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a b s t r a c t 

A numerical methodology is presented for the plane stress analysis of pervasive cracking in heterogeneous materi- 

als. The smeared crack band concept is used in conjunction with the multi-directional crack model to objectively 

model cracking in a finite element analysis while allowing cracks to form at different orientations. The multi- 

directional crack approach is able to reduce stress-locking behavior that plagues conventional fixed crack models. 

An advanced meshing technique is used to generate meshes with smooth grain boundaries and high-quality ele- 

ments of uniform size. The sequentially linear analysis procedure is used in place of an iterative method to avoid 

instability issues and to capture the snap-type behavior of brittle materials. The implementation is generalized 

to allow for the analyses of heterogeneous materials composed of anisotropic constituents; furthermore, elastic 

stiffnesses and fracture parameters of the materials studied can vary with orientation. The proposed methodology 

is used to study cracking in a concrete microstructure obtained using X-ray computed tomography. Bulk constitu- 

tive behavior and crack patterns are compared with results of other crack methods in the literature. The proposed 

methodology is also used to analyze cracking within a computer-generated polycrystalline microstructure com- 

posed of Voronoi-like grains with the properties of alumina. Using the capabilities of the proposed methodology, a 

comparative study is performed by varying the tensile strengths along grain boundaries relative to their interiors. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cracking in a heterogeneous material depends upon many factors

ncluding the phase morphology, the generally anisotropic elastic stiff-

esses, strengths and fracture toughnesses of the constituent phases, and

he behavior of grain boundaries. In many cases, finite element (FE)

nalysis is used in conjunction with a cracking model to simulate pro-

ressive cracking caused by a set of applied loads. Accuracy of the FE

esults generally requires specialized meshing techniques which, based

n the cracking model, appropriately discretize individual grains and

heir respective boundaries. 

Significant advances in crack modeling have been made over the

ast several decades. Many of the constitutive frameworks developed

uring this time were inspired by the cohesive zone model [1,2] . Ex-

mples include the discrete crack [3,4] and smeared [5–7] crack band

pproaches, which found widespread use in a number of applications

e.g. 7,8,9,10,11–13,14] . The smeared crack band concept is gener-

lly simpler to implement since, as opposed to the discrete concept,

he topology of the finite element mesh remains unchanged during a
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racking simulation. Both approaches are available within most com-

ercial finite element packages. Conventional FE analyses incorporat-

ng the classical discrete crack or smeared crack band framework typi-

ally suffer from directional mesh bias, i.e., strains tend to localize along

ontinuous mesh lines due to the structure and geometry of the mesh.

ore recently, crack tracking algorithms have been incorporated into

hese models to reduce directional mesh bias [e.g. 15,16,17] . 

For cracking models which are based on fracture mechanics [18] or

he cohesive zone model [1,2,19] , material properties such as elastic

tiffnesses, tensile strength, and fracture energy are typically needed for

ach phase. In addition, constitutive frameworks such as the discrete and

meared crack concepts may require a traction (stress) - displacement

strain) law and/or the material characteristic length [6] for each phase.

epending on the type of analysis, additional information may be nec-

ssary to define behavior along grain boundaries. For many anisotropic

aterials, elastic stiffnesses can be readily found in the literature; how-

ver, there is insufficient experimental data for the direction-dependent

racture properties of anisotropic materials. Until more data is collected,

ssumptions and/or approximations are necessary to study cracking in
017 
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nisotropic materials. That being said, much knowledge can be gained

rom studies which consider the influence of other analysis variables

uch as finite element size and type [e.g. 20] and applied loading con-

itions [e.g. 12] . 

Other numerical procedures have recently been developed which

nsert discontinuities directly into the element kinematics. This class

f numerical methods includes the extended finite element method

XFEM) [e.g. 21,22,23] and the embedded crack models (EFEM)

e.g. 24,25,26,27] . Initial implementations of XFEM assumed stress-free

racks; later studies improved the method by incorporating cohesive

racks [28,29] . Element and nodal enrichments allow for the forma-

ion of arbitrarily oriented discontinuities, circumventing the meshing

equirement of some discrete crack models. However, crack tracking al-

orithms are still necessary to determine the correct elements/nodes to

nrich; in fact, EFEM without crack tracking has displayed directional

esh bias similar to the classical smeared crack concept [30] . Models

mploying XFEM and EFEM strategies are becoming increasingly popu-

ar due to the promising results obtained thus far. As stated in [20] , most

pplications focus on simpler models which consider materials such as

lain concrete, and more validation studies must be performed; that

eing said, progress towards more complicated models is being made

e.g. 31,32] . 

Now that mapping techniques such as electron backscatter diffrac-

ion and x-ray computed tomography provide microscopic maps of ma-

erials, meso/microscale modeling of cracking in heterogeneous mate-

ials is becoming increasingly popular [e.g. 33,34,35] . There is a grow-

ng demand for the development of micromechanical models which can

elp to better understand failure mechanisms, beginning at the scale of

ndividual grains and constituent phases. Given the general complex-

ty involved in an analysis of heterogeneous materials at the level of

he meso/microstructure, models must be straightforward, robust, and

fficient. Despite the apparent need for such models, many studies re-

ain focused on simpler problems such as cracking in homogeneous,

sotropic materials [12,20,36] . As an indirect result, there appears to be

ess demand for experimental data on fracture properties of anisotropic

aterials [33] , and the few models which consider more complex ma-

erial behavior lack sufficient options for the validation of results, e.g.,

rack patterns and bulk load(stress)-displacement(strain) relations. 

In order to advance the understanding of cracking at the scale of indi-

idual constituents in heterogeneous materials, a generalized methodol-

gy has been developed which combines the multi-directional smeared

rack band approach and the sequentially linear analysis (SLA) method

ithin a standard FE framework. The implementation is capable of ob-

ectively studying pervasive cracking in heterogeneous materials while

t the same time limiting stress-locking that would otherwise occur in

ingle-fixed or orthogonal-fixed crack models. Stress locking has been

xtensively studied by Zimmermann and Jirasek [37] and is believed

o arise from a finite element ’s inability to appropriately represent, in

 smeared fashion, a discontinuity and the cohesive laws by which it is

overned. The multi-directional crack approach is employed here as a

eans to reduce stress locking and thereby more accurately represent

he cohesive relations which would exist between the two interfaces of

 discrete crack. In addition, the current methodology has been gener-

lized to allow for anisotropic material properties (if the experimental

ata exist) such as anisotropic stiffnesses, tensile strengths, and fracture

nergies. Within the multi-directional crack framework, this allows for

lement crack planes that each have a unique sets of material proper-

ies. In addition, the properties of specific crack planes within elements

long grain/phase boundaries can be modified to model the presence

f weaker regions in materials such as interface transition zones. Unlike

ertain discrete crack models which require frequent modification of the

esh connectivity, the topology of a mesh in the current work remains

he same throughout an analysis, i.e., it is not necessary to detach nodes

nd/or re-mesh. From a conceptual standpoint, discrete cracks are seen

s more physically representative of natural cracks which develop in

aterials on a local level. Smeared cracks, on the other hand, appear to
460 
etter represent distributed cracking in materials with relatively large

racture process zones such as concrete and rocks [38] . In distributed

racking, a smeared crack is used to represent a macroscopic crack

hich forms due to the coalescence of many individual local cracks. For

he analysis of localized cracking, use of the smeared crack approach

s relatively new and untested; however, smeared cracking can greatly

implify FE analysis by removing the need to re-mesh and by allowing

racks to form in arbitrary directions [e.g. 39] . One of the arguments

hich questions the use of the smeared approach in localized cracking

s the difficulty in approximating thin, discrete cracks over the width of

nite elements. The approximation can be improved by sufficiently re-

ucing the size of finite elements a priori, along with the appropriate ad-

ustments to the material softening laws through the crack band model

6] . Both the discrete crack approach and iterative schemes such as

ewton–Raphson can suffer from instability issues when modeling brit-

le material behavior. Since the proposed model incorporates the SLA

ethod, snap-type cracking behavior of brittle materials can be captured

irectly without numerical hindrance. In addition, the SLA implemen-

ation avoids conditioning issues encountered when working with neg-

tive tangent stiffnesses by using sets of reduced secant stiffnesses, i.e.,

nloading/reloading properties. Finally, the numerical implementations

f the meshing routine and the analysis framework are efficient, stable,

teady, conceptually straightforward, and require relatively few user in-

ut parameters. To our knowledge, there exists no other study which

ombines the smeared crack band concept, the multi-directional crack

odel, and the SLA method within an FE framework for the analysis of

eterogeneous materials composed of generally anisotropic phases. 

In Section 2.1 , differences between the classical discrete and smeared

rack concepts are discussed. Subsequently, the crack band approach of

azant and Oh [6] is described, followed by the conventional formu-

ations of the multi-directional crack approach and the SLA method.

spects of the numerical implementation of the proposed methodology

re conveyed, and validation studies are performed to ensure that ele-

ent size sensitivity and directional mesh bias have been mitigated. Af-

er validation, the methodology is illustrated by considering two model

roblems. In the first problem, analysis of tensile cracking behavior of

he two-dimensional concrete specimen of Ren et al. [33] is performed.

esults for an applied vertical uniaxial load are compared with those

resented by Ren et al. [33] . In the second problem, crack development

n a Voronoi-like computer-generated polycrystalline microstructure is

tudied. Each anisotropic grain within the microstructure is assigned a

andom crystallographic orientation to introduce heterogeneity in elas-

ic stiffnesses among the grains. Certain potential crack planes in grain

oundary elements are given weaker properties to represent interface

ransition zones. Bulk behavior and crack development for different re-

uctions in grain boundary strength are compared between three differ-

nt analyses. 

. Background 

The model developed here for the study of localized cracking in

eterogeneous materials combines a number of different strategies that

ave been used to analyze brittle and quasi-brittle behavior in concrete

nd rocks. In this section, the fundamental details pertaining to dis-

rete and smeared crack concepts, the crack band approach, the multi-

irectional crack model, and the SLA procedure are recapitulated. 

.1. Smeared crack modeling 

Discrete and smeared crack concepts have been the subjects of de-

ate for many years. As explained by Rots and Blaauwendraad [38] , the

iscrete crack concept typically aligns with our intuition in terms of con-

eiving an actual geometric discontinuity between two fully detached

rack interfaces; on the other hand, bands of localized cracks in materi-

ls such as concrete have been more easily modeled using smeared crack

epresentations. Furthermore, instabilities created by the stiff interface
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a) b)

σ σ

Fig. 1. Classical crack concepts. The deformed shapes are shown for an applied uniform 

reference load on the top and bottom surfaces. (a) Discrete cracking approach and (b) 

smeared cracking approach. 
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1 Although the cracks in our two-dimensional analyses are modeled as lines, we refer 

to them as planes within this work in accordance with the literature. 
lements used in discrete modeling suggest that the smeared crack ap-

roach is better at representing early stages of distributed cracking. To

xploit the advantages of both approaches, studies have considered com-

ining discontinuous and continuous FE methods [e.g. 40] . 

In the smeared crack approach introduced by Rashid [5] , the de-

elopment of a crack is modeled by adjusting the constitutive proper-

ies, i.e., stiffnesses and strength, of conventional finite elements (see

ig. 1 b). Once a smeared crack is fully developed, the displacements

ithin the mesh remain continuous, producing strains which are still de-

ned but are generally large within the element. Initial applications of

he smeared crack approach aimed to describe large areas of distributed

racking in quasi-brittle materials such as concrete, and in this sense the

pproach was limited to global analyses of large-scale structures [5] . 

Despite the utility of discrete and smeared crack concepts in the nu-

erical modeling of strain localization, both suffer from mesh depen-

ency, i.e., the characteristics of the FE spatial discretization influence

esults such as bulk load-displacement curves and crack patterns. Sen-

itivity to the mesh is typically displayed in two forms: (1) sensitivity

o the size of elements, and (2) sensitivity to the structure of the mesh,

s well as the orientation and organization of its elements. Herein, the

ormer is referred to as element size sensitivity and the latter is referred

o as directional mesh bias. In smeared crack analyses, the detrimen-

al effects of both element size sensitivity and directional mesh bias are

pparent when strains localize into the smallest possible bands of ele-

ents that reside along continuous mesh lines. Detailed studies of mesh

ensitivity have been performed to determine the influence of finite ele-

ent type, size, and orientation [e.g. 20,41] . In efforts to reduce element

ize sensitivity and directional mesh bias in smeared crack analyses, re-

earchers have incorporated the crack band model (see Section 2.2 ) and

 crack tracking algorithms (see Section 3.2 ), respectively. 

.2. Crack band model 

In early applications of the smeared crack concept, energy dissipated

ue to cracking depended on the size of finite elements. This issue was

orrected by Bazant and Oh [6] upon introduction of the crack band

odel for general strain-softening materials. Today, the smeared crack

oncept and crack band model are collectively referred to as the smeared

rack band approach. In order to mitigate mesh size dependence, the

lope of the softening portion of the stress-strain curve is adjusted in or-

er to ensure that the correct amount of fracture energy G f is dissipated

uring the fracture process. This is achieved by linking the slope of the

oftening curve to a crack band width l c which is related to the size and

ype of the finite element over which the cracking is distributed (see

ection 3.1 ). In the case of linear softening under tension, the softening
461 
lope E t of the uniaxial stress-strain curve is adjusted according to 

 𝑡 = 

( 

1 
𝐸 

− 

2 𝐺 𝑓 

𝑓 2 
𝑡 
𝑙 𝑐 

) −1 

, (1)

here E is the Young ’s modulus in the direction normal to the crack

nd f t is the corresponding tensile strength. Adjustment of the softening

lope E t results in an adjusted ultimate strain 𝜀 ult given by 

 𝑢𝑙𝑡 = 

2 𝐺 𝑓 

𝑓 𝑡 𝑙 𝑐 
. (2)

azant and Oh [6] showed that a restriction must be imposed on the

aximum value of l c to avoid local “snap-back ” behavior: 

 𝑐 < 
2 𝐺 𝑓 𝐸 

𝑓 2 
𝑡 

, (3)

here equality of both sides in the above equation results in a sudden

tress drop normal to the crack. 

A prominent feature of the smeared crack band model when applied

o initially isotropic materials is the transition to an orthotropic elastic

tiffness matrix at the onset of crack initiation. The transition results

rom the imposed degradation of material properties such as Young ’s

odulus in the direction normal to the developing crack surface. Early

tudies using the smeared crack band approach defined a priori the fixed

rientations in which cracks could form [6] . Later studies removed this

estriction by allowing cracks to form normal to the maximum princi-

al stress directions [39] , after which the crack orientation was fixed

or the remainder of the simulation. Further capabilities were added to

he smeared crack band model to handle cases of multiaxial loading by

llowing for the existence of a second fixed crack plane 1 normal to the

rst [e.g. 20] . 

Despite their utility, fixed crack models are generally plagued by

tress locking, an inherent deficiency encountered when modeling dis-

ontinuities as continuous fields over finite elements. Stress locking pre-

ents elements from representing fully developed cracks, and therefore

mpedes correct separation behavior along crack interfaces [42] . In ad-

ition, fixed crack models poorly represent cracking if principal stress

nd/or strain directions change during a simulation. 

.3. Multi-Directional crack model 

An alternative approach to the fixed crack model described in the

revious section was developed by De Borst and Nauta [7] to allow any

umber of cracks to form at arbitrary orientations to one another (see

ig. 2 ). This method, referred to as the multi-directional fixed crack

ethod [38] , allowed a new fixed crack to form whenever the normal

tress along a plane exceeded the corresponding tensile strength; as a

esult, issues associated with stress locking and principal direction rota-

ion were reduced. Early applications of the multi-directional fixed crack

odel limited the number of potential cracks at a given point by requir-

ng a minimum separation angle between neighboring crack planes [38] .

his restriction was enforced to prevent cracks from forming arbitrarily

lose to one another, but also to work within the limitations of computer

emory at the time. Computers today have sufficient memory to study

ases involving the formation of many crack planes. 

The foundation of the multi-directional fixed crack model lies is the

ecomposition of the total strain vector 𝛆 = 

{
𝜀 1 𝜀 2 𝜀 3 

}𝑇 
into an

lastic part 𝜺 el and a crack part 𝜺 cr according to 

 = 𝜺 
el + 𝜺 

cr , (4) 

here strain vectors 𝜺 , 𝜺 el , and 𝜺 cr are defined within a global xy coor-

inate system. The strain decomposition can be visualized by imagining

 material element composed of a set of developing cracks distributed
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Fig. 2. Characteristics of the multi-directional crack model. 
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hroughout an interconnected network of undamaged material. As can

e seen from Eq. (4) , the intact material characterized by global elastic

train 𝜺 el acts like a spring in series with the cracking material charac-

erized by global crack strain 𝜺 cr . A global stress vector 𝝈 can also be

efined as 

= 

{
𝜎1 𝜎2 𝜎3 

}𝑇 
. (5)

The main advantage of strain decomposition is that the global crack

train 𝜺 cr can be sub-decomposed into separate contributions from a

umber of non-orthogonal cracks that coexist at a material point 

 
𝑐𝑟 = 𝛆 𝑐𝑟 1 + 𝛆 𝑐𝑟 2 + … , (6)

here global crack strain 𝛆 𝑐𝑟 
𝑖 
is the contribution from crack i to the total

lobal crack strain 𝜺 cr . For crack plane i , an nt coordinate system can be

efined in which the n -axis is aligned with the normal n i to the crack

lane. The t -axis is then aligned with the vector t i parallel to the crack

lane i (see Fig. 2 ). The local crack strain vector 𝐞 𝑐𝑟 
𝑖 
for crack plane i in

he nt coordinate system has components 

 
𝑐𝑟 
𝑖 
= 

{ 

𝜀 𝑐𝑟 
𝑛 ; 𝑖 , 𝛾

𝑐𝑟 
𝑛𝑡 ; 𝑖 

} 𝑇 

. (7)

ikewise, a local stress vector s i for crack plane i can be defined in the

t coordinate system with components 

 𝑖 = 

{
𝜎𝑛 ; 𝑖 , 𝜏𝑛𝑡 ; 𝑖 

}𝑇 
. (8)

n order to relate the global stresses and crack strains in the xy coordi-

ate system to the local stresses and crack strains in the nt coordinate

ystem, the local stress and crack strain vectors are assembled into ma-

rices s and e cr of the form 

 = 

[
𝐬 1 𝐬 2 …

]𝑇 
, (9)

 
cr = 

[
𝐞 cr 1 𝐞 cr 2 …

]𝑇 
. (10)

or a single crack i , the relation between the global crack strain and the

ocal crack strain is given by 

 
𝑐𝑟 
𝑖 
= 𝐍 𝑖 𝐞 𝑐𝑟 𝑖 , (11)

here the transformation matrix N i is composed of the components of

rack plane unit normal vector 𝐧 𝑖 = 

{
cos ( 𝜃𝑖 ) , sin ( 𝜃𝑖 ) 

}𝑇 
and unit tangent

ector 𝐭 𝑖 = 

{
− sin ( 𝜃𝑖 ) , cos ( 𝜃𝑖 ) 

}𝑇 
, and has the form 

 𝐢 = 

⎡ ⎢ ⎢ ⎣ 
cos 2 ( 𝜃𝑖 ) − cos ( 𝜃𝑖 ) sin ( 𝜃𝑖 ) 
sin 2 ( 𝜃𝑖 ) cos ( 𝜃𝑖 ) sin ( 𝜃𝑖 ) 
2 cos ( 𝜃𝑖 ) sin ( 𝜃𝑖 ) cos 2 ( 𝜃𝑖 ) − sin 2 ( 𝜃𝑖 ) 

⎤ ⎥ ⎥ ⎦ , (12)

here 𝜃i is the angle between crack plane i and the global x -axis (see

ig. 2 ). Similar to Eqs. (9) and (10) , the transformation matrices N i for

ach crack can be assembled as 

 = 

[
𝐍 1 𝐍 2 …

]
. (13)
462 
epeated substitution of (11) into (6) yields the relation between the

lobal crack strain vector 𝜺 cr and the matrix e cr of assembled local crack

train vectors 

 
𝑐𝑟 = 𝐍𝐞 𝑐𝑟 . (14)

imilarly, the global stress vector 𝝈 and the matrix s of assembled local

tress vectors 

 = 𝐍 
𝑇 𝛔. (15)

Eqs. (14) and (15) can be used to derive the overall relation between

lobal stress 𝝈 and global strain 𝜺 . First, it is noted that the global stress

nd the elastic part of the global strain are related through the consti-

utive equation 

= 𝐃 0 𝛆 𝑒𝑙 , (16)

here D 0 is the undamaged element material stiffness matrix which for

lane stress has the following general form for anisotropic materials 

 0 = 

⎡ ⎢ ⎢ ⎣ 
𝐷 0;11 𝐷 0;12 𝐷 0;13 
𝐷 0;12 𝐷 0;22 𝐷 0;23 
𝐷 0;13 𝐷 0;23 𝐷 0;33 

⎤ ⎥ ⎥ ⎦ . (17)

he crack stress s i can be related to the crack strain 𝐞 𝑐𝑟 𝑖 through consti-
utive matrix 𝐃 

𝑐𝑟 
𝑖 
according to 

 𝑖 = 𝐃 
cr 
𝑖 
𝐞 cr 
𝑖 
. (18) 

sing (18) , one may assemble the constitutive relations for each crack

lane i according to 

 = 𝐃 
𝑐𝑟 𝐞 𝑐𝑟 , (19)

here D 
cr is an assemblage of 2 ×2 constitutive matrices relating the

ocal stresses on crack planes to the local crack strains. Inserting the

ight hand side of (11) into (4) yields 

 = 𝛆 𝑒𝑙 + 𝐍𝐞 𝑐𝑟 . (20)

ombining (16) with (20) gives 

= 𝐃 0 ( 𝛆 − 𝐍 𝐞 𝑐𝑟 ) , (21)

hich when premultiplied by N 
T and subsequently combined with

15) and (19) can be rearranged to give the local crack strain as a func-

ion of total global strain 

 
𝑐𝑟 = 

[
𝐃 
𝑐𝑟 + 𝐍 

𝑇 𝐃 0 𝐍 

]−1 𝐍 
𝑇 𝐃 0 𝛆 . (22)

inally, the overall global stress-strain relation can be determined by

nserting (22) into (21) : 

= 

[
𝐃 0 − 𝐃 0 𝐍 

[
𝐃 
𝑐𝑟 + 𝐍 

𝑇 𝐃 0 𝐍 

]−1 𝐍 
𝑇 𝐃 0 

]
𝛆 . (23) 

s shown in Eq. (23) , the effective damaged stiffness matrix D is given

y 

 = 𝐃 0 − 𝐃 0 𝐍 

[
𝐃 
𝑐𝑟 + 𝐍 

𝑇 𝐃 0 𝐍 

]−1 𝐍 
𝑇 𝐃 0 . (24)

he damaged stiffness matrix D is equal to the corresponding undam-

ged stiffness matrix D 0 diminished by a matrix which accounts for the

eakening effects of developed crack planes. 

In general, the constitutive matrix 𝐃 
𝑐𝑟 
𝑖 
for crack plane i is a full matrix

ontaining terms which relate each component of local stress s i to all

omponents of local crack strain 𝐞 𝑐𝑟 
𝑖 
. It is common, however, to ignore

hear-normal coupling and assume that 𝐃 
𝑐𝑟 
𝑖 
is a diagonal matrix 

 
𝑐𝑟 
𝑖 
= 

[ 
𝐷 
𝐼 
𝑖 

0 
0 𝐷 

𝐼𝐼 
𝑖 

] 
. (25)

here 𝐷 
𝐼 
𝑖 
relates the local normal stress 𝜎n ; i to the local crack normal

train 𝜀 𝑐𝑟 
𝑛 ; 𝑖 , and 𝐷 

𝐼𝐼 
𝑖 
relates the local shear stress 𝜏nt ; i to the local crack

hear strain 𝛾𝑐𝑟 
𝑛𝑡 ; 𝑖 [43] . 
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Fig. 3. Typical sawtooth approximation for the linear softening behavior of element crack 

plane i . 
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For crack plane i , it is necessary to define unloading-reloading behav-

or. For example, in the case of secant unloading-reloading, the normal

omponent 𝐷 
𝐼 
𝑖 
in constitutive matrix 𝐃 

𝑐𝑟 
𝑖 
can be expressed as 

 
𝐼 
𝑖 
= 

𝐸 0; 𝑖 𝐸 𝑖 

𝐸 0; 𝑖 − 𝐸 𝑖 

, (26)

here E 0; i and E i are the undamaged and secant Young ’s moduli in the

irection normal to crack plane i , respectively [7] . This form can be

erived from the decomposition of total normal stain into elastic normal

train and crack normal strain. 

Fixed crack models typically require adjustment of the shear behav-

or in order to avoid the residual shear stresses which can occur along

ully developed crack planes not aligned with the principal directions

20] . For tensile cracking, the shear component 𝐷 
𝐼𝐼 
𝑖 
has been approxi-

ated as a function of the normal strain [7,44] according to 

 
𝐼𝐼 
𝑖 

= 

𝛽𝑖 

1 − 𝛽𝑖 
𝐺 𝑖 , (27)

here G i is the shear modulus determined from the stiffness matrix in

he coordinate system of the i th plane, and 𝛽 i is a reduction factor which

s commonly taken as a function of the crack development in the normal

irection. The assumed form for 𝛽 i used in this study will be described

n Section 3.3.1 . 

.4. Sequentially linear analysis 

During an FE analysis, brittle, snap-type fracturing of materials such

s ceramic, concrete, and rock can cause convergence issues when us-

ng iterative analysis methods such as the Newton–Raphson scheme.

hese issues typically present themselves as abrupt manifestations of ge-

metric discontinuities and/or sudden variations in material properties.

he sequentially linear analysis (SLA) method [20,36,45] was developed

ith the specific purpose of modeling such behavior by reproducing the

iscontinuous events typical of brittle and quasi-brittle materials. Un-

ike iterative methods which discretize the loads applied to a structure

nd assume smooth material stress-strain relations, SLA discretizes the

amage through a set of predefined reductions in material strength and

tiffness; consequently, SLA is defined as a non-iterative procedure. 

The original SLA implementation typically consists of a series of

caled linear analyses within a single fixed crack modeling framework.

uring each analysis, a critical integration point is determined based on

ts current strength to principal stress ratio. The critical point is subse-

uently damaged in the maximum principal stress direction by a finite

mount, resulting in a stepwise reduction of tensile strength and Young ’s

odulus along a plane normal to the principal stress direction. After ini-

ial cracking has begun in an element, the orientation of the crack plane

n that element is fixed for the remainder of the analysis. The amount

y which strengths and Young ’s moduli are reduced is determined by a

awtooth curve approximating the uniaxial material softening relation.

he sawtooth curve, composed of a set of sawteeth, defines the tensile

trengths and Young ’s moduli of the material at different stages of crack

evelopment. Fig. 3 shows a typical sawtooth approximation of a linear

oftening curve. 

In our work, we follow the approach of Slobbe [48] by employing

he improved ripple approach to generate sawtooth approximations for

aterial softening curves. Although we keep other aspects of the orig-

nal SLA framework described in [20] , we generalize the approach by

llowing cracks to form within elements along a number of predefined

xed element crack planes. If cracking has not yet started along a given

lane, it is referred to herein as a “potential ” element crack plane. By

efining an appropriate number of potential crack planes within all el-

ments a priori, one can accurately capture the development and prop-

gation of multiple cracks during the SLA procedure. More details per-

aining to our generalized implementation of the SLA method are given

n Sections 3.3 and 3.4 . The reader should refer to [20] for details per-

aining to the sawtooth approximation of material softening relations. 
463 
. Proposed methodology 

In this section, a novel modeling strategy is described which has

een designed for the purpose of studying objective, pervasive cracking

n heterogeneous anisotropic materials. The approach described herein

ombines the smeared crack band model, the multi-directional fixed

rack method, and the SLA procedure within a finite element frame-

ork. In this work, we employ a mesh generation process which was

eveloped to discretize heterogeneous material microstructures derived

rom electron backscatter diffraction maps, X-ray computer tomogra-

hy scans, or pixelated image data. The mesh generation process, which

roduces meshes composed of high-quality, uniformly-sized, triangular

lements which conform to the phase/grain boundaries, has been thor-

ughly described in [46] and [47] . 

In Section 3.1 , a description is provided regarding the process by

hich the crack band width l c ; i is determined a priori for each poten-

ial crack plane i contained within an element of the FE mesh. As men-

ioned in Section 2.2 , the crack band width l c ; i ensures results which

o not depend on element size. In Section 3.2 , details are provided re-

arding an incorporated crack tracking algorithm which is shown to

educe the influence of mesh directional bias. The implementations

f the crack band approach and the crack tracking algorithm are val-

dated in Section 4.1 and Section 4.2 , respectively. Section 3.3 out-

ines the method by which an element crack plane ’s elastic and fracture

roperties are degraded due to crack initiation or progression. Finally,

he procedural aspects of our numerical implementation are given in

ection 3.4 . 

.1. Element crack plane band width 

The crack band width l c introduced in Section (2.2) can be thought of

s an FE discretization parameter which adjusts the softening portion of

he constitutive model to ensure objectivity of results with respect to ele-

ent size [6] . As an FE discretization parameter, the crack band width l c 
s a function of the element geometry and size. Accurate representation

f the crack band width ensures correct energy dissipation during crack-

ng and to some extent reduces mesh directional bias. For the analysis of

omogeneous concrete within a single fixed crack framework, [20] ex-

ensively described various crack band width estimators for a variety

f two-dimensional elements containing different numbers of integra-

ion points. In the current formulation, a simple orthographic projec-

ion method [48] is incorporated for a priori approximation of crack

and widths for all potential crack planes within constant strain, three-

oded, triangular finite elements. Conceptually, the projection method

roduces a crack band width which corresponds to the two-dimensional
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Fig. 4. Crack plane i in a typical triangular finite element. 
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lement area projected onto a line perpendicular to the crack plane di-

ection (see Fig. 4 ). Within the multi-directional crack framework, the

rack band width l c ; i of potential element crack plane i is a function of

he orientation angle 𝜃i of the element crack plane relative to the ele-

ent edges, and for polygonal elements, the value of l c ; i is in general

ifferent for each potential crack plane. 

The procedure for approximating the crack band width l c ; i for poten-

ial element crack plane i is now described. The unit normal vector n i 
o an arbitrary element crack plane which makes an angle 𝜃i with the x

xis is (see Fig. 4 ) 

 𝐢 = 

{ 

cos ( 𝜃𝑖 ) 
sin ( 𝜃𝑖 ) 

} 

. (28)

onsider also the vectors created by the edges of the element to which

he crack plane belongs 

 1 = 

{ 

𝑥 2 − 𝑥 1 

𝑦 2 − 𝑦 1 

} 

, 𝐯 2 = 

{ 

𝑥 3 − 𝑥 2 

𝑦 3 − 𝑦 2 

} 

, 𝐯 3 = 

{ 

𝑥 1 − 𝑥 3 

𝑦 1 − 𝑦 3 

} 

, (29)

here ( x j , y j ) are the xy coordinates of node j , and subscript k on vector

 k denotes the vector for edge k . The crack band width l c ; i for the element

rack plane i is determined using (28) and (29) according to 

 𝑐; 𝑖 = max 
(||𝐧 𝐢 ⋅ 𝐯 1 ||, ||𝐧 𝐢 ⋅ 𝐯 2 ||, ||𝐧 𝐢 ⋅ 𝐯 3 ||), (30)

here n i ·v k is the dot product between vectors n i and v k . 

Other methods for determining crack band widths have been devel-

ped for various two-dimensional element types [e.g. 9,44,49] . Compar-

sons between existing methods used to compute crack band widths have

lso been performed [9,20,50] . Furthermore, the estimation of the crack

and width presented in [49] has been extended to three-dimensional

roblems [51] . The method employed in the current work is referred to

s the standard projection method [50] , and is equivalent to the method

eveloped in [49] for constant strain triangular elements. 

For multi-directional cracking, Rots and Blaauwendraad [38] as-

umed that the crack band width was the same for any crack plane

hich developed within an element. In the current work, this is gen-

ralized by allowing each plane to have a crack band width determined

y (30) . However, it is optimal to generate meshes which prevent sig-

ificant variation of crack band widths between neighboring elements

nd an element ’s individual crack planes [20] . This can be achieved

y producing meshes containing 1) elements of approximately the same

rea, i.e., uniformly-sized elements, and 2) elements whose edges are ap-

roximately the same length, i.e., high-quality elements. Consequently,

eterogeneous morphologies with fine constituent features such as nar-

ow regions or tapered sections require a sufficient number of elements
464 
o maintain a uniform distribution of high-quality elements. Although

e have not performed parametric studies based on mesh characteris-

ics such as element size uniformity and element quality in this work, it

as been suggested that superior results are expected in analyses using

niform meshes containing equilateral triangular elements [20] . 

.2. Crack tracking algorithm 

As described in Section 2.1 , classical smeared crack band models suf-

er from strain localization along continuous mesh lines resulting from

irectional mesh bias. Existing studies have attempted to reduce the

nfluence of directional mesh bias in smeared crack band models by in-

orporating crack tracking algorithms [e.g. 16,20] . In the current work,

 crack tracking algorithm has been developed which, during any given

caled linear analysis within the SLA procedure, uses the existing crack

istory in conjunction with the orientation of the critical crack plane

 crit contained within the critical element e crit to determine if a new

rack has formed or if any of the existing cracks have propagated (see

ection 3.4 for details pertaining to the implemented SLA method with

rack tracking). The crack tracking algorithm developed here is similar

o that proposed by Cervera et al. [16] . 

.2.1. Definitions of elements in the crack tracking algorithm 

During a scaled linear analysis in the SLA procedure, a critical el-

ment crack plane i crit is selected by considering the normal stress on

ach element crack plane within all elements of the FE mesh. The ele-

ent containing the critical crack plane is labeled as the critical element

 crit . For the purposes of the crack tracking algorithm, the critical ele-

ent e crit is defined as an isolated element, an intersected element, or a

racked element (see Fig. 5 ). In our implementation, an isolated element

s always an element that has been user-defined prior to the beginning

f the analysis as an element whose potential crack planes can initi-

te cracking without the element having any neighbors which contain

xisting crack planes. In other words, cracks always initiate in isolated

lements. An intersected element is an element that does not yet contain

n existing crack plane, i.e., all planes are still potential crack planes,

ut the element does share an edge with at least one other element that

ontains an existing crack plane. The potential crack planes within inter-

ected elements are potential candidates for the propagation of existing

racks from neighboring cracked elements. A cracked element is any el-

ment that contains one or more existing crack planes; in other words,

t least one crack plane in a cracked element has been selected as the

ritical crack plane i crit in a previous scaled linear analysis. 

.2.2. Updating the crack tracking history 

The crack tracking update procedure for each of the three types of el-

ments introduced in Section 3.2.1 is now described. For a given scaled

inear analysis in the SLA procedure, all existing and potential crack

lanes in cracked elements, as well as potential crack planes in inter-

ected and isolated elements are considered when determining the new

ritical crack plane i crit . Items introduced below are described visually

n Fig. 5 . 

If i crit is an existing crack plane which belongs to a cracked element,

he SLA method proceeds by updating the stiffnesses and tensile strength

n the direction normal to i crit based on its sawtooth relation, and sub-

equently updating the properties of the critical element e crit contain-

ng crack plane i crit based on the update procedure that is described in

ection 3.3 . Since in this case e crit is already classified as a cracked el-

ment, no new information is added to the crack tracking history, i.e.,

o neighboring elements become newly-defined intersected elements. 

If i crit is a potential crack plane which belongs to an intersected ele-

ent, three items are determined: (1) two pairs of xy coordinates defin-

ng a line l which is parallel to critical crack plane i crit , (2) the crack entry

oint p in located along the element edge which is shared between e crit 
nd the neighboring cracked element, and (3) the exit point p out deter-

ined as the point where one of the edges of element e intersects line
crit 
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Fig. 5. Characterizations of elements in the crack tracking algorithm. 
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a

 int , where l int is created by moving one end of line l to entry point p in 
ithout rotating l . The subscript “int ” refers to the classification of the

lement as “intersected ”. As shown in Fig. 5 , l int is the new crack plane

or the intersected element. The element neighboring e crit which shares

he edge intersected by l int becomes an intersected element unless it is

lready defined as an intersected element or a cracked element. Element

 crit is removed from the list of intersected elements and is furthermore

lassified as a cracked element. 

If critical plane i crit belongs to an isolated element, three items are

etermined: (1) Line l which is determined in the same way as for an

ntersected element, (2) exit points p out ;1 and p out ;2 determined as the

oints where two of the edges of element e crit intersect line l iso , where

 iso is created by moving the center of line l to the centroid of element

 crit without rotation. The subscript “iso ” refers to the classification of

he element as “isolated ”. Each of the elements neighboring e crit which

hares an edge that is intersected by l iso is classified as an intersected

lement, unless it is already an intersected element or a cracked element.

lement e crit is added to the list of cracked elements. 

The crack tracking algorithm and the element definitions above can

e better understood by outlining the progression of elements during the

LA procedure. Isolated elements, defined a priori by the user, initially

ontain only potential crack planes and become cracked elements if se-

ected during a scaled linear analysis as e crit . Intersected elements, shar-

ng an edge with a cracked element, initially contain only potential crack

lanes and become cracked elements if selected during a scaled linear

nalysis as e crit ; a neighboring unclassified element then becomes a new

ntersected element. Cracked elements, once defined, remain cracked

lements for the duration of the SLA procedure. We note that certain

rack propagation paths may end if the crack plane at the propaga-

ion front intersects an element edge that lies along a domain bound-

ry. The crack tracking algorithm has the main purpose of eliminating

irectional mesh bias when single fixed cracks propagate from one ele-

ent to another. In the multi-directional crack approach implemented

ere, multiple crack planes can develop within cracked elements. Al-
465 
owing multiple crack planes to develop within a single element relieves

tress-locking and helps to mitigate instances when initial crack direc-

ions are incorrect [e.g. 37] . If a secondary crack initiates in an element,

he crack tracking restraints are relaxed in that element by allowing the

emaining neighboring element, which is yet unclassified, to become a

ew pseudo isolated element. The adjective pseudo is used here since

his isolated element is not user defined a priori but instead it is de-

ned during an analysis to allow propagating element crack paths to

ranch and intersect with one another. In some cases, a newly cracked

lement, which was previously an intersected element, may contain an

nitial crack plane with an orientation that differs by more than 90 de-

rees from the previous cracked element with which it shares an edge

ontaining the entrance point p in . For homogeneous materials, this oc-

urrence was studied by Cervera et al. [16] and is commonly known as

rack reversal, or crack turn-around. Cervera et al. [16] mitigated this

ssue by preventing cracks from changing direction from one element to

he next by a user-defined threshold angle. In our work, we do not use

he crack reversal criteria in [16] since cracks could potentially change

irection significantly along phase/grain boundaries in heterogeneous

aterials. Instead, we use the same approach as before for secondary

racking and classify other neighboring elements as pseudo isolated el-

ments. 

.3. Updating crack plane properties 

Since the multi-directional fixed crack model has been incorporated

ithin the formulation, the current implementation of the SLA method

roceeds slightly differently than the conventional implementation that

as outlined in Section 2.4 . In the next section, these differences are ad-

ressed by describing how the sawtooth method for approximating the

oftening behavior along element crack planes is employed. The process

y which element crack plane properties, and thus element properties,

re updated during the SLA method, is also described. 
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.3.1. Defining sawtooth properties for multi-directional cracking 

We describe the process by which sawtooth approximations of soft-

ning relations are generated by considering an arbitrary potential crack

lane i within an element. Consider an arbitrary potential crack plane

 located within an element composed of material with compliance ma-

rix S 0 . The tensile strength f t ; i and G f ; i for the potential crack plane

ave been defined by the user based on knowledge of the material con-

titutive behavior, and the crack band width l c ; i has been determined

or the potential crack plane using methods from Section 3.1 . In order

o define the sawtooth approximation for the material softening behav-

or, we must determine the initial Young ’s modulus E 0; i shear modulus

 0; i in the directions normal and tangential to the potential crack plane,

espectively. Using the in-plane orientation 𝜃i of potential crack plane

 relative to the global x -axis, and the element ’s compliance matrix S 0 ,

ne can determine both the initial Young ’s modulus E 0; i and the shear

odulus G 0; i for the potential crack plane. Next, the improved ripple

pproach described by [20] can be used to generate a set of sawtooth

roperties for the potential crack plane. Using similar terminology to

hat presented in [20] , the value of the Young ’s moduli and upper ten-

ile strength at sawtooth j are defined as E i ; j and 𝑓 
+ 
𝑡 ; 𝑖 ; 𝑗 . Since we have em-

loyed the multi-directional crack approach, one can use the potential

rack plane ’s initial Young ’s modulus E 0; and the sawtooth Young ’s mod-

li E i ; j to compute the corresponding sawtooth mode I moduli 𝐷 
𝐼 
𝑖 ; 𝑗 using

q. (26) . Recall that the mode I modulus relates the crack plane normal

tress 𝜎n to the crack plane normal strain 𝜀 
𝑐𝑟 
𝑛 
according to Eqs. (18) and

25) . As can be seen by considering (26) , the initial mode I modulus

alue 𝐷 
𝐼 
0; 𝑖 is infinite. In order to prevent numerical issues, 𝐷 

𝐼 
0; 𝑖 can be

et to a high, but finite value. In this work, the sawtooth mode II modulus

 
𝐼𝐼 
𝑖 ; 𝑗 is computed according to Eq. (27) with 𝑝 = 1 , where 𝛽 i is defined
s E i;j / E 0;i . In this case, 𝐷 

𝐼𝐼 
𝑖 ; 𝑗 reduces proportionally with the Young ’s

odulus E i;j . In other studies, it has been proposed that modulus 𝐷 
𝐼𝐼 
𝑖 ; 𝑗 be

etermined from the crack plane normal strain 𝜀 𝑐𝑟 
𝑛 
[e.g. 38,44] . How-

ver, application of this method within our SLA framework would be

roblematic since it would introduce an iterative incremental step in

hich shear stiffnesses would need to be recomputed for each exist-

ng crack plane during each scaled linear analysis. A similar approach

o ours was used in a traditional SLA implementation to decrease the

hear modulus based on the minimum value of sawtooth Young ’s mod-

lus between two orthogonal planes [20] . Other models exist for shear

etention during tensile cracking [e.g. 52] , but few actually have a good

hysical justification. Ideally, both the Young ’s and shear moduli (as

ell as other stiffness parameters) would each depend on both the nor-

al and shear stresses/strains. In other words, a more accurate analysis

ould include normal-shear coupling. [38] have considered this issue

s well, stating that the normal-shear coupling relation is rarely known.

ots and Blaauwendraad [38] argued that relating shear stiffness reduc-

ion to degrading properties in the normal direction, as we have done

n this work, would at least recover some part of the neglected normal-

hear coupling interaction. 

.3.2. Updating crack properties during SLA 

The process by which potential or existing crack plane properties of

lement crack plane i are updated during a scaled linear analysis within

he SLA procedure is now discussed. From methods described in the

ection 3.3.1 , the stepwise sawtooth reductions in model I and mode II

oduli, as well as in tensile strength, for element crack plane i are de-

ned. For the current sawtooth j of element crack plane i , the mode I and

ode II moduli are 𝐷 
𝐼 
𝑖 ; 𝑗 and 𝐷 

𝐼𝐼 
𝑖 ; 𝑗 , respectively. Knowing both 𝐷 

𝐼 
𝑖 ; 𝑗 and

 
𝐼𝐼 
𝑖 ; 𝑗 , one can calculate 𝐃 

𝑐𝑟 
𝑖 
using (25) . Finally, the element elastic stiff-

ess matrix D is updated using (24) . The previous element crack plane

ensile strength at sawtooth 𝑗 − 1 is 𝑓 + 
𝑡 ; 𝑖 ; 𝑗−1 ; it is updated for sawtooth

 in the same way as the conventional SLA method, i.e., the updated

ensile strength is simply 𝑓 + 
𝑡 ; 𝑖 ; 𝑗 . 

One notable feature of the current SLA implementation is that, due to

he incorporation of the multi-directional crack method, the mode I and
466 
ode II crack moduli 𝐷 
𝐼 
𝑖 ; 𝑗 and 𝐷 

𝐼𝐼 
𝑖 ; 𝑗 are reduced as cracking progresses

long an existing element crack plane. In the conventional implemen-

ation presented by Slobbe [20] , the Young ’s and shear moduli along

 single fixed crack plane were reduced. From another perspective, the

urrent implementation updates the properties relating stresses to crack

trains along an existing element crack plane, whereas the conventional

mplementation updates the properties relating stresses to total strains

long a single fixed element crack plane. We note however that the two

pproaches are closely related since the stepwise reductions in 𝐷 
𝐼 
𝑖 ; 𝑗 and

 
𝐼𝐼 
𝑖 ; 𝑗 are determined using the sawtooth values E i ; j . 

.4. Outline of analysis procedure 

Prior to performing an FE SLA crack analysis using the proposed

ethodology, it is necessary to set up a number of analysis parameters.

he following sections describe (1) the initial setup in which analysis

arameters are assigned to finite elements in the mesh and (2) the pro-

edural steps of a typical numerical analysis using the proposed method-

logy. 

.4.1. Initial setup of material parameters 

Before an FE SLA crack analysis is started, the necessary analysis pa-

ameters which govern the constitutive behavior of the finite elements

ust be defined. In the current analyses, the finite elements are con-

tant strain triangular elements containing a single integration point.

lthough higher order elements can be used which may yield superior

esults in certain cases [20] , constant strain triangles containing a sin-

le integration point are used for the purposes of demonstrating our

ethodology. Since each element contains a single integration point,

arameters assigned to an integration point are assigned to the element

s a whole. For each element within the mesh, a set of potential ele-

ent crack planes are first defined. Potential element crack planes rep-

esent the directions within elements along which cracks are allowed

o form. For this reason, one can a priori define many potential crack

lanes in each element to properly capture the yet unknown crack di-

ections. In the current work, each element in the mesh contains 180

otential crack planes over a span of 180 degrees; in other words, rel-

tive to the global x -axis, potential crack planes are defined at 0 °, 1°,

° ... 178°, 179°. Due to symmetry, potential crack planes need not be

efined past 179°. After defining the crack planes in each element, the

rack band width is determined for each plane using methods described

n Section 3.1 . Next, elastic stiffnesses are assigned to each finite el-

ment. In general, elastic stiffnesses may be anisotropic. For analyses

f polycrystalline topologies derived from maps of electron backscatter

iffraction data, the anisotropic stiffnesses assigned at each integration

oint may depend on the corresponding crystallographic orientations.

n cases such as these, the anisotropic stiffnesses in the crystal coordi-

ate systems should be transformed into the analysis coordinate system

rior to performing the analysis [47] . After assigning elastic stiffnesses

o each element, it is necessary to assign a material softening law to

ach potential crack plane within each element. In the current imple-

entation, it is assumed that material behavior in the post-peak regime

ollows a linear softening law in which the tension softening modulus

 t ; i for potential crack plane i in is given by 

 𝑡 ; 𝑖 = 

( 

1 
𝐸 𝑖 

− 

2 𝐺 𝑓 ; 𝑖 

𝑓 2 
𝑡 ; 𝑖 𝑙 𝑐; 𝑖 

) −1 

, (31)

here E i is the Young ’s modulus in the direction normal to crack plane

 determined from the element ’s elastic stiffness matrix, G f ; i is the frac-

ure energy, f t ; i is the tensile strength, and l c ; i is the crack band width.

ote that in general for each crack plane within an element, a differ-

nt softening law may be defined based on crack plane-specific values

f the aforementioned material properties. Once the softening law for

ach plane i in every element comprising the FE mesh is defined, each

oftening curve is approximated by generating a sawtooth representa-

ion according to the methods described in [20] ; subsequently, the crack
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Fig. 6. Square epoxy specimens analyzed in the first validation study. The loading sce- 

nario is shown in (a). For each mesh, the resulting crack pattern is shown as a gray line. 

Also shown in light blue are the pairs of elements at the center of the meshes which, in 

order to start the analyses, are forced to begin cracking first. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 7. Resulting traction vs. displacement curves for the meshes shown in Fig. 6 . For 

each mesh density listed in the legend, the corresponding numerically calculate fracture 

energy is given. 

Fig. 8. Experimental setup and failure cracks for the DEN specimen Nooru-Mohamed 

[54] . 
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oduli 𝐷 
𝐼 
𝑖 
and 𝐷 

𝐼𝐼 
𝑖 
for each sawtooth j are computed using the sawtooth

oung ’s moduli E i ; j (see Sections 3.3.1 and 3.3.2 ). Finally, crack moduli

 
𝐼 
𝑖 ; 𝑗 and 𝐷 

𝐼𝐼 
𝑖 ; 𝑗 of sawtooth j , as well as sawtooth tensile strength 𝑓 

+ 
𝑡 ; 𝑖 ; 𝑗 , are

tored for each potential element crack plane i in the FE mesh. 

.4.2. FE SLA procedure 

Once the material properties are defined using the details of

ection 3.4.1 , the FE SLA crack analysis is initiated. The analysis bound-

ry conditions are first defined (i.e., applied reference displacements

r tractions and fixed node information) by adjusting the appropriate

ntries in the initial global stiffness matrix and the initial global force

ector [53] . The FE SLA analysis begins by computing the nodal dis-

lacements due to the applied reference loads. Next, the nodal displace-

ents are used to compute the element strains and stresses. The element

tresses are then used to determine the normal stresses on each existing

r potential element crack plane. Subsequently, the element crack plane

ormal stresses are used in conjunction with the current sawtooth ten-

ile strengths to determine the ratio r i of normal stress to current tensile

trength for each existing and potential element crack plane i in each

lement of the FE mesh. At this juncture, the crack tracking algorithm

istory is consulted to determine the elements whose existing and poten-

ial crack planes are allowed to be selected as the critical element crack

lane. Generally, the ratios r i of each potential crack plane that are in an

lement that is neither an isolated element, nor an intersected element,

or a cracked element, are set to zero. The critical element crack plane

 crit is then taken as the element crack plane having the greatest normal

tress to current tensile strength ratio, defined as r crit , and the critical

oad factor 𝜆crit is computed as the 1/ r crit . After determining the critical

lement crack plane, the displacements, stresses and strains are scaled

y 𝜆 . According to the details in Section 3.3.2 , the current crack mod-
crit 

467 
li 𝐷 
𝐼 
𝑖 𝑐𝑟𝑖𝑡 ; 𝑗 

and 𝐷 
𝐼𝐼 
𝑖 𝑐𝑟𝑖𝑡 ; 𝑗 

corresponding to the critical crack plane i crit are re-

uced to 𝐷 
𝐼 
𝑖 𝑐𝑟𝑖𝑡 ; 𝑗+1 

and 𝐷 
𝐼𝐼 
𝑖 𝑐𝑟𝑖𝑡 ; 𝑗+1 

, and the elastic stiffness matrix 𝐃 𝑒 𝑐𝑟𝑖𝑡 
cor-

esponding to critical element e crit is updated. Subsequently, the global

tiffness matrix and global force vector entries corresponding to e crit are

pdated to reflect the new values in 𝐃 𝑒 𝑐𝑟𝑖𝑡 
. At this point, the user-defined

ermination criterion is checked. If the termination criterion has not yet

een achieved, the process restarts by computing new nodal displace-

ents using the updated global stiffness matrix and global force vector.

his loop is continued until the termination criterion is achieved, or the

ser manually stops the FE SLA analysis. 
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Fig. 9. Crack path results for DEN specimen. Meshes in shown in (a) though c) contain 3,640, 6,936, and 9006 elements, respectively. Crack propagation in plots (a)–(c) are controlled 

by the crack tracking algorithm. Cracking in the mesh shown in (d), having 3640 elements, is not guided by a crack tracking algorithm; instead, any element plane is allowed to crack if 

it is selected as the critical plane during an SLA run. 
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. Validation of objectivity of results 

In this section, two validation studies are performed to demonstrate

bjectivity of results with respect to characteristics of the FE mesh. In

he first study, objectivity is demonstrated with respect to element size

ensitivity. The current implementation of the smeared crack band ap-

roach leads to results for dissipated energy during cracking that do

ot depend on the element size. In the second study, the well-known

ouble-edge notched specimen is considered to demonstrate objectivity

ith respect to directional mesh bias. In this case, objectivity is achieved

hrough the use of the crack tracking algorithm described in Section 3.2 .

n both studies, there are 180 potential crack planes defined a priori

ithin each finite element and each potential element crack plane ma-

erial softening law is approximated by a step-wise sawtooth curve with

0 sawteeth. 

.1. Validation study #1: element size sensitivity 

As first described by Bazant and Oh in [6] , the smeared crack band

oncept provides objective results in an FE analysis regardless of the size

f finite elements. In other words, the energy dissipated during cracking

oes not depend on the size of finite elements. To illustrate objectivity

ith respect to element size, a similar study to that presented by Pineda

t al. [39] is performed. As shown in Fig. 6 a, a uniform, uniaxial, ver-

ical displacement u is applied to a monolithic square specimen. The

pecimen is composed of MY750/HY917/DY063 epoxy with Young ’s

odulus 𝐸 0 = 3 . 7 GPa, Poisson ’s ratio 𝜈 = 0 . 35 , critical strain at peak
tress 𝜀 𝑐 = 0 . 0135 , and mode I fracture energy 𝐺 𝑓 = 750 J/m 

2 [39] . It is

ssumed that the epoxy softens linearly in the post-peak regime. As men-

ioned in [39] , the material properties are chosen to show significant

nergy dissipation during cracking. The four different meshes shown in

ig. 6 (a-d) containing 1,094 elements, 2114 elements, 3556 elements,

nd 6698 elements, respectively, are considered. The resulting vertical

raction T vs. the applied vertical displacement u is shown in Fig. 7 . In

he current analyses, cracking is forced to begin in the two center-most

lements of the mesh (light blue elements in Fig. 6 ) by defining these
468 
lements as isolated elements a priori, after which cracking is governed

y the crack tracking algorithm. As shown in Fig. 7 , the resulting T vs.

 curves demonstrate objectivity with respect to element size in terms

f peak load, softening behavior, and dissipated energy. For these anal-

ses, the dissipated energy due to fracture is G f , i.e., the area under

he T vs. u curve. The values of 𝐺 
n 
𝑓 
, where the superscript n denotes the

umerically obtained value, are shown in the legend of Fig. 7 , each of

hich are close to the prescribed value of 750 N/m. The scattered nature

f the T vs. u curves is characteristic of the SLA method due to the dis-

ontinuous nature in which the properties of crack planes are updated;

 ( u, T ) data point is added to the T vs. u curve each time a crack plane

 within an element is selected as the critical crack plane and has its

rack moduli 𝐷 
𝐼 
𝑖 
and 𝐷 

𝐼𝐼 
𝑖 
decreased from sawtooth j to sawtooth 𝑗 + 1 .

see Section 3.3.2 ). It is also noted that the frequencies of the curves

n Fig. 7 are shown to be dependent on the number of sawteeth used

o approximate the softening relations, futher demonstrating the mesh

bjectivity of the methodology. The resulting crack paths for each anal-

sis are superimposed on the FE meshes shown in Fig. 6 (a–d) as gray

ines. In these analyses, the crack tracking algorithm has ensured that

he resulting crack propagate along a horizontal line at the vertical cen-

er of the mesh. Given the uniaxial loading scenario and the structured

esh, the resulting crack paths in the absence of a crack tracking algo-

ithm are expected follow similar propagation paths to those shown in

ig. 6 (a–d). In the next validation study, a more complex loading case

s considered in which directional mesh bias significantly affects crack

ath results in the absence of a crack tracking algorithm. 

.2. Validation study #2: Mesh directional bias 

In this next validation study, the effectiveness of the crack tracking

lgorithm (see Section 3.2 ) is tested. The well-known double-edge

otched (DEN) specimen test of Nooru-Mohamed [54] is considered.

he experimental setup, including specimen dimensions and applied

oads, as well as the resulting crack paths, are shown in Fig. 8 . In the

riginal experiment, specimens of 50 mm thickness were subjected

rst to an increasing lateral shear displacement until the resulting load
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Fig. 10. Concrete morphology and finite element mesh. Since cracking is only allowed in the cement paste and ITZs (tan phase), the analysis runtime is reduced by increasing the size 

of the elements within the aggregates. 

Fig. 11. Resulting SLA traction-displacement curve for horizontal uniaxial loading of the 

concrete microstructure in Fig. 10 compared with experimental results of Hordijk [56] . 
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c  
 𝑆 = 10 kN, while the vertical load was kept at 𝑃 = 0 kN. Subsequently,
he shear load was held constant at 𝑃 𝑆 = 10 kN and an increasing dis-

lacement in the vertical direction was applied to the top and bottom

dges of the specimen. Several other authors have also numerically sim-

lated this test [12,20] . In this analyses, the simplification introduced

y Slobbe [20] is used in which the vertical load P is applied at the same

ime as the shear load P S . Slobbe [20] justified this simplification since

he free vertical deformation of the specimen during experimental tests

as negligible. It is likely the case as well that the assumption was made
469 
ue to the fact that the standard SLA method cannot properly handle

on-proportional loading. DeJong et al. [12] have extended the SLA

ethod for certain types of non-proportional loading, but additional

ffort must be made to generalize SLA for all cases. The specimen consid-

red is composed of plain concrete with Young ’s modulus 𝐸 0 = 30 GPa,
oisson ’s ratio 𝜈 = 0 . 2 , tensile strength 𝑓 𝑡 = 3 MPa, and mode I fracture
nergy 𝐺 𝑓 = 100 J/m 

2 [20] . Although more accurate softening models

xist for concrete [e.g. 55] , for the purpose of validating the resulting

umerically-generated crack paths with those of Nooru-Mohamed [54] ,

 linear softening relationship is assumed for the element crack planes

6] . The meshes studied here contain horizontal rows of elements and

ave been tailored this way to explicitly introduce some directional

esh bias. As shown, the computed cracks for the different meshes in

ig. 9 (a–c) show similar patterns and are qualitatively similar the exper-

mental results of [54] displayed in Fig. 8 . Fig. 9 d shows the resulting

racking behavior in the absence of the crack tracking algorithm for the

ame mesh as in Fig. 9 a. In the analysis of Fig. 9 d, the crack tracking al-

orithm was nullified by a priori classifying each element in the FE mesh

s an isolated element; results for this analysis reveal strong sensitivity

o the mesh geometry. Similar results were found by Slobbe [20] who,

n considering various element types, found that superior crack paths

merged for various element types in analyses which employed a crack

racking algorithm. Crack paths numerically generated by DeJong

t al. [12] without a crack tracking algorithm did not compare as

ell with [54] , even though non-proportional loading was simulated.

owever, DeJong et al. [12] found that randomly generated meshes

acking clearly defined mesh lines improved results to some extent. 

. Results and discussion 

In the following section, the proposed methodology is illustrated by

onsidering two model problems. In the first model problem, a concrete
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Fig. 12. Cracked element patterns in concrete sample at four different stages during a horizontal uniaxial loading analysis. Elements shown in black have reduced Young ’s moduli that 

are less than 10% of their initial values. Provided below each subfigure are the corresponding applied displacements. 
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Table 1 

Phase properties for concrete cross-section Ren et al. [32] . 

Phase E (GPa) 𝜈 f t (MPa) G f (N/m) 

Aggregate 70 0.20 − − 
Cement paste 25 0.20 6.0 60 

ITZ 25 0.20 3.0 30 
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t  
orphology from Ren et al. [33] subjected to a uniaxial tensile load

s considered. Results for the bulk traction-displacement behavior, as

ell as the developed crack patterns, are compared with results from

he literature. In the second model problem, we consider a computer-

enerated polycrystalline alumina microstructure and present results for

ulk traction-displacement behavior and crack patterns resulting from

niaxial and simple shear loading cases. In addition, the influence of

rain boundary strength on the resulting crack patterns is studied. 

.1. Model problem 1 - Heterogeneous concrete 

In this section, a concrete morphology generated using X-ray com-

uted tomography is studied using our proposed methodology. The

7.2 mm concrete cross-section considered here (see Fig. 10 ) has been

aken from [33] . In order to generate a mesh for the concrete mor-

hology, we have copied the image from [33] , removed anti-aliasing,

nd enlarged it to its original size of 372x372 pixels. After modifica-

ion, the phase volume fractions of the aggregates, the cement paste,

nd the voids were found to be 0.519, 0.476, and 0.005, respectively

compared to the original volume fractions of 0.518, 0.477, and 0.005

isted in [33] ). The aggregate and cement paste phases are shown in

lue and tan, respectively, in Fig. 10 . Using the meshing technique out-

ined in Section 3 , the concrete morphology is discretized with 60,000

onstant strain triangular elements with a single integration point each.

he concrete phase distribution and the generated FE mesh are shown

n Fig. 10 . Within each element, 180 potential crack planes are defined.

ach plane is assumed to deform by linear softening in the post peak
470 
egime. The linear softening curve for each plane is approximated using

 representative sawtooth curve with 30 sawteeth (see Section 3.4.1 ).

nterface transition zones (ITZs) are introduced within the cement paste

hase to more accurately model actual concrete. In our implementation,

he ITZs are modeled within the cement paste phase as the band of el-

ments which lie on the outside boundary of aggregate inclusions. A

imilar approach has been made by Huang et al. [34] in their analysis

f concrete microstructures obtained from X-ray computed tomography.

he Young ’s modulus E , Poisson ’s ratio 𝜈, tensile strength f t , and frac-

ure energy G f for the different phases are listed in Table 1 . Note that

n Table 1 , the dash symbol signifies that the corresponding property

s not needed in the analysis. For example, cracks are prohibited from

raveling through elements of the aggregates, and therefore aggregate

racture properties do not need to be specified. Cracks can only propa-

ate through the elements of the cement paste and the ITZs. Note that

he ITZ elements are assigned the same elastic properties as the cement

aste but are given reduced fracture properties f t and G f which are equal

o 60% of the corresponding cement paste properties. Note also that the
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Fig. 13. Voronoi-like computer-generated microstructure for alumina studies. The dif- 

ferent shades of blue represent the different (random) crystallographic orientations. (For 

interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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oids are discretized using finite elements but are assigned a stiffness

ight orders of magnitude less than the cement paste (see Table 1 ). As is

vident from the properties listed in Table 1 , each phase in this model

roblem is treated as isotropic, and therefore all planes within an ele-

ent have the same initial elastic and fracture properties. For this study,

ll ITZ elements are a priori classified as isolated elements and therefore

ll existing and potential crack planes in these elements are considered

hen determining the critical element crack plane during any scaled

inear analysis of the SLA procedure. Crack planes in the elements com-

rising the cement paste are considered only if they have been selected

y the governing crack tracking algorithm. 

A uniaxial tension test is simulated by horizontally fixing the nodes

n the left boundary of the mesh ( 𝑥 = 0 ), and by subjecting the nodes
n the right boundary of the mesh to a uniformly distributed horizontal

isplacement u (positive x -direction) (see Fig. 11 inset). Fig. 11 shows

he resulting SLA traction T vs. displacement u curve for the concrete

orphology considered here, as well as the experimental results from

ig. 40 of [56] . The curve determined using the proposed methodology

ompares well with the experimental results of [56] for the selected

educed fracture properties of the ITZ elements. However, the concrete

orphology considered here is not the same as the one considered in

56] ; as a result, one should only compare the two sets of results in a

ualitative manner. The peak strength determined from Fig. 11 is found

o be 4.01 MPa, which is close to the peak strength of roughly 3.9 MPa

rom [56] . Furthermore, the gradual decrease in T with increasing u is

ualitatively similar to the softening behavior shown in [56] . 

In addition to the traction-displacement curves, we also compare the

esulting crack patterns with those presented by Ren et al. [33] for the

ame concrete morphology subjected to the same loading conditions.

ig. 12 shows the crack patterns resulting from the proposed method-

logy at four different stages during the analysis. Only elements con-

aining an existing crack plane whose Young ’s modulus has decreased

elow 10% of its original value are shown in Fig. 12 (black elements).

he applied displacement u corresponding to the state of cracking in

he microstructure is provided below each crack plot and corresponds

o the values along the horizontal axis in Fig. 11 . In comparison to the re-

ults provided in [33] , our methodology produces similar non-dominant

rack patterns in roughly the same areas. As shown, more cracks tend

o form on the right side of the microstructure within ITZ elements, and

ltimately two dominant cracking regions emerge (displayed in black

n Fig. 12 d). One dominant region extends up from the bottom of the

icrostructure, and is horizontally located just to the right of the hori-

ontal center. The second dominant crack region begins near the upper

ight corner of the microstructure and extends down the right side. The

wo dominant cracks which emerge in our analysis appear to coincide

ith the dominant cracks presented in [33] . This, along with the com-

arisons made between our bulk traction-displacement curves and the

xperimental results of [56] , demonstrate the applicability of the pro-

osed methodology to such analyses. 

.2. Model problem 2 - Polycrystalline alumina 

In this model problem, a computer-generated Voronoi-like mi-

rostructure containing 122 grains is considered (see Fig. 13 ). The mi-

rostructure is assumed to be composed of anisotropic alumina grains

ith random crystallographic orientations. The single-crystal elastic

roperties of alumina are taken from [57] and listed here in matrix form

 𝐴𝑙 2 0 3 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

500 . 1 161 . 7 111 . 4 −23 . 26 0 0 
161 . 7 500 . 1 111 . 4 23 . 26 0 0 
111 . 4 111 . 4 502 . 4 0 0 0 
−23 . 26 23 . 26 0 151 . 0 0 0 
0 0 0 0 151 . 0 −23 . 26 
0 0 0 0 −23 . 26 169 . 2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
GPa 

(32) 
471 
he following analyses use single-crystal alumina fracture properties in

hich the average grain tensile strength f t is 400 MPa, and the frac-

ure toughness K IC is 1.5 MPa m 
1/2 [58] . The value of fracture energy

or a plane is determined using the plane stress relation 𝐺 𝑓 = 𝐾 
2 
𝐼𝐶 

∕ 𝐸.
ince the Young ’s modulus generally varies from plane to plane for an

nisotropic material, the fracture energy G f also varies. In order to per-

orm FE analyses, the microstructure in Fig. 13 is discretized by an FE

esh containing 60,074 elements. Each element contains 180 potential

rack planes. Each potential crack plane obeys a linear softening law

nce its tensile strength has been exceeded. The linear softening curves

or each element plane are discretized by 30 sawteeth for use within

he SLA method. In regards to crack initiation, elements with a node at

riple-junction points, i.e., points where the boundaries of three or more

rains intersect, are locations of concentrated stresses and therefore gen-

rally experience higher stresses than other elements in the mesh (with

he possible exceptions of cracked and intersected elements). Therefore,

lements with a node at triple-junction points are defined a priori as iso-

ated elements; intergranular and transgranular propagation of cracks

nto surrounding elements is then governed by the crack tracking al-

orithm (see Section 3.2 ). It is assumed that the average grain size of

lumina is 2 μm, which is within the range reported by Seidel et al. [59] .

n our experience, this choice of grain size appears to produce a slightly

ess brittle response in the traction-displacement curves as compared to

arger grain sizes. Parametric studies which consider the influence of

rain size [e.g. 60] can be performed using the current methodology,

lthough such studies are not considered here. 

.3. Dependence of crack path on grain boundary strengths for a uniaxial 

oad 

In this study, the influence of grain boundary strength on the de-

elopment of intergranular and transgranular cracking is considered.

avattieri and Espinosa [60] have studied intergranular cracking in brit-

le materials using a two-dimensional stochastic finite element analysis

hich incorporated cohesive elements along grain boundaries. Here, a

ertical uniaxial displacement load shown in the inset of Fig. 15 a is ap-

lied in three different analyses in which the grain boundary strength is

educed compared to the grain interior strength. In the first, second, and

hird analyses the grain boundary strengths 𝑓 
gb 
𝑡 
are 0.5 𝑓 int 

𝑡 
, 0.7 𝑓 int 

𝑡 
, and

.9 𝑓 int 
𝑡 
, respectively, where 𝑓 int 

𝑡 
is the tensile strength of the grain inte-

ior. It is noted that for this study the fracture toughness K assigned
IC 
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Fig. 14. Resulting traction-displacement curves for three uniaxial loading analyses of an alumina microstructure with different grain boundary strengths 𝑓 
𝑔𝑏 

𝑡 
which are less than the 

grain interior strength 𝑓 𝑖𝑛𝑡 
𝑡 
. a) 𝑓 

𝑔𝑏 

𝑡 
= 0 . 5 𝑓 𝑖𝑛𝑡 

𝑡 
, b) 𝑓 

𝑔𝑏 

𝑡 
= 0 . 7 𝑓 𝑖𝑛𝑡 

𝑡 
, c) 𝑓 

𝑔𝑏 

𝑡 
= 0 . 9 𝑓 𝑖𝑛𝑡 

𝑡 
. 

Fig. 15. Resulting crack patterns for three uniaxial loading analyses of an alumina microstructure with different grain boundary strengths 𝑓 
𝑔𝑏 

𝑡 
which are less than the grain interior 

strength 𝑓 𝑖𝑛𝑡 
𝑡 
. (a-c) Elements containing crack planes with Young ’s moduli that have decreased to less than 10% of the initial values, and (d–f) all elements containing crack planes. 

Element colors are defined by the color bar and are based on the expression 1− E / E 0 , where E and E 0 are a crack plane ’s current and initial Young ’s moduli, respectively. For elements 
containing multiple crack planes, the plane with the greatest value defined by 1− E / E 0 is used. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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o the grain boundaries is not reduced relative to that assigned to the

rain interiors. 

Fig. 14 and Fig. 15 show the results for the three alumina analyses

erformed with reduced grain boundary tensile strengths. In Fig. 14 (a-

), the traction-displacement curves are shown for the grain boundary

trengths 0.5 𝑓 int 
𝑡 
, 0.7 𝑓 int 

𝑡 
, and 0.9 𝑓 int 

𝑡 
. As can be seen, the peak strength

ncreases with increasing grain boundary strength. The peak strengths

or the cases shown in Fig. 14 (a–c) are approximately 241 MPa, 322

Pa, and 388 MPa, respectively. The three plots in Fig. 14 (a–c) show

hat the overall slope of the traction-displacement curve increases with

ncreasing grain boundary strength, i.e., the response becomes more

rittle. This behavior is expected since the fracture energy assigned to

very element crack plane in all three analyses is the same. 
472 
Fig. 15 (a–c) shows the cracked elements which contain crack planes

ith Young ’s moduli in the normal direction that have decreased to

ess than 10% of their initial values. In other words, if E and E 0 are a

rack plane ’s current and initial Young ’s moduli, then the element con-

aining the crack plane is shown if 1 − 𝐸∕ 𝐸 0 ≥ 0 . 9 . The crack patterns
orrespond to the maximum displacements on the traction-displacement

urves shown in Fig. 14 (note that all maximum displacements have

imilar values). Fig. 15 (a–c) correspond to the reduced grain boundary

trengths of 0.5 𝑓 int 
𝑡 
, 0.7 𝑓 int 

𝑡 
, and 0.9 𝑓 int 

𝑡 
, respectively. As can be seen,

lmost all cracks in the case of 𝑓 
gb 
𝑡 

= 0 . 5 𝑓 int 
𝑡 

are within elements which

ie along grain boundaries. For 𝑓 
gb 
𝑡 

= 0 . 7 𝑓 int 
𝑡 
, a couple cracks have prop-

gated either through or into grain interiors. For 𝑓 
gb 
𝑡 

= 0 . 9 𝑓 int 
𝑡 
, cracks
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Fig. 16. Results for a simple shear loading analysis of an alumina microstructure with grain boundary strengths 𝑓 
𝑔𝑏 

𝑡 
= 0 . 7 𝑓 𝑖𝑛𝑡 

𝑡 
where 𝑓 𝑖𝑛𝑡 

𝑡 
is the grain interior strength. (a) Traction T vs. 

applied displacement u curve, where T is taken as the sum of nodal forces along the top surface in the direction of applied u (see inset for load and boundary conditions), (b) elements 

containing crack planes with Young ’s moduli that have decreased to less than 10% of the initial values, and (c) all elements containing crack planes. Element colors are defined by the 

color bar and are based on the expression 1− E / E 0 , where E and E 0 are a crack plane ’s current and initial Young ’s moduli, respectively. For elements containing multiple crack planes, 
the plane with the greatest value defined by 1− E / E 0 is used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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b  
ravel through grains almost as often as they do along the grain bound-

ries. All dominant crack paths shown in Fig. 15 (a–c) appear to travel

long the same path near the bottom of the alumina microstructure.

ig. 15 (d–f) correspond to the same snapshot in the analysis as Fig. 15 (a–

) but show all elements which contain a crack plane. For these anal-

ses, lower grain boundary strengths are accompanied by more cracks

hroughout the microstructure; The number of non-dominant cracks is

reatest for 𝑓 
gb 
𝑡 

= 0 . 5 𝑓 int 
𝑡 

and least for 𝑓 
gb 
𝑡 

= 0 . 9 𝑓 int 
𝑡 
. These results cor-

espond with the softening behavior shown in Fig. 14 ; for example,

iven the pervasiveness of non-dominant cracks in Fig. 15 -d compared

o Fig. 15 f, one would expect a less brittle response in Fig. 14 a than

n Fig. 14 c. In all three cases, the microstructure ultimately fails along

 single dominant crack which is approximately normal to the vertical

oading direction. 

.4. Results for simple shear loading 

In this final study, we simulate the early stages of cracking in the

lumina microstructure due to simple shear loading. The main objec-

ive of this analysis is to show that the proposed methodology produces

racks which have appropriate orientations relative to the applied load

nd boundary conditions (see Fig. 16 a inset). We assume that the grain

oundary strengths 𝑓 
gb 
𝑡 

= 0 . 7 𝑓 int 
𝑡 
, where 𝑓 int 

𝑡 
is the tensile strength of

he grain interior. Other analysis parameters used here are the same as

hose used in the analyses of Section 5.3 . 

Fig. 16 shows the results for the simple shear analysis of the alu-

ina microstructure. Fig. 16 a shows the traction T versus applied dis-

lacement u relationship for early stages of cracking (see Fig. 16 a inset),

here T is computed as the sum of the nodal forces along the top surface

f the microstructure in the direction of applied u . The peak value of T is

oughly equal to the assumed tensile strength of alumina i.e., 400 MPa.

s shown in Fig. 16 a, the peak of the 𝑇 − 𝑢 curve is followed by soften-

ng behavior. Fig. 16 b show the cracked elements which contain crack

lanes with Young ’s moduli in the normal direction that have decreased

o less than 10% of their initial values. The crack patterns correspond to

he maximum displacements on the 𝑇 − 𝑢 curve shown in Fig. 16 a. As

xpected, the dominant cracks of Fig. 16 b lie at an angle of roughly 135

egrees to the x -axis and tend to travel along grain boundaries more

ften than grain interiors due to the reduced grain boundary strength.

ig. 16 c corresponds to the same snapshot in the analysis as Fig. 16 b but

hows all elements which contain a crack plane. It is noted that cracking

s more prevalent along grain boundaries which are roughly parallel to

he dominant crack directions. 
473 
. Conclusions 

A numerical methodology has been presented for the analysis of per-

asive cracking in heterogeneous materials. The smeared crack band

oncept is used in conjunction with the multi-directional crack model

o objectively model cracking in a finite element analysis while allow-

ng cracks to form at different orientations. In order to reduce the stress

ocking prevalent in existing fixed crack models, multiple cracks are

ble to form within a finite element. An advanced meshing technique is

sed in order to generate mesh with smooth grain boundaries and high-

uality elements of uniform size. The sequentially linear analysis pro-

edure is used in place of an iterative method to avoid instability issues

nd to capture the snap-type behavior of brittle materials. The imple-

entation is generalized to allow for the analyses of heterogeneous ma-

erials composed of anisotropic constituents; furthermore, elastic stiff-

esses and fracture parameters of the materials studied can vary with

rientation. A crack tracking algorithm is formulated to mitigate the ef-

ects of directional mesh bias. Although plane stress conditions are used

resently, appropriate generalizations to the formulations herein could

llow for the study of plane strain and full three-dimensional problems.

alidation studies are performed to ensure the objectivity of results with

espect the geometry of the finite element mesh. In order to illustrate

he proposed methodology, two models problems are performed. In the

rst, cracking in a concrete microstructure obtained using X-ray com-

uted tomography is studied. Bulk constitutive behavior and crack pat-

erns are compared with results of other crack methods in the litera-

ure. It is found that traction-displacement behavior determined using

he proposed methodology compares reasonably well with the corre-

ponding results from a discrete crack finite element analysis using co-

esive zone elements. In addition, the dominant cracks generated dur-

ng the analyses of both methods emerge in the same regions of the

oncrete microstructure. Next, the proposed methodology is used to an-

lyze cracking within a computer-generated polycrystalline microstruc-

ure. The microstructure is composed of Voronoi-like grains which are

ach assigned the properties of anisotropic alumina. We introduce het-

rogeneity into the microstructure by assigning each grain a random

rystallographic orientation. In order to demonstrate a capability of the

roposed methodology, analyses are performed in which grain boundary

ensile strengths are reduced compared to grain interiors. It is found that

he amount of cracking along grain boundaries increases as the grain

oundary tensile strengths are decreased relative to the grain interiors.

tronger grain boundaries are found to produce a more brittle traction-

isplacement softening response. This is supported by the greater num-

er of non-dominant cracks which develop in the case of weaker grain

oundaries. In all the three cases considered, the microstructure ulti-
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ately fails along a dominant crack which is approximately normal to

he applied loading direction. A final study is performed to simulate the

racking in the alumina microstructure due to simple shear loading. The

arly stage of cracking is accompanied by softening behavior, and dom-

nant cracks tend to travel along grain boundaries due to the reduced

ensile strength. It is shown that simple shear produces cracks which

ropagate at angles of roughly 135 degrees to the x -axis. In addition,

racks tend to form along grain boundaries that are roughly parallel to

he dominant crack directions. 
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