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Abstract—Author Name Disambiguation (AND) is the task
of clustering unique author names from publication records
in scholarly or related databases. Although AND has been
extensively studied and has served as an important preprocessing
step for several tasks (e.g. calculating bibliometrics and sciento-
metrics for authors), there are few publicly available tools for
disambiguation in large-scale scholarly databases. Furthermore,
most of the disambiguated data is embedded within the search
engines of the scholarly databases, and existing application
programming interfaces (APIs) have limited features and are
often unavailable for users for various reasons. This makes it
difficult for researchers and developers to use the data for various
applications (e.g. author search) or research. Here, we design
a novel, web-based, RESTful API for searching disambiguated
authors, using the PubMed database as a sample application. We
offer two type of queries, attribute-based queries and record-
based queries which serve different purposes. Attribute-based
queries retrieve authors with the attributes available in the
database. We study different search engines to find the most
appropriate one for processing attribute-based queries. Record-
based queries retrieve authors that are most likely to have
written a query publication provided by a user. To accelerate
record-based queries, we develop a novel algorithm that has a
fast record-to-cluster match. We show that our algorithm can
accelerate the query by a factor of 4.01 compared to a baseline
naive approach.

Index Terms—Web services, search, PubMed, author name
disambiguation

I. INTRODUCTION

Scholarly databases usually consist of publication records
from several data sources. For example, PubMed' and Web
of Science? records are gathered from several publishers and
venues. CiteSeerX® automatically gathers publicly available
scientific papers from the web. Since data representation can
vary across sources, unique identifiers are needed to identify
the same entities. For example, an author named “Jane Doe”
may appear with her full name “Jane Doe” in one publication,
and with her first initial and last name “J. Doe” in another. For
many reasons, identifying unique author entities is important
for many problems, such as handling author-related queries
and calculating bibliometric and scientometric measures for
authors.

Uhttp://ncbi.nlm.nih.gov/pubmed
Zhttp://webofknowledge.com
3http://citeseerx.ist.psu.edu

There are at least two different ways to identify unique
authors. One approach is to generate a system that assigns
an unique ID for each researcher and to encourage others
to register and identify their publications. ORCID* is an
example of this approach. The advantage of such an approach
is that it can maintain high-quality disambiguated results if
the author ID exists. The disadvantage is low completeness
because researchers must enter their publications manually.
Currently there are 4.3M ORCID IDs, but only 1.7M IDs have
populated records (publications, affiliations, e-mail addresses,
etc.). Another approach is to automatically identify unique
authors among publication records, using machine learning
classifiers to determine authorship. This approach is known
as Author Name Disambiguation (AND), and many search
engines of scholarly databases use it in their author search
feature.

Although AND for large-scale scholarly databases has been
extensively studied recently [7], [8], [10], [11], [13], [23],
[24], only an early version of the CiteSeerX> and AMiner®
disambiguation code is publicly available. Several scholarly
databases provide a search module for disambiguated authors
in their search engines, but few of them have publicly available
APIs to allow direct queries without their search interface.
Furthermore, existing databases allow only simple queries (e.g.
querying by name), so the user can retrieve only limited
information. For example, since PubMed does not provide
author name disambiguation in their raw data, researchers
use an outdated result of the Author-ity data, which was
built around 2009 by Torvik and Smalheiser, with an update
still in progress [23]. While the data are available, Author-ity
Exporter’ does not provide any APIs which would make it
easier to acquire and use the disambiguated data.

For these reasons, access to disambiguated authors for all
scholarly databases is limited. This makes it difficult for
developers to use disambiguated author information in their
products, and is equally challenging for researchers who wish
to use disambiguated results in their research. To address this

“https://orcid.org/
Shttps://github.com/SeerLabs/CiteSeerX
Shttps://github.com/askerlee/namedis
Thttp://abel.lis.illinois.edu/cgi-bin/exporter/search.pl
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problem, we propose a novel web service that provides a web-
based, RESTful API for searching disambiguated authors.

The main contribution of this paper is to provide two
types of author queries which serve different purposes: one is
attribute-based and the other is record-based. Attribute-based
queries use an internal resource (attribute) to query authors,
which is supported by indexing records with attributes. An
example is querying an author with the name “Jane Doe”.
For record-based queries, users provide their own resource to
query authors. An example is to find author and publication
records from a dissertation record that does not exist in the
database. We discuss how to accelerate record-based queries
using our proposed record-to-cluster pairwise classification.

Our service with proposed queries has several use cases.
First, policy makers are eager to understand how scientific
research impacts technological progress. By querying for a
patent, the record-based query will allow people to determine
whether a patent had a scientist as an inventor and view
that scientists’ scholarly research [1]. Second, universities are
eager to understand how the training they provide translates
into subsequent research. The record-based query will make it
possible to enter a dissertation title and the identify the subse-
quent articles that a degree recipient has published. Third, the
relationship between age and scientific productivity is a classic
question in the science of science, one that is increasingly
important as our scientific workforce ages. However, it has
typically been studied using small-scale hand-curated datasets
[6], [12], [21], [28]. Disambiguated data allows researchers to
impute career age for population-scale data and estimate how
productivity varies over a career at scale [17], [22]. Finally, the
new UMETRICS project provides detailed data on the teams
employed on research projects. The ability to link people to the
articles they publish will allow researchers to determine how
the size and composition of teams is related to the quantity
and quality of the research that they produce [27].

In this paper, we particularly use the PubMed database to
test and deploy our web service. We choose this database
because the raw data is publicly available from the National
Library of Medicine’s website®. However, our service is not
limited to the PubMed, and its architecture can be easily
adapted to other scholarly databases. Our web service is
publicly online®. We also made a PubMed author search engine
named PubMedseer'® as a sample application demonstrating
our proposed web service.

The rest of the paper is organized as follows. Section II
discusses related work on our author search web service.
Section III discusses the API design of our web service.
Section IV offers an overview of our architecture of the web
service, highlighting each part in detail. Section V discusses
how we processed the query requests. Section VI explains the
experiments we performed to evaluate the web service. Section
VII concludes and offers directions for future work.

8https://www.nlm.nih.gov/databases/download/pubmed_medline.htm]
9http://heisenberg.ist.psu.edu:5000
10http://pubmedseer.ist.psu.edu:5000
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II. RELATED WORK

AND has been studied in the context of various large-scale
scholarly databases [5], including PubMed [13], [23], [24],
CiteSeerX [7], [8], Web of Science [11], and USPTO patent
databases [10]. Although several scholarly databases provide a
search module for disambiguated authors with their associated
search engines, there exist few services to directly query
disambiguated authors without their search module. DBLP!
and Semantic Scholar!? offer an API to query authors, but
users have to go through several steps to obtain the desired
result. DBLP returns the author ID, but the user needs to
perform the query again with the ID to obtain the list of
publications and only through their search engine. Semantic
Scholar offers an API to query with author ID, which the user
needs to obtain from querying the specific papers. ArXiv'3
and PubMed offer API for querying publications records,
but querying authors is not specifically provided and their
author records are not disambiguated. For PubMed, Torvik and
Smalheiser [23] developed a search tool, Author-ity Exporter,
to query their disambiguated authors, but their results are
from 2009 and are still being updated. AMiner and Microsoft
Academic'* have APIs to query authors with some attributes
(e.g. name, affiliation, language, etc.). AMiner returns only
the basic information on authors, and Microsoft Academic is
a commercial API and provides only limited access to free
users. Moreover, Google Scholar! does not provide any APIs
from their service.

These existing services are generally intended for a specific
scholarly database. Also the APIs are mostly provided by
their backend search engine, so their use is not intuitive for
users. They provide only basic query APIs, which feature
querying with names and only a few attributes. In this work,
we propose a web service that is highly modularized, and can
be easily adopted to any scholarly database. Since each module
is independent each other, one can easily modify and use more
appropriate algorithm to adopt to support queries better for
other scholarly database. For example, one can use another
AND algorithm to disambiguate the authors, and then use the
remaining part for supporting queries.

We provide two types of queries to satisfy different users’
needs. One is an attribute-based query which allows users
to query using attributes of each author record, similar to
other services currently provided. Another is a record-based
query, which allows users to query using a specific publication
record from any database. The task is similar to the online
disambiguation [8], [19], which assigns a new record to
existing authors.

Some web services and tools are available to handle specific
tasks on scholarly databases. CiteSeerExtactor [25] provides
a web service to extract metadata from headers and citations.

http://dblp.uni-trier.de/
2https://www.semanticscholar.org/
Bhttps://arxiv.org/
http://academic.research.microsoft.com/
Shttps://scholar.google.com/



TABLE I
L1ST OF AVAILABLE RESTFUL APIs

API Method URL Attributes Description Returns

POST / file=filename Upload a PDF document or BibTeX to query resource_ID

GET /attribute/ attribute_name=value =~ Query with attribute(s). If attribute_name is not specified, it  Query results (JSON)
queries with the author full name. Multiple pairs of attributes
and values (concatenated with &) can be used for query.

GET /resource_ID/  order=n Query with the uploaded record. Must specify the author  Query results (JSON)
position to select which author to query. If no position is
specified, the first author is queried.

DELETE /resource_ID Delete the resource specified. Success / Error code

Petinot et al. [18] discuss the web API services provided in
CiteSeerX. Shen et al. [20] developed a tool to visualize simi-
larities of ambiguous names so as to interactively disambiguate
author names.

III. API DESIGN

Recall that our API supports two different types of queries
for the disambiguated authors: attribute-based and record-
based. The key difference is what resource is used to query
the disambiguated author data. An attribute-based query uses
internal resources (indexed attributes), while a record-based
query uses external resources (e.g. a publication record) pro-
vided by a user. Managing both internal and external resources
is important in our system. In particular, external resources
should be efficiently and securely stored during the query, and
it is important to ensure that they are deleted properly after
usage. For efficient resource management, we design our APIs
as RESTful APIs. RESTful APIs are known to be light-weight,
scalable and easily accessible [26]. RESTful APIs consist of
four types of HTTP requests, GET, PUT, POST, and DELETE.
GET is used for lookup requests, POST for resource creation,
PUT for mutation, and DELETE for deletion.

Table I shows a list of web APIs provided with our web
servers. Attribute-based queries use a single GET API with
the URL /attribute to query the record and return the result in
JSON format. They query with the full name of the author
as default, and also can query with attribute(s) including
title, name, coauthors, affiliation, venue, and MeSH terms. In
contrast, record-based queries involve the creation, usage, and
deletion of user-provided resources, and so have POST, GET,
and DELETE APIs respectively. Users provide the publication
record to query with a POST API, and the web service parses
the user input to obtain associated author records, and return
a resource ID to identify it. The Resource ID is generated in a
secure manner with a randomized string to keep it secure from
other users and applications. Currently the query data can be
provided by users in either PDF format or BibTeX format.
Additional formats can be supported with associated parsers.
The GET API retrieves disambiguated authors associated with
the query record in JSON format. Users need to specify which
author in the query record to query; the default is to query
the first author. The DELETE API removes the user-provided
resource after its usage, and returns a success code to confirm
the deletion with the user. It is used for explicitly removing
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TABLE 1T

AUTHOR RECORD EXAMPLE
Attribute Value
PMID 11032038
Name C. Lee Giles
Affiliation NEC Research Institute, Princeton, NJ, USA
Title Learning chaotic attractors by neural networks.
Abstract An algorithm is introduced that trains a neural network - - -
Venue Neural Computation
Volume 12
Issue 10
Pages 2355-83
Year 2000
Coauthors R Bakker, J C Shouten, F Takens, C M van den Bleek
MeSH Algorithms, Artificial Intelligence, Neural Networks - - -
Chemicals | (empty)
Grants (empty)

the user resource, our web server also tracks all resources with
the time to live (TTL) to ensure that all resources are deleted
after certain amount of time.

IV. ARCHITECTURE DESIGN

In this section, we discuss the architecture of the proposed
service and briefly discuss each module. Figure 1 shows an
overview of our proposed system. We first need to disam-
biguate all authors in the scholarly databases offline. We store
the disambiguation results in a SQL database and then index
authors in a search engine to handle attribute-based queries.
The record-to-cluster matching module handles record-based
queries, by finding the appropriate disambiguated author who
most likely wrote the record queried by the user. Users and
other applications use the proposed RESTful API in Table I
to make a request, and the API web server distributes those
requests to the modules appropriately. We discuss each module
further in the following subsections.

A. Author Name Disambiguation

AND identifies unique authors from all author records in
the scholarly databases [5]. Table II shows an example of an
author record in PubMed. The record has several basic pieces
of information on the author, such as name and affiliation, and
also publication information. The goal of AND is to cluster
all author records R = {ry.ra, -+ ,7,} and generate a list of
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Fig. 2. Author Name Disambiguation Pipeline

TABLE IIT
FEATURES USED FOR PAIRWISE CLASSIFICATION FOR DISAMBIGUATION
Attribute Features
Title Cosine (Bag-of-Words), Cosine (Word Embedding)
Abstract Cosine (Bag-of-Words), Cosine (Word Embedding)
Afilliation | Cosine (Bag-of-Words)
Venue Cosine (Bag-of-Words)
Grant Cosine (Bag-of-Words)
Chemical Cosine (Bag-of-Chemical Words)
MeSH Cosine (Bag-of-MeSH Terms)
Coauthor Cosine (Bag-of-Names (First Name Initial + Last Name))
Year Absolute Year Difference

unique authors {A;, As, -+, A, } and their publication lists
L17L2,' . 7Lm where U Lz =R.

i=1

Figure 2 shows the general pipeline of AND. Because
processing AND is not the main contribution of the paper,
we briefly explain our method to disambiguate PubMed.
For all author records, first preprocessing is done to unify
some attribute representations (e.g. removing punctuation, and
converting diacritics to the English alphabet). Then, blocking
is applied to distribute the data into small chunks and cluster
within each of them for efficiency. Next, for each block,
pairwise classification is done for each pair of data, which
classifies whether each pair of records is from the same person

Fig. 3. Precision-Recall of Pairwise Classification for the Method of Treer-
atpituk and Giles [24]

or not. Based on this result, finally we cluster the records to
identify unique authors.

We use a similar setting for each part in the pipeline as in
Kim et al. [10]. The Blocking function combines first initial
and last name. For the pairwise classification, we started with
the state-of-art method suggested by Treeratpituk and Giles
[24] and made a few changes to improve the result. We par-
ticularly choose this method because we proved that it gave the
best results in several databases with a supervised setting (e.g.
USPTO patent database [10], financial entity databases [9]), in
which there are abundant labeled data to train a classifier. Note
that one can also easily replace and use their own algorithm
for the disambiguation, and use our query methods for the web
service. First, we use a new feature set consisting of cosine
distance of Bag-of-words (BoW) vectors weighted with term
frequency-inverse document frequency (TF-IDF), and cosine
distance of word embedding [15] trained on title and abstract
of all PubMed publication, similar to the Miiller [16]. Second,
we use additional filtering as in Khabsa et al. [8], to filter out
pairs that have incompatible first names and middle names.
Finally, we use Gradient Boosted Trees [3] instead of Random
Forest [2]; for the former, training and prediction time is faster
and is known to be more robust to overfitting. Figure 3 shows
the improvement in accuracy in pairwise classification result
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compared to that of Treeratpituk and Giles [24]. Evaluation is
done with the same NIH dataset used in the evaluation of the
web service. A detailed explanation of the dataset is provided
in Chapter VI. For clustering, we use density-based clustering
(DBSCAN) [4], which does not require prior guessing of the
number of clusters.

B. Search Engine

A search engine is used to index all attributes of the author
records and store their publication lists, so that it handles the
attribute-based queries. We use Elasticsearch'® as our backend
search engine. In section V-A, the selection of search engine
and the handling of attribute-based queries is covered in detail.

C. Record-to-Cluster Matching

The record-to-cluster matching module is used to process
the record-based queries. Given the author record uploaded
by a user, it returns the disambiguated author cluster that is
likely to be the author of the record. Our proposed record-
to-cluster matching algorithm is used to retrieve the relevant
disambiguated author. A detailed explanation of our proposed
method is in Section V-B.

D. Web Server with RESTful API

We run a web server using the micro web framework
Python Flask!” to handle all API requests from the users
and to manage user resources. We choose Flask because it is
light-weight, and does not require particular tools or libraries.
However, it can be replaced easily with any web framework
that can handle HTTP requests and that manages user file
resources for record-based queries.

The web server is responsible for handling all APIs de-
scribed in Table L. It handles the GET request by sending the
queries to two corresponding modules introduced in Section
V-A and V-B, and returns the query results in JSON format.
Figure 4 shows an example of search results returned by our
API. The server also manages user file resources created by
POST and deleted by DELETE requests. The POST request
accepts user resource data either in BibTeX'® or PDF format.
We use BibTeXParser!® (for LaTeX input) and GROBID [14]
(for PDF input) to extract metadata of the publication, and
keep the metadata in JSON format for the file system. These
resources are maintained with a unique ID generated with the
Linux mkstemp command, to keep them secure and intractable.
It sets each resource created by a user with time to live (TTL)
to ensure that all resources are deleted after use, even without
the user requesting the DELETE API explicitly. This allows a
reasonable volume of storage to be maintained in the server.

The web server is also responsible for returning error codes
of our web service, such as a bad request error (code 400) for
an unknown API request, and a not found error (code 404)
when the user requests GET API with an unknown resource
ID.

1ohttps://www.elastic.co/products/elasticsearch

Thttp://flask.pocoo.org/
18https://www.ctan.org/pkg/bibtex
https://github.com/sciunto-org/python-bibtexparser
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[{"affiliations": [ "school of biomedical, biomolecular and chemical ..."],
"author name": "W W Pang",
"coauthors": [

"cid": "926837",
"count": 3,
"name": "P E Hartmann"
Yoeere L
"meshes": [
"count": 3,
"mesh": "Milk, Human"
W
"papers": [
{

"pmid": "17913402",
"title": "Best practice guidelines for the operation of a donor ... ",
"venue": "Early human development",
"year": "2007"
oyl

Fig. 4. Example of a Search Result in JSON Format

E. Author Search Interface

As a demonstration application of our web service, we
developed a web search interface named PubMedSeer ,
for PubMed disambiguated authors. The interface uses the
proposed web APIs to handle all queries, supporting both
attribute-based and record-based queries proposed in our web
service.

V. QUERY PROCESSING

In this section, we describe how we process the two types
of queries we proposed in the backend of our web service.

A. Attribute-based Query

An attribute-based query uses one or multiple attributes in
the author record to retrieve disambiguated authors. To handle
this type of query, we index attributes of each disambiguated
author with a search engine, including title, name, coauthors,
affiliation, venue, and MeSH terms of each publications in
offline mode. We reformulate the attribute-based query request
to the appropriate query to the search engine, and return the
result to users in JSON format.

Recently, Apache Solr?® and Elasticsearch have been widely
used for this purpose. Both use Apache Lucene Core?! to
index the data and provide similar functionalities. While Solr
has good community support and is well documented, Elastic-
search is easy to use and light-weight. Elasticsearch allows us
to make efficient filtering queries and aggregations while Solr
is text search oriented. We particularly choose Elasticsearch
because of its flexibility and scalability. Shards are used as
index partitions for Lucene core. Elasticsearch has a cache
per shard which is useful in case of rapidly changing data,
while Solr uses a global cache. If data is changed in a single
shard, only the corresponding cache is invalidated rather than
the whole global cache, which makes the Elasticsearch flexible

20http://lucene.apache.org/solr/
2l https://lucene.apache.org/



TABLE IV
FEATURES USED FOR PAIRWISE CLASSIFICATION FOR RECORD-BASED

QUERIES
Attribute Features
Title Cosine (Bag-of-Words), Cosine (Word Embedding)
Abstract Cosine (Bag-of-Words), Cosine (Word Embedding)
Afilliation | Cosine (Bag-of-Words)
Venue Cosine (Bag-of-Words)
Coauthor Cosine (Bag-of-Names (First Name Initial + Last Name))
Year Absolute Year Difference
1.0
0.8
508,
%]
O
g
a 0.4
021 Full Feature Set
—— Reduced Feature Set
0.0 T T - .
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 5. Comparison of Pairwise Classification Results of Feature Sets for
Disambiguation (Table IIT) and Record-based Queries (Table IV)

in dynamic environment. Scalability is important in our service
because the scholarly databases grows exponentially, and also
better flexibility let us to update the index easily if we need
to update the schema.

B. Record-based Query

A record-based query retrieves the author who most likely
wrote the publication queried by the user. To handle this type
of query, we utilize the pairwise classification method used
during the disambiguation process to find a match between
the query record and disambiguated authors.

1) Reduced Feature Set for Record-based Query: Because
users can provide any type of publication from a wide range of
sources and scholarly databases, we train a new classifier using
a set of features that exist in virtually all publication records.
Table IV shows our reduced set of features which excludes
PubMed-specific attributes from the original features used
for PubMed disambiguation (Table III). Figure 5 shows the
pairwise precision and recall of the new classifier compared
to the original one used for the PubMed disambiguation, tested
on NIH PI dataset (see Section VI for detail). The result
shows some loss of accuracy in general, due to the limited
information used for training the classifier. This loss can be
thought as a trade-off to cover any type of publication record
from various sources.

2) Record-to-Cluster Pairwise Classification: Khabsa et al.
[8] proposed a method to find the most relevant author cluster
for a publication using pairwise classification results. The
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method is originally used for online disambiguation, which
dynamically disambiguates new author records from existing
disambiguation results. Although our purpose is different, we
can apply their method to handle record-based queries, and
use their method as a baseline here.

They assign each new author record to an existing cluster
according to the following process: 1) apply blocking on the
author record, 2) find matches among all the records in the
block by measuring record-wise similarity with the pairwise
classifier (which we refer as record-to-record pairwise clas-
stfication from now on), 3) assign the new record to the
disambiguated author cluster with the highest vote. The time
complexity of the algorithm is O(mn), where m is the number
of clusters and n is the largest number of author records
among all the clusters in the block. Although this can solve
our problem, the query time can be extremely slow if the block
size is large, e.g. for some Asian names.

Our approach is to reduce the total number of required
pairwise comparisons, by processing record-to-record pairwise
classification for only those candidate clusters that have a
high probability of being a match. To accelerate the process
of finding those candidate clusters, we propose a record-to-
cluster pairwise classification which estimates the similarity
between the query record and each cluster (we refer this
similarity as cluster-wise similarity) with a single classification
operation. To enable this, we calculate the pairwise feature
vector in Table IV between each cluster and the query record.
The idea is to treat each cluster as one single record, where
each attribute value is the union of all values of all records
in the cluster. So for each feature in Table IV, Bag-of-words
(BoW) vectors are calculated as the sum of the vectors within
the cluster,

BOWattribute(C) - Z BOWattribut&(r)
reC

(M

where r is an author record of a cluster C. Each vector is then
used to generate features by calculating the cosine distance
with the BoW vector of the query record. Word embedding
features can also be calculated in the same manner. Then we
predict the cluster-wise similarity using the pairwise classifier.

Our assumption underlying this method is that we can
predict the cluster-wise similarity using the pairwise classifier
trained for record-to-record pairwise classification. To verify
this, we calculate the correlation between the actual match re-
sult and the cluster-wise similarity estimated with the proposed
method. We get a strong positive correlation (0.87), so we can
use the same pairwise classifier to estimate the cluster-wise
similarity.

3) Processing Record-based Query: We process the query
utilizing both the proposed record-to-cluster pairwise classi-
fication and previous record-to-record pairwise classification,
as shown in Algorithm 1. First, we calculate the cluster-wise
similarity using record-to-cluster classification for each cluster
and filter out clusters beneath the threshold t.j,ster. Then,
to further increase accuracy, we process a re-ranking step.
We process record-to-record pairwise classification for each



Algorithm 1 Record-based Query
1: function RECORDBASEDQUERY(q)

2: B + block with same blocking key as ¢

3: C' < all clusters in B

4: Cc'+{}

5: for c € C do

6: cluster_sim, < PAIRWISERECORDTOCLUS-
TER(q, ¢)

7: if cluster_sim. > tjuster then

8: put ¢ in C’

9: end if

10 end for

11: for c € C’ do

12: record_sim. < average of PAIRWISERECORD-

TORECORD(g,r) of all r € ¢
joint_sim, < «a x cluster_sim, + (1 — «a) X
record_sim,

14: end for
15: return all ¢ € C’ in descending order
16: end function

author record in the remaining clusters to calculate record-
wise similarities. The final joint similarity score is a linear
combination of the cluster-wise similarity and average of
record-wise similarity as in line 13. The parameters o, tcjyster
is selected using grid search with the development set. From
our experiment, we tested in the range [0.0,1.0] with an
increment of 0.01, and we use o = 0.48, tojyster = 0.54.

The time complexity of the algorithm is O(m) + O(myn)
where m is the number of clusters and n is the largest
number of author records among all clusters in the block,
and my is the number of remaining clusters after filtering
with cluster-to-record pairwise classification. It requires m
additional comparisons for cluster-wise similarity, and reduces
(m — my)n comparisons by filtering out those non-relevant
clusters. Typically the latter is much larger than the former,
because we try to filter non-relevant clusters as much as
possible during the first step of our algorithm. Thus, our
method is faster than the baseline method [8].

VI. EXPERIMENTS
We conducted experiments to measure the query time and

accuracy of proposed attribute-based and record-based queries
for our web service.

A. Experiment Environment

For experiments, we use a single machine to run all compo-
nents of the web service. It has an Intel Xeon CPU E5-2630
V3 @ 2.40 GHz, and runs concurrently up to 32 threads. We
use no more than 64GB of memory, and the code is in python
2.7. We use Red Hat Enterprise Linux (RHEL) Server 7.4. We
use PubMed raw xml files downloaded in late 2017.

B. Experiments on Attribute-based Query

We measure the average query time of our attribute-based
queries for various scenarios. We didn’t measure accuracy of
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the attribute-based queries because the accuracy heavily relies
on the attributes available on the data. Our data is indexed
with Elasticsearch on a single machine and is divided into 5
shards. We generated three different types of queries with each
type having 2000 queries. The first type performs searches
only over the name attribute. The second query type uses both
name and MeSH attributes as search criteria. The search key
for the last type combines name, MeSH and title attributes.
Average query time for single attribute, double attribute, and
triple attribute queries are 2.02s, 3.04s and 5.35s respectively.

C. Experiments on Record-based Query

We compare our method for the record-based query in
Section V-B to the baseline method [8] which only uses
record-to-record pairwise classification to retrieve the most
relevant disambiguated author.

1) Performance and Accuracy Evaluation with Labeled
Dataset: We use the NIH PI dataset to compare accuracy and
performance. The dataset comprises (PI ID, PI name, list of
publications in PubMed) tuples, and has 54,260 individuals
and 1,178,459 records. We apply blocking to those records
and then extract 100 popular blocks (which have the largest
number of individuals), and then divide it into two sets for
development and test sets. We use the largest blocks as an
evaluation set to generate evaluation query samples as much
as possible. The remaining blocks are used as a training set.
The training set is used to train the pairwise classifiers for dis-
ambiguation (Section IV-A) and record-based queries (Section
V-B). Approximately 10M positive and negative samples are
generated from the training set. The development set is used
to tune the parameters of the classifiers and the parameters in
the record-based query (Algorithm 1) using a grid search.

The test set is used for the evaluation where we compare
the baseline method [8] and our proposed method. We also
compare our method without the re-ranking step, so that we
only use cluster-wise similarity for ranking retrieved clusters.
This is to see whether we lose accuracy by excessive filtering
(first step of our algorithm), and also to see whether using both
record-to-cluster and record-to-record pairwise classification
improves the results (second step of our algorithm). We form
author clusters with the test dataset, randomly sample 20%
of all records and then remove them from author clusters.
Removed records are used as test queries. To evaluate the
accuracy, for each query we check whether a method retrieves
the correct author cluster (to which the query record originally
belonged). We use the metric recall@k, which checks whether
the right author cluster appears in the top k result of each
query result. Also, we calculate the mean average precision
(MAP), which is the average of inversed rank. If a query has
the right author cluster in rank k, the precision is calculated
as 1/k. Since each query has only one true positive result in
our experiment, the MAP result is identical to mean reciprocal
rank.

The evaluation of the baseline method and our proposed
method tested with 3,538 queries is shown in Table V. Even
without the re-ranking step our method tends to find more



TABLE V
ACCURACY AND AVERAGE QUERY TIME OF RECORD-BASED QUERIES ON
THE NIH PI DATASET. R@K IS RECALL@K, MAP IS MEAN AVERAGE
PRECISION, AND TIME IS AVERAGE QUERY TIME.

Method r@l r@5s r@10 MAP Time
Baseline [8] 0.9562 0.9898 0.9901 0.9726  27.37ms
Ours w/o re-ranking | 0.9401  0.9958 0.9966 0.9673  8.39ms
Ours w/ re-ranking 09661  0.9960 0.9966 0.9817  8.72ms
TABLE VI
AVERAGE QUERY TIME FOR 300 RECORD-BASED QUERIES ON PUBMED
Method Time (w/o caching)  Time (w/ caching)
Baseline [8] | 247.559s 23.329s
Ours 195.017s 5.815s

relevant clusters than the baseline, although it looses some
accuracy when finding them in the first rank. This shows that
our method successfully filters out only those clusters that are
less likely to be a match during the record-to-cluster pairwise
classification. The result with the re-ranking shows that the
second step of our algorithm further improves the accuracy
using both cluster-wise and record-wise similarity, and when
compared to the baseline, our final method has better accuracy
for all ranges of recall@k. Also, we can see that our final
method has better MAP compared to the baseline and method
without re-ranking. This shows that the relevant cluster can be
found in a higher rank in our method, and also less frequently
entirely missed from the query result. Note that the overhead
of re-ranking is tolerable, and compared to the baseline, our
method is 3.14 times faster.

2) Actual Performance Evaluation: Since the NIH PI
dataset consists of a small portion of all the disambiguated
author data, the query time above does not reflect the actual
query time that users can expect from our service. To compare
and measure the actual performance, we tested on the entire
disambiguated PubMed data. We tested with 300 queries with
each query associated with a different block. We carefully
selected blocks to have varying sizes in order to accurately
measure processing times. Table VI shows the comparison
of the query time between the baseline method and ours. As
we can see from the query time without caching, the speed
improvement from our method is much lower. The lower gain
is due to excessive database queries, so we store and cache
the input vectors for pairwise classification to improve the
query time. We can see that our method is 4.01 times faster
than the baseline method with caching, which shows a similar
result to the experiment we conduct on the labeled dataset. One
can use the threshold t.,ster to adjust the balance between
the accuracy and query speed. Higher threshold improves
the speed by filtering clusters more aggressively, while lower
threshold improves the accuracy by considering more clusters.

VII. CONCLUSION

We propose a web service with a RESTful API for searching
disambiguated authors in scholarly databases. Two types of
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queries are supported in our service. An attribute-based query
searches appropriate disambiguated authors using attributes
of the author record. A record-based query retrieves the
disambiguated author most likely to be the author of the
publication record provided as a query. The two queries need
to be processed differently since the former uses internal
resources, and the latter uses external resources. Resource
management is provided with RESTful APIs. We studied
two different search engines to handle attribute-based queries
and proposed a novel record-to-cluster pairwise classification
and algorithm to accelerate record-based queries. Our results
show that the record-based query is four times faster than the
baseline method.

Future work could explore record linkage between disam-
biguated authors in other databases and construct a web service
containing unified profiles of multiple scholarly databases. As
an example for our web service with PubMed, we could match
each cluster to Google Scholar and ORCID profiles.
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