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1 � Preface

There are more than a trillion sensors in the world today 
and according to some estimates there will be about 50 tril-
lion cameras worldwide within the next 5 years, all collect-
ing data either sporadically or around the clock. With such 
explosive growth of available data and computing resources, 
recent advances in machine learning and data analytics have 
yielded transformative results across diverse scientific dis-
ciplines, including image recognition, natural language pro-
cessing, cognitive science, and genomics. However, in many 
engineering applications, quality and error-free data is not 
easy to obtain, e.g., for system dynamics characterized by 
bifurcations and instabilities, hysteresis, delayed responses, 
and often irreversible responses. Admittedly, as in all eve-
ryday applications, in engineering problems, the volume of 
data has increased substantially compared to even a decade 
ago but analyzing big data is expensive and time-consuming. 
Data-driven methods, which have been enabled in the past 
decade by the availability of sensors, data storage, and com-
putational resources, are taking center stage across many 
disciplines (physical and information) of science. We now 
have highly scalable solutions for problems in object detec-
tion and recognition, machine translation, text-to-speech 

conversion, recommender systems, and information 
retrieval. All of these solutions attain state-of-the-art per-
formance when trained with large amounts of data. However, 
purely data-driven approaches for machine learning present 
difficulties when the data is scarce and of variable fidelity 
relative to the complexity of the system. The vast majority 
of state-of-the art machine learning techniques (e.g., deep 
neural nets, convnets, RNNs, etc.) are lacking robustness and 
fail to provide any guarantees of convergence or quantify the 
error/uncertainty associated with their predictions. Hence, 
the ability to learn in a sample-efficient manner is a necessity 
in these data-limited domains. Less well understood is how 
to leverage the underlying physical laws and/or governing 
equations to extract patterns from small data generated from 
highly complex systems.

One example of open frontier in data-driven methods for 
mechanical science is the efficient and accurate description 
of heterogeneous material behavior that strongly depends 
on complex microstructure. This special issue will explore 
using mechanistic data-science multiscale finite element and 
numerical methods for material homogenization and con-
current multiscale analysis and design. One such approach, 
among many other reduced ordered methods, is the recently 
developed Self-Consistent Clustering Analysis (SCA) con-
current homogenization, which was developed to directly 
generating material laws on-the-fly, using an efficient two-
stage solution to compute microscale material response 
from a statistically Representative Volume Element (RVE). 
The first stage, known as the offline or training stage, uses 
data science theories such as k-means clustering and self-
organizing maps to “compress” the RVE. Next, the “pre-
diction” stage solves the Lippmann–Schwinger equation to 
determine the response of each compressed RVE (CRVE) 
to arbitrary applied load with any constitutive relation-
ship. The CRVE may then be considered a material point 
in the larger concurrent simulation. The SCA theory inte-
grates multiscale mechanics of materials and data science 
theories to efficiently generate accurate material laws with 

 *	 Wing Kam Liu 
	 w‑liu@northwestern.edu

	 George Karniadakis 
	 George_Karniadakis@brown.edu

	 Shaoqiang Tang 
	 maotang@pku.edu.cn

	 Julien Yvonnet 
	 julien.yvonnet@univ‑mlv.fr

1	 Northwestern University, Evanston, USA
2	 Brown University, Providence, USA
3	 Peking University, Beijing, China
4	 Université Paris-Est, Champs‑sur‑Marne, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-019-01741-z&domain=pdf


276	 Computational Mechanics (2019) 64:275–277

1 3

a drastic reduction of computational cost over conventional 
approaches. Prediction comparisons with direct numeri-
cal simulations and experiments of nonlinear behavior for 
metal alloys, nano-polymer composites, and polymer matrix 
composites are encouraging. These use different constitutive 
laws within the CRVEs; in each case, computational expense 
is decreased substantially. This is just one example on the 
applications of data science methods and SCA to nonlinear 
behavior of advanced and additive manufacturing and joint-
ing technologies, among many others.

To explore the future development and the adaptation 
of data-driven methods, new mathematical and computa-
tional paradigms and broad flexible frameworks are needed, 
which can lead to probabilistic predictions using the mini-
mum amount of information that can be processed expe-
ditiously and be sufficiently accurate for decision making 
under uncertainty. Integrating multi-fidelity data into large-
scale simulations is necessary to speed up the computation 
but also to deal with the “hidden physics” not captured by 
the lack of resolution or the lack of proper constitutive laws 
or boundary conditions. Realizing the concept of “digital 
twin” requires advances in many fronts and probabilistic 
data-driven modeling approaches that quantify uncertainty 
as a key algorithmic component. Statistical learning can 
help formulate new concepts and promote machine learn-
ing methods that are appropriate for problems in the various 
fields of computational mechanics, where we also know the 
conservation laws of mass, momentum and energy but we 
need data to fully describe the system in terms of boundary 
conditions and uncertain constitutive laws. Data assimila-
tion is not a new field and has been going on for years in 
the geophysics community but less so in computational 
mechanics. Deep learning provides multiple opportunities 
of fusing data and simulations in a seamless manner creat-
ing a new paradigm in the form of physics informed learn-
ing machines. In addition, the concepts of active learning 
and transfer learning are particularly useful and potentially 
cost-effective for the digital twin paradigm. Active learning 
will use uncertainties in the predictions to re-locate the sen-
sors or add more sensors to increase accuracy so it enables 
in practice the long-standing aim of adaptive sampling in 
data gathering. Transfer learning is equally important as it 
exploits the knowledge gained to new but similar situations, 
hence requiring only a small amount of data and not attempt-
ing to learn from scratch.

This special issue involves experts from diverse fields in 
computational mechanics and mathematics to contribute to 
different approaches to data-driven modeling and simulation, 
with emphasis on some of the aforementioned modern top-
ics. Applications range from effective thermo-mechanical 
properties of nonlinear heterogeneous material, prediction of 
dynamic systems, like e.g. flow field and free surface motion 
in fluids, impact analysis, shock-to-detonation transition in 

energetic materials and uncertainty quantification such as 
high dimensional probability distributions identification 
and propagation, Bayesian inverse problems, and multi-
fidelity modeling of stochastic processes. A large spectrum 
of most recent methodologies are investigated and reviewed, 
including Neural networks, Convolutional Neural Net-
works, Deep Generative Networks (DGN), Deep Material 
network (DMN), Locally Linear Embedding (LLE), Topo-
logical Data Analysis (TDA), General Equation for Non-
Equilibrium Reversible-Irreversible Coupling (GENERIC), 
self-consistent clustering analysis (SCA), virtual clustering 
analysis (VCA), FEM clustering analysis (FCA), and para-
metric Gaussian processes (PGP).

The special issue has sixteen invited papers, broken 
down into four groups of contributions. The organization of 
these sixteen papers is as follows. The first group of papers 
is related to new methods in speeding up computational 
homogenization with the help of machine learning tools and 
for making materials characterization model-free. Hengyang 
Li, et al., summarized a class of clustering discretization 
methods for generation of material performance databases 
in machine learning and design optimization. Xiaoxin Lu, 
et al., proposed a data-driven computational homogenization 
method based on neural networks for the nonlinear aniso-
tropic electrical response of graphene/polymer nanocompos-
ites. Yinghao Nie, et al., discussed the principle of cluster 
minimum complementary energy of FEM-cluster-based 
reduced order method: fast updating the interaction matrix 
and predicting effective nonlinear properties of heterogene-
ous material. Lei Zhang, et al., studied the fast calculation 
of interaction tensors in clustering-based homogenization 
and extended VCA to solve finite strain problems. Hang 
Yang, et al., derived heterogeneous material laws via data-
driven principal component expansions. Laurent Stainier, 
et al., proposed model-free data-driven methods in mechan-
ics material data identification and solvers. Adrien Leygue, 
et al., proposed a non-parametric material state field extrac-
tion method from full field measurements.

The second group of three papers is related to Machine 
learning for uncertainty quantification in high dimensions 
and regression methods in big data. Thomas Y. Hou, et al., 
proposed to solve Bayesian inverse problems from the per-
spective of Deep Generative Networks. Maziar Raissi, et al., 
introduced parametric Gaussian process regression for big 
data. Yibo Yang and Paris Perdikaris developed conditional 
deep surrogate models for stochastic, high-dimensional and 
multi-fidelity systems.

The third group of four papers describes mechanistic 
machine learning strategies for system identification. Guor-
ong Chen, et al., applied Deep Learning Neural Network 
to identify collision load conditions based on permanent 
plastic deformations of shell structures. Zeliang Liu, et al., 
addressed the transfer learning of deep material network for 
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seamless structure–property predictions. Kun Wang, et al., 
developed a cooperative game for automated learning of 
elasto-plasticity knowledge graphs and models with AI-
guided experimentation.

The fourth group of three papers is concerned with data-
driven algorithms for computational fluid dynamics. Beatriz 
Moya et al., proposed to learn sloshing dynamics by means 
of data. Saakaar Bhatnagar, et al., applied convolutional neu-
ral networks to aerodynamics flow, and Yaochi Wei, et al., 
performed integrated Lagrangian and Eulerian 3D micro-
structure-explicit simulations for predicting macroscopic 
probabilistic shock-to-detonation transition thresholds of 
energetic materials.

Table of Content

	 1.	 Clustering discretization methods for generation of 
material performance databases in machine learning 
and design optimization

	 2.	 A data-driven computational homogenization method 
based on neural networks for the nonlinear anisotropic 
electrical response of graphene/polymer nanocompos-
ites

	 3.	 Principle of cluster minimum complementary energy 
of FEM-cluster-based reduced order method: fast 
updating the interaction matrix and predicting effec-
tive nonlinear properties of heterogeneous material

	 4.	 Fast calculation of interaction tensors in clustering-
based homogenization

	 5.	 Derivation of heterogeneous material laws via data-
driven principal component expansions

	 6.	 Model-free data-driven methods in mechanics: mate-
rial data identification and solvers

	 7.	 Solving Bayesian inverse problems from the perspec-
tive of deep generative networks

	 8.	 Parametric Gaussian process regression for big data
	 9.	 Conditional deep surrogate models for stochastic, high-

dimensional, and multi-fidelity systems
	10.	 Application of deep learning neural network to identify 

collision load conditions based on permanent plastic 
deformation of shell structures

	11.	 Transfer learning of deep material network for seam-
less structure–property predictions

	12.	 A cooperative game for automated learning of elasto-
plasticity knowledge graphs and models with AI-
guided experimentation

	13.	 Non-parametric material state field extraction from full 
field measurements

	14.	 Learning slosh dynamics by means of data
	15.	 Prediction of aerodynamic flow fields using convolu-

tional neural networks
	16.	 Integrated Lagrangian and Eulerian 3D microstructure-

explicit simulations for predicting macroscopic proba-
bilistic SDT thresholds of energetic materials

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A computational mechanics special issue on: data-driven modeling and simulation—theory, methods, and applications
	1 Preface




