation of
anisotropy as often second-order waveform or traveltime features. Yet diverse
studies of rock fabrics, metamorphic processes, and petrophysical properties
associated with tectonic deformation reveal the common presence of strong
elastic material anisotropy that will produce seismic anisotropy (e.g., Chris-
tensen, 1965; Kern and Wenk, 1990; Barruol and Mainprice, 1993; Christensen
and Mooney, 1995; Godfrey et al., 2000; Cholach and Schmitt, 2006; LIoyd et al.,
2009; Almqvist and Mainprice, 2017). Aligned cracks in the seismogenic crust
have long been known to produce observable seismic anisotropy indicative of
upper crustal stress fields near major faults or volcanic regions (e.g., Anderson
et al., 1974; Hudson, 1981; Leary et al., 1990; Cochran et al., 2006; Savage et al.,
2010; Almqvist and Mainprice, 2017).

Seismic anisotropy in the crust due to deformational and metamorphic
fabrics has become increasingly observed using a variety of seismic body
and surface wave phases (e.g., Brocher and Christensen, 1990; Carbonell and
Smithson, 1991; Ozacar and Zandt, 2004; Sherrington et al., 2004; Readman
et al., 2009; Lin et al., 2011; Bostock and Christensen, 2012; Okaya et al., 2016).
More recently, studies that calculate seismic velocities from rock fabrics im-
aged with neutron or electron backscatter diffraction techniques suggest fabric
anisotropy can have orthorhombic or lower symmetry (lvankina et al., 2005;
Lloyd et al., 2009, 2011). We show in this study that fabric-filled large-scale geo-
logical structures having 2-D or 3-D geometry can also produce lower orders of
symmetry and hence can create seismic anisotropy signals that are inherently
not two-cycle in azimuthal periodicity. Thus we conclude the starting assump-
tion in seismic analysis methods that crustal anisotropy is slow-axis transverse
isotropic is not always valid.

Recent studies in central Europe illustrate observations of two end-
member scales of anisotropic structures: (1) bulk (uniform) regional medium
and (2) structural modification of local rock anisotropy. For bulk medium,
Sroda (2006) identified clear evidence of regional azimuthal P-wave anisotropy
using CELEBRATION-2000 explosion first arrivals inverted for compressional
velocity. This result was attributed to early Proterozoic meta-sedimentary layer-
ing tightly folded into a near-vertical orientation on a regional scale. Similarly,
using 9-km-deep vertical seismic profiling data at the KTB deep drill hole site,
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Okaya et al. (2004) showed that despite significant interlayering (O’'Brien et al.,
1997), the high-grade metamorphic Bohemian massif in southern Germany
can be characterized on a seismic scale as a regional bulk tilted transverse
isotropic medium.

For the other end-member of structural modification, Bleibinhaus and Geb-
rande (2006) interpreted regional horizontal fast-axis symmetry from crustal

A

seismic data in the Tauern Window, Swiss Alps. This symmetry was seemingly
enigmatic because this region is geologically composed largely of (slow-axis
symmetry) mica-rich phyllites and gneisses. These authors recognized that in-
ternal folding can redefine the regional-scale symmetry and thus alter the seis-
mic response within their data. Figure 1A schematically illustrates how simple
cylindrical folding of slow-axis symmetry fabric can become a net volume of

Figure 1. Anisotropy symmetry associated with structural folds of fabric.
(A) Layer of fabric that is sinusoidally folded but infinitely long in the
third dimension. Orientation of fabric for one fold wavelength shown
using thick dashed line. Sinusoidal fold described using wavelength (L),
fold amplitude (A), and fold limb angle (0,). If the fabric exhibits local
material anisotropy that is slow-axis transverse isotropy, the layer can
exhibit aggregate weak fast-axis orthorhombic symmetry, with the fast-
axis in the fold hinge direction. (B) Antiform structure of Ragua schist,
Betic Mountains, Spain (Martinez-Martinez et al., 2002). The anisotropic
responses will differ for a short wavelength seismic wave cutting across
the fold (left-right) and a wave traveling parallel to its hinge (in-out of
photograph). Long length up 1 tel waves might not
separately sense the hinge and limbs but respond to just the gross-scale
(averaged) shape of the structure.
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fast-axis lower symmetry anisotropy. An implication is that the use of outcrop
or hand sample-sized volumes to obtain seismic velocities via petrophysical or
thin-section-based measurements may not be sufficient to characterize the re-
gional anisotropy.The larger scale structural geometry of the anisotropic rocks
needs to be assessed.

In this study, we show that the contributions of structural geometry to mod-
ify seismic anisotropy and as possible factors during seismic data analysis are
significant. Here, we define “structural geometric anisotropy” (SGA) (seeTable
1 for notation used within this study) as the alteration of seismic anisotropy

that is produced by the 2-D or 3-D geometry of common crustal structures
that contain internal rock fabric which locally is intrinsically anisotropic. Many
common crustal rocks are elastically anisotropic owing to the inherent anisot-
ropy of the constituent minerals as well as microstructural characteristics such
as crystallographic or shape fabric. When these rocks are deformed into large
structures such as folds, domes or shear zones, the anisotropic elastic proper-
ties of the rock are locally rotated across the structure. As a result, the struc-
ture’s larger scale volume can have its own bulk anisotropic properties. This
effect is different from “structural anisotropy” that refers to seismic anisotropy

TABLE 1. NOTATION USED WITHIN THIS STUDY

Symbol or abbreviation

Description

Anisotropic media
SGA

Structural geometric anisotropy.

P-wave, S-wave velocities propagating perpendicular to TI symmetry axis (S-wave vibration also within plane of fabric).

TI Transverse isotropy.

VTI, HTI, TTI Vertical-axis Tl, horizontal-axis Tl, tilted-axis TI.

subscript 0° Hexagonal/Tl symmetry axis.

subscript 90° Symmetry plane (fabric) perpendicular to TI symmetry axis.

VP, VS, P-wave, S-wave velocities propagating parallel to TI symmetry axis.
VP, VSqy

VP,s.

slow-axis Tl symmetry
fast-axis TI symmetry
a-b-c

P-wave velocity in 45° direction from Tl symmetry axis; this value directly defines if velocities behave as elliptical or “full” T1.
Symmetry axis velocities slower than in perpendicular plane (VP,. < VPyy; VS, < VSy).

Symmetry axis velocities faster than plane (VP,. > VPqy; VS, > VSy.).

Orthorhombic symmetry axes, a = lineation, a-b = foliation plane, ¢ = normal to foliation plane.

VPa P-wave velocity in a-axis direction.

VP45ac P-wave velocity in 45° diagonal direction between a and ¢ axes.

VSac S-wave velocity propagating in a-axis direction with particle motion in c-axis direction.
C(x.y,z) Rock elastic stiffness tensor at external coordinate position x-y-z.

Connop OF C Elastic stiffness elements: m,n,o,p = 1-3; i,j = 1-6 (Voigt notation).

a Directional cosines to relate stiffness tensor to external x-y-z coordinate frame. i,j = 1-3.

i

M(x,y,2); MT(x,y,2)

Voigt notation transformation matrix and its transpose (6 x 6 rotation operator).

Media for this study

C*, C* pnops C¥ Effective medium stiffness tensor; individual elements: m,n,o,p = 1-3; i,j = 1-6 (Voigt notation).
CreP, C' ops C'P; Representative rock stiffness tensor; individual elements.

SGO; SGO Structural geometry operator (rotation operator); abbreviation (italics); tensor in equation (bold).
EM,; EM, Structural effective medium; abbreviation (italics); tensor in equation (bold).

Sinusoidal folds
L
A8, , AL

Seismic waves and anisotropy

Scale of anisotropic structure, or fold wavelength.
Fold amplitude, fold limb angle, fold aspect ratio.

A Wavelength of seismic wave.

P Compressional wave.

SV, SH Shear waves with vertical or horizontal particle motion.
8t, @

20 cyclicity or pattern (46)

L-Q-T

Shear-wave splitting parameters of splitting (delay) time, and direction (back-azimuth) of fast shear wave.

Seismic information that varies twice within 360° of propagation back-azimuth (i.e., two-cycles). Similar definition for four-cycle variation.

Seismic raypath coordinate frame equivalent to P-SV-SH phases, respectively.
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produced by alignment of (isotropic) features or fine layering such as strata
(e.g., Backus, 1962; Babuska and Cara, 1991).

Seismic waves are sensitive to volumes of rock at scales ranging from the
10s to 1000s of meters. For example, Figure 1B shows a km-scale antiform
composed of Ragua schist in the Betic Mountains, southern Spain (Martinez-
Martinez et al., 2002) that illustrates how structural geometry can affect the
production of anisotropic seismic signals. Relatively short wavelength seismic
waves may resolve individual parts of this structure. These waves may pick
up different anisotropic characteristics depending on propagation direction
across the fold limbs, parallel to the fold hinge (in-out of the photograph), or
at an oblique angle to the limbs. However, an upcoming long-wavelength tele-
seismic wave will average through fine structure and just respond to the bulk
structure. Representation of this fold volume as a long-wavelength effective
medium will remove complexities of the finer scale details while still preserv-
ing the net anisotropic properties and resulting bulk seismic response.

We present in this study the role of large-scale geometry as applied to
anisotropic fabrics and illustrate the SGA effects of several basic geometrical
structures. We also use tensor algebra to show that under specific but major
simplifying conditions, one can separate the geometrical orientation terms
from a local already-anisotropic rock. This separation allows one to quantify
the role of macroscale structure independent of the rock’s microscale material
anisotropy when trying to understand the cause of observed seismic anisot-
ropy signals. We demonstrate this separation using simple sinusoidal folds.
Seismic compressional and shear wave velocities derived from SGA elasticity
reveal complex angular variation in seismic anisotropy can exist. We illustrate
these concepts with numerical (synthetic) anisotropic wave propagation ex-
amples. The main focus of our study is to understand the effect of structural
geometry on seismic anisotropy; we are not solving for exact volume averag-
ing or homogenization of folded structures.

B SCALES OF MATERIAL ANISOTROPY
Fabrics as a Cause of Crustal Material Anisotropy

Metamorphic and deformational processes produce fabrics such as schis-
tosity that can be localized within deformational zones or form extensive pen-
etrative regions of foliated rock. Laboratory investigations (e.g., Birch, 1958;
Christensen, 1965; Fountain and Christensen, 1989; Weiss et al., 1999) show
that most crustal metamorphic rocks are highly anisotropic due to preferred
orientations of anisotropic silicate minerals. Material anisotropy can be se-
vere; P-wave anisotropy in crustal foliated rocks (e.g., schists, gneisses, and
amphibolites) may be as high as 17%-20% and S-wave anisotropy for phyllo-
silicate rocks as high as 25%-30% (Johnston and Christensen, 1995; Godfrey
et al., 2000). In contrast, olivine-rich mantle rocks such as dunites average only
5%-6% (Christensen and Mooney, 1995). Crustal metamorphic rocks are often
approximated as having slow-axis transverse isotropic symmetry.

A rock’s microstructure (or fabric) can be defined by the following charac-
teristics of its constituent phases (minerals = fluids): (1) spatial arrangement,
(2) shapes, (3) modal abundances, (4) crystallographic preferred orientations
and (5) shape preferred orientations. Each of these microstructural factors in-
fluences the bulk elastic properties of the rock and therefore must be taken
into account to determine a precise rock stiffness tensor. These dependencies
are caused by the cumulative effects of grain-scale mechanical interactions
throughout a heterogeneous sample. We do not examine these microscale fac-
tors in this study and refer readers to studies of seismic anisotropy caused by
microfabrics (e.g., Lloyd et al., 2009; Naus-Thijssen et al., 2011a, 2011b; Cyprych
et al., 2017; summarized in Almqvist and Mainprice, 2017).

Production of Observable Seismic Anisotropy Signals

The alteration of a seismic signal that traveled through anisotropic earth
can take different forms: traveltime advance or delay as a function of wavepath
direction, alteration in particle motion, splitting of shear waves, or amplitude
variation of a reflected or converted wave, all sensitive to wave direction. The
wavelength of a propagating seismic wave compared to the length scale of the
anisotropic earth feature directly affects the production of anisotropic signals.
As is discussed below, the ratio of these length scales will determine if a wave
accumulates signal along its path (e.g., raypath integration), responds to only
a bulk average of fine-scale anisotropic earth, or may pass through and not
“sense” any material anisotropy.

In addition, the amount of signal that a wave may pick up is related to
the amount of exposure to anisotropic material in two ways: (a) the wave's
length of path in the material, or (b) the intensity of the material anisotropy.
An azimuthal P-delay or shear wave splitting time can be represented as
8t = Apath*Aslowness.The longer the wave travels within anisotropic material,
Apath, the larger the produced seismic anisotropic signal. On the other hand,
the strength of material anisotropy here is Aslowness = (1/V,,,,~1/Vys) Which is
related to anisotropy percentage. A split shear wave may be observable if path
length or anisotropy percentage is large, even if the other is small. The relative
raypath angles through the material are very important, particularly if the ma-
terial changes strike or dip due to structure.

Scales of Waves and Structures

When a wave of length A travels through material in which the scale of the
anisotropic structure is L, then three cases can be considered (Fig. 2).

Case 1: L >> L. When the anisotropic structure is much longer than the
wave, the wave responds to each encountered segment of geology, and aniso-
tropic signals will be accumulated along its path (e.g., path integration). The
geology can be heterogeneous, the material anisotropy can change, and the
seismic expression of anisotropy can change along the path.

Okaya et al. | Seismic structural geometric anisotropy
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Geologic Structures and Seismic Wave Types
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Figure 2. Comparison of seismic wavelength to scale of geologic feature. When the wavelength
is much larger than earth features, the earth can be treated as an effective media. Line A/8 is the
resolution limit for seismic reflections. EQ—earthquake; mt—mountain; res—resolution.

Case 2: L = L. Anisotropic feature is about the same length of the wave.
If the geological feature is isolated, then the seismic wave may pick up dis-
tinct identifiable phases, such as a reflection or transmitted conversion. This is
similar to Case 1. If the feature is not isolated but is part of a more pervasive
volume, the wave may respond to the net pattern. This is similar to case 3. An
example of this latter situation is if a large layer contains local folding on the
order of or shorter than the wave's length. We also note that A/4 to A/8 is com-
monly used as the resolution limit for seismic reflections of thin layers (e.g.,
Widess, 1973).

Case 3: L << A. the scale of anisotropic structure is much shorter than the
wave (the long-wavelength case). The wave will be insensitive to individual
small features but will respond to the net aggregate volume. This situation ap-
plies when an earth volume much larger than the wave is filled with small
scale features. Complex earth volumes can be represented as effective media;
simplified media that remove complexities but exhibit equivalent wave prop-
agation behavior. Concepts of effective media for seismic wave propagation
are well established with a wide range of applications. These applications in-
clude spatial averages of elastic heterogeneity using methods such as Voigt
(1928), Reuss (1929), Hill (1952), or combinations thereof, or modern homog-
enization methods obtained from material sciences (e.g., Naus-Thijssen et
al., 2011a, 2011b; Capdeville et al., 2010, 2013; Vel et al., 2016). Effective media
theory is also applied to fractured rocks having crack alignment/density or flu-
ids (e.g., O’Connell and Budiansky, 1974; Anderson et al., 1974; Budiansky and

O’Connell, 1976, Crampin, 1981; Hudson, 1981; Douma, 1989); scattered me-
dia (Wu, 1989); and anisotropy due to subparallel thin layers that are isotropic
(Backus, 1962) or anisotropic (Schoenberg and Muir, 1989). Equivalent media
for aligned anisotropic mineral grains (crystallographic preferred orientations)
can be determined using elastic tensor averaging methods (references within
Mainprice, 2015); anisotropy of aligned isotropic bodies (shape preferred ori-
entations) requires advanced methods of homogenization (e.g., Naus-Thijssen
et al., 2011a, 2011b; Capdeville et al., 2010, 2013; Vel et al., 2016) or statistical
analysis (Song and Jordan, 2017). Effective media derived from intrinsic aniso-
tropic materials or from isotropic heterogeneity can produce similar seismic
signals (Levshin and Ratnikova, 1984; Fichtner et al., 2013), highlighting the
non-uniqueness of seismic waveform interpretation.

A primary condition for an effective medium is that the seismic wave un-
der consideration is much longer than the scale of heterogeneity (i.e., Case
3). The heterogeneities can be compositional, and/or variations in degrees
of anisotropy or structural orientation. Our definition of SGA applies only
within this long-wavelength case. More specifically, we examine effective
media for geometry of rocks that are intrinsically anisotropic. Our study here
does not apply to structural geometry of isotropic rocks. We use established
averaging and homogenization methods in this study in order to focus on
structural orientation.

B REPRESENTATIVE ROCK FABRICS USED IN THIS STUDY

In this study we illustrate the effects of SGA as applied to local fabrics
that are defined using real rock samples. While later in this study we use ma-
terial symmetries that include full transverse isotropy and orthorhombic, we
first employ elliptical transverse isotropy, one of the simplest symmetries, in
order to demonstrate SGA effects without the complexities that lower order
symmetries contribute. The rock samples we use represent three rock types:
a schist (from the Orocopia Formation, southeast California), a slate (Central
Range, Taiwan), and a gneiss (Nanga Parbat, Pakistan). Anisotropic seismic
velocities and elastic stiffness tensors for these samples are listed in Appen-
dix 1,Tables A1 and A2, respectively. Laboratory acoustic measurements were
obtained by N. Christensen (personal commun., 2017) for the schist and slate
samples. Based on fabric and lineations, each has nine measured velocities
that define orthorhombic symmetry (P-wave velocities in three axial and three
diagonal directions plus S-wave velocities in three axial directions). As de-
scribed in Appendix 1, these orthorhombic measurements were simplified
into full transverse isotropic (TI) symmetry by averaging the nine into five
“measurement” velocities. This full TI symmetry was reduced to elliptical Tl
by further averaging from five to four velocities. The gneiss sample was mea-
sured by Meltzer and Christensen (2001) with five measurement velocities for
full TI symmetry. We then defined its elliptical T symmetry (Appendix 1). Elas-
tic tensors for all samples were calculated from the seismic velocities using
Christoffel equations (Auld, 1973).

Okaya et al. | Seismic structural geometric anisotropy
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Representative Rock Fabric and Its Seismic Velocity Anisotropy

In the following sections we describe the effect of structural geometry on a
volume filled with anisotropic rock fabric. For illustrative purposes we use the
elliptical Tl version of the schist as a representative fabric that becomes mod-
ified by structure. The seismic P-wave velocities (VP) of this schist measured
at 200 MPa (~7 km depth) are 5500 m/s normal to its foliation and 6865 m/s
parallel to foliation; the corresponding S-wave velocities (VS) are 3160 and
4040 m/s, respectively (Fig. 3A; Appendix 1). The diagonal VP value is set to
the average of the two axial VP velocities based on the definition of elliptical
TI symmetry (Auld, 1973). These velocities are used within Christoffel equa-
tions to obtain the velocities in all propagation directions (Auld, 1973). Figure

7
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3A illustrates these velocity variations for propagation angles as referenced
from the foliation normal which serves as the symmetry axis. The difference
in the two VS curves indicates the possible production of shear wave split-
ting. The relative velocities in the axial directions define a characteristic of the
anisotropy symmetry. When the velocities associated with the symmetry axis
direction are slower than in the perpendicular direction (foliation plane), the
symmetry is “slow-axis” (Figs. 3A, 3B). Levin and Park (1998) discussed the
differences between slow- and fast-axis symmetries (e.g., their “pumpkins”
and “melons”); Brownlee et al. (2017) provided additional characteristics of
this terminology.

We replot these velocity curves in spherical coordinates using wave direc-
tion azimuth and inclination through the rock sample. The sample is oriented
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with its symmetry axis vertical and its foliation plane aligned horizontal with
the “equator” of the sphere (“Orig” in Fig. 3B). Christoffel equations are used
to solve for the P- and S-wave particle motions (e.g., Auld, 1973; Mainprice,
1990). We display the velocities and particle motions on the sphere surfaces
by showing VP and translating the two VS into the equivalent amount of shear
wave splitting (1) per kilometer of propagation path. The S-wave particle mo-
tion bar (red) is the fast-S direction. Here, 6t is an alternative to VS percentage
as a way to illustrate the amount of VS anisotropy.The velocity patterns on the
sphere surfaces are a direct expression of the underlying rock elastic tensor
and easily convey the tensor’s anisotropy symmetry and tilt orientation.

With the rock sample oriented with its symmetry axis vertical, its velocity
sphere patterns represent vertical-axis Tl (VTI) symmetry or seismic radial an-
isotropy (Fig. 3B).The faster VP directions are clearly visible along the equator
as are the larger S-wave splitting times. If the fabric and its elastic tensor
are rotated by 90° so that the foliation plane is vertical, this orientation is
horizontal-axis Tl (HTl) symmetry or seismic azimuthal anisotropy. The 20 az-
imuthal variations are noticeable not only along the equator but at oblique
propagation directions. An inclined elastic tensor representing geological dip
has tilted-axis Tl (TTl) symmetry. Even though the fast zones are not aligned
with the sphere axes, the characteristic of TI symmetry is easy to identify
within the velocity patterns (Fig. 3B).

The elastic stiffness tensor for this representative fabric is: C;,, = 132.666,
Cy3 = 85.154, Cys = 28.109, C,s = 45.945, and C,; = 46.372 (in GPa), using Voigt
notation with indices mapped to coordinate axes using1=x,2=y,and 3=z
Other elements are C,, = Cy;, Cyy = Css, Cy3= Cy3 and Cy, is calculated from C,,
and Cg4 (see Appendix Table A2). All other elements are set to zero, and the
tensor is diagonal symmetric. We apply elastic tensor decomposition in order
to obtain a descriptive measure of the amounts of anisotropy within the tensor
(Baerheim, 1993; Browaeys and Chevrot, 2004). This decomposition identifies
tensor element patterns that match those of five orders of anisotropic symme-
try (i.e., hexagonal, orthorhombic, tetragonal, monoclinic, and triclinic) after
removing the isotropic contribution. Beneath each tensor sphere in Figure 3
and in the remaining figures, we provide three values that represent theTl, or-
thorhombic, and sum of all remaining lower symmetries as percentages of the
original tensor. The net sum of these three values represents the total amount
of anisotropy, and the net sum subtracted from 100% represents the isotropic
component. The elastic tensor for the representative fabric shown in Figures
3A and 3B is 81.3% isotropic and 18.7%TI, with no amounts of orthorhombic or
lower symmetries. The use of decomposition values when comparing two ten-
sors allows for the difference in their anisotropy to be more easily identified.

B EXAMPLE OF SGA: CYLINDRICAL FOLDS

In this section, we illustrate the modification to anisotropy that geometry
can impart, using the example of a rock fabric that is sinusoidally folded (cy-
lindrical fold). We define a layer filled with our representative fabric that starts

out with horizontal foliation, then fold it and examine its bulk anisotropic prop-
erties. The sinusoidal folds are defined in the x-z cross-sectional plane using
2Z(x) = Asin(2nx/L) where L is fold wavelength, A is amplitude, and its shape is
characterized by the fold limb angle 6, = tan-'(2rA/L). We assume the folds are
infinitely long in the third dimension, y, defining cylindrical folds (Fig. 1A). We
create a finely discretized numerical volume of length L with each subvolume
containing our schist, tilted to conform to the shape of the fold. The bulk fold
properties are represented by an averaged elastic tensor calculated by sum-
ming the subvolumes’ tilted tensors across one wavelength of fold.

For a fold described with fold limb angle 6, = 45°, we calculate its net vol-
ume tensor using the Voigt, Reuss, Hill, and asymptotic expansion homogeni-
zation (Naus-Thijssen et al. 2011a, 2011b; Vel et al., 2016) methods mentioned
above. Figure 3C shows the seismic velocities obtained from these tensors.
Symmetry decomposition percentage values (Tl/orthorhombic/lower order)
are also shown. There are three relevant observations. First, the anisotropy
symmetry patterns for the fold are significantly different than that of the
unfolded rock and its VTI-HTI-TTI orientations (Fig. 3B). The unfolded rock is
18.7% Tl with no orthorhombic or lower contributions. Regardless of the av-
eraging method, the fold has developed a larger component of orthorhombic
symmetry (4.7%—-6.1%) and a decreased amount of TI symmetry (6.3%-6.8%).
This fold of unit wavelength has horizontal fast-axis orthorhombic symmetry,
where one axis is much faster than the other two that are similar to each other,
even though the internal rock is locally slow-axis Tl. The sinusoidal tilting of
the foliation in the x-z plane tends to moderate the averaged velocities in this
cross-sectional plane, whereas the velocities in the y (fold hinge) direction are
unchanged, producing the fast-axis orthorhombic symmetry. Second, the fold
contains a lower amount of total anisotropy compared to the rock fabric that
fills it. This is expressed in the anisotropic components of the symmetry de-
composition. The rock fabric has net 18.7% anisotropic components. The fold
has net 11.5%-12.5% anisotropy across the averaging methods. The structural
folding has muted the anisotropy that would be measured from a local sam-
ple of the fabric. Third, comparison of tensor averaging methods reveals only
second-order differences among the averaged results. These differences are
less significant compared to the first-order change produced by the structural
folding (SGA) of the original anisotropic rock.

Severity of Folding

We calculate the effective media for a series of folds of increasing steep-
ness as expressed by fold limb angle. The numerical values of these effective
medium tensors are provided in the Supplemental Material'.We show the SGA
velocities of this series in Figure 4. At a limb angle of 6, = 0° the medium is
essentially the same as the original unfolded VTI rock (Fig. 3). The progres-
sion of fold limb angle from horizontal to vertical (Fig. 4C) correlates with the
horizontal bulk schistosity becoming turned on-end. However, the fold elastic
tensor does not simply rotate from horizontal to vertical slow-axis symmetry
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limb angles between 0° and 90° are available via the Supplemental Material (footnote 1).

but changes from vertical slow-axis (6, = 0°), weakly orthorhombic with vertical
slow-axis as expressed in the 2.1%-4.8% orthorhombic component of sym-
metry decomposition (6, = 30-45°), horizontal fast-axis Tl (6, = 60°; 0% orthor-
hombic component), orthorhombic with horizontal slow-axis (6, = 75°; 4.2%
orthorhombic component), to strong horizontal slow-axis (6, = 90°).The overall
amounts of anisotropy for the folds are less than that of the representative
fabric that fills them. These systematic changes are well illustrated in Figure
4 and in an animation of velocity spheres for all fold limb angles between 0
and 90° (see Supplemental Material [footnote 1]). Propagation directions of
strongest shear wave splitting change as fold limb angle increases. As can be
seen in Figure 4, seismic anisotropy signatures and azimuthal patterns differ
significantly based on fold severity.

B ANISOTROPIC SYNTHETIC SEISMOGRAMS ILLUSTRATE EFFECT
OF FOLDING

Elastic tensors and velocity spheres describe the bulk characteristics of a
structure that is filled with anisotropic material, but seismic waves that travel
through the structure offer a more direct demonstration of anisotropic effects.

We illustrate the seismic response of the above fold cases using synthetic
anisotropic wave propagation in an earth model that contains a horizontal
layer internally filled with folds. In examples presented here, we compare azi-
muthal variation in seismograms through the folds and then the effects of fold
wavelength (differing fold limb angles). We also show synthetic seismograms
in unfolded VTl and HTI layers for calibration.

The earth model has map dimensions of 60 x 60 km plus 30 vertical km,
discretized at 100 m grid spacing (Fig. 5). The model contains two layers, of
which the shallower layer (0-10 km depth) contains anisotropic material that
will be folded at different fold wavelengths. The lower background layer (10—
30 km) has seismic velocities defined by a 1D isotropic P-wave gradient from
5600 to 6800 m/s with S-wave velocities defined using a Poisson’s ratio of
0.25 and density of 2670 kg/m*. We used a 3-D finite difference elastic wave
propagation code that uses full elastic tensors and allows for full heteroge-
neity in composition and anisotropy symmetry/orientation (e.g., Okaya and
MckEvilly, 2003). A point source was positioned at the center in map view at a
depth of 5 km (Fig. 5A). The source used a 3 s to 2 Hz narrow band waveform
whose wavelength is ~2.5 km at a propagation velocity of 6 km/s (Fig. 5D). This
source was propagated first as an explosive P-wave for 20 s at 0.005 s sam-
pling in the synthetic calculations, then as a radial SV source. For each source,
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Figure 5. Two-layer earth model for synthetic seis-
mograms that illustrate effect of fabric folding. Top
/ horizontal layer between 0 and -10 km is filled
with the representative fabric that is sinusoidally
folded (Fig. 3A). The folds are in the x-z plane for
five wavelength cases: horizontal, (B) 10.883 km,
(A) 3.628 km, (C) 1.684 km, and vertical (fold limb
angle 6, = 0°, 30°, 60°, 75°, and 90°, respectively).
Fold axes are infinitely long in y-direction. Fold am-
plitude is 1.0 km. Earth volume is discretized at 100
m node spacing. Within the layer of folds, the fab-
ric anisotropic tensor is tilted on a per node basis.
Synthetic seismograms recorded along circle array
(green triangles) for a point source at -5 km depth
(yellow star). (D) Source waveform is 3 s to 2 Hz.
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three-component seismograms were collected every one arc-km (1°) along a
circle array of radius 20.0 km centered over the source point (Fig. 5A). This
source-to-array geometry produces oblique raypaths of nominal 75° incidence
angle.The propagation code used an absorbing boundary condition at the top
surface in order to suppress P-SV conversions and surface waves. Finally, we
note that this synthetic modeling example was very idealized and resulted in
exaggerated amounts of seismic anisotropy signals, such as arrival times and
shear wave splitting delay times.

Unfolded Material Anisotropy Layers for Reference

For calibration, the first earth model scenario has no folding within the
anisotropic layer. The layer is filled with the representative fabric uniformally
oriented with vertical symmetry axis so that the fabric is only horizontal. Fig-
ure 3B-VTI thus represents the local rock at each individual model node as
well as the bulk properties of the entire layer; the layer has radial symme-

D 3sec-2Hz [ '
B o
NT 0 N 0
T2
€Ea
2 L1
8% T T T T

0.0 0.2 0.4 0.6 0.8 1.0

sec

try. The synthetic seismograms collected along the circle array are shown in
Figures 6A and 6B.The three-component x-y-z seismograms are rotated into
L-Q-T, a raypath coordinate frame (Plesinger et al., 1986) that maps compres-
sional energy (P-wave) into the ray-parallel direction (L), radial shear wave
energy (SV) into the sagittal plane (Q), and the second shear wave (SH) into
the transverse direction (7). These phases appear in the synthetic seismo-
grams as functions of source-to-receiver azimuth. For this VTl model, each
phase has constant arrival time in agreement with the layer’s radial symme-
try. The transverse SH (T) is the earlier arriving shear wave as was predicted
in Figures 3A and 3B. The highly exaggerated split time delay of the slow-
er-traveling SV (Q) phase is caused by the pure horizontal orientation of the
anisotropic fabric.

In contrast, we made the opposite end member earth model that has the
anisotropic layer filled with vertical fabric schist striking parallel to the Y-axis
direction (Fig. 3B-HTI), representing azimuthal anisotropy. The synthetic seis-
mograms produced by the P and SV sources are shown in Figures 6l and 6J.
The P-wave arrival (L) is earlier in the 0° and 180° azimuthal directions in the
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circle array, forming a 2-cycle arrival pattern. Similarly, Q (qS17in Fig. 3A) also
shows a 2-cycle pattern with the same fast direction.

Folds Defined by Tilted Tensors across Volumetric Nodes

Figure 4C illustrates the geometry of folds with increasingly steep fold limb
angle (increasingly large amplitude-to-wavelength ratio). We modeled three
fold scenarios of 6, = 30°, 60°, and 75°, representing lateral wavelengths of
10.883, 3.628, and 1.684 km, respectively (Figs. 5A-5C). Fold amplitude was set
at 1 km. Figures 6C-6H show the circle-array seismograms for the sequence of
these three-fold scenarios. For 8, = 30°, the P-wave phase (L) shows little arrival
time variation as a function of azimuth (Fig. 6C). As 6, increases across 60° to
75°, the P-wave phase picks up more arrival time variation (Figs. 6E and 6G).
The variation becomes maximal when the fold limb angle is vertical and the
anisotropy fabric possesses full azimuthal seismic anisotropy (Fig. 6l).

The length of the S-wave source is short with respect to the wavelength
of the 30° folds (Fig. 6D) and responds to individual fold limbs, crests, and
troughs. This fold model results in complex Q and T shear-wave arrival pat-
terns. As 6, increases to 60°-75° (Figs. 6F and 6H), the fold wavelengths ap-
proach and become shorter than the source pulse length. The shear-wave
arrivals remain complex. Scattering increases due to the compactness of
the fold crests and troughs. From steep (6, = 60°) to vertical folds, the fast
shear wave switches from T to Q (SH to SV). The 8t null directions change
azimuthal directions.

The anisotropy behavior in these seismograms is in agreement with Chris-
toffel solutions as shown in the effective medium velocity spheres (Fig. 4).
The incidence angle obliqueness of the modeled source-to-circle array paths
translates to a wave direction exiting the spheres at 15° north of the equator
in all azimuthal directions. Careful examination of the fast-S particle motion
bars along this “latitude” in Figure 4 help identify the Q-T and SV/SH wave
behavior. For example, for 6, = 75° the particle motion bars indicate fast SV
motion in 0° and 180° azimuthal directions and fast SH in narrow azimuthal
windows centered at 90° and 270°. As a result, the first arriving S-wave does
not have simple 206 azimuthal behavior; in the synthetic seismograms the Q
and T phases (that is, SV and SH) alternate as to which arrives first (Fig. 6H).

B STRUCTURAL GEOMETRIES AND THEIR ANALYTICAL
MATHEMATICAL FUNCTIONS

Because the production of seismic anisotropy is related to directional de-
pendence of seismic waves with respect to rock properties, structural geome-
tries can be particularly important in the analysis of seismic data. Mathemati-
cal functions have been suggested to describe idealized structural geometries.
These functions can approximate shapes and provide tilt information for de-
fining anisotropy-filled structures within discretized digital volumes. Figure 7

shows representative examples of structural geometries and descriptive equa-
tions. Functions that describe folds can be grouped into non-periodic functions
such as polynomials, power functions and ellipse equations (Hudleston, 1973;
De Paor, 1996; Bastida et al., 1999; Aller et al., 2004; Bastida et al., 2005) and pe-
riodic functions such as trigonometric functions represented as Fourier series
and Bessel functions (Currie et al., 1962; Stabler, 1968; Hudleston, 1973; Bastida
et al., 1999; Jeng et al., 2002; Bastida et al., 2005) (Fig. 7). The power function
z=[1-(1-4x/L)"]" can describe folds such as chevron (n=1, a = 1), parabolic
(n=2,a=1), ellipsoidal (n=2, a=2) and box (n>2, a=1).

Other classes of structure that may commonly be encountered are doubly
plunging folds, gneiss domes, salt domes and metamorphic core complexes
(e.g., Whitney et al., 2004). Each of these can be treated by functions of the
form z = fix,y), for example Gaussian functions or 3-D refolding of the sinusoi-
dal or power functions (Fig. 7). For azimuthally symmetrical shapes exhibited
by many dome and basin structures, surfaces of revolution can be generated
by rotating the two-dimensional curves about an axis of symmetry. Asymme-
try, irregularity, or higher-order spatial patterns can be superimposed onto
these functions. Scaling of functions can describe internal fabrics when con-
cordant. Separate functions can be used when the trends of internal fabrics
are different from the bounding structure. Spatial and volumetric analyses of
fabric tilt patterns are possible because of the use of differentiable functions.

The SGA effective medium of each structure can be calculated using the
volume average of a series of subvolume tilted elastic tensors. For example,
the Voigt average is expressed as:

C*W = (1M j{aim Ajn 8yo alp}lx,y,z) Cmnop(X/y/z) av. (1A)

where C*¥;, is the effective medium (averaged tensor), C,..., (x,y,2) is the origi-
nal untilted rock tensor within a subvolume dV, and a,, a, a,, &, is the product
of directional cosines that relate the tilted tensor axes to the untilted rock co-
ordinates (or to a global frame if the rocks are originally defined in that frame).
This 81-element tensor notation is unwieldy, and the average expressed using
Voigt notation is more common:

C* = (1) [ M(x,y,2) Cx,y,2) M(x,y,2) dV, (1B)

where C* is the averaged tensor and C(x,y,2) is the subvolume original rock
tensor, both in 6x6 Voigt notation. The transformation matrix M(x,y,2) and its
transpose M (Bond, 1943) are 6x6 rotation operators whose elements contain
directional cosines that define local structural tilt (see Auld, 1973; Okaya and
MckEvilly, 2003).

For each structure illustrated in Figure 7, we calculated its SGA effective
medium for a unit shape based on a characteristic length or height, assuming
the structure is filled with our representative fabric whose foliations conform
to the shape. The corresponding anisotropic seismic velocities are obtained
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from the effective medium tensors and are also shown in Figure 7. The shear
zone and monocline shown in Figure 7 have similar geometrical characteris-
tics—a kink within an overall direction but with different orientations. The fab-
ric in the shear zone is near vertical with a subhorizontal kink related to severity
of shearing (Fig. 7A). The net fabric trend in the shear zone produces steeply
tilted TTI symmetry with a trace of orthorhombic symmetry (1.3%). In contrast,
the monocline is subhorizontal with a gentle-to-steep kink, and its bulk fab-
ric-filled anisotropy is gently tilted TTI symmetry (Fig. 7B).The possible orthor-
hombic-symmetries of sinusoidal folds (Fig. 7C) were described in the previ-
ous sections. A plunging fold is elongate based on its lateral aspect ratio. Its
bulk anisotropy exhibits orthorhombic symmetry (2.5%) with its fast direction
parallel to the major fold axis and the slowest direction normal to the dome
top (Fig. 7D). The largest 8t is produced by horizontally propagating S-waves
across the fold axis. S-waves propagating upward produce small amounts of
splitting with fast direction parallel to the fold axes. In contrast to plunging
folds, a dome of fabric has vertical fast-axis T| symmetry (Fig. 7E). Its uniaxial
shape is expressed in its 6.2% Tl and 0% orthorhombic symmetry components.
Shear-wave splitting 8t is largest for horizontal propagation directions and with
vertical fast-directions. Null splitting is produced in the vertical propagation
direction. These schematic structures in Figure 7 exhibit a wide range of SGA
symmetries even though they are all filled with the same slow-axisTl rock. The
effective medium tensors for these structures are provided in Supplemental
Material (footnote 1).

B SEPARATION OF GEOMETRY FROM ROCK ANISOTROPY

In the above structural examples, we illustrated SGA that is filled with rock
that itself is already anisotropic. This question then arises: how much of the
resulting seismic anisotropy is contributed by the geometry and how much is
due to the local rock itself? If the rock anisotropy is changed within the struc-
ture (e.g., change in symmetry or percent intensity), does the bulk anisotropy
change significantly? Different variations can be explicitly calculated using one
of the elastic tensor volume averaging or homogenization methods. However,
if we assume that the rock filling a structure is already anisotropic and can be
treated as uniform throughout, then it is possible to separate in the volume av-
eraging the structural orientation from this local rock. This assumption enables
an examination of the changes in anisotropic velocities when one is changed
while the other is held fixed.

Separation of Geometry and the Uniform Rock Anisotropy

If the anisotropic rocks within a structure are uniform or the seismic scale
of interest allows for averaging of smaller scale heterogeneity (the long-
wavelength case, L << A, described in “Scales of Waves and Structures”), the
various rocks within the structure can be replaced with a single representative

rock that fills the structure. So far in our study, we have been using a repre-
sentative fabric from a real rock sample, but this generalized rock could be
defined in several ways: (a) be assigned from an individual rock sample as we
have done, (b) combine petrophysics lab measurements or thin-section-based
calculations of properties from several outcrops sites, (c) be a generalized rock,
or (d) already be averaged from some other set of rock information. We denote
this representative rock’s elastic stiffness as the tensor Cr».

Under this significant assumption, the volume average in Equation 1A us-
ing the representative rock is

C*jy=(1/V) [J{aim @jn 8o Aty CPrmnop AV 1. (2A)

Because C™ is the same throughout the volume, we can move the rock
tensor outside of the volumetric sum using the commutative law of tensor
algebra. This produces

C¥ = (V) [J{aim ajp yo alp}(x,y,z] av] C™ nopr (2B)

The volume averaging is applied only to the tilting terms, and we define
this as a structural geometry operator (SGO):

SGO =(1/V) Haim 8jn 810 iy, AV (2C)
so that
C* =SGO C™ = EM,. (2D)

Because the volume-averaged tensor C* represents an effective medium
that contains a structure, we name this to be a structural effective medium,
EM.,. This formulation in Equation 2D allows the volume of bulk material
within a geological terrane or feature to be separable into two components—a
generalized type of rock that has its own elastic stiffness and the overall geo-
metrical shape that systematically reorients the rock with respect to a geo-
graphical reference frame. This separation of volume averaged orientations
and a constant but anisotropic rock tensor was similarly applied by Song and
Jordan (2017) in order to study the effective media of mantle shape preferred
orientations anisotropy.

This expression in Equation 2D has several important points. (1) Propa-
gating seismic waves will respond to the structural effective medium (EM,),
which will have its own anisotropic seismic velocities. This EM is the stiffness
tensor used directly in the elastic wave equation. (2) The anisotropic symme-
try of the EM, might not be the same as that of the filling representative rock
Crr, (3) Various geological structures have different SGO, and each will be a
function of size or geometrical parameters such as spatial wavelength, ampli-
tude, curvature, scaling, and self-similarity. Because of this, the EM; of differ-
ent structures will differ even if filled with the same C™” rock. (4) For the same
structure, a change in the rock type C will affect the EM, and subsequent
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seismic wave behavior. These changes pertain to the type of local rock an-
isotropy: elliptical or weak versus full anisotropy; Tl or lower-order symme-
try; and fast or slow-axis. Different patterns of azimuthal variation in seismic
velocities will result. (5) In practice, the SGO may be efficiently evaluated by
discretizing an earth volume into equal-volume voxels and averaging the local
rotation operators. However, in selected cases the SGO can also be obtained
analytically for simple geometries that are defined using elementary func-
tions. (6) Because the SGO and C' are separable under the condition that
the representative rock is the same throughout the volume of interest, their
macroscale and mesoscale contributions to a bulk material anisotropy (EM;)
can be independently examined.

We note that the derivation of EM; in Equation 2 is based on Voigt tensor
averaging of stiffnesses. A similar derivation is possible using Reuss compli-
ance averaging or Reuss-Voigt-Hill combinations. Because the Voigt and Re-
uss methods represent upper and lower bounds of averaging results, the Voi-
gt-based and Reuss-based EM are also upper and lower bounds, respectively
(Bunge, 1985; Vel et al., 2016). As illustrated in Figure 3C, anisotropic seismic
velocities derived from the Reuss-based EM, will be slightly slower than those
derived from the Voigt-based EM,.

We also note that the above points are valid for an anisotropic C. When
Crr is isotropic, the SGO will be applied to this isotropic rock and the resulting
EM, will also be isotropic.

Practical Implementation to Construct an SGO and Calculate an E/M,

While effective media can be calculated by averaging tensors using 6 x 6
Voigt notation, the commutative law does not hold for this notation (Thomsen,
2002) and the rotation matrices M and M™ cannot be separated from C™ in
Equation 1B. As a result, SGO cannot be calculated using Voigt notation.

An alternative notation to the full 81-element index is the elastic stiffness
tensor defined as a 21 x 1-element vector.This format is closely related to Voigt
notation in that it uses the 21 unique elements that exist in a Voigt C; tensor
(i,j = 1-6). Browaeys and Chevrot (2004) used a similar vector representation
in order to decompose arbitrary symmetry elastic tensors into their constitu-
ent higher order symmetry components. Our definition of the 21 x 1 stiffness
vector is described in Appendix 2. A volume averaged effective medium tensor
is thus expressed as:

C*,1 1= (V) ”ROT1X,y,z;21 x21 C(x,y,zm « dV1. (3)
The commutative law in matrix algebra can be applied to Equation 3 be-
cause our rock stiffness is constant, resulting in the separation of the structural

geometry and the representative rock:

EM, ;1 =8GO 1,21 C 511 (4)

The SGO operator can be created via the summation of subvolume rotation
matrices ROT, ., » « - This 21 x 21 SGO rotation operator is large but not as
unwieldy as the full (81 x 81) rotation matrix in ijk/ notation. Numerical imple-
mentation is straightforward. We provide a table of all elements in the rotation
matrix ROT,,, 12121 as defined using directional cosines in Supplemental Mate-
rial (footnote 1). We also provide a set of software subroutines that can be used
to calculate this rotation of a stiffness vector.

Analytical Solutions to Define an SGO: Example of Sinusoidal Folds

When the structural shape can be represented by simpler curve equations
such as analytical geometry functions, it may be possible to derive an analyt-
ical solution for the SGO. This approach would replace the need to carry out
explicit volume summations in order to define the SGO for different variations
of the same structural shape. For example, Figure 4 shows sinusoidal folds of
differing fold limb angle 6,. Because the folds are based on the simple function
Z(x) = Asin(2nx/L), it is possible to obtain analytical expressions for this SGO
which itself is a function of the fold parameters. We used the software package
Mathematica to solve for the summation defining the SGO as a function of the
shape parameter A/L that is related to 6,. Applying this analytical solution to
the representative fabric that has Tl symmetry (e.g., a stiffness tensor contain-
ing five independent elements), a general solution of the structural effective
medium for these sinusoid folds (Equation 4) becomes:

EM, ,, (1+B)/D° 2B/D° (B(2D-3)+D-1\/D°  4B/D® 0

EM, ,, 1/D 1-1/D 0 0 -2/D

EM, 1 B/D® (2B(D-1)+DV/D* B/D® —4B/D? 0 cree,,
EM, ,, 1 0 0 0 0 Crr,y
EM,,, | = 1-1/D 1/D 0 0 —21-1D)|*| Crey
EM, 5, (B(2D-3)+D-1)/D° 2B/D° (1+B)/D° 4B/D° 0 c,,
EM, 4, 0 0 0 1/D 1-1/D Crepgy
EM, 55 B/D® -2B/D° B/D® 1-4B/D° 0

EM, 45 0 0 0 1-1/D /D

(5)

where non-dimensional geometry parameters are B = 2rn?(A/L)?> and D =
[1+472(A/L)?]% These results are dependent on the fold aspect ratio (A/L) but
are scale-independent. Because the folds are defined within the x-z plane,
all elastic constants associated with x and z become modified. While C has
only five elastic constants due to its TI symmetry; the general solution for this
type of fold’s EM, has nine elements, indicating the fold volume can vary into
orthorhombic symmetry. This analytical solution can be used to examine the
effects of fold severity onto the resulting effective media. The fold examples in
Figure 4 were obtained using this analytical solution.

Okaya et al. | Seismic structural geometric anisotropy
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Synthetic Seismograms from Structural Effective Media

We demonstrate the equivalence of a structural effective medium to its
equivalent but actually folded fabric. In Figures 6G and 6H we showed the
synthetic seismograms produced by a layer of short wavelength folded fab-
ric (A = 1.684 km, 6, = 75°). Here we replaced the actual tilted nodes in the
modeling earth volume with a uniform layer of this fold's equivalent EM,.
The EM, was obtained by applying Equation 5 to our original representative
fabric tensor (Fig. 3A; Appendix 1). The resulting nonzero EM, stiffness coef-
ficients for 6, = 75° are: EM,,, = 95.842, EM,,, = 44.934, EM,,; = 42.213, EM,;,, =
132.670, EM,,;=42.213, EM,;; = 118.940, EM,,, = 41.363, EMs; = 29.628, EMz, =
32.692, in GPa.

The resulting synthetic seismograms through this EM; layer are shown in
Figure 8, next to the seismograms for the tilted tensor model (repeated from
Figures 6G and 6H).The seismograms produced through the EM, model in Fig-
ure 8B are simpler in that they do not contain scattered energy due to the ac-
tual fold crests and troughs of their counterparts in Figure 8A.The L-Q-T phases
produced by the EM, layer are identical to those from the tilted tensor version.
The azimuthal anisotropy in both results is also similar.

0 30 60 90 120 150 180 210 240 270 300 330 360 30 60 90 120 150 180 210 240 270 300 330 360

Different TI Symmetry Rock Types for Cre»

Up to this point in our study we have used a representative fabric in order
to illustrate folding effects. If the unfolded rock used in Figure 4 were different,
its rock elastic tensor and velocity spheres would be different, but the same
sequence of SGO rotations would be applied, with the result that similar EM,
tensor modification would occur during increased fold intensity. In Set 1 of
Figure 9, fold effective media were recalculated after replacing the represen-
tative schist with a slate (“TAIELL’) and a gneiss (“NPELL" in Appendix 1). We
used the elliptical TI symmetry version of these two rock types. In both cases,
folds filled with these rocks range between Tl to orthorhombic symmetry with
horizontal to vertical fast axis symmetry. Propagation zones of faster VP (Fig.
9A) and shear wave splitting directions (Fig. 9B) are similar to those of the
representative schist fabric (Fig. 4 and “OROELL’ in Fig. 9). For these three rock
types, the symmetry decomposition values reveal the effects of folding. For
the three types, folding produces the largest amounts of orthorhombic sym-
metries at 8, = 45° and 75°. Nearly pureTl symmetry is restored at 6, = 60° but
with a symmetry axis that is horizontal, rotated 90° from the unfolded fabric. In
all fold cases, the amounts of anisotropy are muted compared to the original

T mh w T et T 2
2 T %Mﬁ*“
B R &
D 6 MBI "vy: Wit QUMMM R .
e e
= o L L
§ gk n/Ao=1.0km || ||| Sinusoidfold (75%) | “lMa it \M’g
.‘(% H H }““}w‘}}“"““1‘}}|}}‘}v}7w}w}‘_‘w}‘}}\“‘ |- N 1\117
5 duMM#i‘J%wyL¢HH}! NH\wp»ui B) SV source T T
o %y%Wﬁw«!' e e
Q'57 | ‘ i :Ulum{ (L ilfliiro) ! r l‘|75
g 1 Lt
° m:,f r H?f}{iuﬁft'%ﬁii ;W%w}w%}ﬁﬁ% ?M?ﬁj
oyt i ot o ettt et e g il
® |Le 68 koo 10 km ||| Emsversionotrotal [| ||| ||| || Ineo meiasrenr |11 LS

0O 30 60 90 120 150 180 210 240 270 300 330 360 30 60 90 120 150 180 210 240 270 300 330 360
circle array station azimuth (degrees)

Figure 8. Synthetic seismograms produced by structural effective media. (A) P- and SV-source seismograms of an earth layer containing tilted-node 6, = 75° folds (taken
from Figs. 6G and 6H). (B) Seismograms from the same earth model but with the tilted nodes replaced with a uniform layer of EM, equivalent to the 8, = 75° folds. The
seismic phase patterns of azimuthal arrival time and shear wave splitting are similar in both cases.
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rial anisotropy symmetries. Rock types described in Appendix 1 and are arranged vertically in three sets of decreasing symmetry (elliptical transverse isotropic, full
transverse isotropic, and orthorhombic). Velocity spheres illustrate (A) P-wave velocities and (B) S-wave splitting times. Bars on surfaces are particle motion directions
(black) and splitting magnitudes (red). Symmetry decomposition values for TlI/orthorhombic/sum of all lower symmetries are listed beneath each sphere. (C) Shape
of folds illustrated along with fold amplitude-to-wavelength (A/L) ratio. Effective media of horizontal layers (8, = 0°) has same tensors and velocities as original rock
type.The effects of increased folding are similar across rock types. Maximum alterations occurs at 8, = 45° and 75° where EM, symmetry is muted orthorhombic.
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fabrics. These changes are related to the geometry of cylindrical folds, not due
to the rock anisotropy.The tensor values for these EM, folds are available in the
Supplemental Material (footnote 1).

H DISCUSSION
Macroscale Shapes

The role of geological structure on seismic anisotropy can be profound.
While the local rock may exhibit fast or slow-axis behavior, we have shown
that structure can map a slow-axis rock into a fast-axis regional material and
even change the order of symmetry of the structure’s bulk EM,. The effects
of structural geometry are primarily at the macroscale whereas the specifics
of rock stiffness are at the micro-to-mesoscale. Despite these differing scales,
both the structure and the representative rock combine to produce the EM,'s
directional anisotropy, and the role of each must be studied.

The sinusoid folds presented above illustrate the effect that geometrical
structures can impart on rock material anisotropy. An unfolded anisotropic
layer possessing slow-axis transverse isotropic symmetry can be converted
into moderated fast-axis orthorhombic symmetry with up to 90° reorientation
of symmetry axis (e.g., Fig. 4 and the animation in the Supplemental Mate-
rial [footnote 1]). Inclusion of third dimensional structure onto these folds,
such as doubly plunging synform/antiforms, doming, or other modification,
has the potential to produce an even more varied bulk effective medium (Fig.
7). However, as the degree of 3-D structural complexity increases, the struc-
tural orientations can become so heterogeneous that the resulting effective
medium becomes weakly anisotropic to isotropic (e.g., Naus-Thijssen et al.,
2011a). Analytical or numerical construction of a structural geometry operator
(SGO) facilitates the examination of the separate contributions of rock and
geometry anisotropy.

Effect of Rock Properties #1: Elliptical versus Full Tl Anisotropy

In previous examples of structures filled with fabric, we have used rock ma-
terial that has elliptical transverse isotropy. Real crustal rocks are more likely
to be non-elliptical (e.g., full Tl). This more complete form of Tl anisotropy pro-
duces seismic wavefronts that in 3-D are not purely ellipsoidal. This results in
directional variation in seismic velocities that are also less ellipsoidal with a
component of 40 cyclicity (Backus, 1965). The complete definition of transverse
isotropic or hexagonal symmetry requires a fifth independent velocity that is
commonly a diagonal P-wave velocity (Auld, 1973; Okaya and Christensen,
2002; Appendix 1).

Figures 3 and 10 compare the differences between elliptical and full Tl
using the same representative (schist) fabric. A diagonal VP was made in
the original laboratory measurements and is slower than the average of the

two axial VP (N. Christensen, personal commun., 2017). This affects the an-
gular variation of gVP and qVS,; qVP remains slower over a wider range of
propagation angles. The two qVS wave velocities (Fig. 10A) are quite differ-
ent from the elliptical case (Fig. 3A). At ~50°, these velocities “crossover” as
to which is faster. A smaller angle range (~65°-90°) exists with appreciable
shear wave splitting (vertical blue lines). The spheres in Figure 10B show the
smaller range of propagation angles for S-splitting in this case. The shear
wave crossover produces a “halo” of null 8t at mid-latitude incidence angles
and marks the propagation directions of a major switch in which shear wave
polarization is the “fast-S” arrival. Symmetry decomposition shows that the
degree of TI symmetry is stronger than the elliptical Tl version even though
the four axial VP and VS velocities are the same. This non-elliptical anisot-
ropy when mapped into a geological structure will produce a more complex
bulk seismic anisotropy behavior.

The full, non-elliptical forms of our three rock types (schist, slate, and
gneiss; Appendix 1) were mapped into fold structures. The effective media
of these folds are illustrated in Set 2 of Figures 9A and 9B. The P-wave an-
isotropy is vertical slow-axis for the unfolded forms (6, = 0°) of all three rock
types (OROFULL, TAIFULL, and NPFULL, respectively). Increased folding
converts all three into weak horizontal fast-axis orthorhombic symmetry at
45° and 75° fold limb angle, as expressed in their symmetry decomposition
values. These turn back into non-elliptical transverse isotropy but with hori-
zontal slow-axis at 60° and when the layering becomes vertical. The S-wave
splitting exhibits significant directional variation (Fig. 9B, Set 2). OROFULL
and TAIFULL originally have null 8t halos at mid-latitude incidence angles.
These halos when mapped into the folds weaken the overall values of shear
wave anisotropy compared to their elliptical anisotropy counterparts (Figs. 4
and 9B, Set 1). Sample NPFULL does not have a null 8t halo but instead has
a mid-latitude halo of maximum &t (Okaya and Christensen, 2002). This max-
imum &t halo when mapped into folds increases the overall value of shear
wave splitting and degree of fast S-wave particle polarization. In all of these
rock cases, structural folding modifies in a similar manner the rock tensors
into their respective bulk fold EM..

Effect of Rock Properties #2: Lower Order of Material Symmetry

In all prior sections above, fold examples have been filled with material
anisotropy possessing transverse isotropy. Two of our rock samples, the
schist and slate, were originally measured with orthorhombic symmetry (Set
3 in Appendix 1). We recalculated the fold EM, using orthorhombic symme-
try; the resulting fold anisotropic velocities are shown in Set 3 of Figure 9.
Orthorhombic behavior of VP is clearly visible for horizontal fabric of both
samples. This results in weak horizontal fast axis Tl symmetry for folding of
60° limb angle before becoming strong orthorhombic vertical fabric. The di-
rectional patterns of 8t and fast direction are more complicated in compari-
son to their elliptical TI counterparts (Set 3 versus Set 1 in Fig. 9B). However,

Okaya et al. | Seismic structural geometric anisotropy
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the change in anisotropy symmetry as related to increased folding (the SGO
operator) is similar. Figure 9 illustrates that folding modifies the effective
medium symmetries in similar ways regardless of the unfolded rock type or
its original level of symmetry.

Implications of Structural Geometric Anisotropy

Many studies of crustal seismic anisotropy use analysis methods that as-
sume that the anisotropic crust contains slow-axis elliptical transverse isot-
ropy. As we demonstrated here with simple sinusoid folds and other sche-

from an elastic tensor representing a volume con-
taining one wavelength of folded schist fabric. Four
7000 different tensor averaging methods are illustrated.
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matic structures, this might not be a valid assumption if structure produced by
tectonic deformation is present. When geological structures reorient rock an-
isotropy, seismic measurements of anisotropy may not necessarily fit simple
20-like patterns. These seismic data may have what appears to be significant
scatter but might be better fit by considering lower symmetry and/or a switch
in fast/slow axis behavior. The breadth of the geological patterns relative to
the seismic wavelength and location of seismic stations needs to be taken into
account—whether path integration or effective medium effects are influencing
the seismic measurements.

In addition, the type of seismic phase being used and its associated wave
propagation directionality (raypath back-azimuth/inclination) are important.

Okaya et al. | Seismic structural geometric anisotropy
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Crustal seismic anisotropy studies typically use a single or limited number
of phase types, ranging from P or S direct waves, Ps conversions (receiver
functions), teleseismic SKS shear waves, and station-to-station correlated
ambient noise for surface waves. These seismic phases propagate in fairly
restricted directions in the context of the velocity spheres in our study. If the
structural geometric anisotropy is quite varied in direction, an individual type
of seismic wave reveals a limited amount of information about the full anisot-
ropy provided by the structure. Future anisotropy studies and next-generation
seismic field experiments may need to combine information using several
wave types in order to piece together the full anisotropy beyond transverse
isotropy assumptions.

B CONCLUSIONS

We summarize this study with these points:

e Structures formed by tectonic deformation can contain a 3-D distribu-
tion of local anisotropic material producing structural geometric anisot-
ropy (SGA). The net anisotropy of the structure can be different from
the local rock’s anisotropy. Whereas we typically approximate rocks
rich in aligned phyllosilicates as having slow-axis transverse isotropy,
structure can alter this symmetry into regional media that can be fast-
axis and/or orthorhombic or lower symmetry. Thus the origin of crustal
seismic anisotropy signals may need to factor in larger scale SGA in
addition to material crystallographic preferred orientations or shape
preferred orientations.

® Seismic anisotropy produced by geological structures is sensitive to the

length scale of the seismic wave relative to the size of the structure. A

relatively short wavelength will respond to individual components of

a relatively large structure (path integration) whereas a relatively long

wavelength might only respond to the bulk average of all components of

a relatively small structure (effective medium).

For calculations of effective media, when larger volumes can be consid-

ered to contain the same rock elastic tensor (representative C?) tensor,

the commutative law of tensor multiplication allows C™* to be placed out-
side of the summation within the tensor averaging. When this operation
is possible, the set of tilt operators can be volumetrically averaged by
themselves. The average of the tilt operators becomes a bulk tilt operator

(structural geometry operator or SGO) that maps the local rock C” into

the associated structure’s effective medium (EM,).

* An SGO is strictly related to the structural geometry and has no inherent
information about the rock elasticity to be mapped into the structure.The
modification to seismic anisotropy due to the structure can be examined
independent of what rock fills the structure (that is, independent of the
rock’s anisotropy intensity or symmetry).

* An SGO can sometimes be determined analytically from curve functions;
otherwise, it can be derived numerically for more complex structures.

Analytical calculations using the Voigt and Reuss approximations yield
results close to those produced by recently developed physics-based ten-
sor averaging methods.

¢ For cylindrical folds (not folded in the third dimension), their bulk volume
anisotropy can be muted orthorhombic symmetry when filled with locally
slow-axis transverse isotropic rocks, depending on fold steepness. Using
a more complex local starting rock may produce an even lower ordered
symmetry effective medium.

¢ Analysis of crustal seismic anisotropy data using the assumption of (slow-
axis) elliptical transverse isotropy may produce overly simplistic interpre-
tations when regional or pervasive fabric structure is present.

APPENDIX 1. ROCK SAMPLE SEISMIC VELOCITIES AND
ELASTIC TENSORS

Seismic velocities for three rock samples used in this study are listed in Table A1. These ve-
locities were used to construct elastic stiffness tensors of different levels of symmetry (Table A2).
These tensors were used as representative tensors in the main text that were modified by ge-
ometry in order to produce structural effective media (e.g., Figs. 4, 7, and 9). These tensors were
used within Christoffel equations to obtain phase velocities in all propagation directions that are
displayed as spheres in the figures.

We obtained rock velocities from N. Christensen (personal commun., 2017) and Meltzer and
Christensen (2001), who carried out petrophysical laboratory measurements. Two rock samples,
the Orocopia schist (southeast California) and Taiwan Central Ranges slate, were measured for
orthorhombic symmetry based on strong fabric and lineations (N. Christensen, personal com-
mun., 2017). The Nanga Parbat gneiss was measured for full hexagonal symmetry but not for
orthorhombic symmetry (Meltzer and Christensen, 2001). We used their values that were mea-
sured at 200 MPa confining pressure, representing a depth of several km where cracks are pre-
dominantly closed.

A full set of independent measurements defining an order of symmetry can be converted to
higher order by averaging measurement directions. In this study we calculated the full transverse
isotropic (Tl) equivalent of the orthorhombic Orocopia schist and Central Range slate samples by
averaging selected velocities using these procedures. (1) We identified a sample’s orthorhombic
axes that defined its fabric plane (a-b inTable A1) and its normal (c), with a oriented parallel to lin-
eation if present. (2) We assigned the c axis to become theTI symmetry axis (0° inTable A1).The a-b
fabric plane became the perpendicular plane (90°) to the TI symmetry axis. For P-wave velocities
(VP), orthorhombic VPcwas assigned toTl's VP,., and the average of VPa and VPb becameTl's VPy..
For S-wave velocities, VSab was assigned toTl's VS,,. and the average of VSac and VSbc became
Tl's VS,. The fifth TI measurement, VP, was obtained by averaging the orthorhombic VP45ac
and VP45bc. These five Tl velocities define full hexagonal/TI symmetry that might not have simple
two-cycle variation with 360° direction (e.g., Auld, 1973; Okaya and Christensen, 2002).

We then converted the full TI symmetry velocities including the Nanga Parbat gneiss sample
using this procedure. (1) All Tl axial VP and VS velocities were preserved. (2) The fifth measure-
ment, VP,,., was replaced with the average of the two new axial VP velocities (VP,., VPg.). This
reassignment of the diagonal VPto become just the average of the axial VP velocities has the effect
of simplifying this anisotropy into elliptical TI symmetry. In this situation, a point source will pro-
duce P- and S-waves that propagate outward with elliptical shaped wavefronts. In contrast, within
a full Tl symmetry medium the wavefronts will deviate from elliptical wavefront in all non-axial
directions (Auld, 1973).

The elastic stiffness tensors use the Voigt notation C; where i,j = 1-6. Here, subscript 1 is
aligned with symmetry a axis, 2 is aligned with b axis, and 3 is aligned with c axis. These tensors
are decomposed into their symmetry components using the method of Browaeys and Chevrot
(2004). This method identifies the percentage amounts of symmetry classes that sum into the
tensor. InTable A2 we show the isotropic component, then list a three-value sequence ofTl, orthor-
hombic, and all lower-order symmetries. This latter sequence represents the amount of anisotropy
within the tensor.

Okaya et al. | Seismic structural geometric anisotropy
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TABLE A1. SEISMIC VELOCITIES FOR THREE FOLIATED CRUSTAL ROCKS

Seismic velocities
Rock sample Symmetry Figure (m/s)

VPa VP 1 VPc VP45ab ' VP45ac i VP45bc | VSab ' VSac i VShe

Orocopia schist Orthorhombic OROORTH 6990 6740 ' 5500 6840 ' 5930 5840 4040 ' 3140 3180
(California, USA); VPy. VR ! VP (v45) VS ! VS,
density 2815 kg/m? Full TI w/ VP, OROFULL 6865 ' 5500 ' 5885 (28%) 4040 ! 3160
Elliptical Tl OROELL 6865 ' 5500 | 61825 (50%) 4040 3160

VPa Ypb '+ VPc VP45ab ' VP45ac : VP45bc | VSab ' VSac : VSbe

Central Ranges slate Orthorhombic TAIORTH 7006 6550 ! 5466 6707 ! 5929 5792 4129 ' 2941 3042
(Taiwan); density 2712 VPy VR _ 1 VP (v45) VS ! VS,
kg/m® Full T w/ VP, TAIFULL 6778 ' 5466 | 5861 (30%) 4129 2992
Elliptical Tl TAIELL 6778 ' 5466 6122 (50%) 4129 2992
Nanga Parbat gneiss VPyy L VR 1 VP (v45) VS ! VS,
(Pakistan); density Full Tl w/ VP, NPFULL 5926 ' 5116 ! 5852 (91%) 3542 ! 3209
2692 kg/m® Elliptical Tl NPELL 5926 ' 5116 | 5521 (50%) 3542 3209

Note: Original petrophysical measurements in bold. Simplified anisotropy symmetries obtained by averaging velocities in axial or “measurement” directions. v45
percentage = (VP,s—VP,.)/(VPy—VP,) x 100% and is indication of departure from elliptical transverse isotropic (Tl) approximation (50%) (Okaya and Christensen, 2002).

TABLE A2. ELASTIC STIFFNESS TENSORS CORRESPONDING TO ROCK FABRIC ANISOTROPY IN TABLE A1

Elastic stiffness tensors* Decomposition
(GPa) (%)

Rock sample Symmetry Figures C;, Co, Cys C., Cis Cy;s Cu Css Ces Iso TI/Ortho/Lower
Orocopia schist Orthorhombic 9 137.541  127.879 85.154 38.665 24.974 24.413 28.466 27.755 45.945 776 ' 19.5/2.8/0.1
(California, USA); Full Tl w/ VP, 9,10 132.666 =Cy, 85.154 * 24.765 =Cyy =Css 28.109 45.945 778 22.2/0/0
density 2815 kg/m* Elliptical Tl 3,479 | 132.666 =C, 85.154 * 46.372 =Cy =Cs 28.109 45.945 81.3 18.7/0/0
Central Ranges slate | Orthorhombic 9 133.116  116.352 81.027 26.304 30.752 30.333 25.096 23.457 46.236 764 ' 182/5.1/0.3
(Taiwan); density Full TI W/ VP, 9 124.593 =Cy 81.027 * 30.805 =Cyy =Css 24.278 46.236 776 22.4/0/0
2712 kg/m® Elliptical TI 9 124.593 =Cy, 81.027 * 48.740 =Cy =Cys 24.278 46.236 783 ! 21.7/0/0

Nanga Parbat gneiss :
(Pakistan); density | Full Tl w/ VP, 9 94.782 =Cy 70.642 * 45.574 =Cy; =Css 27.793 33.861 83.9 16.1/0/0
2692 kg/m® Elliptical TI 9 94.782 =Cy, 70.642 * 24.874 =Cyy =Css 27.793 33.861 885 | 11.5/0/0

Note: Tensor coefficients from original velocity measurements in bold. Figures—identifies which figures use which tensors. Symmetry decomposition percentages based on method of Browaeys
and Chevrot (2004). Iso—isotropic component of symmetry. “Tl/Ortho/Lower” are transverse isotropic (hexagonal), orthorhombic, and sum of all lower order symmetry components.
*C,=C,2C,

GEOSPHERE | Volume 15 | Number 1 Okaya et al. | Seismic structural geometric anisotropy
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For Figure 9 in main text and Figure A1 here, we group elliptical Tl velocities as rock type Set
1, full Tl as Set 2, and orthorhombic velocities as Set 3. Figure A1 shows a seismic velocity plot for
each rock/symmetry combination inTable 1 for 360° propagation direction.
For elliptical TI symmetry (Set 1 “ELL” samples), the P-wave and qVS, (transverse motion or B
SH) velocities are elliptical over 360° directions (Fig. A1). The qVS, (sagittal equivalent to SV) is velocity (km/s)
circular (constant in value). Shear wave splitting over 360° directions is indicated by the difference 6 -4-2 02 46 6-4-202 46 6-4-202 4 6
| | | | | | | | | | | | | | |

in the two shear wave curves. !
The most noticeable feature of full Tl symmetry (Set 2 “FULL’ samples, Fig. A1) is that VS, can
either cross over with the other S-wave curve or may become slower in the diagonal directions.
In either case, shear wave splitting is more varied over 360°. For the Set 3 orthorhombic versions
(ORTH) of the schist and Taiwan slate, velocities in the three axial planes (a-b, a-c, and b-c) are
shown in the bottom two rows of Figure A1.The 360° velocity curves in Figure A1 are related to the
velocity spheres shown in Figures 3, 4, 9, and 10.
APPENDIX 2. ROTATION USING 21 x 1 TENSOR NOTATION
An elastic stiffness tensor written in 6 x 6 Voigt notation can be rewritten as a 21 x 1 vector.
Rotation of this 21 x 1 tensor is:
(o Cii
g% Ciz
Cis Cis -Q\
d14 C14 \E-
s Cis >
Cis Cis S
Co Czz g
Czs Casz >
Ca Coy
C2s Cos
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Figure A1. Seismic velocity curves for 360° propagation angles through three rock samples
used in this study. ORO—Orocopia schist; TAl—Taiwan Central Ranges slate; NP—Nanga Parbat
gneiss. Red = P-wave velocities; green = qVS, (sagittal plane or SV); red = qV§S, (transverse or
SH). Difference in blue/green curves indicative of shear wave splitting magnitudes. Set 1 row: El-

where the elements come from Voigt coefficents:

Cij= liptical approximation for hexagonal symmetry (ELL) applied to the three rock samples. Sagittal
Ciy Cio Cig Cia Cis Cie VS is constant while transverse VS and VP are elliptical. Set 2 row: Full hexagonal symmetry by
— Cop Co3 Coy Cos Co using realistic VP,;. values (FULL). Transverse VS is elliptical but sagittal VS has significant off-
— — Cas Cas Cas Css axis character. Set 3, top row: Orthorhombic Orocopia schist velocities in its three axial planes.
_ _ _ c c c Set 3, bottom row: Orthorhombic Taiwan slate axial planes.
44 45 46
- - - - 055 CSG
- - - - - c66
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A volume-averaged effective media tensor is produced using the normalized sum of the prod-
uct between the rotation matrix and the stiffness vector:

[C*]zw x1= (7/\/) I{ [ROT(X,V,Z]] 21x21 [c(x,v,z)] 21x1 } av. (BZ)

When the vector is the same for all points being summed, the commutative law in matrix algebra
allows the stiffness vector to be moved outside of the summation. Hence the structural effective
media tensor (Equation 4 of main text) in vector form is:

[EM,L; i = { (1M [[ROT,, 1] 5101 } AV IC, 0] 211 (B3a)
=[SGOI ;1,2 [C ] 2110 (B3b)

The 21 x 21 rotation matrix is large but well-defined. Each element in the rotation matrix is
formed from the directional cosines a;, (i,j= 1-3) relating the rotated coordinate axes to that of the
original. We provide a listing of this entire rotation matrix via Supplemental Material (see footnote
1). The upper left corner of this matrix begins with these terms:

ROT,, = ay* ROT,, =2 a’ar,?
ROT,, = ay’a,® ROT,, = a’a,” + an’ay’
ROTy, = ay’ay’ ROTy, = ay’ay’” + an’as”

ROT,; =2 a,’a,y?
ROTys = aia” + an’ay’
ROTs3 = ars’as” + an’ass’”.

We also include in online Supplemental Material (footnote 1) several Fortran code subroutines
that define and perform the rotation of a 21 x 1 tensor given a set of directional cosines. These
subroutines can be used to calculate the effective media of a geometrical structure filled with het-
erogeneous elastic tensors or modified into other programming languages. The codes can easily
be converted to C, python, or Matlab scripts. The subroutine codes include:

(a) Transfer between Voigt 6 x 6 elastic tensor and 21 x 1 stiffness vector:
subroutine sub_C6x6_to_C21x1(voigt6x6_in,c21x1_out)
subroutine sub_C21x1_to_C6x6(c21x1_in,voigt6x6_out)
(b) Define 21 x 21 rotation matrix elements given 3 x 3 directional cosines.
subroutine sub_set_rotmatrix(dircos,rotmatrix_21x21)
(c) Perform rotation by vector multiplication |R| = |ROTMAT] |C|
subroutine sub_perform_c21_rotation(c21_in,rotmat_21x21,r21_out)
The above subroutines can be packaged together in order to rotate a Voigt elastic tensor:
¢ umbrella subroutine to rotate a 6x6 elastic stiffness tensor using 21-element vectors.

c (1) Define 21x21 rotation matrix given 3x3 directional cosines.
c (2) Transfer 6x6 stiffness to 21x1 vector.

c (3) Rotate stiffness vector, producing rotated R21x1 stiffness.
c (4) Transfer rotated stiffness vector into 6x6 stiffness.

c

subroutine rotate_stiffness_6x6(c6x6_in,dircos,réx6_out)
implicit none

real*8 c6x6_in(6,6), r6x6_out(6,6), dircos(3,3)

real*8 c21_in(21),r21_out(21)

real*8 rotmatrix_21x21(21,21)

call sub_set_rotmatrix(dircos,rotmatrix_21x21)

call sub_C6x6_to_C21x1(c6x6_in,c21_in)

call sub_perform_c21_rotation(c21_in,rotmatrix_21x21,r21_out)
call sub_C21x1_toC6x6(r21_out,réx6_out)

return

end
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