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1 Preface

There are more than a trillion sensors in the world today
and according to some estimates there will be about 50 tril-
lion cameras worldwide within the next 5 years, all collect-
ing data either sporadically or around the clock. With such
explosive growth of available data and computing resources,
recent advances in machine learning and data analytics have
yielded transformative results across diverse scientific dis-
ciplines, including image recognition, natural language pro-
cessing, cognitive science, and genomics. However, in many
engineering applications, quality and error-free data is not
easy to obtain, e.g., for system dynamics characterized by
bifurcations and instabilities, hysteresis, delayed responses,
and often irreversible responses. Admittedly, as in all eve-
ryday applications, in engineering problems, the volume of
data has increased substantially compared to even a decade
ago but analyzing big data is expensive and time-consuming.
Data-driven methods, which have been enabled in the past
decade by the availability of sensors, data storage, and com-
putational resources, are taking center stage across many
disciplines (physical and information) of science. We now
have highly scalable solutions for problems in object detec-
tion and recognition, machine translation, text-to-speech
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conversion, recommender systems, and information
retrieval. All of these solutions attain state-of-the-art per-
formance when trained with large amounts of data. However,
purely data-driven approaches for machine learning present
difficulties when the data is scarce and of variable fidelity
relative to the complexity of the system. The vast majority
of state-of-the art machine learning techniques (e.g., deep
neural nets, convnets, RNNss, etc.) are lacking robustness and
fail to provide any guarantees of convergence or quantify the
error/uncertainty associated with their predictions. Hence,
the ability to learn in a sample-efficient manner is a necessity
in these data-limited domains. Less well understood is how
to leverage the underlying physical laws and/or governing
equations to extract patterns from small data generated from
highly complex systems.

One example of open frontier in data-driven methods for
mechanical science is the efficient and accurate description
of heterogeneous material behavior that strongly depends
on complex microstructure. This special issue will explore
using mechanistic data-science multiscale finite element and
numerical methods for material homogenization and con-
current multiscale analysis and design. One such approach,
among many other reduced ordered methods, is the recently
developed Self-Consistent Clustering Analysis (SCA) con-
current homogenization, which was developed to directly
generating material laws on-the-fly, using an efficient two-
stage solution to compute microscale material response
from a statistically Representative Volume Element (RVE).
The first stage, known as the offline or training stage, uses
data science theories such as k-means clustering and self-
organizing maps to “compress” the RVE. Next, the “pre-
diction” stage solves the Lippmann—Schwinger equation to
determine the response of each compressed RVE (CRVE)
to arbitrary applied load with any constitutive relation-
ship. The CRVE may then be considered a material point
in the larger concurrent simulation. The SCA theory inte-
grates multiscale mechanics of materials and data science
theories to efficiently generate accurate material laws with
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a drastic reduction of computational cost over conventional
approaches. Prediction comparisons with direct numeri-
cal simulations and experiments of nonlinear behavior for
metal alloys, nano-polymer composites, and polymer matrix
composites are encouraging. These use different constitutive
laws within the CRVEs; in each case, computational expense
is decreased substantially. This is just one example on the
applications of data science methods and SCA to nonlinear
behavior of advanced and additive manufacturing and joint-
ing technologies, among many others.

To explore the future development and the adaptation
of data-driven methods, new mathematical and computa-
tional paradigms and broad flexible frameworks are needed,
which can lead to probabilistic predictions using the mini-
mum amount of information that can be processed expe-
ditiously and be sufficiently accurate for decision making
under uncertainty. Integrating multi-fidelity data into large-
scale simulations is necessary to speed up the computation
but also to deal with the “hidden physics” not captured by
the lack of resolution or the lack of proper constitutive laws
or boundary conditions. Realizing the concept of “digital
twin” requires advances in many fronts and probabilistic
data-driven modeling approaches that quantify uncertainty
as a key algorithmic component. Statistical learning can
help formulate new concepts and promote machine learn-
ing methods that are appropriate for problems in the various
fields of computational mechanics, where we also know the
conservation laws of mass, momentum and energy but we
need data to fully describe the system in terms of boundary
conditions and uncertain constitutive laws. Data assimila-
tion is not a new field and has been going on for years in
the geophysics community but less so in computational
mechanics. Deep learning provides multiple opportunities
of fusing data and simulations in a seamless manner creat-
ing a new paradigm in the form of physics informed learn-
ing machines. In addition, the concepts of active learning
and transfer learning are particularly useful and potentially
cost-effective for the digital twin paradigm. Active learning
will use uncertainties in the predictions to re-locate the sen-
sors or add more sensors to increase accuracy so it enables
in practice the long-standing aim of adaptive sampling in
data gathering. Transfer learning is equally important as it
exploits the knowledge gained to new but similar situations,
hence requiring only a small amount of data and not attempt-
ing to learn from scratch.

This special issue involves experts from diverse fields in
computational mechanics and mathematics to contribute to
different approaches to data-driven modeling and simulation,
with emphasis on some of the aforementioned modern top-
ics. Applications range from effective thermo-mechanical
properties of nonlinear heterogeneous material, prediction of
dynamic systems, like e.g. flow field and free surface motion
in fluids, impact analysis, shock-to-detonation transition in
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energetic materials and uncertainty quantification such as
high dimensional probability distributions identification
and propagation, Bayesian inverse problems, and multi-
fidelity modeling of stochastic processes. A large spectrum
of most recent methodologies are investigated and reviewed,
including Neural networks, Convolutional Neural Net-
works, Deep Generative Networks (DGN), Deep Material
network (DMN), Locally Linear Embedding (LLE), Topo-
logical Data Analysis (TDA), General Equation for Non-
Equilibrium Reversible-Irreversible Coupling (GENERIC),
self-consistent clustering analysis (SCA), virtual clustering
analysis (VCA), FEM clustering analysis (FCA), and para-
metric Gaussian processes (PGP).

The special issue has sixteen invited papers, broken
down into four groups of contributions. The organization of
these sixteen papers is as follows. The first group of papers
is related to new methods in speeding up computational
homogenization with the help of machine learning tools and
for making materials characterization model-free. Hengyang
Li, et al., summarized a class of clustering discretization
methods for generation of material performance databases
in machine learning and design optimization. Xiaoxin Lu,
et al., proposed a data-driven computational homogenization
method based on neural networks for the nonlinear aniso-
tropic electrical response of graphene/polymer nanocompos-
ites. Yinghao Nie, et al., discussed the principle of cluster
minimum complementary energy of FEM-cluster-based
reduced order method: fast updating the interaction matrix
and predicting effective nonlinear properties of heterogene-
ous material. Lei Zhang, et al., studied the fast calculation
of interaction tensors in clustering-based homogenization
and extended VCA to solve finite strain problems. Hang
Yang, et al., derived heterogeneous material laws via data-
driven principal component expansions. Laurent Stainier,
et al., proposed model-free data-driven methods in mechan-
ics material data identification and solvers. Adrien Leygue,
et al., proposed a non-parametric material state field extrac-
tion method from full field measurements.

The second group of three papers is related to Machine
learning for uncertainty quantification in high dimensions
and regression methods in big data. Thomas Y. Hou, et al.,
proposed to solve Bayesian inverse problems from the per-
spective of Deep Generative Networks. Maziar Raissi, et al.,
introduced parametric Gaussian process regression for big
data. Yibo Yang and Paris Perdikaris developed conditional
deep surrogate models for stochastic, high-dimensional and
multi-fidelity systems.

The third group of four papers describes mechanistic
machine learning strategies for system identification. Guor-
ong Chen, et al., applied Deep Learning Neural Network
to identify collision load conditions based on permanent
plastic deformations of shell structures. Zeliang Liu, et al.,
addressed the transfer learning of deep material network for
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seamless structure—property predictions. Kun Wang, et al.,
developed a cooperative game for automated learning of
elasto-plasticity knowledge graphs and models with AI-
guided experimentation.

The fourth group of three papers is concerned with data-
driven algorithms for computational fluid dynamics. Beatriz
Moya et al., proposed to learn sloshing dynamics by means
of data. Saakaar Bhatnagar, et al., applied convolutional neu-
ral networks to aerodynamics flow, and Yaochi Wei, et al.,
performed integrated Lagrangian and Eulerian 3D micro-
structure-explicit simulations for predicting macroscopic
probabilistic shock-to-detonation transition thresholds of
energetic materials.
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