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Abstract—Deep Learning (DL) offers the advantages of high accuracy performance at tasks such as image
recognition, learning of complex intelligent behaviors, and large-scale information retrieval problems such as intelligent
web search. To attain the benefits of DL, the high computational and energy-consumption demands imposed by the
underlying processing, interconnect, and memory devices on which software-based DL executes can benefit
substantially from innovative hardware implementations. Logic-in-Memory (LIM) architectures offer potential approaches
to attaining such throughput goals within area and energy constraints starting with the lowest layers of the hardware
stack. In this paper, we develop a Spintronic Logic-in-Memory (S-LIM) XNOR neural network (S-LIM XNN) which can
perform binary convolution with reconfigurable in-memory logic without supplementing distinct logic circuits for
computation within the memory module itself. Results indicate that the proposed S-LIM XNN designs achieve 1.2-fold
energy reduction, 1.26-fold throughput increase, and 1.4-fold accuracy improvement compared to the state-of-the-art
binarized convolutional neural network hardware. Design considerations, architectural approaches, and the impact of
process variation on the proposed hybrid spin-CMOS design are identified and assessed, including comparisons and
recommendations for future directions with respect to LIM approaches for neuromorphic computing.

Index Terms—In-memory computing, STT-MRAM, image processing, classifier systems, post-CMOS computing

architectures.

1 INTRODUCTION

N recent years, the use of Deep Learning (DL)
Ito perform computational tasks has substan-
tially advanced Artificial Intelligence (AI) to
more vast and useful tasks beyond image recog-
nition to speech recognition [1], [2], statistical
machine translation [3], and human-like rea-
soning activities like interpretation of abstract
art [4], [5]. Among various DL models, the
deep Convolutional Neural Network (CNN)
was popularized after achieving high accuracy
for various recognition challenges [6]. These
favorable accuracy and performance character-
istics of CNNs are obtained via the deep neural
network structures which have become enabled
through the recent availability of massively-
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sized datasets. While progress in the develop-
ment and application of CNNs continues at
a rapid pace, feasibility and scalability chal-
lenges remain to widespread the deployment
of CNNs. CNNs require a significant amount
of floating-point computation and fast mem-
ory storage of significant capacity. For exam-
ple, VGG-19 involves more than 140 million
floating-point (FP) parameters and 15 billion
FP operations to recognize one image [7].
Therefore, during the training and inference
of CNNs, large clusters of Central Processing
Units (CPUs) and Graphics Processing Units
(GPUs) are demanded [8]. Such CPU and GPU
systems provide a compatible deep learning
framework for Caffe [9], Theano [10], or Tensor-
Flow [11]. Despite the computational demands,
high accuracy performance is achievable and
these systems are adaptable by the user for
training a custom network with relatively little



engineering effort.

While CPUs and GPUs are currently the
predominant devices for CNNs, FPGAs can
achieve superior energy efficiency in terms of
performance/watt relative to GPUs for many
DL tasks [12]. FPGA-based CNN platforms
aim at achieving human-like cognitive ability
while consuming ultra-low power and achiev-
ing high energy efficiency. Such FPGA-based
CNN platforms can enable a variety of CNN'’s
applications under low-energy demands such
as embedded computing, small mobile devices,
and unmanned drones. A recent industry-based
study has exploited acceleration of deep learn-
ing at the datacenter-scale seeking high cost
efficiency through FPGAs [13]. From the aca-
demic community, there is also efforts on these
FPGA-implemented architectures [14]. How-
ever, the gap between GPU and FPGA plat-
forms in both performance and granularity of
the computation has remained.

In order to overcome these issues, the Binary
Neural Network (BNN) topology has been ex-
plored. A BNN is a low precision CNN with bi-
nary activations and binary weights, yet having
accuracy comparable to full precision nets. Bi-
nary Neural Network (BNNs) strive to improve
deep neural network efficiency using compact
data types. To realize these ideas, the XNOR-
Neural Network is proposed herein whereby
the weights and the inputs are discretized into
binary values. Such BNNs are readily imple-
mented on FPGAs where their dominant com-
putations are bitwise logic operations [12]. Pre-
vious experimental results have shown how a
BNN can be significantly smaller than an equiv-
alent network with single-precision weight val-
ues [15]. However, current FPGA-implemented
BNNs require data to be physically moved fre-
quently between flip-flops and logic circuits,
which demands significant power consumption
and incurs wasteful delays. In contrast, more re-
cent works explore the computational concept
of Logic-in-Memory [16], [17] which utilizes an
array of cells with embedded logic capabilities
and storage by leveraging spintronic devices.
The new architecture can realize the computa-
tion without data transfer between the memory
and logic circuits. Some previous works [18],
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[19] propose BNNs implemented with Resistive
Random-Access Memory (RRAM) and Spin-
Orbit Torque Magnetic Random-access Mem-
ory (SOT-MRAM) devices. Relative to these
related approaches, the major contributions
herein include:

o Development of a novel Spintronic-
Logic-in-Memory platform using Spin-
Orbit Torque Magnetic Random-access
Memory (SOT-MRAM) using innova-
tive in-memory approach to bypass data
transfer between the memory and logic
circuits.

« Novel circuits for binary convolution
operations using SOT-MRAM devices.
Such design embraces the intrinsic phys-
ical switching characteristics of SOT-
MRAM devices to achieve lower energy,
faster execution and higher accuracy.

o [Experimental results show that the
proposed  Spintronic-Logic-in-Memory
(LIM) XNOR neural network (S-LIM
XNN) can achieve 1.2-fold lower en-
ergy, 1.26-fold faster execution and 1.4-
fold higher accuracy when using XNOR-
network for AlexNet on ImageNet.

The remainder of this paper is organized
as follows: Section 2 introduces the related
background and the motivation of the work.
Section 3 proposes the LIM computation plat-
form and binary convolution architecture. In
section 4, we present the architecture of S-
LIM XNN for AlexNet. Section 5 shows exper-
imental results using S-LIM XNN for AlexNet
on ImageNet to analyze recognition accuracy,
area and energy efficiency. Finally, Section 6
concludes the manuscript.

2 RELATED WORK
2.1 Convolution Neural Networks (CNNs)

Convolution Neural Networks (CNNSs) utilize
network topologies in which various thresh-
olding layers are flanked together comprised
of a convolution layer, batch normalization
layer, activation layer, pooling layer, and fully
connected layer. CNNs contains a Convolution
Layer: The convolution layer is the core building



block of CNN. It performs complex convolution
between the image set and the filter, shown as
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where i,j and k are the spatial coordinate of
input feature map with the size of i x w X ¢;p,.
cz is the convolution kernel. Activation maps
arise due to filters being stacked along the
depth to form the full output volume of the
convolution layer. Pooling Layer: The primary
purpose of the pooling layer is to reduce the
spatial size of representation and to reduce
the number of parameters and computations
required in the network. It also plays a crucial
role in regulating over-fitting. The pooling layer
is located between successive convolution lay-
ers and performs non-linear down-sampling.
Fully-connected layer: The fully-connected layer
performs weighted sum operation after sev-
eral convolution layers and max-pooling layers.
Neurons present in this layer have weighted
connections to the activations obtained in the
previous layer.

2.2 Logic-in-Memory (LIM) architecture

The quest for viable Logic-in-Memory (LIM)
models dates back many decades in various
forms including cellular arrays and cache struc-
tures [20] [21], while recent adaptations have
included paradigms supporting Binary Neural
Network (BNNSs) [16]. The distinguishing fea-
ture of a conventional von Neumann architec-
ture is its requirement that data travels to/from
memory in order to conduct the computation.
Thus, its data processing sequence consists of
using distinct hardware elements performing
memory access, data transport, computation,
and result storage back to memory. Significant
power dissipation and delays ensue relative
to the computation step. In contrast, a Logic-
in-Memory architecture enables local computa-
tions with minimal data transfer between mem-
ory and logic modules. Therein, the logic func-
tion is embedded within the memory device.
Once data is loaded, results of the logic function
already reside within the memory by skipping
some intermediate read and store steps.

2.3 XNOR-Networks

XNOR-Networks have both their activation
functions and weights binarized to either +1

= Z Z Z fin(x+i,y+7, k)-c.(i, j, k)or -1. The binarization of active functions and

weights can be found in quantized, reduced-
precision CNN models. Similarly to CNNSs,
XNOR-Networks normally consist of several
layers: the convolution layer, pooling layer,
batch normalization layer, and fully-connected
layer [22] as identified below: Convolution
Layer: In XNOR-network, computationally-
intensive convolution is replaced by an XNOR
operation between the input and filter vector, as
depicted in Fig. 1 (b). The convolution between
input (I) and weight filter (W) using a binary
operation is shown below:

I« W = (sign(I) ® sign(W)) © Ka  (2)
where ® represents XNOR operation which is
followed by a bit-counting operation, a is a
scaling factor of weight (average of |IV]), K is
a scaling factor for input I, and © is element
wise multiplication. Therefore, the convolution
with multiplication and addition operations is
simplified to an XNOR logic operation fol-
lowed by a bit-counting operation. In Fig. 1
(c), the example of a binary convolution is
shown. The binarized input matrix is XNORed
with the binarized weight matrix. The Bitcount
results are represented in the matrix entitled
by Bitcount(I ® W). Then, the scaling factor
is applied to the matrix for obtaining the fi-
nal result which is shown in the matrix of
Bitcount(I ® W) © Ka.

Pooling Layer: Compared to a CNN pooling
layer which features several pooling functions
such as maximal pooling, minimal pooling,
and average pooling, a XNOR-network pooling
layer cannot be applied to binary data due to
its significant information loss. Thus, XNOR-
Networks insert a pooling layer between the
convolution layer and the batch normalization
layer. Batch Normalization layer: This layer per-
forms normalization of input batches by con-
sidering their mean and variance. This reduces
the amount of information lost during bina-
rization by linearly shifting and scaling the
input distribution to have zero mean and unit
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Fig. 1: Convolution Operation present in CNN and
XNOR-Networks, (a) Convolution Operation in a CNN.
(b) Convolution Operation in a XNOR-Networks. (c)
Example of binary convolution in XNOR-network.

variance. Batch normalization accelerates the
training process and regularizes the model by
using normalization noise. It also restricts the
training process from getting stuck in saturated
regimes of non-linearities. Fully-connected layer:
After several convolution layers, max-pooling
layers, and batch normalization, the high-level
reasoning in XNOR-Networks is done by the
fully-connected layer. The final output pro-
duced by this layer is in the form of binary
fmaps, which is different from the traditional
CNN where the final output consists of real-
valued fmaps. There are two approaches which
can be adopted for binarization of data: a deter-
ministic method and a stochastic method. In the
stochastic binarization method, a hard-sigmoid
function is used, and the concept of probability
is used to assign -1 and +1 to original values of
the weights. Compared to the deterministic bi-
narization method, which is relatively straight-
forward to implement, the stochastic binariza-
tion method can be advantageous as it avoids
use of the sign function. Thus, a Binarized
neural network consists of various layers which
are the convolution layer, the pooling layer, the
batch normalization and binarization.

3 LoGIC-IN-MEMORY PLATFORM

3.1 Spin Hall Effect (SOT)-based MTJ de-
vice

In order to implement LIM for XNN efficiently,
SOT-MRAM devices are employed to construct
a spin-based S-LIM XNN. Fig. 2 (a) shows SOT-
MRAM device architecture, which consists of
two ferromagnetic layers separated by a thin
tunneling barrier, which from a magnetization
pinned layer and the free layer. The fixed layer
has fixed magnetization. In contrast, the mag-
netization of the free layer depends upon the
magnetic anisotropy [23], [24], which can be
changed by a charge current and/or by an
applied magnetic field passing through the de-
vice. Consequently, two ferromagnetic layers
(the pinned layer and the free layer) can be used
to construct two types of magnetization config-
urations that are parallel (P) and anti-parallel
(AP). Thus, MTJ resistances in two types of
magnetization configurations are calculated by
using the Tunnel Magnetoresistance (TMR) ef-
fect. On the bottom of the device, the heavy-
metal (HM) layer is used to pass current and
change magnetic directions of the free layer.
The free layer magnetic direction is determined
by the orientation of applied current which
defines the logic state of MT]. Due to Spin-orbit
Torque (SOT) coupling in heavy-metal (HM),
electrons are diverted with different spins in
opposite directions which give rise to the spin-
injection current that is transverse to the ap-
plied charge current.
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Fig. 2: (a) SOT-MRAM device structure. (b) The proposed
Logic-in-Memory (LIM) architecture performing XNOR
operations without transferring data outside of memory.

3.2 Computational Binary Convolution Ar-
chitecture

Section 2 explains the computation-intensive
convolution replaced by the XNOR operation



between input and filter vector. In this pa-
per, we propose the use of SHE-MT] device
to build a computational XNOR architecture
for performing XNOR logic operations. The
architecture of the proposed XNOR operation
is shown in Fig. 2 (b). The current flows (red
line) through the HM loads to an accumula-
tion of the directed spin. Consequently, due
to SHE, the generated spin current produces
SOT to the adjacent free layer, loading to a
switch of magnetization. In Fig. 2 (b), two SOT-
MRAM devices are connected in parallel as a
single XNOR cell. Two SOT-MRAM devices are
controlled by four access transistors associated
with Write Word Line (WWL), Read Word Line
(RWL), Write Bit Line (WBL1, WBL2), Read Bit
Line (RBL1, RBL2), and Source Line (SL) to
perform write and read operations. The WBL1
and WBL2 are connected with voltage drivers
to provide the required write voltages. WWL
acts to switch on the access transistor during
a write operation. For sensing the data stored
in two SOT-MRAM devices, two voltage mode
Sense Amplifiers (SAs) are connected with the
architecture. Two RBLs (RBL1 and RBL2) are
connected with the read voltage (V,c.q). The
write and read operations by using different
biasing conditions are shown in TABLE 1. Be-
sides memory operations, two SOT-MRAM de-
vices are sensed simultaneously to implement
an Logic-in-memory XNOR logic function. The
binary tensor (-1, +1) are converted to voltages
(+V, -V) that are used to switch the SOT-MRAM
device between Anti-Parallel (AP) and Parallel
(P) states.

TABLE 1: Biasing condition of the proposed Computa-
tional XNOR Architecture.

Operations Write 1(0) Read
WWL Vi 0
RWL 0 Vaa
RBL1 0 Vioad
RBL2 0 Viead
WBL1 Viv e (Vivn) 0
WBL2 Virr(Vir N 0
SL 0 0

In the proposed architecture, two SOT-
MRAM devices can be used to store two bits.
The four XNOR combinations (-1, -1), (-1,1),
(1,1) (1,-1) can be mapped on two SOT-MRAM
devices via conversion to AP and P states.
When programming the same two states (-1,
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-1) and (1, 1) on devices, the reading voltage
can induce a compensated voltage through two
devices, which can be sensed using a Sense
Amplifier (SA). Fig. 3 shows the principle of
the XNOR operation using two SOT-MRAM
devices. In Fig. 3 (a), two SOT-MRAM de-
vices are presented as two adjustable resis-
tors (R, and R;). Two states (AP and P) are
programmed on the devices to construct four
combinations of two resistances. While a sup-
plied voltage V,..q is applied, the summed volt-
ages flowing through two SOT-MRAM devices
can take on four possible values Vp_p, Vp_ap,
Vap—p, Vap—ap) depending on the SOT-MRAM
configuration. The enhanced sensing circuit is
proposed to distinguish between these values,
which are generated by different MT] configu-
rations.

The possible values for Vg4 are shown in
Fig. 3 (b). In order to realize XNOR logic opera-
tion, we propose a sensing mechanism with two
sensing amplifiers. The output voltage (Vs4)
of CIM is connected to the positive input of
the first amplifier and the negative input of
the second amplifier. As shown via results in
Fig. 3 (b), the possible values of Vg4 for the
same SOT-MRAM configurations (P-P or AP-
AP) distribute the highest or lowest values.
On the other hand, the different SOT-MRAM
configurations (P-AP or AP-P) generate similar
voltages which are less than the highest value
and more than the lowest value. Consequently,
only the case where both SOT-MRAMs are in
the AP or P configuration leads to an output
of logic "1” using two reference voltages (Vs
and V,.s.) on the sensing amplifier. Two SOT-
MRAMs with different configurations (AP-P
or P-AP) generate logic ‘0" due to Vg4 falling
in the range between two reference voltages
(Vyesi and Vi.s,). In Fig. 3 (c), the simulation of
the proposed design is presented within corre-
sponding states.

Challenges facing SOT-MRAM include read
disturbance, read decision failure, and sensi-
tivities to process variation during fabrication.
However, the LIM failure model differs from
single SOT-MRAM in the writing and reading
current flow through each bit cell. In order
to have statistical data for analyzing the read



Rap-ap Rp-ap Rap-p Rp_p

CIM block = b
Ri, R; Vsa OxnoRr S
Rp, Rp Vsa=Vp—p 1 ND il Tme‘(n) I ’
Rp, Rap | Vsa=Vp_ap 0 g ‘zk/_kj
4
Rap, Rp | Vsa=Vap_p 0 Yo a5 ) s
1 Time (ns)
Rap Rap |Vsa=Vap-ap| 1 g Ds—,_v_r—
3
(b) RS
2 Time (ns)
. — T
Vrefl Vrefr = ; F ' i S
_ 1 Time (ns)
‘>’ 05
Vp_ap g ”
1 1 1 2 L.
V 1 1 1 ) 05 1 15 2
AP—-AP _ . Time (ns)
Vap-p P-P g *
o,
@) ©) @ 7 e

Fig. 3: Architecture and principle of the proposed LIM XNOR operation: (a) LIM operation, (b) current combination

for LIM operation, (c) sensing reference voltages dor Vs 4,

disturb and read decision failure, we apply the
Monte-Carlo simulation on the proposed SOT-
MRAM LIM architecture. Fig. 4 (a) shows the
resistance distribution of a single SOT-MRAM
device with one thousand time trials. In our
simulation, we performed one thousand sam-
ples under the variations of MTJ oxide thick-
ness (o/pu = 2%), transistor Vr (o/u = 5%) [25],
[26]. In Fig. 4 (b), the current probability density
of four possible values (Ip_p, Ip_ap, Lap—p,
I4p_ap) have been plotted. Compared to the
single device read current, the proposed SOT-
MRAM LIM has lower current value. However,
the read margin is larger than normal read and
other SOT-MRAM arrays, due to the differential
sensing scheme. Furthermore, the left and right
read margins are not equal. Theoretically, resis-
tances are equally separated. However, currents
are not upon calculation by inverses resistance.

In Fig. 4 (c), the transients simulation is
provided to verify the functional operation of
the proposed LIM XNOR architecture. Two op-
erations (write and read) within four different
cases are presented including input combina-
tions (-1, -1), (-1,1), (1,1) (1,-1). For example, in
the beginning, the two negative inputs (-1,-1)
are applied to two SOT-MRAM devices. Con-
sequently, both of the SOT-MRAM devices are
written into parallel states. During the read pro-
cess, the lower resistance in two SOT-MRAM
devices is sensed. This way, the two SOT-

and (d) simulation results of the proposed sensing circuits.

MRAM devices can be programmed within
4 different resistance configurations (Rp_p,
Rp_ap, Rap—p, Rap—ap). The layout of the pro-
posed S-LIM-XNOR gate is shown in Fig. 5
(b). The proposed layout was designed using
A-based design rules [27], [28].

TABLE 2: Device simulation parameters utilized to sim-
ulate the proposed architecture.

Symbol Description Value
a Damping Coefficient 0.07
tox Qxide Barrier Thickness 1.2nm
tam Heavy Metal Thickness 3nm
M Saturation Magnetization 7.8 x 10°A/m
OsHE Spin Hall Angle 0.3
Acx exchange stiffness 1.1 x 1011J/m
PHM HM Resistivity 200u82 - cm

MT Iy otume Dimension of Free Layer 100 x 40 x 3nm3
HMy otume Dimension of Heavy Metal 100 x 80 x 3nm3

In order to analyze Process Variation (PV)
impact on the proposed S-LIM-XNOR circuits,
extensive circuit-level simulation results were
performed. NCSU 45nm CMOS process stan-
dard cell library [29] was used alongside the
SOT-MRAM model via circuit-level simulation
through SPICE simulation software. Hence,
10,000 MC simulations were collected on a sin-
gle S-LIM-XNOR cell in order to quantify the
effects of PV on the proposed device structure.
In this simulation, various deviations for the
CMOS threshold and Tunnel magnetoresistance
(TMR) were considered. The TMR (%) is a
variable to define relative resistance change
which is defined as TMR := RA%—;RP. During



173
2 20
=3 —
£ >
S b
4 g
o
g £
L=
<10 >
c
i) <
k= i
g g
o 0 o
>
ReS|stance (k€2) 5
5
(a) 5
N
©
o
©
=
ks
c
8
0.08 8
i i 3
> Left Read | Right Read A o
@ 0.06 margin margin =
o
fa}
o
2004 £
K k73
g Ip_gp 8
0 0.02 4
¢ ]
P-P
0 . . . ®
04 03 0.2 0.1 0 0.1 02 032
Current (yA) %
®
Q
14

(KQ)

(K)

Write Read Write Read Write Read Write Read
-1,-1 -1,-1 1,1 1,1 1,1 -1,1 1,1 1,1

[ \
I

10

-
30
Tlme (ns)

L

20 40 50 60

30 40
Time (ns)

30 40 50 60
Time (ns)
0 10 20 40
Tlme (ns

mﬂﬂﬂ

Tlme (ns)

mﬂﬂﬂ

Tlme (ns)

50 60

free layer
L o o

free layer
LN o o

60

Fig. 4: (a) Resistance distribution of a single SOT-MRAM device, (b) probability density of currents during operation,
(c) simulation of the proposed computational XNOR architecture.

WBLI
WBL2

23\

;
""1 RBL2

RBLI

(a) Max(2Wn+6 A, 247)

Fig. 5: (a) The schematic of the S-LIM XNOR
(b)Layout of the proposed S-LIM XNOR.

cell,

the simulation, values of V,;,, W, L in CMQOS
devices vary in the SPICE netlist following the
Gaussian distribution with the mean equal to
the nominal model card, which is provided in
[30]. In this paper, we employ the Bit Error Rate
(BER) to quantify the error which is defined as
the number of wrong output bits divided by
all the input bits applied in both P and AP
states. In Fig 6 (a), the BER average is presented
based on 10,000 MC simulations. Considering
10% variation on TMR, all architectures exhibit
the highest BER for TM R = 100%. While TMR
increases, the results exhibit further improve-
ment in reliability. Among three recent BNN
designs, the proposed S-LIM-XNOR conveys
improved BER results due to its differential

design characteristics. Fig 6 (b) (c) show the
simulation results by considering the (W/L)
ratio of PMOS and NMOS, respectively. Fig 6
(b) presents the simulation results with PMOS
W/L=2 and NMOS W/L=1. The simulation
results show improvement of BER with larger
TMR. In Fig 6 (c), the PMOS W /L=4 and NMOS
W/L=2 enhance reliability of the proposed ar-
chitecture.

3.3 Data Mapping to Spintronic-LIM

In order to map the data on the LIM array,
a conventional data transfer algorithm is not
sufficient due to certain constraints created by
SOT-MRAM device physics and LIM operation.
Herein, the memory system consisting of sev-
eral banks is defined. Each bank is constructed
by an LIM array within rows and columns.
Thus, the proposed LIM XNOR operation is
performed on two data vectors if they sat-
isfy three criteria: 1) two data vectors must
be stored in the same bank, 2) two data vec-
tors are mapped to different rows, 3) two data
vectors are stored in the same set of columns.
By satisfying these constraints, we propose a
data allocation algorithm for the proposed LIM
array. Firstly, we define a Memory access Data
Flow Graph (MDFG) that is used to model the
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processing unit to visit call LIM XNOR logic
operation. Herein, we use an MDFG which is
a node-weighted directed graph by Gypre. In
the data allocation algorithm, the MDFG graph
is defined with several variables where V" is in-
put with an amount of memory nodes, E is the
set of edges, D is a set of data, v; is the ith task,
N, is the read operations, and N,, is the write
operations. Thus, the total energy consumption
is ENy, = E, * N, + E,, x N,,. The above equation
is referred to as the compute_energy function
herein. In Algorithm 1, a data remapping allo-
cation is developed utilizing a node-weighted
directed graph by Gy/pre with parameters in-
put to the algorithm. In line 1, compute_energy
functions calculates the energy of the operation.
If the energy requirement is less than the max-
imum energy mazx., and the total write oper-
ation is less than the write threshold 7, , the
algorithm evaluation commences, as shown in
line 2. In Algorithm 1, the proposed algorithm
can select two types of writing operations in
line 7 and 14. Type 1: In this type, element to
element operations are performed between two
arrays that are X and Y. The LIM bank takes
a vector from Bank X and maps it to the first
row. Then, the vector from bank Y is mapped
to the second row of the LIM bank, as shown
in Fig. 7. To effectively utilize LIM for this
type, we utilize the array alignment technique.
Here alignment of elements of X[k] and Y[k]
for any value of k is done in which X XNOR
Y can be converted to the LIM operation. An
extension of this technique is row interleaved
placement. This technique is mostly used for
larger data structure that is not present in the

same memory bank. It ensures that the two
elements on which the operation is to be per-
formed are mapped to the same bank. Type 2:
In this type, operations are performed between
a small array X and a large array Y. A column
replication technique is used for this type of
operation, in which a single element of the
small array X is replicated across the column
to fill an entire row. These elements of X and
Y become properly aligned, and LIM XNOR
operations are performed on them. It has little
initial overhead during the replication stage,
and has significantly fewer access relative to
the larger array Y. Fig. 7 shows the two types’
modes of data mapping.

Algorithm 1: Data allocation algorithm for
the proposed LIM.

Input : Given targets Gyrpra = (V, E, D, v, Ny, Ny); a
write threshold 5., ; writing operation max .,

Output: A data allocation and task scheduling with
minimized energy

EN(h) = compute_energy(h)

if cw < T, and EN(h) < max. do then

L<+h

Leyy = parallel_alg(L)

(A[M][N], BIM][N]) = data_comp(L. )

for i=1 to M do

if Typel=1 then

for j=1to N do

Ali)[j] = Datax (j)

Ali +1][j] = Datay (5)
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end
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if Type2=1 then
for j=1to N do
Alil[j] = Datax (i)
Ali + nl[j] = Datay (j)
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end
end

=
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Fig. 7: Data mapping for two computation types.

4 SPINTRONIC-LOGIC-IN-MEMORY
(LIM) XNOR NEURAL NETWORK
(XNN)

In BNNSs, there are two efficient approximations
to the conventional CNN: Binary-weight net-
work and XNOR-network. In Binary-Weight-
Networks, the conventional filters are approxi-
mated with low precision binary values. Inputs
to convolution layers are tensors in real-value.
In XNOR-networks, weights and inputs are bi-
narized. Thus, the conventional convolution is
implemented using XNOR logic and bitcount-
ing operations.

4.1 Training XNOR-networks

Compared to conventional CNN blocks as
shown in Fig. 8 (a), a XNOR-network has dif-
ferent functional blocks. A conventional CNN
consists of several functional layers such as
the convolution layer, the batch normalization
layer, the activation layer, and the pooling layer,
as shown in Fig. 8 (a) respectively. Besides the
conventional layers which are introduced in the
previous section, the batch normalization layer
is used to normalize the input batch using its
mean and variance. The activation layer is mod-
eled by an element-wise non-linear function,
e.g., Sigmoid or ReLU.

The pooling layer takes any types of pooling
(e.g. max, min, and average) on the input batch.
In Fig. 8 (b), the order of the functional layer
of a XNOR-network is presented. Compared to
CNN, the pooling layer of the receiving binary
input batch induces a significant information
loss. For example, the min-pooling layer takes
the binary input batch and returns a tensor that
most of its elements are equal to -1. Thus, in

— C((\):)V " 1 BNorm [—* Activ. * Pool [~
(a)
—| BNorm —*{BinActiv. > B]?VS;) R S Pool
0.6 -27....3 -16 - B__ ~X. P e 1-1 _,‘~Slgn(X1)
‘ e T sign(Xy)

09 16...34

Input(I) sign(I)

Fig. 8: (a) Conventional CNN blocks, (b) XNOR-network
blocks, (c) Example of overhead problem in binary acti-
vation layer.

order to avoid such a significant loss of infor-
mation, the pooling layer is directly connected
after the convolution layer (BinConv). To over-
come the information loss issue caused by bi-
narization, in the XNOR-network, we normal-
ize the input before it becomes binarized. The
normalized process enforces the input to hold a
mean of zero, whose thresholding at zero leads
to less binarization error. The binary activation
layer, labeled BinActiv., is used to compute K
and sign([) as delineated in Eq. 2. The convo-
lution process requires computing the scaling
factors (3 for all possible sub-tensors in input
(I), which is the same size as weight (IV), where
weight W € R input I € R&Winxhin
and w;, > w,h;, > h. The sub-sensors are
illustrated in Fig. 8 (c) by X; and X,. However,
due to overlaps between two sub-tensors (X;
and X5), the binary activation layer computes
a large number of redundant operations, de-
picted in Fig. 8 (c). To overcome the redundant
computation issues, a matrix A = 2Ll \I is
computed as the average of absolute values of
the elements in I across the channel. Thus, A
convolves with a 2D-filter £k € R**". Then, the
output of such convolution K = A * k consists
of scaling factors for all sub-tensors in the input
I, , where Vij, k; ; = % K consists of scaling
factors 3 for all sub-tensors in the input I. Kj;
represents the corresponded to (3 for a sub-
tensor centered at the location (ij) across width
and height. Once the scaling factor « for the
weight and scaling factors /3 for all sub-tensors



in the input I (K), the convolution between
input I and weight W can be approximated us-
ing binary operations. The detailed information
is described in reference [22]. In the convolu-
tion layer, labeled BinConv, the inputs K and
sign(I) are computed using binary convolution
which is explained in the previous section. In
the last layer, the pooling operation is applied.
It is noted that non-binary operations is a small
portion compared to binary operations. Once
the proposed architecture has been designed,
the training algorithms for binary gradient de-
scent and k-bit quantization are applied to the
training datasets, which can occur off-line.

4.2 Hardware Architecture of Spintronic-
Logic-in-Memory (LIM) XNOR Neural Net-
work (XNN)

The BNN approach reduces computational
complexity due to the use of binarized parame-
ters and operations compared to well-trained
CNNs that employ floating-point operations.
In terms of hardware considerations, BNNs
reduce memory size and bandwidth require-
ments. In addition, the binary operation used
to replace floating-point operations can be per-
formed efficiently on the hardware. The pro-
posed S-LIM XNN with LIM XNOR operation
is well-suited to BNN. Thus, in this section, we
evaluate AlexNet on the proposed hardware
architecture. AlexNet is a deep CNN which per-
forms ImageNet classification with high accu-
racy. For comparison, Rastegari [22] converted
AlexNet with five convolution layers and two
fully connected layers to binary AlexNet. In
order to enable a classification of AlexNet to
output a heatmap, we convert fully-connected
layers into convolution layers. Similar meth-
ods have been employed in recent research
work [22], [31] as shown in Fig. 9 (a).

In Fig. 9, the architecture of the proposed S-
LIM XNN capable of AlexNet processing is pre-
sented. In our experimental results, the approx-
imation of convolution by using XNOR-net can
accelerate each convolution operation by 56.13-
fold based on the same CPU configuration. We
also observe that the convolution layer with a
small channel and filter size by using XNOR-
net convolution approximation does not incur
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considerable speedup. Therefore, the first layer
Convl and the last layer Conv8 remain as real
number operations because in the first layer,
the channel size is three and in the last layer
the filter size is 1 x 1, as shown in Fig. 9 (a).
Such observation is also discussed in [22]. The
computational block (Conv2-Conv?) in the pro-
posed S-LIM XNN is made by four consecutive
blocks, which are 1) Batch Normalization, 2) Bi-
nary Activation, 3) Binary Convolution, and 4)
Pooling as depicted in Fig. 9 (a). To implement
such computational blocks, we split four blocks
into two hardware units: 1) Computational Unit
(CU) 2) Spintronic-Logic-In-Memory (S-LIM)
unit. The architecture is illustrated in Fig. 9
(b). In Fig. 9 (c), input (I) and weight (w) are
mapped into Image Bank and Kernel Bank.
Then, the Image Bank and Kernel Bank are
written into the proposed S-LIM by switching
on write mode of SOT-MRAM device. Before
writing to the S-LIM, the real number input is
binarized and signed by using the Sign-Func
module. According to the proposed LIM-based
computational XNOR architecture, the input
tensors in the form of -1 and +1 are converted to
a positive and negative voltage. Thus, accord-
ing to the XNOR operation, we obtain results
of 0 or 1 using sense amplifiers. XNOR and Bi-
counting (BitCount(XNOR(I(B),W(B))) ap-
proximates the binary convolution of two vec-
tors I and W. Such XNOR operation implements
on the proposed S-LIM architecture without re-
quiring logic circuits, which enables the Logic-
in-Memory computations. Therefore, the data
used for binary convolution stores within mem-
ory and avoids the read and write operation of
the memory, which leads to limited throughput
of bitwise operations. In this paper, we add
the CU so that the input batch is binarized
and normalized to distributed as zero mean
and unit variance in order to ease the rate of
information loss, which is realized as follows:

Li(R) — p
Vorre TP

where ;1 and o are mean and variance, respec-
tively. The parameters ¢,7 and 3 are to be
learned during the training process. In Sign-
Func computation, the input and weight with

Io(R) = €)



*******************************************

11

BT B0 12 11 1100]
12[31] 12[30] ........ 12[2] 12[1] 12[0]

TA31] T[30] ce Tnl2] Tn(1] {0l -
Kernel Bank

I
w2[31] W2[30]......... W2[2] W2[1] w2[0]] ||
W2[31] W2[30] ....... W2[2] W2[1] W2[0]

Wal31] Wi(30]-.cooc Wni2] W2l WO s gy

R e ——— L WAL
H W[0]  W[]  W[2] W[3] W[M4] W[5] W[6] 5.
|

| i A 2
| Conv. Batch-Norm
( )| | )
| IR TR
{ [ Batch Norm ] [ Bin. Active ] X
! R 1B 17 A2
bl Reu ( BinConv. ] Bit-XNOR
I IR TR\ 1
} [ Pooling ] [ Pooling ]“ [ Bit-Counter ]
@) 1= TR

General Overview of System

!

|

|

} Batch-Norm iz
|

|

| Scaling-Fact
|

|

|

|

|

|

i Pooling 2{

[CILI[0] L2011 [T1.3[2] T1.4[3] T1.5[4] 11,65] 1L7[6] 1

[ XNOR Operation J

[IW[0] IW[1] IW[2] IW[3] IW[4] IW[5] IW[6]

Fig. 9: (a) Architecture of AlexNet implemented by BNN where the pipeline indicates Real number values (R) and
Binary number values (B), (b) overview of the system, and (c) dataflow within the architecture.

binary presented real numbers are converted to
sign binary number. Then, they input to CIM
for convolution computation. The computation
equation can be delineated as:

I(B) = sign(I(R)), W(B) = sign(W(R)) (4)

Scaling-Function is used to compute scaling fac-
tors for binary convolution and sign-function.
The factor « is given by the following equation:

W R
n

(5)

Multiplication is applied at the output of bit-
counting. In this process, the CU multiplies
scaling factors o and K with bit-counting out-
put to approximate convolution. The equation
realized during this process is given as:

I +W = BitCount(XNOR(I(B),W(B)) ® K«
(6)

5 EXPERIMENTAL RESULTS

In order to analyze the proposed S-LIM-
XNN, we have utilized a hierarchical simu-
lation framework including circuit-level and
application-level simulations. In the circuit-
level evaluation, the SOT-MRAM device is
leveraged in SPICE simulation to verify the
designated functional circuits [32], [33]. At the
application level, we used Ubuntu 16.04-based

framework provided compatibility with vari-
ous deep learning software packages and li-
braries. The architecture of AlexNet, ResNet-
18, and VGG-19 are evaluated on datasets e.g.,
CIFAR-10, MNIST, and SVHN. In this paper,
we also evaluate the S-LIM-XNN on the Im-
ageNet (ILSVRC2012) dataset. ImageNet pro-
vides «~1.2M training images within 1K cate-
gories and 50K validation images.

Algorithm 2 delineates the procedure to
train the proposed S-LIM XNN. First, we com-
pute A and B for filters at each layer. Then, the
forward propagation algorithm is performed
using the weights and scaling factors. After re-
sults of the BinaryForward function have been
produced, the backward propagation is applied
based on the gradients. In the last step, we
update the parameters and the learning rate by
updating algorithms, such as SGD update with
momentum or ADAM [34].

5.1 Memory Storage Comparison

Using the proposed training algorithm on the
ImageNet large-scale dataset, the required stor-
age memory for three different architectures
(AlexNet, ResNet-18, and VGG-19) [18], [22],
[35] are simulated. In order to train the network
easily and maintain acceptable accuracy, the
tirst and last layer data within these three XNN
architectures remain as full-precision values. It
is noted that compared to the theoretical analy-
sis, the real implementation has degraded due



Algorithm 2: Training an L-layers S-LIM
XNN [22]

Input : Given targets (I,Y), cost function C(Y, Y), initial
weight W, and current learning rate n®
Output: update weight W#+! and learning rate n**1
Binarizing weight filters:
for!/=1toL dodo
for k" filter in I*" layer do do
A = LIWE I
lil\k = Sign(Wztk)
Wik = A Bk
end
Y = Binary forward(I, By, Aix)
% = BinaryBackward( gg , A)
Wt = UpdateParameters(W?, g—g/, nt)
't = UpdateLearningrate(nt,t)
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end
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to the last layer which often consumes a large
number of parameters. In general, the XNN can
reduce by 10-fold the storage memory com-
pared to a full-precision float-CNN as shown
in Fig. 11 (a).

5.2 Classification Accuracy on Top-1 and
Top-5 Across Training Epochs

In this subsection, we train the proposed S-
LIM XNN with a well-known ImageNet clas-
sification task. In Fig 10, the accuracy of dif-
ferent methods are plotted. In every iteration
of training, the input images with 256 pix-
els are randomly selected for training. Fig 10
shows simulation results for running 20 epochs.
The batch size limit was set to 512. To imple-
ment a loss function, we employ negative-log
likelihood with the soft-max function. In the
proposed AlexNet case, the Local-Response-
Normalization (LRN) layer is not employed. In
order to update parameters, we utilize an adap-
tive moment estimation (ADAM) optimization
method due to its faster convergence and better
accuracy for binary inputs [36], [37]. We ini-
tiate the learning rate at 0.1 and decrease the
learning rate by 0.01 every four epochs. In the
inference process, the image input is resized to
224 for forward propagation. To evaluate the
performance, the Top-1 error rate and Top-5
error rate are employed. It refers to the bench-
marking method of machine learning systems
which basically means that for a given image, if
the target label is the model’s top prediction or
the correct label is in the models top 5 predic-
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tions then the image is correct. Fig. 10 (a) delin-
eates classification accuracy on Top-1 using the
ImageNet dataset upon the number of training
epochs. In Fig. 10 (a), we compare the proposed
S-LIM XNN, BinaryNet (BNN) [37], and BNN
based on AND-bitcount operation [18] with
classification accuracy. It is noted that the BNN
based on the AND-bitcount operation performs
less accurately than S-LIM XNN, which shares
similar architecture and learning algorithms. In
BNNss architecture based on AND-bit-counting,
the binary convolution is approximated by the
AND logic operation and the bitcounting op-
eration. The AND logic operation incurs in-
formation loss due to this approximation. For
example, if A = 00010 and B = 01111, the
bitcount( X NOR) = 2 and bitcount(AND) = 1.
Moreover, S-LIM-XNN has unique binarization
and block structure compared to the BinaryNet
(BNN). For the binarization, S-LIM-XNN finds
optimal scaling factors at each iteration of train-
ing. The blocks structure shown in Fig. 8 has
a unique order that decreases the quantization
loss for the training process. In all epochs, the
BinaryNet (BNN) results in reduced accuracy
compared to the proposed S-LIM XNN and
BNN based on AND-bitcount, due to differ-
ent binarization methods and network struc-
tures. Furthermore, the BNN-based training al-
gorithm is based on deterministic binarization.
Fig. 10 (b) presents classification accuracy on
Top-5. The simulation results substantiate these
claims and observations.
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Fig. 10: (a) Classification accuracy on Top-1 using Ima-
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5.3 Areaand Energy Estimation in Different
Layers

In this subsection, AlexNet for ImageNet is
evaluated in terms of area and energy con-
sumption. In order to estimate area and en-
ergy, we utilize a comprehensive device-to-
architecture evaluation method. The proposed
circuit-level simulation is performed on SPICE
simulation software with the NCSU 45nm
CMOS process standard cell library [29]. The
SOT-MRAM is modeled and initiated with pa-
rameters shown in Table 2. The NEGF approach
is employed to realize MT] resistance (Ryry)
upon the calculated heavy metal resistance
(Rsuwm). The area and power consumption of
each circuit element is listed in Table 3. In
circuit-level simulation, we use the system level
memory evaluation tool NVsim to estimate the
area and energy consumption. We implement
the proposed S-LIM with the parameter ob-
tained by SPICE simulation on the configura-
tion files to construct a new bank, mat, and
subarray [38].

TABLE 3: Area and Power Cost of Circuit Elements.

Area Power

8bit DAC 3096T 30mW
Sense Amplifier =~ 244T 0.25mW

8bit ADC 450T 35mW
1bit ADC 244T 1.73mW

4bit ADC 72T 12mW

T= % -3F?, W/L = 3 and technology node F = 45nm
The power consumption of S-LIM-XNOR Cell is estimated by

Vanggavgr where gavg = \/gongoss [38].

The ADC system clock is assumed as 100MHz. The energy
consumption is assumed by considering digital arithmetic logic and
memory access within 45nm CMOS technology [39].

According to the device's parameters listed
above, a plot of the area distribution for each
of the convolution layers is shown in Fig. 11
(b). Although we convert fully connected layers
to convolution layers, the last three layers con-
sume excessive area due to numerous weights
which require a large number of subarrays.
In Fig. 11 (b), we delineate the area distribu-
tion for AlexNet in three different implemen-
tations (CNN, BCNN, S-LIM XNN). Compared
to CNN and BCNN, S-LIM XNN results in less
area in all convolution layers. Among BNN
AlexNet architecture, the BCNN and S-LIM
XNN remain similar in area distribution.
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The energy distribution is shown in Fig. 11.
In this figure, we categorize the energy con-
sumption into several items: memory, S-LIM,
and CU. It is noted that, in most of the layers, S-
LIM consumes significant energy compared to
the other components, due to intensive binary
convolution steps. In the first and last layers,
CU dominates the majority of energy consump-
tion since those were not binarized.

5.4 Performance Comparison of Different
Accelerators for AlexNet

Comparing the proposed S-LIM XNN to differ-
ent accelerators of AlexNet can result in some
noteworthy conclusions. For instance, Table 4
lists computation area, energy, and execution
time of different accelerators for AlexNet on the
ImageNet dataset. In general, although BNN
consists of various computational layers such as
scaling process which requires extra computa-
tions using multipliers, the BNN-based imple-
mentations can excel over CNNs for the metrics
of area, energy and execution time. To evaluate
the cost of the scaling operation, we perform
an efficiency analysis. Namely, we assume the
conventional convolution has total number of
operations (cNwNN;), where c is the number
of channels, Ny = wh and N; = w;,hi,. On
the other side, the binary convolution method
has cNwN; and N; non-binary operations. On
computing units able to perform n binary op-
erations in one clock cycle, where n is a pos-
itive integer, then, the proposed method can
achieve speedup by S = % Thus, our
efficiency analysis concludes results similar to
reference [22]. Among various hardware real-
izations of BNN, BNN-ASIC consumes the least
area and energy. Table 4 also lists comparisons
to present various platforms including NVIDIA
Jetson TK1 GPU (GPU1), server-class NVIDIA
Tesla K40 GPU (GPU2), and Xilinx Zyng-7000
SOC FPGA [12]. Although FPGA- and GPU-
implemented BNNs achieve accelerated exe-
cution, their designs can consume excessive
energy and area, compared to the potential
implementations with emerging devices such
as RRAM and SOT-MRAM. For instance, the
BNN-RRAM employs an RRAM-based crossbar
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Fig. 11: (a) The required memory for binary and floating-weights in three different architectures(AlexNet, ResNet-18
and VGG-19), (b) The area distribution of different convolution layers in different implementations of the AlexNet,
(c) the energy distribution of different convolution layers for AlexNet.

to store the weights and multiply with matrix-
vectors. However, the BNN-RRAM design faces
some challenges: 1) the RRAM device is limited
by resistance precision; 2) RRAM is impacted
by writing variation and endurance reliability
concerns; 3) RRAM requires matrix splitting
due to limited array size leading to additional
writing and sensing circuity; and 4) RRAM re-
quires larger peripheral circuits such as buffers
and DAC/ADC, which consumes more than
85% of the area and energy. Therefore, XNOR-
network employing SOT-MRAM can offer a
favorable alternative to overcome these issues.
Compared to BNN-RRAM, the designs using
SOT-MRAM devices can attain improved per-
formance in terms of area and energy con-
sumption. The proposed S-LIM XNN approach
acts to significantly reduce power consumption,
latency, and error rate stemming from several
perspectives. At the architectural level, the pro-
posed accelerator employs a Logic-in-Memory
concept to reduce some data transfer time and
energy. Namely, the proposed XNOR acceler-
ator has two functionalities: memory storage
and XNOR logic operation. Thus, the XNOR
accelerator can process XNOR logic operation
within data which is stored in the accelera-
tor without requesting CU to fetch data from
memory, perform the logic operation, and store
data back to memory. Consequently, during
instruction execution, the associated offloading
of the memory removes these unnecessary data
movements between CU and memory. Simi-
lar to our conclusion, the latest papers with
Logic-in-Memory tool reach similar observa-
tions using various approaches [40], [41], [42],

[43]. At the algorithm level, the XNOR-net em-
ploys binary convolution to approximate the
computationally- intensive conventional trans-
formation to sufficient accuracy to achieve suit-
able operation at a fraction of the complexity.
According to the algorithm, non-binary oper-
ations which require the communication be-
tween CU and XNOR accelerator are much less
frequently executed, than the binary operations
which are mainly performed in XNOR accelera-
tor. In section 5.3, we considered the power con-
sumption and performance based on the num-
ber of blocks and number of operations of each
block which are involved in the computation to
substantiate the results. Among the two designs
based on the SOT-MRAM device, the proposed
S-LIM XNN can achieve 1.2x lower energy,
1.26x faster execution, and 1.4x higher accuracy.
These significant contributions arise from the
S-LIM XNN which exploits the physics of the
SOT-MRAM device to implement an XNOR
logic operation, which is more accurate than
the AND bit-counting operation. Furthermore,
such architectures naturally construct a differ-
ential logic operation which leads to less energy
consumption, shorter sensing time, and larger
sensing margin. Finally, the write endurance
with MRAM devices is typically noted as very
high, especially in the case of 3-terminal SOT-
MRAM devices utilized herein which isolate
the oxide barrier from write current.

6 CONCLUSION

In summary, an S-LIM XNN design based on
XNOR topology using SOT-MRAM devices can
offer a direct computational method for energy-
efficient binary convolution within memory.
The approach leverages the inherent physical



TABLE 4: Comparison of different accelerators for

AlexNet on ImageNet.
Area Energy Exe.Time
(mm2) | (pJ/Img) (ms)
CNN-RRAM]19] 21.25 544.85 -
BNN-RRAM[19] 9.19 2275.34 -
BNN-FPGA[12] - 27918 5.95
BNN-GPU1[12] - 324020 90
BNN-GPU2[12] - 23725 0.73
BNN-ASIC[12] 19 352 -
BNN-ANDI18] 5.28 310.42 10.7
S-LIM XNN 4.74 309.78 8.75

behavior of the storage device to reduce en-
ergy consumption during computation and cut
down the execution time, while sustaining ac-
curacy. The net impact of these methods are

captured by

the simulation results indicating

1.2-fold lower energy, 1.26-fold faster execution
and 1.4-fold higher accuracy than other recent
BNN-based AND bit-counting designs using
competing device approaches.
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