
CTE2018

 1

Computational concepts, practices, and collaboration in high school students’
debugging electronic textile projects

Gayithri Jayathirtha1*, Deborah A. Fields2, Yasmin B. Kafai1

1 University of Pennsylvania

2 Utah State University

gayithri@gse.upenn.edu, deborah.fields@usu.edu, kafai@upenn.edu

ABSTRACT
Debugging, a recurrent practice while programming, can
reveal significant information about student learning.
Making electronic textile (e-textile) artifacts entails
numerous opportunities for students to debug across
circuitry, coding, crafting and designing domains. In this
study, 69 high school students worked on a series of four
different e-textiles projects over eight weeks as a part of
their introductory computer science course. We analyzed
debugging challenges and resolutions reported by
students in their portfolios and interviews and found not
only a wide range of computational concepts but also the
development of specific computational practices such as
being iterative and incremental in students’ debugging e-
textiles projects. In the discussion, we address the need
for more studies to recognize other computational
practices such as abstraction and modularization, the
potential of hybrid contexts for debugging, and the social
aspects of debugging.

KEYWORDS
computer science education, programming, debugging,
electronic textiles, making

1. INTRODUCTION
Debugging, the process to fix problems in code that
prevent a computer program from functioning as
intended, is recognized as a key computational thinking
practice in engineering and computing (College Board,
2017; McCauley et al., 2008). In addition to being an
important practice, debugging can also illuminate various
areas of student struggle and provide opportunities for
correction and support (Griffin, 2016). This is evident in
studies where novice programmers’ errors have
illuminated misconceptions about specific concepts such
as logical operators or understanding of control-flow
statements (e.g. Brown & Altadmri, 2014).

Yet, debugging is an issue not just in computer science
but also in engineering education (e.g., Patil & Codner,
2007). Electronic textiles construction kits, that include
sewable microcontrollers, sensors, and actuators
(Buechley, Peppler, Eisenberg, & Kafai, 2013), bring
engineering and computer science together and generate
at times interconnected problems for debugging. For
instance, during the creation of an e-textile project,
problems can occur in the code, in the circuitry, and in
the crafting and physical design itself, and students need
to test and isolate problems, often fix multiple co-
occurring issues that add to the complexity of the project
(e.g., Kafai, Fields, & Searle, 2014). Thus these hybrid
projects provide an opportunity to promote deeper

learning of debugging in engineering and computing,
especially if we consider debugging as a type of in-the-
moment problem solving of projects (not just code) with
errors.

In this paper, we investigate high school students’ (14-18
years) debugging in the context of an eight-week long e-
textiles curricular unit that took place within three
introductory Exploring Computer Science classrooms
(hereafter ECS, Margolis & Goode, 2016). During the
unit, students from three classrooms created a series of
four open-ended projects of increasing difficulty. In order
to understand their debugging more deeply, we studied
the problems that students reported they had to debug.
Using end-of-unit written portfolios and interviews
where students reflected on the challenges they
encountered while creating their e-textiles projects, we
studied the following questions: What types of
challenges did students face, and in what content areas as
they were making these projects? What kinds of
computational practices did students report in relation to
solving problems that came up? What social resources
did they draw on to debug projects?

2. BACKGROUND
Debugging has been recognized as a key part of
computational thinking for many years. As Papert (1980)
noted, “[e]rrors benefit us because they lead us to study
what happened, to understand what went wrong, and,
through understanding, to fix it” (p. 114). The historical
teaching of debugging strategies has focused on helping
students discover their own syntax problems (e.g.,
Robertson et al., 2004) or providing them with strategies
for fixing and finding bugs (Carver & Risinger, 1987)
through a variety of methods, such as debugging
exercises and logs, reflective memos, and collaborative
assignments (e.g., Griffin, 2016). Researchers have also
developed different technical supports in the form of
debugging tools. For instance, Tubaishat (2001) provided
tracing tools, while Thomas, Ratcliffe, and Thomasson
(2004) offered visualizations and Robertson and
colleagues (2004) investigated the timing of interruption
tools. Nearly all of this research focused on on-screen
programming since it was common in introductory
programming courses then. As McCauley and colleagues
(2008) noted in their comprehensive review of debugging
research, it is unclear how findings and strategies
developed from these earlier studies apply to visual
programming languages and hybrid construction kits
such as e-textiles which also involve collaborative work.

More recently, scholars have started to identify
computational practices in computer science education, a

CTE2018

 2

focus not just on what concepts students are learning but
how they are learning it and what thinking strategies they
develop. For instance, in their examination of students
learning Scratch, Brennan and Resnick (2012) identified
four computational practices: being iterative and
incremental, testing and debugging, reusing and
remixing, and abstracting and modularizing—each of
which can result from rich programming experiences.
Similarly, Sullivan (2008) outlined seven types of
scientific thinking that student exhibited while thinking
aloud about solving robotics problems: observing the
problem, isolating the problem, generating a hypothesis,
testing a hypothesis, controlling variables, manipulating
variables, evaluating the solution, and estimating and
computing. Together, these studies suggest taking a
broader view of the thinking processes that debugging
involves.

Several studies have shown that e-textiles can provide a
complex context for debugging. The hybrid nature of e-
textiles means that problems can occur in several
overlapping areas of craft, design, circuitry, and coding
(Kafai, Fields, & Searle, 2014; Lee & Fields, 2017). This
means that identifying underlying problems is potentially
tricky. However, prior studies of debugging in e-textiles
have largely focused on areas of circuitry and physical
craft, with only elementary computing concepts
appearing in studies of debugging (see Litts, Kafai,
Searle, & Dieckmeyer, 2016; Fields, Searle, & Kafai,
2016). Lack of time may be a reason for this since most
e-textiles projects rarely exceed 16-20 hours of time on
projects and rarely include more than one project
requiring programming sensors or actuators. In our study,
one goal of the e-textiles curricular unit design was to
engage students more deeply in computational aspects of
e-textiles for more time (roughly 40 hours of class time)
with two projects involving coding.

Further, we intentionally looked at whether students
discussed getting help from others in their descriptions of
debugging in an effort to understand the collaborative
nature of debugging. Previous debugging studies have
focused mostly on individuals as if learning to debug was
solely an individual endeavor (e.g. Fitzgerald et al.,
2008). Yet learning in computer science does not happen
in isolation. Kafai and Burke (2014) called for a
reconceptualization of computational thinking as
computational participation, explicitly recognizing the
collaborative nature of computing. As collaboration is
recognized as a key computational practice for learners to
develop (College Board, 2017), some studies have noted
the role of others in problem solving with computers or
robotics. For instance, Deitrick and colleagues’ (2015)
analysis of a programming class through a socio-
historical lens uncovers the intricacies of collaborative
contexts where students, teachers and tools play a
definite role in computational learning. Further, Jordan
and McDaniel (2014) found that peers serve as a resource
for managing uncertainty during problem solving. Yet
much more needs to be understood about collaboration
with debugging, especially in informal or ill-structured
groups (versus pairs or small groups).

3. CONTEXT and PARTICIPANTS
The ECS initiative comprises a one-year introductory
computer science curriculum with a two-year
professional development sequence. This inquiry-based
curriculum has been successfully implemented with over
20,000 students. In 2016, we co-developed an e-textiles
unit for the ECS curriculum and piloted it with two
teachers, focusing on teacher practices of making (see
Fields, Kafai, Nakajima, Goode, & Margolis, in press).
We revised the unit in 2017 and piloted it with three
teachers, this time with a focus on student learning (the
broader focus of this paper).

The revised unit took place over eight weeks and
consisted of a series of four projects: 1) a paper-card
using a simple circuit, 2) a wristband with three LEDs in
parallel, 3) a classroom-wide mural project where pairs
of students created portions that each incorporated two
switches to computationally create four lighting patterns,
and 4) a “human sensor” project that used two aluminum
foil conductive patches that when squeezed generated a
range of data to be used as conditions for lighting effects.
Student artifacts included stuffed animals, paper cranes,
and wearable shirts or hoodies, all augmented with the
sensors and actuators. All the students also documented
their projects in portfolios in which they summarized
their projects, shared challenges that they faced, and
reflected on their learning during the e-textiles unit.

In Spring 2017, three high school teachers, each with 8-
12 years of computer science classroom teaching
experience, piloted the e-textiles unit in their ECS classes
in three large public secondary schools in a major city in
the western United States. All three schools had
socioeconomically disadvantaged students (59-89% of
students at each school) with ethnically non-dominant
populations (i.e., the majority of the students at each
school include African American, Hispanic/Latino, or
southeast Asian students). In School 1, Angela taught 22
students (6 girls and 16 boys), in School 2, Ben taught 36
students (17 girls and 19 boys), and in School 3, José
taught 29 students (20 girls, 9 boys). All names of
teachers and students are pseudonyms.

4. DATA COLLECTION and ANALYSIS
Data for this project include all written portfolios
submitted by consenting students (69 students from 3
classrooms) and interviews with pairs of students from
each classroom (16 students total) discussing problems
they encountered while making their e-textiles artifacts.
We began analysis by identifying debugging episodes
that students reported in their interviews and portfolios.
We then grouped these episodes student-wise (69
students), combining two or more challenges whenever a
student shared the same issue, both in the interview and
the portfolio. This resulted in 210 total debugging
episodes.

We coded the debugging episodes in a number of ways,
drawing on concepts and frameworks from prior studies
whenever applicable. To begin, each episode was
classified by content (crafting, circuitry, programming,
and design) and then sub-classified within more specific

CTE2018

 3

areas of these domains. For instance, we subdivided
circuitry based on codes by Peppler and Glosson’s (2012)
research on e-textiles: connections, polarity, and current
flow. For programming, we drew on Brennan and
Resnick’s (2012) framework of computational concepts:
data, events, sequence, conditionals, logic operators, and
loops. We also included syntax, an issue specific to text-
based programming language. However, with very little
prior research done to understand student challenges in
designing and crafting, we needed to develop new codes
to categorize these challenges, including sewing
mechanics, physical construction, and three-dimensional
issues of design. Multiple codes could be used for each
episode, since areas often overlapped (e.g., a problem
involving both circuitry and code). We also included a
“general” subcategory in cases of vaguely described
problems.

In addition to analyzing content domains, we looked at
computational practices students exhibited in their
descriptions of the debugging process. For this we used
both Brennan and Resnick’s (2012) framework of
computational practices and Sullivan’s further
subdivision of problem solving with robotics (see Section
2 for descriptions). Notably, Brennan and Resnick
classify “testing and debugging” as one computational
practice. However, while problem solving their projects,
students often reported practices such as being iterative,
so we included all practices identified by Brennan and
Resnick and Sullivan in our coding of debugging
episodes.

Finally, we considered the larger context of debugging,
specifically what resources students used to resolve
problems, including digital tools (e.g., Arduino IDE error
message bar), physical tools (e.g., seam rippers or curved
needles), or social resources (e.g., peers, teachers). Few
students reported the use of digital or physical tools.
However, many students frequently listed collaboration
as a key resource while debugging. Below we share
overarching findings from this analysis, focusing on
computational concepts, computational practices, and
collaborative resources to debug e-textiles projects.

5. FINDINGS
5.1. Computational Concepts Involved in Debugging
In earlier studies of debugging with e-textiles, crafting,
circuitry, and simple computational challenges were the
primary areas of debugging (Litts et al., 2016; Fields et
al., 2016). In this study we found similar reporting of
problems that arose in crafting and circuitry, but we also
identified two other areas of debugging that were not
discussed in earlier studies. First, students in our study
reported coding challenges almost as often as crafting or
circuitry and this highlighted some key coding concepts.
Second, students also encountered new challenges in
three-dimensional design. We describe these two areas in
more detail below.

Among the 210 total debugging episodes, concepts
discussed were almost evenly distributed across coding
(29%), crafting (30%), and circuitry (28%). Within the
episodes that discussed coding challenges and

resolutions, a wide variety of concepts were reported,
ranging from simple problems with syntax and labeling
to more advanced issues with logical operators and
control-flow statements. Forty-three students across three
classes mentioned coding challenges at least once: a total
of 61 episodes. Of these debugging episodes focused on
code, 64% of included “simple” issues that involved
syntax, mislabeling variables or incorrect usage of
constants. For example, some of these bugs included
fixing brackets in conditional statements and functions,
and mislabeling a sensor as “OUTPUT” instead of
“INPUT.” While these are still relatively simple issues,
resolving syntactical and labeling bugs such as these is a
key practice in coding (McCauley et al., 2008).

However, 36% of the coding issues shared revolved
around more complex computational concepts such as
determining mathematical expressions for ranges of
sensor values and managing multiple conditional
statements. Consider David (School 1), who had
difficulty determining the most effective ranges for his
human sensor project. This project included two
conductive patches that created a range of numerical
values depending on how hard someone squeezed.
Students had to create four ranges of these values and
program them to trigger different lighting patterns. As
David expressed, “it was harder to think of how big your
range had to be so that it would actually react to how you
want it to be.” After he realized his first attempt at coding
ranges was inadequate, he iteratively tested the sensor,
and represented a sequence of readings on a number line.
Many students struggled with coding the ranges on their
patches and took substantial time to fix them. Other more
complex challenges that students faced included
organizing multiple conditionals, especially if they
involved two stages (i.e., using “if___, else___” instead
of just a series of “if” statements), using additional
sensors (e.g., light sensor) or in-built functions (e.g.,
random number generator). The variety and relative
complexity of coding challenges reported by students
highlight the affordances of e-textiles to support
debugging both simple and advanced computational
coding concepts.

Besides struggles with coding, another new area of
struggle involved designing circuits on a three-
dimensional artifact such as a stuffed animal or
sweatshirt, especially common in the human sensor
project. These designs required students to plan their
circuitry two-dimensionally on paper but translate it onto
a three-dimensional item. This posed new challenges to
students. Thirteen of the 69 students (19%) specifically
mentioned this issue within their debugging. For
instance, while making his “Angry Bird” stuffed animal
project, Rodrigo (School 1) realized he had to change his
circuitry once he started working in three dimensions. “I
made these changes because it was difficult planning out
a 3D model on paper and if I hadn’t made changes to the
pin numbers, then the paths would have crossed,” he
explained. Photos from his portfolios are visible in
Figure 1, where he showed two sides of the stuffed
animal as well as his final circuitry diagram highlighting

CTE2018

 4

those same two sides (front and bottom). Though issues
of three-dimensional circuitry design have not appeared
previously in work on learning with e-textiles in K-12
education, it has come up with university students during
clinical interviews (Lee & Fields, 2017), suggesting it
may be an area of debugging that students face while
working on more advanced projects. This also raises
opportunities to consider spatial thinking in e-textiles
design.

Figure 1. Rodrigo’s Angry Bird project (top left to right

clockwise): Upper view; bottom view (showing
microcontroller); Circuit diagram.

5.2. Computational Practices Related to Debugging
In addition to content areas of debugging, we also sought
to better understand the process of debugging, analyzing
this through the computational practices lenses. Out of 69
students, 60 shared at least one of the four standard
computational practices suggested by Brennan and
Resnick (2012) in their framework. Out of these four
practices, testing and debugging was the most mentioned
(47 students), followed by iterative and incremental
practices (35 students). The two other practices,
abstraction and modularization, and reusing and remixing
were rarely discussed. This may be because of how the
questions were phrased in interviews and in the portfolio,
which focused on challenges students faced. For
instance, in their focus on problems, students did not
mention remixing designs although remixing and reusing
daily-use items such as backpacks and soft toys was an
integral part of their human sensor project. Further,
though there were opportunities for applying abstraction
and modularity (i.e., breaking down a project and/or code
into parts), this did not seem to be a conscious way that
students thought about this process with regard to
problem solving. However, yet another computational
practice that emerged from student descriptions was
collaboration, which is also presented as a perspective in
Brennan and Resnick’s (2012) framework. Thirty-six
students reported on collaboration as an integral aspect of
fixing errors, leading us to suggest collaboration as more
of a computational practice rather than a perspective
developed, which we will elaborate shortly.

Though all debugging episodes concerned students fixing
issues, in some instances students shared more specific
details about how they identified, isolated, and otherwise
focused on understanding a particular problem. In these
47 instances, we coded for specific areas that Sullivan

(2008) identified. The most prominent of these were
observing the problem (46 students), isolating the
problem (43 students), and generating a hypothesis about
the cause of the problem (35 students). As an example,
consider how Alexa and Antonio (School 2) worked
through a series of circuitry problems in their Pacman-
themed mural project (see Figure 2). As Alexa expressed
in her portfolio: “[In] our first design we wanted the
playground on the back of project. When we tried that,
the conductive thread crossed each other… We dealt with
our problem by redesigning our project, so that the
playground was in the front and the conductive thread
wasn’t touching.” Alexa and Antonio first observed the
source of the error as the short-circuit (crossed threads)
and hypothesized that the spatial placement of the Circuit
Playground (microcontroller) at the back of their Pacman
mat was causing the short circuit. They were able to
isolate specific locations where these short circuits
occurred and plan their next iteration to fix them.

Figure 2. Alexa and Antonio’s Pacman project

Along with testing and debugging, being incremental and
iterative was another other key computational practice
evident in student narrations. Of the 35 students who
shared about this, 29 discussed incrementally revising
their project design and 10 shared about repeatedly
testing their sensor values and adjusting their project
code to suit the varying values. (Note: we classified
repeated testing of a problem under iteration rather than
testing and debugging). One of the key challenges
underlying revisions was translating project plans from
paper representations to physical artifacts. As previously
mentioned, many students had to revise their project
upon realizing that their plan on paper did not work when
sewn in three dimensions. For instance Alma (School 2)
expressed that “[W]hen sewing [our project] we realized
that everything was basically backwards” and had to
substantially change the placement of each LED so to
have “clean lines” without short circuits.

Besides design translations, the other major area of being
iterative and incremental was in testing the sensor
patches. Here David (School 1) again provides an
explanation for what iterative testing looked like:

So from my last project, it was a human sensor and
my scales were… pretty much wrong to the point
where only one pattern worked… [T]o fix the
problem… I slowly started testing out. So, I touched
it. Okay, this is the values for a light touch, just
inputted that. I said, ‘let’s squeezed it harder.’ [sic] I
looked at the values, and inputted that… As I looked
at the values, I am like, okay, the range from this to
the next pattern, it’s kinda too small. So I have to
make it bigger so that it can be a bit more sensitive.

CTE2018

 5

This encouraging example of iteration demonstrates the
careful way that some students had to work to program
their sensors. Often their first attempt would result in
poorly thought-out ranges, and, like David, students had
to proceed through cycles of testing and adjusting the
range of values corresponding to squeezing. Though only
10 students described this particular process, it is a
practice that could be expanded on more intentionally in
future iterations of the curriculum and in debugging
pedagogy more generally.

5.3. Collaboration Contexts Related to Debugging
One unexpected finding was how often students’
debugging involved collaboration with classmates,
partners and teachers. Most students (75%) explicitly
mentioned help they received from peers or a teacher in
at least one of the challenges they described (in 36% of
the challenges overall). Unlike an earlier study that
observed low peer collaboration in e-textiles (Litts et al.,
2016), this analysis revealed student engagement with
different types of collaborators throughout their e-textiles
debugging, from their immediate partners on a project, to
students at the same table, to the wider class community.

Students reported different kinds of supports that they
received from peers and teachers across a range of
issues—from identification of syntactical errors to
understanding concepts such as conditional statements.
An example for a simple support includes Ethan’s
(School 3) reporting of dim lights in his quilt project. His
classmate helped him locate and isolate the problem:
missing a line in the setup section of the code that
initialized the pin to OUTPUT. Students also mentioned
getting help with more complex struggles. For instance,
Allie (School 2) used her classmates to test the sensors of
her human sensor project, using “different people's
pressure” and changing the ranges in her project.
Surprisingly, students rarely mentioned teacher
participation in debugging (close to 11% of challenges).

Collaboration was mentioned frequently in students’
reports of debugging although students were graded
individually for this unit. That so much collaboration was
evident in these contexts suggests that there is much
more to discover about unstructured peer-to-peer
debugging in students’ e-textiles design processes and in
debugging open-ended computational projects.

6. DISCUSSION
Our analysis of student challenges and solutions
demonstrates that debugging open-ended e-textiles
projects can provide a rich context for students to
experience a range of computational concepts and
practices. Our study noted promising new areas of
conceptual struggles for e-textiles students, specifically
in the domains of coding and three-dimensional design.
We think this is because students were able to go deeper
in these areas with two advanced e-textiles projects
compared to prior studies that only had one such project
(e.g., Fields et al., 2016; Litts et al., 2016). This suggests
that pursuing a series of challenging e-textiles projects
may provide more opportunities for deeper learning of
computing concepts and practices than just one or two

projects. It also raises the potential for supporting
debugging more generally by creating a series of projects
in other computational domains, not just e-textiles.

In addition to conceptual learning, students in this study
reported using certain computational practices such as
being iterative, testing and debugging, and
collaboratively problem solving. Interestingly, within the
area of debugging, students’ reports consistently
highlighted the need to identify and isolate problems,
something that should not be trivialized. Unlike other
studies of debugging that focus solely on debugging code
(e.g., Brown & Altadmri, 2014), students with e-textiles
projects had to consider the origin of a bug from among
several possibilities: code, circuitry, craft, or spatial
design. Yet, we also recognize that this study was limited
to students’ reporting of bugs rather than a study of
observing of how they actually solved them. This opens
up the need for deeper research on students’ in-the-
moment debugging to see whether students engage in
other steps of debugging such as manipulation of
variables, evaluation of solutions, and estimation of data.

One other key finding was frequent student collaboration
during problem solving. Students shared collaboration
not only at the level of formal pairs and small groups but
within the broader classroom, turning the class into a
community of learners. The physical layout of the
classroom with tables and shared supplies along with the
teachers’ allowing students to move between tables may
have encouraged this fluid collaboration (Fields et al., in
press). More so, these findings call for a
reconceptualization of collaboration in these spaces to
better understand the roles taken on by different
participants. A closer look at these types of settings may
help us understand and classify different kinds of
supports students provide to each other. Such an analysis
could also help us understand the supportive role of
teachers in creating collaborative classrooms, informing
the development of new pedagogical approaches for
students and professional development for teachers.

The interdisciplinary nature of e-textiles provided a
unique opportunity to study debugging in a hybrid
context. If debugging is a core area of computation, then
as a field we need to look beyond code-only settings of
computation to hybrid settings (including but not limited
to e-textiles) where students are introduced to debugging
in more challenging situations which demand multiple
iterations of revising and testing. Further, more studies of
debugging are needed in many contexts that look at it
less as an individualistic and more as a social practice,
moving from computational thinking to computational
participation (Kafai & Burke, 2014).
7. ACKNOWLEDGEMENTS
This work was supported by grants from the National
Science Foundation to Yasmin Kafai, Jane Margolis, and
Joanna Goode (# 1509245), and Yasmin Kafai and Mike
Eisenberg (#1742140). Any opinions, findings, and
conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views of NSF, the University of Pennsylvania, or Utah

CTE2018

 6

State University. Special thanks to Tomoko Nakajima for
her help with data collection and to Debora Lui, Justice
T. Walker, and Mia Shaw for their valuable feedback.

8. REFERENCES
Brennan, K. and Resnick, M. (2012, April). New

frameworks for studying and assessing the
development of computational thinking. Annual
Meeting of the American Educational Research
Association Vancouver, BC, Canada.

Brown, N. C., & Altadmri, A. (2014, July). Investigating
novice programming mistakes: Educator beliefs vs.
student data. In Proceedings of the tenth annual
conference on International computing education
research (pp. 43-50). New York, NY: ACM.

Buechley, L., Peppler, K. A., Eisenberg, M. & Kafai, Y.
B. (Eds.) (2013). Textile Messages: Dispatches from
the Word of Electronic Textiles and Education. New
York, NY: Peter Lang Publishers.

Carver, S. & Risinger, S. (1987). Improving children’s
debugging skills. In G. Olson, S. Sheppard & E.
Soloway (Eds.), Empirical Studies of Programmers:
Second Workshop (pp. 147-171). Norwood, NJ: Ablex.

College Board (2017). Advanced Placement Computer
Science Principles Course Guide. Retrieved from
https://apcentral.collegeboard.org/pdf/ap-computer-
science-principles-course-and-exam-description.pdf

Deitrick, E., Shapiro, R. B., Ahrens, M. P., Fiebrink, R.,
Lehrman, P. D., & Farooq, S. (2015, July). Using
distributed cognition theory to analyze collaborative
computer science learning. In Proceedings of the
eleventh annual International Conference on
International Computing Education Research (pp. 51-
60). New York, NY: ACM.

Fields, D. A., Searle, K. A., & Kafai, Y. B (2016).
Deconstruction kits for learning: Students’
collaborative debugging of electronic textile designs.
In FabLearn ’16, Proceedings of the 6th Annual
Conference on Creativity and Fabrication in
Education (pp. 82-85). New York, NY: ACM.

Fields, D. A., Kafai, Y. B., Nakajima, T. M., Goode, J. &
Margolis J. (in press). Putting making into high school
computer science classrooms: Promoting equity in
teaching and learning with electronic textiles
in Exploring Computer Science. Equity and Excellence
in Education

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy,
L., Simon, B., Thomas, L., & Zander, C. (2008).
Debugging: finding, fixing and flailing, a multi-
institutional study of novice debuggers. Computer
Science Education, 18(2), 93-116.

Griffin, J. M. (2016, September). Learning by taking
apart: deconstructing code by reading, tracing, and
debugging. In Proceedings of the 17th Annual
Conference on Information Technology Education (pp.
148-153). New York, NY: ACM.

Jordan, M. E., & McDaniel Jr, R. R. (2014). Managing
uncertainty during collaborative problem solving in
elementary school teams: The role of peer influence in

robotics engineering activity. Journal of the Learning
Sciences, 23(4), 490-536.

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why
children need to learn programming. MIT Press.

Kafai, Y., Fields, D., & Searle, K. (2014). Electronic
textiles as disruptive designs: Supporting and
challenging maker activities in schools. Harvard
Educational Review, 84(4), 532-556.

Lee, V. R. & Fields, D. A. (2017). Changes in
undergraduate student competences in the areas of
circuitry, crafting, and computation after a course
using e-textiles. International Journal of Information
and Learning Technology, 34(5), 372-384.

Litts, B. K., Kafai, Y. B., Searle, K. A., & Dieckmeyer,
E. (2016). Perceptions of productive failure in design
projects: High school students’ challenges in making
electronic textiles. International Conference of the
Learning Sciences, 498-505.

Litts, B. K., Kafai, Y.B., Lui, D. A., Walker, J. T., &
Widman, S.A. (2017). Stitching codeable circuits: high
school students' learning about circuitry and coding
with electronic textiles. Journal of Science Education
and Technology, 26(5), 494-507.

Margolis, J., & Goode, J. (2016). Ten Lessons for CS for
All. ACM Inroads, 7(4), 58-66.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy,
L., Simon, B., Thomas, L., & Zander, C. (2008).
Debugging: a review of the literature from an
educational perspective. Computer Science
Education, 18(2), 67-92.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. New York, NY: Basic Books.

Patil, A., & Codner, G. (2007). Accreditation of
engineering education: review, observations and
proposal for global accreditation. European Journal of
Engineering Education, 32(6), 639-651.

Peppler, K., & Glosson, D. (2012). Stitching circuits:
Learning about circuitry through e-textile materials.
Journal of Science Education and Technology, 22(5),
751-763.

Robertson, T., Prabhakararao, S., Burnett, M., Cook, C.,
Ruthruff, F., Beckwith, L., et al., (2004). Impact of
interruption style on end-user debugging. In E.
Dykstra-Erickson & M. Tscheligi (Eds.). Proceedings
of CHI’04 (pp. 287-294). New York, NY: ACM.

Sullivan, F. R. (2008). Robotics and science literacy:
Thinking skills, science process skills and systems
understanding. Journal of Research in Science
Teaching, 45(3), 373-394.

Thomas, L., Ratcliffe, M. & Thomasson, B. (2004).
Scaffolding with object diagrams in first year
programming classes: Some unexpected results. ACM
Inroads, 36(1), 250-254.

Tubaishat, A. (2001). A knowledge base for program
debugging. In Proceedings of the International
Conference on Computer Systems and Applications
(pp. 321-327). Beirut: IEEE Press.

CTE2018

 7

