
Computational Mechanics (2019) 64:281–305
https://doi.org/10.1007/s00466-019-01716-0

ORIG INAL PAPER

Clustering discretization methods for generation of material
performance databases in machine learning and design optimization

Hengyang Li1 ·Orion L. Kafka1 · Jiaying Gao1 · Cheng Yu1 · Yinghao Nie2 · Lei Zhang3 ·Mahsa Tajdari1 ·
Shan Tang2 · Xu Guo2 · Gang Li2 · Shaoqiang Tang3 · Gengdong Cheng2 ·Wing Kam Liu1

Received: 25 February 2019 / Accepted: 30 April 2019 / Published online: 22 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Mechanical science and engineering can usemachine learning. However, data sets have remained relatively scarce; fortunately,
known governing equations can supplement these data. This paper summarizes and generalizes three reduced order methods:
self-consistent clustering analysis, virtual clustering analysis, and FEM-clustering analysis. These approaches have two-stage
structures: unsupervised learning facilitates model complexity reduction and mechanistic equations provide predictions.
These predictions define databases appropriate for training neural networks. The feed forward neural network solves forward
problems, e.g., replacing constitutive laws or homogenization routines. The convolutional neural network solves inverse
problems or is a classifier, e.g., extracting boundary conditions or determining if damage occurs. We will explain how
these networks are applied, then provide a practical exercise: topology optimization of a structure (a) with non-linear elastic
material behavior and (b) under a microstructural damage constraint. This results in microstructure-sensitive designs with
computational effort only slightly more than for a conventional linear elastic analysis.

Keywords Machine learning · Reduced order modeling · Materials database · Heterogeneous materials · Multiscale design
optimization

1 Introduction

Computationalmethods inmaterialsmechanics have evolved
with the development of computation tools. A recent advance
in computer sciences is the development of the so-called “Big
Data” era, where a combined explosion in the number of sen-
sors and datapoints along side computational resources and
methods have enabled tracking and using large databases to
develop understanding of the world, often replacing smaller
more targeted studies that may produce less generalizable

Hengyang Li, Orion L. Kafka and Jiaying Gao have contributed equally
to this work.

B Wing Kam Liu
w-liu@northwestern.edu

1 Northwestern University, 2145 Sheridan Road, Tech B224,
Evanston, IL 60208-3109, USA

2 State Key Laboratory of Structural Analysis for Industrial
Equipment, Department of Engineering Mechanics,
Dalian University of Technology, Dalian, China

3 HEDPS and LTCS, College of Engineering,
Peking University, Beijing, China

results or lack key insights. Taken in the context of computa-
tional mechanics, we can develop data-driven computational
tools that rely on vast amounts of background data to facili-
tate, e.g. real-time multiscale simulations for fast multistage
material system design, in-the-loop mechanics for controls
(e.g. in manufacturing).

In order to develop such data-driven computational tools,
two primary areas of study have emerged:

(1) Generation of materials system databases for materials
mechanics, typically using data compression, to reduce
computational complexity.

(2) Utilization of the database for real-time response predic-
tion and multi-stage design.

The first area arises because data science relies heav-
ily on the size and reliability of the database available.
Unlike traditional applications in data science, such as
image detection/recognition or automatic control, extremely
large and well defined dataset are generally unavailable, or
merely inaccessible, in computational mechanics. Whether
databases are constructed fromexperiments or computational

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-019-01716-0&domain=pdf

282 Computational Mechanics (2019) 64:281–305

0 0.01 0.02 0.030

0.5

1.0

1.5

ε

σ,
 M

Pa

1

2

3

4

5
6

7

8

Online

1) Compute strain
 concentration tensor

2) Domain decomposition
 via unsupervised learning

3) Compute interaction
 tensors

High resolution RVE (600×600) Compressed RVE (8 clusters) Predicted mechanical response

Fig. 1 Offline and online stages of two-stage clustering analysis methods. The offline stage contains three steps as shown in the figure, which will
generate a compressed RVE database. The compressed RVE can be then used to predict mechanical responses of the RVE

models, the cost to generate data at a scale used in, e.g.,
image recognition has thus far been largely insurmountable.
One approach to this challenge has been to use multiscale
simulations of material systems using fast calculations of the
overall stress of a representative volume element (RVE) for
arbitrary far-field deformation loading. Many methods have
been developed with the goal of finding an appropriate bal-
ance between cost and accuracy for such a problem; these
are generally referred to as reduced order methods (ROMs),
and many have been developed, e.g. [1–12].

The second area has often been addressed with methods
from machine learning and neural networks to provide real-
time prediction and multi-stage design. Data-driven methods
have also been used to enhance computational mechanics
by, for example, optimizing numerical quadrature [13] and
replacing empirical constitutive laws with experiment data
[14]. Recently, a deepmaterial networkmethod [15]was pro-
posedwhichmimics neural networks topologically to link the
micro material stiffness to the macro material stiffness. Once
trained on a pre-simulated micro-macro stiffness database it
can be used to compute, with significant speed-up, the over-
all stress of an RVE under arbitrary far-field deformation
loading.

In this paper, three recent techniques in modeling micro-
structure based on data mining will be explored and gener-
alized in Sect. 2. These kinds of fast methods address the
first area: they can be used to generate the type of very
large databases required for the pure or mechanics-enhanced
machine learning outlined in the second portion of this paper.
The second portion derives, in the language of mechanics,
the workings of two different classes of neural networks,
Sect. 3. One possible engineering application for these net-
works, topology optimization considering microstructure, is
exploredwith detailed examples inSect. 4. The somepossible
future directions for data-driven computational approaches
are outlined to inspire further research in this emerging field
within computational mechanics.

2 Overview of two-stage clustering analysis
methods

Self-consistent Clustering Analysis (SCA) [9] and its close
relatives Virtual Clustering Analysis (VCA) [16] and FEM
Clustering Analysis (FCA) [17] are two-stage reduced order
modeling approaches consisting of an offline data com-
pression process and an online prediction process. This is
concisely illustrated in Fig. 1 above. In the offline stage, the
original high-fidelity Representative Volume Element (RVE)
represented by voxels or elements is compressed into clus-
ters. In the online stage, macroscopic loading is applied to
the reduced order (clustered) RVE. The system of equations
describing mechanical response is then solved on only the
reduced representation as a boundary value problem. The
notation used in this section is summarized in Table 1.

To define the boundary value problem, consider a material
occupying Ω ⊂ R

d . The goal of homogenization is to find
the macroscopic constitutive relation between amacroscopic
stress

σM = 1

|Ω|
∫

Ω
σ (X)dX, X ∈ Ω (1)

and a macroscopic strain

εM = 1

|Ω|
∫

Ω
ε(X)dX, X ∈ Ω, (2)

where |Ω| is the total volume of the region Ω. We define
mathematically the RVE problem as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · σ = 0,∀X ∈ Ω

ε = 1
2 (∇u + u∇) ,∀X ∈ Ω

σ = σ (ε; X),∀X ∈ Ω

Boundary conditions,

(3)

where σ = σ (ε; X) is a general microscale constitutive law.
For the homogenization problem, boundary conditions have

123

Computational Mechanics (2019) 64:281–305 283

Table 1 Notation used for two-stage clustering analysis methods

X Material point

X ′ Any other material point

n Normal to boundary

σM Macroscale stress tensor

εM Macroscale strain tensor

σ (X) Microscale stress tensor

ε(X) Microscale strain tensor

s Unit eigenstress

e Unit eigenstrain

Γ̃
(
X, X ′) Green’s operator

Γ̂
0

Fourier transform of the periodic Green’s
operator

I Counting index for clusters

J Another counting index for clusters

χ I (X) Characteristic function for cluster I

D I J Interaction tensor for discretized
Lippmann–Schwinger equation

B “Interaction tensor” for FCA

Ω Material domain

ΩI Domain of the I th cluster (subset of Ω)

cI Volume fraction of the I th cluster

ε̃ Reference material strain

C̃ Reference material stiffness

S̃ Compliance matrix for reference material

A Strain concentration tensor

F(X) Deformation gradient at point X

F0 Reference deformation gradient

A′ Deformation concentration tensor

λ0, μ0 Lamé’s constants of the homogeneous
stiffness tensor

ξ Fourier point

F , F−1 Forward and inverse fast Fourier transform
techniques

Δ� Incremental form of an arbitrary variable �
r I Residual of the I th cluster

M Jacobiam matrix of r with respect to �ε

I4 Fourth-order identity tensor

C J
alg Tangent stiffness of the material in the J th

cluster

NC Number of clusters

NF Number of Fourier points

NI Number of integration points

NE Number of finite elements

Ematri x Young’s modulus of the matrix

νmatri x Poisson’s ratio of the matrix

Einclusion Young’s modulus of the inclusion

νinclusion Poisson’s Ratio of the inclusion

σY , matri x Yield strength of the matrix

ε̄p Effective plastic strain (matrix)

to be chosen to satisfy the Hill–Mandel condition. In this
paper, the periodic boundary conditions are used: ε periodic
and σ · n anti-periodic on ∂Ω.

2.1 Continuous and discretized
Lippmann–Schwinger equation

By introducing a reference material with distributed elastic
stiffness C̃(X), it has been shown that the RVE problemwith
periodic boundary conditions is equivalent to the integral
equation [18]

ε (X) = ε̃(X)

−
∫

Ω
Γ̃

(
X, X ′) :

(
σ

(
X ′) − C̃(X ′) : ε

(
X ′)) dX ′ (4)

where ε̃(X) is the strain in the referencematerialwhen apply-
ing the same loading and boundary conditions as the original
RVE problem; σ

(
X ′) − C̃(X ′) : ε

(
X ′) is the eigenstress

applied to the reference material; Γ̃
(
X, X ′) is the Green’s

operator associated with the reference material. The phys-
ical meaning of −Γ̃i jkl(X, X ′) is the strain component εi j
at material point X if the unit eigenstress skl is applied at
material point X ′, with the components of skl defined by
sklmn = δkmδln , where δkm and δln are Kronecker delta func-
tions.

The integral equation given in Eq. (4) is known as the
Lippmann–Schwinger equation, commonly seen to describe
particle scattering in quantum mechanics. There is typically
no explicit form of Γ̃

(
X, X ′), unless the reference material

is homogeneous.
The domain can be decomposed into several sub-regions,

called clusters, distinguished mathematically by the charac-
teristic function χ as shown in Eq. (5).

χ I (X) =
{
1, X ∈ ΩI

0, otherwise
, (5)

where I = 1, 2, 3, . . . , NC denotes each cluster, and ΩI is
the subset of the volume within cluster I . These clusters are
defined during the offline stage, as described in Sect. 2.2. This
allows one to discretize the Lippmann–Schwinger equation,
as:

ε I = ε̃ I −
NC∑
J=1

D I J :
(
σ J − C̃

J : ε J
)

,∀I ∈ {1, . . . , NC }

(6)

where �I = 1
cI |Ω|

∫
Ω χ I (X)�(X)dX denotes the vol-

ume average of an arbitrary variable � in the I th cluster;

cI = |ΩI |
|Ω| is the volume fraction of the I th cluster where

123

284 Computational Mechanics (2019) 64:281–305

the volume of the I th cluster is given by |ΩI |. D I J is the
interaction tensor given by

D I J = 1

cI |Ω|
∫

Ω

∫
Ω

χ I (X)χ J (
X ′) Γ̃

(
X, X ′) dXdX ′.

(7)

The physicalmeaning of−
(
DI J
i jkl

)
is the average strain com-

ponent i j in the I th cluster if the uniform unit eigenstress
component kl is applied in the J th cluster.

Remark 1 If homogeneous reference material is used, as in
SCA and VCA, ε̃ I = εM.

Remark 2 A counterpart of Eq. (6), similar to the idea of
FCA, can be expressed as

σ I = σ̃ I −
NC∑
J=1

B I J :
(
ε J − S̃

J : σ J
)

, (8)

where S̃ is the compliance matrix of the reference material;
σ̃ is the stress in the reference material when applying the
same loading and boundary conditions as the original RVE

problem. εJ − S̃
J : σ J is the volume average eigenstrain

in the J th cluster. The physical meaning of −BI J
i jkl is the

average stress component i j in the I th cluster if the uniform
unit eigenstrain component kl is applied in the J th cluster.
Note that the reference material for FCA is the elastic state
of the original RVE, instead of a homogeneous reference
material as used by the other two methods here.

Remark 3 The relationship between B I J and D I J is given
by

S̃
I : B I J = −D I J : C̃ J

. (9)

This can be proven by noting that the effect of applying any
unit eigenstrain kl in some cluster J of the reference material
is equivalent to that of applying eigenstress −C̃ : ekl in the
same cluster.

In the online stage, SCA solves the incremental, dis-
cretized Lippmann–Schwinger equation, Eq. (6), with arbi-
trary external loading conditions. These can either be of the
fixed strain increment ΔεM type or be of the fixed stress
increment ΔσM type.

2.2 Offline: clustering and interaction tensor

The offline stage consists of three primary steps: (1) data
collection, (2) unsupervised learning (e.g. clustering), and (3)
pre-computation of the interaction of clusters. Computation
of the linear elastic response (data collection) and subsequent
clustering based on that response are conducted identically

for each of the three two-stage methods presented below: the
same voxel mesh and clusters are used in the examples for
all three methods. The difference between methods comes in
the computation of the interaction tensor.

2.2.1 Data collection

Data collection provides information used to construct the
reduced representation of the system. It typically involves
some computation of the response of a fully resolved system,
perhaps with a simplified material model, over a limited set
of loading cases. One measure of mechanical response that
could be collected is the strain concentration tensor used in
micromechanics A, defined by ε(X) = A(X) : εM(X),
which maps between the far-field or applied strain, εM and
the strain measured at point in the domain, ε. See [9] for
more details.

The choice of the strain concentration tensor as given
above is often suitable, but it depends on the relevant details
of the problem. For example, at finite deformations one
might consider using the deformation concentration tensor:
A′(X) = ∂F(X)

∂F0 where F(X) is the deformation gradi-

ent at any given point X within the domain and F0 is
the macroscopic deformation corresponding to the boundary
conditions. See [12] and [10] for more detailed descriptions
of the finite strain formulation. Alternatively, if the elastic
and plastic material responses differ substantially, e.g. if one
is isotropic and the other anisotropic, including information
about the plastic part of the deformation might be desirable.

2.2.2 Clustering

The goal of clustering is to reduce the number of degrees of
freedom required to represent the system while minimizing
the loss of information about the mechanical response. One
way of doing this, as alluded to above, is by grouping mate-
rial points within the domain of interest. If one can assume
that the material response within each group is identical,
the evolution of the domain can be determined by solving
for the response of each group rather than each material
point.

Using the data generated during the collection phase, one
of the many clustering (or unsupervised learning) techniques
might be applied to optimized the domain decomposition.
In the following examples, Self-Organizing Maps (SOMs)
are employed following the method outlined by [19]. This is
illustrated in Fig. 1, where eight clusters (four in each phase)
are constructed. The clustering process assigns each mate-
rial point with a cluster ID, such that clusters are labelled
1, 2, . . . , NC .

The k-means clustering method has also been used, e.g.
in [9–11]. More elaborate clustering schemes might also be

123

Computational Mechanics (2019) 64:281–305 285

considered. Ongoing efforts include “adaptive clustering”
schemes that mimic adaptive FE methods in their ability to
evolve as deformation progresses, and “enriched” machine
learning, whereby a priori information from mechanics
about the deformation fields outside the bounds of the
data collected in Step 1 are used to guide or bound the
unsupervised learning. Another unexplored future direction
might use a “feature-based” machine learning that includes
microstructure information in addition to mechanics infor-
mation.

2.2.3 Interaction tensor

The interaction tensor describes the impact each cluster has
on each of the other clusters. Once the clustering process is
completed, the interaction tensor can be explicitly computed.
Importantly, the integral part only has to be computed once
during the offline stage. Only the results of that calculation
are then used for the online stage. Three ways to compute
the interaction tensor, one used by each of the methods high-
lighted here (though these are not exclusive to each), are:

SCA: Fourier transform for DI J With periodic bound-
ary conditions and a homogeneous reference material, the
Green’s operator has a simple expression in Fourier space,
given by

Γ̂ 0
i jkl(ξ) = δikξ jξl

2μ0 |ξ |2 − λ0

2μ0
(
λ0 + 2μ0

) ξiξ jξkξl

|ξ |4 (10)

where Γ̂ 0
i jkl = F(Γ 0) is the Fourier transform of a periodic

Green’s operator Γ 0; λ0 and μ0 are the Lamé’s constants
of the homogeneous stiffness tensor; ξ is the Fourier point.
Then the interaction tensor can be calculated with

D I J = 1

cI |Ω|
∫

Ω
χ I (X)F−1

(
F(χ J)F(Γ 0)

)
dX,

∀I , J ∈ {1, . . . , NC } (11)

using the fast Fourier transform (FFT) technique. The com-
putational complexity is O((NC)2(NF)log(NF)), where NF

is the number of Fourier points used in the FFT calculation.

VCA: numerical integration for DI J With an infinite homo-
geneous reference material, the Green’s operator can be
expressed in real space; however, the expression is lengthy so
has not been reproduced here. The interested reader will find
it in [16] and [20]. Numerical integration is the most straight-
forward method to compute the integral equation given in
Eq. (7). The computational complexity is O((NI)

2), where

NI is the number of integration points used. In [20], a fast
method is proposed to approximate DI J .

FCA: finite element method for BI J Based on the physi-
cal interpretation of the interaction tensor, the finite element
method can also be used. By applying uniform unit eigen-
strain component kl in the J th cluster, the average stress
can be computed for all clusters, resulting in BI J

i jkl for all
I = 1, . . . , NC . Thus, the computational complexity is
O(6(NC)(NE)), where NE is the number of finite elements
used. The tensor B I J is similar to the interaction tensor D I J ,
although B I J is determined by applying strains rather than
stresses.

2.3 Online: reduced order response prediction

Once the interaction tensor database is prepared, the dis-
cretized Lippmann–Schwinger equation defined in Eq. (6) is
solved in the online stage. An incremental form of Eq. (6) is
given by

Δε I = Δε̃ I −
NC∑
J=1

D I J :
(
Δσ J − C̃

J : Δε J
)

,

∀I ∈ {1, . . . , NC }, (12)

where Δε̃ I is the applied incremental reference strain. The
incremental stressΔσ I is a function of the incremental strain
Δε I according to the local material constitutive laws. So
the unknowns of Eq. (12) are the strains in each cluster
{Δε} = {Δε1, . . . ,ΔεNC }. For nonlinear microscale con-
stitutive laws, Eq. (12) is nonlinear and has to be solved
iteratively. Newton’s iterative method is used by SCA and
VCA, while a different iterative method is used by FCA. The
residual form of Eq. (12) is given by

r I = Δε I − Δε̃ I +
NC∑
J=1

D I J :
(
Δσ J − C̃

J : ΔεJ
)

,

∀I ∈ {1, . . . , NC } (13)

then the Jacobian matrix {M} = ∂{r}
∂{Δε} for the Newton’s

method is given by

M I J = ∂ r I

∂ΔεJ
= δI J I4 + D I J : (C J

alg − C̃),

∀I , J ∈ {1, . . . , NC } (14)

where I4 is the fourth-order identity tensor. The tangent stiff-
ness of the material in the J th cluster is C J

alg. An alternative
way to solve for the local mechanical responses, proposed
by [21], is to minimize the complementary energy of the
clustering-based system.

123

286 Computational Mechanics (2019) 64:281–305

Fig. 2 Geometry for example problem: a two-phase periodic composite
represented in 2D with plane strain where blue is a continuous matrix
phase and yellow represents inclusions. (Color figure online)

2.4 Comparison of themethods

In order to compare the accuracy and efficiency of each
method, a 2D plane strain model for a two-phase material
is constructed and shown in Fig. 2. The 2D mesh contains
600× 600 square pixels. The inclusion area fraction is 51%.
Material constants of the matrix and the inclusion are given
in Table 2. The yeild surface is the von Mises criterion as
shown in Eq. (15). The hardening law of the matrix material
is given in Eq. (16). Note that this will be approximated by
a non-linear elastic behavior for monotonic loading in future
sections.

f = σ̄ − σY ,matri x
(
ε̄ p) ≤ 0 (15)

σY ,matri x =
{
0.50 + 5ε̄p, 0 < ε̄p ≤ 0.04

0.62 + 2ε̄p, 0.04 < ε̄p
(16)

The equivalent von Mises stress is σ̄ . The yield stress
σY ,matri x is given by the hardening law in Eq. (16) with
equivalent plastic strain ε̄p. Strain from0 to 0.05 is prescribed
in the x-direction and zero strain is enforced in the y- and
xy-directions. A direct numerical simulation (DNS) of the
microstructure under these loading conditions is performed
using the FEM and the effective von Mises stress is recorded
for later comparison to the reduced order model results.

A one-time data-compression of the microstructure is per-
formed following the steps outlined in Sect. 2.2, using the
strain concentration tensor. The resulting clustering of the
microstructure is shown in Fig. 3. The interaction tensor for
each method is computed using the aforementioned algo-
rithms in Sect. 2.2.2.

The different methods, used to compute the interaction
tensors, each result in a slightly different form of the tensor.
There are strong similarities—after all, the same microstruc-
ture and clustering is used—though the details differ. Figure 4
shows a magnitude plot of each of the three methods, where
the magnitude represents the effect of each stress component
in the J th cluster on the corresponding strain component in
the I th cluster. The trends of the magnitudes shown in Figs.
4 and 5 suggest that inter-cluster interaction is not as strong
for VCA as for SCA and FCA, although this difference is
relatively minor. The strongest interactions are intra-cluster,
as shown by the peaks along the diagonal. FCA has two dis-
tinct regions of peaks, corresponding to the set of clusters
in the inclusion and in the matrix. The tensor is constructed
in an ordered way, which results in these two distinct sets
of clusters. This is unlikely to change the overall solution
accuracy.

Once the microstructural database is created and the inter-
action tensor has been computed, the online prediction is

Table 2 Material constants for
matrix and inclusion

Ematrix (MPa) νmatrix Einclusion (MPa) νinclusion Area fraction of inclusion

100.0 0.30 500.0 0.19 0.51

Fig. 3 Color contours showing
clusters distribution in a the
inclusions and b the matrix.
Note that clusters need not be
spatially connected. (Color
figure online)

123

Computational Mechanics (2019) 64:281–305 287

Fig. 4 Component-wisemagnitude plots for a D I J
SCA ,b D I J

VCA, c B
I J
FCA.

Spikes along the diagonal direction for all three interaction tensor sur-
face plots suggest self interaction has more contribution than the rest
of clusters in cluster-wise stress increment. D I J

SCA and D I J
VCA have the

similar magnitude along their diagonal direction due to the homoge-
neous reference material assumption. B I J

FCA has different magnitudes
for matrix and inclusion phase along the diagonal direction, implicitly
representing a heterogeneous reference material

Fig. 5 Plots for a D I J
SCA , b D I J

VCA, c B I J
FCA in profile; note that for FCA the two regions correspond to different physical domains (matrix and

inclusion)

Fig. 6 Plots of σM
xx vs. ε

M
xx . All

three methods performed well,
with predictions laying within
5% of the reference solution1

performed. Figure 6 shows that the ROM results for stress in
the x-direction in all three cases are within 5% of the DNS
results,1 with small differences between the three ROMs.

1 A 5% deviation from the reference solution (DNS) is indicated by the
blue shaded region in Figs. 6 and 7.

Fig. 6b highlights the slight differences between the three
methods: SCA follows the same trend as the DNS, but is
slightly softer; the response predicted by VCA is softer still,
as a result of the constant reference material assumption; the
trend exhibited by FCA is slightly different from the DNS

123

288 Computational Mechanics (2019) 64:281–305

Fig. 7 Plots of σM
yy vs. ε

M
xx . SCA

has the best agreement with the
DNS solution in this case,
whereas VCA and FCA deviate
from the DNS solution. The
causes for such deviation and
improvements in VCA and FCA
will be explored in the future

overall, although still quite close in value. Figure 7, σM
yy plot-

ted against εMxx , shows that SCA has the best agreement with
the DNS solution, and is the only prediction within 5% of the
reference solution1. Note that VCA has different boundary
conditions than the DNS solution, i.e. it uses a fictitious sur-
rounding domain. Some deviation from a DNS result with
periodic boundary conditions is therefore expected.

3 Machine learning on databases generated
with predictive ROMs

Neural networks are a specific class of machine learning
algorithms, which in the most basic form appear similar to
regression analysis. In practice, these methods involve modi-
fying input data through a series of functions to obtain output
data. The exact series of functions and their weights and
forms depend on the application. These methods can pro-
vide an increase in speed overmore conventional approaches,
once the algorithm has been appropriately trained. In order
to have a highly effective modeling approach based on
machine learning, rich databases of mechanical response
information are required to perform that training. Developing
such a database with experiments is intractable, particularly
for design of new materials or material systems where no
material performance information exists. The fast, predic-
tive models (SCA, VCA, FCA) outlined in Sect. 2 are thus
desirable for quickly populating relatively large materials
databases, as will be shown. This enables the use of machine
learning algorithms in multiscale design, where simultane-
ously application and satisfaction of criteria and constraints
governing the material microstructure and component-level
macrostructure is required.

Feed forward neural networks (FFNNs) [13,22,23] were
the first neural networks developed [24]. The FFNN was
designed to learn complex input-output relations. As such,
FFNNs can be used to replace conventional constitutive laws;

this is particularly appealingwhendescriptions of the homog-
enized behavior of a material is complex and/or difficult
to obtain. The basic structure of an FFNN consists of an
input layer, hidden layers, and an output layer. Every pair of
neurons in neighboring layers have a weighted connection.
Each neuron in hidden layers and the output layer has a bias.
In FFNNs, neurons in the same layer are not connected. In
the learning procedure, the connection weights are changed
following a predefined set of rules, such as with back prop-
agation. Funahashi [25] and Hornik et al. [26] proved that
three hidden layers in an FFNN is sufficient to learn any
non-linear continuous function.

Early efforts to apply machine learning to mechanics
used a computation and knowledge representation paradigm,
which is actually a type of feed forward neural network, to
directly “learn” material behavior by training from analytic
and experimental data. One early work in 1991, for example,
was Ghaboussi et al. [27] which applied a back-propagation
neural network to model the behavior of concrete in plane
stress under monotonic biaxial loading and compressive uni-
axial cyclic loading. Furukawa et al. [28] used an implicit
constitutive model and proposed an implicit viscoplastic
constitutive model using neural networks. They generalized
inelastic material behaviors in a state-space representation
and constructed the state-space form by a neural network
using input-output data sets. Similar approaches can also be
found in other relatively early works, e.g. [29–33]. Once an
RVE model is established, for example, an FFNN can be
trained on that data, and a concurrent multiscale scheme to
directly connect microstructure to the macro-scale material
response might be achieved, with the FFNN replacing the
RVE or constitutive law to describe the response at each
material point [34–36].

Neural networks have been studied with the goal of inte-
gration with multiscale methods. In such cases, some parts
of numerical simulations are replaced with neural networks
to better utilize their merits. For example, Ghaboussi et al.

123

Computational Mechanics (2019) 64:281–305 289

[37] introduced a self-learning finite element procedure. The
method was further developed by Shin et al. [38,39], and
Gawin et al. [40]. Lefik and Schrefler [41,42] introduced an
artificial neural network as an incremental non-linear con-
stitutive model for a finite element code. Recently, B.A. Le
et al. [43] proposed a decoupled computational homogeniza-
tionmethod for nonlinear elastic materials. Satyaki et al. [44]
introduced a new manifold-based reduced order model for
nonlinear problems. Cecen et al. [45] use a 3DConvolutional
neural network to link material structure and properties.
Wang and Sun [46] proposed a new meta-modeling frame-
work based on reinforcement learning.With the development
of numerical methods and the increasing interest in mul-
tiscale simulation, integration of multiscale simulation and
neural networks is continuously developing.

3.1 Motivation

In design optimization, one might expect there to be many
calls to the material subroutine (e.g. one for each element for
each load for each design iteration). Thus running ROMs
for RVEs might still be time consuming, compared to a
model predicting RVE stress responses given a strain state
within milliseconds, or a model providing strain state given
microstructure stress contours within milliseconds. To tackle
this issue, we propose replacing the ROMs by neural net-
works trained on the RVE responses computed with SCA
for micro-stress and macro-stress. These networks preserve
microstructure information and are engineered to:

– Predict macro (homogenized) stress or micro (local)
stress given a macro-strain using an FFNN for one RVE.
In this case, the FFNN plays the role of traditional
material constitutive equations and homogenization (to
compute themacro-stress).Wewill denote theseFmicro

FFNN
and FFFNN and explain them in Sect. 3.4.

– Predict macro-strain given any micro-stress distributions
using a convolutional neural network (CNN). This is the
inverse of the FFNN. The input is a stress distribution
within an RVE domain. The output is the macro strain
loading applied to this RVE (the boundary conditions).
We will denote this FCNN and it will be explained in
Sect. 3.6.

– Compute RVE damage by comparing local von Mises
stress to a stress threshold. A CNN is trained to identify
the onset of damagewithin an RVE. In this case, the CNN
acts as a classifier, which identifies whether or not the
applied macro-strain will cause microstructural damage.
We will denote this F classi f y

CNN and it will be introduced
in Sect. 3.7.

3.2 Database generation for machine learning using
SCA

The ROMs presented in this paper can be used to gener-
ate a database for machine learning; in this case, we are
using SCA with 8 clusters, as in Sect. 2, for demonstra-
tion. In general, such databases contain NT training samples
and NV validation samples. For the RVE model shown in
Sect. 2, a database with NT = 1000 strain–stress pairs is
computed for a nonlinear elastic material by randomly sam-
pling 200 terminal states with four sub-loading steps each,
as shown in Fig. 8. Similarly, NV = 150 strain–stress pairs
(30 final states, with four intermediate steps) are generated
for validation. A monotonically increasing load is assumed
and all the final points are confined to a spherical space
with a radius of 0.05. Table 3 shows the reduction in time
required to build a database achieved by using SCA, ver-
sus FEM or FFT for this example case. Without a reduced
order model, the generation of microstructure database takes
days using FEM or FFT. The database contains NT = 1000
pairs of macroscopic strains and stresses εM,s , σM,s , and
local (micro) stress σ s(X), where s = 1, 2, . . . , NT . In
this case, we only consider a plane strain problem and

Fig. 8 Random samples of strain state; two hundred final states were
selected, and four evenly spaced intermediate steps to reach the final
states were recorded for a total of NT = 1000 samples. All strain states
will be applied to the RVE to generate corresponding stress states

Table 3 Comparison of time required to generate a microstructure
database for nonlinear elastic RVE responses with NT = 1000 sam-
ples of strain states

Method Total time (s) Speedup
over FEM

FEM 2.04 × 107 –

FFT 3.01 × 105 68

SCA (4+4 clusters) Offline: 13.0+online:
2.16 × 103

9400

SCA requires only one single workstation to generate the database

123

290 Computational Mechanics (2019) 64:281–305

σpredicted = W31(W13εM+b3) + W21(W12εM+b2)

Neuron j = 1: W11(W11εM+b1)

Neuron j = 2: W21(W12εM+b2)

Neuron j = 3: W31(W13εM+b3)3 2 2

σ
σpredicted

εM ε

ε σi =1 j =2

j =1

j =3

k =1

Wi = 1 j = 1
l = 2 Wj = 1 k =1

l = 3

bj
l=2

bk
l=3

Layer l = 1
Input layer

Layer l = 2
Hidden layer

Layer l = 3
Output layer

(a) (b) = EεM

Wi = 1 j = 2
l = 2

Wi = 1 j = 3
l = 2

Wj = 2 k = 1
l = 3

Wj = 3 k = 1
l = 3

3 2 2

3 2 2

+ W11(W11εM+b1) + b1

3 2 2 3 2 2

3 2 2 3

Fig. 9 a Illustration of an FFNN network with one hidden layer for a
linear elastic example; the collective function of the weights and biases
connecting the input layer (green), the hidden layer (blue), and the out-
put layer (red) is that of Young’s modulus E. b A stress-strain diagram,

showing how the input strain is interpreted by the FFNN for a linear
elastic case using linear activation functions and zero biases. (Color
figure online)

do not consider stress in the z direction. SCA reduces the
total computational time by two orders of magnitude com-
pared to FFT and by four orders of magnitude compared to
FEM.

3.3 Feed forward neural networks

In order to illustrate the structure of feed forward neural net-
works (FFNNs), a simplified one dimensional example is
presented. In linear elasticity, stress is related to strain by the
material stiffness; this can be generically defined as a map-
ping. The overall structure of a neural network can also be
described as a mapping, i.e.:

{
Constitutive equation: stress = FConstitutive(strain)

Neural network mapping: stress = FFFNN(strain)
(17)

whereFFFNN is the FFNN that uses strain state ε as input,
and generates stress state σ as the output. The structure of a
simple FFNN is shown in Fig. 9a. The notation used in this
figure and throughout this section is defined in Table 4. For
this illustration case, only one sample is considered, hence
s = 1 and all variables are written without the superscript s.
A general FFNN contains neurons (the circles) and weights
(black lines). In general, an FFNN has one input layer, one
output layer, andmultiple hidden layers. Each layermay have
multiple neurons; for the input and output layers, these are
simply the input and output values. In the simplest case, an
FFNNwould have one input neuron, one hidden neuron, and
one output neuron. For 1D linear elastic stress analysis in

Table 4 Notation table of variables used in the feed forward neural
network

ε
M,s
j Macroscale strain tensor components, s = 1, . . . , NT

s Counting index for number of samples (training or
validation, depending on context)

l Counting index for number of layers

i Counting index for neurons in a given layer

j Counting index for neurons in another layer

NT Number of training samples

NL Number of layers in the neural network

NN (l) Number of neurons in layer l

Wl
i j Weight connecting the i th neuron in layer l − 1 to the

j th in layer l

blj Bias of the j th neuron in layer l

al,sj Neuron value for j th neuron in lth layer and for sth
sample

A Activation function

FFFNN Feedforward neural network function

such a case, the input neuron would be strain, the hidden
neuron would act as a multiplicative, functional decomposi-
tion of the stiffness that recovers the total stiffness required
to map strains to stress in the output neuron. Generalizing
this slightly, we might consider an FFNN with three hidden
neurons, as shown in Fig. 9. Each neuron has only one value.
The first neuron is simply the strain:

al=1
i=1 = ε (input layer) (18)

123

Computational Mechanics (2019) 64:281–305 291

Fig. 10 Illustration of an FFNN
with multiple hidden layers; NL :
index of layers, NN (l): number
of neurons in layer l. The
formulation of the FFNN is
given in Eq. (21) with associated
interpretation of the FFNN
structure. The indices i and j
representing neuron id in
previous layer and current layer,
e.g., Wl=2

12 is the weight between
neuron 1 in layer l = 1 and
neuron 2 in layer l = 2

Input layer

Hidden layers

Output layer

Layer l = 1

Layer l = 2 Layer l = NL - 1

Layer l = NL

j=1

j=
NN(l = 2)

j=
NN(l = NL)

εxx
M

εyy
M

γxy
M

σxx
M

τxy
M

σyy
M

Wij

l=2

bj

l=2

...

= 3

bj

l=3,...,NL-2 bj

l=NL-1

bj=1

l=NL

j=
NN(l = NL-1)

j=1
Wij

l=3 Wij

l=NL-1

Wij

l=NL

j=1

j=
NN(l =1)

= 3

j=1

The three neurons in the hidden layer take in this value, and
each take on the value given by:

al=2
j=1,2,3 = A

(
1∑

i=1

Wl=2
i j al=1

i + bl=2
j

)
(hidden layer) (19)

where A is an activation function. In the training part, this
paper uses the Sigmoid function [47]: f (x) = 1

1+e−x , and

each neuron is computed using a different weight Wl=2
i j and

bias bl=2
j , where i is the neuron in the previous layer (in this

case, the input later) and j is the neuron in the current layer
(in this case, the hidden layer). Finally, the overall response
– the stress – is given by:

σpredicted = al=3
k=1

=
3∑
j=1

Wl=3
jk al=2

j + bl=3
k (output layer) (20)

The combination of all the W and b terms, as well as the
activation function, work as the fitting factors in a regression
analysis. The activation function A is fixed for all neurons,
and is used to condition the weighting factors. For the consti-
tutivemodel outlined above, the overall results of theweights,
bias and activation function would perfectly match the elas-
tic modulus. If we only consider weights and the activation
function a just a linear mapping, the function of each neuron
in hidden layer is given explicitly in Fig. 9b where the bias
is taken as zero for all neurons.

The physical interpretation of individual neurons is more
complicated for non-linear responses, although the overall
idea is the same. In this formulation, strain path dependence
(i.e. plasticity) is impossible to capture, and the net result

is an response map where one might think of the collection
of neurons (weights, biases and activation functions) as an
“instantaneous elastic modulus,” or the slope of a line that
relates strain to stress at the current point in strain.

Another example shown in Fig. 10 extends the previous
example to consider a two-dimensional stress analysis, with
many neurons per layer and several layers. The inputs are
the three macroscale strain components εMxx , εMyy, γM

xy , in a
plane strain problem. The outputs are the three macroscale
stress components σM

xx , σM
yy, τMxy . The stress component σM

zz
is not considered. The samples (stress-strain pairs) from the
database outlined above are used to train the neural network.
After training, the FFNN can predict stresses when given
strain inputs. In this example, MATLAB is used to build the
FFNN and to train the neural network parameters [48].

In each layer of a general FFNN, each neuron takes the
output value fromeachneuron in the preceding layer as inputs
and gives a single output. This is repeated for each layer.
Generalizing Eqs. (18), (19), and (20) to an arbitrary number
of layers and neurons per layer results in Eq. (21), where the
value of the j th neuron in layer l for the sth sample (either a
training sample or prediction) can be expressed as:

al,sj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε
M,s
j , if l = 1 (input layer)

A (
∑NN (l−1)

i=1 Wl
i j a

l−1,s
i + blj),

if l ∈ {2, . . . , NL − 1} (hidden layers)
∑NN (l−1)

i=1 Wl
i j a

l−1,s
i +blj , if l=NL (output layer)

(21)

where the final layer gives the estimated stress:

σ
M,s
predicted, j = aNL ,s

j . (22)

123

292 Computational Mechanics (2019) 64:281–305

The outputs al,sj of each layer possesses similar physical
meaning as explained for the 1D case. The input strain com-
ponents are represented by l = 1,al,sj for the sth sample, and

l = 2, . . . , NL − 1, al,sj represents an estimate of the the
nonlinear stress responses of the microstructure. The activa-
tion functions and weights of layer l = 2, . . . , NL −1 play a
roughly similar role to the classical definition of the tangent
modulus in solid mechanics. The hidden layers take in strain
components and produce an estimate of the non-linear stress
responses. During the training process, the non-linear rela-
tionship between stress and strain is gradually “learned” by
those hidden layers. In the last layer, l = NL , a

l,s
j represents

the predicted stress components. The predicted stress com-
ponents are produced through the regression operation in the
output layer, as shown in Eq. (21). The weights and bias of
the output layer correct the prediction generated from hidden
layers, and produce accurate nonlinear stress responses. In
order to make the concept clear, one might consider the hid-
den layer as unitless values operating on intermediate strain
values, while the units of W and b in output layer are those
of stress (e.g. MPa in the example problem). The FFNN can
learn nonlinear elastic material behaviors due to following
two key factors: (1) hidden layers approximate the mate-
rial nonlinear elastic responses as a traditional constitutive
model would do, as described in Eq. (17); (2) the output layer
corrects the predicted nonlinear responses for improved pre-
diction accuracy.

3.4 Feed forward neural network with database
generated by SCA

In this case study, an FFNN is trained with data gener-
ated using SCA. Using the same microstructure as given
in Fig. 3, SCA computes the stress responses of the RVE
(or any arbitrary RVEs) when a monotonically increasing
strain is applied. Since SCA provides efficient evaluation
of the stress state, it is convenient to train the FFNN on
data made with SCA. The FFNN can then replace SCA by
“learning” the stress state as a function of the strain state.
This would establish a straight-forward relationship between
strain and stress for near-instantaneous evaluation of RVE
stress responses. Note that although a plastic material is
described for the matrix material in the RVE analyzed by
SCA, the FFNN described here is limited to non-linear elas-
tic (i.e. path independent) material behavior: we approximate
the plastic response with a non-linear elastic one, and focus
on monotonic loading. Moreover, in the following design
case presented in Sect. 4.2, the FFNN is trained to predict
not only the overall RVE stress responses (as was shown
in Fig. 10), but also cluster-wise, local stress responses.
This is essentially the same process, but the output layer
is size NC × NN (l = 1), with one point for each stress

component for each cluster. This second form replicates the
non-homogenized results of SCA.

3.4.1 Training

The training procedure for an FFNN can be reformulated as
an optimization problem.We define the loss function (or cost
function) asMeanSquareError (MSE)between the estimated
stress and the stress computed by using SCA. Assuming one
hidden layer, the optimization formulation is given by:

f ind : Wl=2
i j , bl=2

j , Wl=3
jk , bl=3

k

min loss f unction : MSE = 1

NT × NN (l = 3)
NT∑
s=1

NN (l=3)∑
k=1

(
σ
l=3,s
k − σ

∗,l=3,s
k

)2

where : σ
l=3,s
k

=
NN (l=2)∑

j=1

Wl=3
jk

⎛
⎝A

⎛
⎝NN (l=1)∑

i=1

Wl=2
i j ε

M,s
i + bl=2

j

⎞
⎠ + bl=3

k

⎞
⎠

(23)

By finding the optimal values for Wl=2
i j , bl=2

j , Wl=3
jk , and

bl=3
k , MSE will be reduced. Note that only training data is
used in this process, hence s = 1, 2, . . . , NT .

Usually, the MSE gradually decreases with each training
step. To ensure the trained neural network is general enough
for all possible input states, some data points called veri-
fication data are used to monitor trends in the error. The
minimization iterations will terminate before the error of the
verification data starts to increase. This will ensure the neural
network is able to provide certain extrapolating capability for
data points that are not within the training set.

The FFNN described in Sect. 3.3 was trained on the
database described in Sect. 3.2. In this case, an FFNN with
one hidden layer and 50 neurons was chosen. In the training
procedure, 1000 samples are used to train the neural network.
The Levenberg–Marquardt optimization algorithm is used to
reduce the MSE [49,50].

3.4.2 Prediction

After the training process, a fast evaluation of the stress
state during a monotonic loading process was performed.
The FFNN used for this predicts the macroscale stress ten-
sor for a given macroscale strain tensor following Eq. (24a);
similarly, Eq. (24b) is used to predict the local (cluster-wise)
stress tensors given a macroscale strain tensor.

σM,s(FFNN) = σ
l=NL ,s
k = FFFNN

(
ε
M,s
i

)
(24a)

123

Computational Mechanics (2019) 64:281–305 293

0 0.5 1 1.5 2

2 norm 10-4

0

10

20

30

40

N
um

be
r

of
 S

am
pl

es

Fig. 11 Histogram of the difference between the FFNN σM predictions
and validation data set for all NV = 150 samples. Most of the predic-
tions made by FFNN has an l2 norm less than 2 × 10−5, showing that
the FFNN produce an accurate prediction of the stress state

σ s(FFNN)(X) = σ
l=NL ,s
k (X) = Fmicro

FFNN

(
ε
M,s
i

)
(24b)

To demonstrate validation of the macroscale FFFN, the
l2 norm is used to measure the difference between the over-
all stress predicted by Eq. (24a) and the homogenized SCA
results for each sample in the validation data set, as computed
by:

Di f f erencesFFNN = ‖FFFNN

(
ε
M,s
i

)
− σM,s(SCA),

s = 1, 2, . . . , NV , (25)

To validate the trained FFNN, another 30 final strain states
(unknown during the training) with five load steps each
(including the final state) were selected. Figure 11 shows
a histogram of difference measured with the l2-norm, Eq.
(25), for these new NV = 150 strain–stress pairs of in the

validation data set. Most of the test samples have a very low
l2-norm, which shows that the FFNN is well trained. Figure
12 shows the SCA stress data for each stress component plot-
ted against the FFNN predictions; a perfect match has a slope
of one. The associated cross-correlation statistic is one: the
FFNN solutions match the SCA solutions perfectly. At each
load step the stress predictions of the FFNN and SCAmatch,
as shown in Fig. 13.

This case study illustrates a convenient workflow that
used the reduced order modeling approach to generate a
rich microstructure response database for training an FFNN,
which is then used for generating fast predictions of the RVE
responses. Note that although the validation for the FFNN for
the homogenized stress-strain relationship is given in detail
here, a similar process has been used for the relationship
between macroscale loading and microscale (cluster-wise,
or local) stresses, as given in Eq. (24b).

We propose that the FFNNs shown here can be used in a
design optimization process, such as topology optimization
or microstructural design, where a fast and accurate material
responses prediction is desired. However, note that the mate-
rial is non-linear elastic and/or under monotonic loading. If
plasticity and loading/unloading are considered, a different
FFNN setup or a different neural network may be required.
A speed comparison of running 150 samples with SCA and
FFNN is given in Table 5, where the speedup for online pre-
diction of σM is 10,000 for the FFNN over SCA. This idea
will be explored further using both the FFNN predictions
(Eq. (24a) and (24b)) and convolutional neural networks in
Sect. 4.

3.5 Convolutional neural network

Convolutional networks or convolutional neural networks
(CNNs) are widely used in fields such as image recognition

0 5 10

xx
M , MPa

0

2

4

6

8

10

12

xxM
, M

P
a

r= 1.0000

xx,SCA
M

xx, FFNN
M

xx,SCA
M

xx, SCA
M

0 5 10

yy
M , MPa

0

2

4

6

8

10

12

yyM
, M

P
a

r= 1.0000

yy,SCA
M

yy, FFNN
M

yy,SCA
M

yy, SCA
M

0 0.5 1 1.5 2 2.5

xy
M , MPa

0

0.5

1

1.5

2

2.5

xyM
, M

P
a

r= 1.0000

xy,SCA
M

xy, FFNN
M

xy,SCA
M

xy, SCA
M

Fig. 12 Cross-correlation between SCA and FFNN for x-, y-, and
shear-directions. The solid black lines are the ground truth: all per-
fect predictions should lay on those lines. The FFNN-predicted stress

components lay around the solid black lines, and all three cases have cor-
relation coefficients of 1, exhibiting very strong predictive confidence

123

294 Computational Mechanics (2019) 64:281–305

0.000 0.002 0.004 0.006 0.008 0.010

xx
M

0.000

0.629

1.206

1.784

2.361

2.937
xxM

, M
P

a

xx,SCA
M

xx,FFNN
M

0.000 0.002 0.003 0.005 0.006 0.008

yy
M

0.000

0.580

1.134

1.689

2.243

2.796

yyM
, M

P
a

yy,SCA
M

yy,FFNN
M

0.000 0.010 0.019 0.029 0.039 0.048

xy
M

0.000

0.608

0.989

1.370

1.752

2.129

xyM
, M

P
a

xy,SCA
M

xy,FFNN
M

Fig. 13 Stress-strain plot with both the FFNN and SCA solutions for the validation data, showing that the FFNN results successfully reproduced
SCA results

Table 5 Comparison of time
required to run 150 samples
using SCA and FFNN

Method Total time (s) Online speedup over SCA

SCA(4 + 4 clusters) Offline: 13.0+online: 3 × 102 –

FFNN Training: 60+prediction: 3 × 10−2 10,000

and feature identification. The term “convolutional” refers
to the linear mathematical operation and indicates that the
convolution operation is implemented in at least one layer
of the network rather than conventional matrix multiplica-
tion [51]. This is a biologically inspired model [52] used
to handle known grid-like topology data such as time series
(1D grid of samples at successive time intervals) or image
data (2D grid of pixels). Convolution neural networks have
been implemented in materials science and multiscale mod-
eling to analyze themicrostructure propertieswhere the input
data are microstructure images. Extracting material informa-
tion throughmicrostructure images, a ubiquitous data type in
materials science, has proven to be a promising application of
CNNs. For example, Lubbers et al. [53] implemented a CNN
based on the distribution of texture images for unsupervised
detection of low-dimensional structures. Scanning electron
microscope (SEM) images are frequently used in materi-
als science to distinguish between categories of materials.
Such image datasets can be classified with a single feature
or with multiply features using CNNs. Some studies have
implemented CNN to featurize SEM images over a single
set of data [54,55]. However, a scalable and a generalizable
feature should be used to facilitate widespread applicability
of the CNN. Ling et al. [56] analyzed the generalizability
and interpretability of CNN-based featurization methods for
SEM images, and found that mean texture featurization is
generally useful in such cases, although sometimes feature-
free CNN procedures are appealing as well [54].

The application of CNNs is not limited to images. Cang et
al. [57] established a CNN approach to predict the physical
properties of a heterogeneous material, replacing standard
statistical or micromechanical modeling techniques. The

generated scheme is applicable to systems with a highly
non-linear mapping based on high dimensional microstruc-
ture. They have implemented a convolutional network to
quantify material morphology followed by another convo-
lution network to predict the material properties given the
microstructure. This can also be done in 3D, for complex
materials and responses [45,58,59].

A CNN model consists of several basic unit operations:
padding, convolution, pooling, and a feed forward neural net-
work (FFNN). The structure of an example 1DCNN is shown
in Fig. 14.

The input is a series of stress values, i.e. a 1D problem.
The 1D CNN consists of several loops of padding, convolu-
tion, and pooling. For a specific loop iteration η, a padding
procedure adds zeros around boundaries, to ensure that the
post-convolution dimension is the same as the input dimen-
sion. After padding, several kernel functions will be used to
approximate the discrete convolution operator given by:

σ̃ κ,η
x =

(Lconv−1)/2∑
ξ=−(Lconv−1)/2

w
κ,η
ξ σ

padded,η
x+ξ + bκ,η, (26)

where σ
padded,η
x+ξ is the input, wκ,η

ξ is the κth kernel function,
and bκ,η is the bias, for ηth convolution process and η =
1, 2, . . . , Nconv . The size of the kernel function is Lconv . A
summary of all of the notation used in this section is given
in Table 6. The convolution operation can be regarded as
a feature identification operation. After padding, a pooling
layer will decrease the dimension of inputs, and extract the
most important features from the post-convolution data. A
one dimensional max pooling equation is given by

123

Computational Mechanics (2019) 64:281–305 295

…

…

σ1 σ2 σN-1 σN

σ1 σ2 σN-1 σN0 0 σ1 σ2 σN-1 σN0 0 σ1 σ2 σN-1 σN0 0

Padding
(Add zero boundaries)

Convolution
(Feature extraction)

Pooling
(Dimension reduction &

feature refinement)

σ1 σ2 σN-1 σN0 0

Moving Kernel 1 Wξ

 1,η
Moving Kernel 2 Wξ

 2,η Moving Kernel Wξ
η

~ σ1 σ2 σN-1 σN σ1 σ2 σN-1 σN
σ1 σ2

σN-1
σN

~ ~ ~ 1,η 1,η 1,η 1,η 2,η ~ 2,η ~ 2,η

Feed Forward Neural NetworkFeed Forward Neural Network

Output: εM

~ η ~ ,η ~ ,η ~ η

σ1, 2
 ̂ Pool, 1,η σN-1, N

 ̂ Pool, 1,η σ1, 2
 ̂ Pool, 2,η σN-1, N

 ̂ Pool, 2,η σ1, 2
 ̂ Pool,κ,η σN-1, N

 ̂ Pool, κ,η

 η
=η

 +
 1

 if
 η

<η
*

ξ ξ ξ

Pooling Pooling Pooling Pooling Pooling Pooling

~ 2,η

Fig. 14 Illustration of one dimensional convolutional neural network with the following setup: padding, convolution, pooling, and a feed forward
neural network for regression analysis. The first three steps may be repeated

σ̂
max,κ,η
α =MAX

(
σ̃

κ,η
ξ , ξ ∈[(α−1)L pooling+1, αL pooling]

)

α = 1, 2, . . . , Nη
pooling

(27)

where σ̂max,κ,η is the output value, σ̃ κ,η
ξ is the input value, and

L pooling is the length of the pooling window. Max pooling
extracts the maximal value from the window, but other pool-
ing operations might also be used. In this case we surmise
that, to predict remote strains, the maximum stress values
might be telling. Padding, convolution, and pooling may be
repeated for Nconv times. The value will be transferred to a
fully connected FFNN, such as that illustrated in the previous
section.

Figure 15 represents a generalized overview of the struc-
ture of a typical two dimensional CNN [48]. Continuing
with the two-dimensional example problem given above, for
a CNN the input is the stress within the 600 × 600 grid,
given by σ (α, β), were α and β correspond to the x- and y-
components of the stress map. At each grid point (α, β), the
three stress components xx , yy and xy are stored. Padding
Ppadding will add zero boundaries around the input data to
make sure that after convolution, the size of the maps will
remain same.

Similar to 1D convolution, the convolution operation
applies a kernel function over the stress contours and gener-
ates a new feature map with the same resolution as the initial
stress contours. The extension of the convolution operation
to two dimensions for ηth convolution process is shown in
Eq. (28).

σ̃
κ,η
α,β =

N f eature∑
ζ=1

×
⎛
⎝

(Xconv−1)/2∑
ξ=−(Xconv−1)/2

(Yconv−1)/2∑
ψ=−(Yconv−1)/2

W ζ,κ,η
ξ,ψ σ

padded,ζ,η
α+ξ, β+ψ

⎞
⎠

+ bκ,η (28)

where κ is the kernel ID of the convolution layer goes from
one to Nkernel . The size of the convolution kernel in dimen-
sion 1 and 2 are given by Xconv and Yconv , and are both
odd numbers. The counting indices in the kernel in dimen-
sion 1 and 2 are defined as ξ and ψ , respectively. The
number of stress components is N f eature; for this 2D exam-
ple, N f eature=3. By applying the kernel to each element in
each the input stress array, a complete feature map will be
generated.

To define a nonlinear relationship between the input and
output using theCNN, a nonlinear activation function is often
used. In some cases, this is a Rectified Linear Unit (ReLU)
layer, which is applied to all feature maps generated from
the convolution operation. For simplicity of illustration, this
step is not shown in the equations and figures.

A pooling layer is applied to all feature maps after the
ReLU layer to compress the resolution of the data in the X
andYdirections. Different pooling operationsmight be used;
in this example, we selected max pooling. The max pooling
operator divides the feature map into many subset regions,
and selects the maximum value from each region to use as
the value in the compressed feature map; generalizing from

123

296 Computational Mechanics (2019) 64:281–305

Padding

Kernels

… …

Fully connected Output

Convolution
Activation Layer

and Pooling

Flattened

Feed forward neural network

…

…

…

Input
σ
xx

σ
yy

xy

ε
xx

ε
yy

xy

1
2

...

Nfl

...

M

M

M

Σ

Σ

Σ
ζ=1

ζ=2
ζ=3

ζ=1
ζ=2

ζ=3

ζ=1
ζ=2

ζ=3

η=η + 1 if η <η*

Fig. 15 Illustration of two dimensional convolutional neural network.
In the training part, the number of threshold η∗ = 5. After 4 repeats
of convolution, the data will be passed to FFNN. The dimension of

input for FFNN becomes N f l = 74. The hidden layer in FFNN has 74
neurons. Finally, FFNN gives three macro strain components

Eq. (27), for ηth convolution process, this can be written
as:

σ̂
max,κ,η
α,β = MAX(σ̃

κ,η
ξ,ψ ,

ξ ∈ [(α − 1)X pooling + 1, αX pooling],
ψ ∈ [(β − 1)Ypooling + 1, βYpooling])
α = 1, 2, . . . , Nη

Xpooling, β = 1, 2, . . . , Nη
Y pooling

(29)

After the final pooling operation, all compressed feature
maps are converted into a single vector through a flattening
operation. The flattened array is then used as the input of the
FFNN for regression to compute the corresponding strain.
Further details of the CNN method and implementation can
be found in literature cited in the beginning of this section.

3.6 Convolutional neural network for boundary
condition identification with database
generated by SCA

Using the CNN illustrated in Fig. 15, a mapping has been
established between local stress distribution and applied
external strain on the microstructure.

3.6.1 Training

This CNN was trained on the same database of 1000 SCA
results as was the FFNN. For the CNN, the input is the
micro-scale stress at each point (voxel) of the RVE, given
by the cluster-wise results of SCA, σ (α, β). Each point in
the RVE contains the three 2D stress components, like the
RGB channels used for images. The output of the CNN is the
macroscale strain εM that was applied as the loading condi-
tions and caused the observed stresses. The training can be
written as an optimization problem, as given in Eq. (30).
The equations for training a CNN with padding, convo-
lution, and pooling layers repeated Nconv times is given
by:

f ind : Wl
mn, bln (l = 2, 3...NL), in FFNN

W ζ,κ,η
ξ,ψ , bκ,η(κ = 1, 2...Nkernel), (η = 1, 2...Nconv), in CNN

min loss f unction : MSE = 1

NT

NT∑
s=1

(
εM,s − ε∗M,s

)2

where : εM,s

= FFFNN

(
F f latten

(
F Nconv

pcp

(
...F 2

pcp

(
F 1

pcp

(
σ s (α, β)

))
...

)))

(30)

123

Computational Mechanics (2019) 64:281–305 297

Table 6 Notation used to
describe the CNNs shown in
Sect. 3.5 through Sect. 3.7

X A point in the microscale (inside the RVE) region

σM Macroscale stress tensor

εM Macroscale strain tensor

σ (X) Microscale stress tensor

ε(X) Microscale strain tensor

α First direction in X

β Second direction in X

σ̃ Microscale stress tensor to which a kernel has been applied

σ̂ Microscale stress tensor to which a kernel and pooling has
been applied

NT Number of training samples in the database

NV Number of verification samples in the database

Nkernel Number of kernels in convolution

Npooling, NXpooling, NYpooling Size of output after pooling

N f l Number of entries in flattened vector

Nconv Number of repeats of padding, convolution, and pooling in
CNN

Wl
i j Weight in FFNN connecting the i th neuron in layer l − 1 to

the j th in layer l

blj Bias in FFNN of the j th neuron in layer l

ξ Counting index for location within kernel in dimension 1

ψ Counting index for location within kernel in dimension 2

ζ Counting index for features

κ Counting index for kernels

η Counting index for convolutions

W ζ,κ,η
ξ,ψ Weight connecting the input for ζ feature and κ kernel on

convolution layer

bκ,η Bias of the kernel κ on the convolution layer

Lconv , Xconv , Yconv Size of the kernel

L pooling , X pooling , Ypooling Size of the pooling window

Ppadding Padding function

Cconv Convolution function

Ppooling Pooling function

Fpcp Combined padding, convolution, and pooling operation

F f latten Flattening function

FCNN Convolutional neural network function

F
classi f y
CNN Classification convolutional neural network function

d Binary indicator given by classification CNN

The term F
η
pcp (σ s (α, β)) is used to simplify the notation

by combining the nested operations shown in Fig. 15. It is
defined as

F η
pcp

(
σ s (α, β)

) = P
η
pooling

(
C η
conv

(
P

η
padding

(
σ s (α, β)

)))
,

which includes terms for padding, convolution, and pooling.
The remaining terms in the training problem are define as
follows. The weight and bias in the FFNN are Wl

mn and blm ,

andW ζ,κ,η
ξ,ψ , bκ,η are theweights and biases in the convolution

operations. The ground truth is ε∗M,s and the estimate is

εM,s . The number of training samples is defined as NT , and
NN (l = NL) is the number of neurons in the output layer. In
this case, NN (l = NL) is three. The sampling is indexed by
s.

The inputs to the CNN are the three stress arrays corre-
sponding to the components of stress given by σ s(α, β). The
outputs are the three strain values ε

M,s
j (j = 1, 2, 3). Just

as for the FFNN, the mean squared error (MSE) is reduced
gradually step by step using one of several optimization algo-
rithms.

123

298 Computational Mechanics (2019) 64:281–305

0 1 2 3 4 5
2 norm 10-5

0

5

10

15

20

25

30

N
um

be
r

of
 S

am
pl

es

Fig. 16 Histogram of the l2 norm for the CNN prediction using valida-
tion data points. Most of the predictions made by CNN has an l2 norm
less than 1 × 10−5, showing the CNN produce an accurate prediction
of the strain state. The l2 norm illustrate the CNN network is able to
make a proper prediction of the validation data

3.6.2 Prediction

Just as with the FFNN, we can define the functionFCNN (σ s

(α, β)) that describes the operation performed by the trained
CNN, in this case

FCNN
(
σ s(α, β)

) = εM,s . (31)

In Fig. 16, a histogram for the error between predicted εM

and the validation data set (again, the NT = 150 samples
generated in Sect. 3.2) is computed using Eq. (32).

Di f f erencesCNN = ‖FCNN
(
σ s(α, β)

) − εM,s(SCA)‖2.,
s = 1, 2, . . . , NV (32)

In Fig. 17, the correlations between the CNN prediction
of applied strain and the reference solution of the three

strain components is provided, using the same validation
data sets as mentioned before. These show that the CNN
can effectively map the stress contour to the applied exter-
nal strain. Such a map may play an important role in
linking microstructure information with macroscale infor-
mation, e.g. connecting microstructure failure strength to a
macroscale strain state. This will assist the inverse design
problem where the optimum loading state is inferred using
local information.

3.7 Convolutional neural network for classification
with database generated by SCA

The application of a CNN to material microstructure pre-
dictions is not limited to the sample problem shown above.
Another example use of a CNN is as a microstructure clas-
sifier; this is similar to its common application in image
classification. By using amicrostructuremesh and an applied
strain on themicrostructure as the input, aCNNcanbe trained
to predict whether the microstructure will become damaged.

3.7.1 Training

The training procedure for the classification CNN is given by

f ind : Wl
mn, bln (l = 2, 3...NL), in FFNN

W ζ,κ,η
ξ,ψ , bκ,η(κ = 1, 2...Nkernel), (η = 1, 2...Nconv), in CNN

min loss f unction : cross entropy

= 1

NT

NT∑
s=1

(− (
d∗s log

(
ds

) + (
1 − d∗s) log (

1 − ds
)))

where : ds (33)

= FFFNN

(
F f latten

(
F Nconv

pcp

(
...F 2

pcp

(
F 1

pcp

(
σ s (α, β)

))
...

)))

nested operation : F η
pcp

(
σ s (α, β)

)

= P
η
pooling

(
C η
conv

(
P

η
padding

(
σ s (α, β)

)))

0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05

xx,CNN
M

0

0.01

0.02

0.03

0.04

0.05

xx
,S

C
A

M

r= 0.9982

xx,CNN
M

xx, SCA
M

xx,SCA
M

xx, SCA
M

yy,CNN
M

0

0.01

0.02

0.03

0.04

0.05

yy
,S

C
A

M

r= 0.9992

yy,CNN
M

yy, SCA
M

yy,SCA
M

yy, SCA
M

xy,CNN
M

0

0.01

0.02

0.03

0.04

0.05

xy
,S

C
A

M

r= 0.9956

xy,CNN
M

xy, SCA
M

xy,SCA
M

xy, SCA
M

Fig. 17 Loading prediction by CNN vs. loading applied in SCA using
validation data points. The solid black lines are the ground truth: all
perfect predictions should lay on those lines. All three cases have cor-

relation coefficients higher than 0.99, suggesting the trained CNN can
provide a good accuracy in predicting applied strain

123

Computational Mechanics (2019) 64:281–305 299

The output of the classification CNN, ds , is a binary indica-
tor: 0 for non-damaged, 1 for damaged. Since the output is a
binary value, the objective function is now defined in terms
of the cross entropy between the truth value d∗s and the pre-
dicted value ds . Cross entropy, or log loss, is widely used to
measure the performance of a classification model [22]. The
CNN in this section is trained on the data extracted from the
database used for the previousNNs. The database for training
the classifier consists of pairs ofmicro stress distributions and
damage indicators. In this case, a critical-stress-based dam-
age criterion is used to decide whether an RVE is damaged
or not: if any von Mises stress σ(X) exceeds a critical von
Mises stress σ ∗ the RVE is considered damaged.

3.7.2 Prediction

Once trained, the CNN can predict whether the applied load-
ing will result in microstructure damage without carrying out
the full RVE simulation:

F
classi f y
CNN

(
σ s(α, β)

) = ds =
{
0, Non-damaged

1, Damaged
. (34)

In Sect. 4.2, such a CNN will be used in a microstructure-
based topology optimization example to illustrate the effect
of a microstructural damage constraint on the optimized
structure.

4 Microstructure-based, multiscale topology
optimization using neural networks

In this section, we will illustrate how FFNNs and CNNs
might beused in topologyoptimization to achievemicrostruc-
ture-based design. This differentiates the current approach
from classical topology optimization which typically uses
simple constitutive relationships. As explained in Sect. 3,
we propose to compress the RVE response database into an
FFNN for forward prediction of RVE stress responses, where
it will act similarly to a traditional homogenized constitutive
model. However, because a database of RVE responses is
used, no functional form of the homogenization is required.
The RVE microstructure damage responses is represented
with a trained FFNN+CNN; this introduces microstructure
damage, linked with the applied strain state of the RVE. By
usingwell-trainedFFNNs andCNNs, twodifferent optimiza-
tion problems are defined as below:

(a) Topology optimization with a material constitutive law
extracted from an FFNN trained on the stress-strain
relationship of a given microstructure. In this case, a
non-linear material behavior during topology optimiza-
tion is used to achieve a design that is durable under

extreme loading conditions where the material response
enters the non-linear region.

(b) Topology optimization with constraints defined by the
FFNN+CNN framework to identifymicrostructure dam-
age and thereby design durable (damage aware) struc-
tures, using the CNN described in Sect. 3.7. In this case,
the microstructure damage acts as an extra constraint
to the topology optimization formulation to achieve a
design that alleviates or avoids possible localmicrostruc-
ture damage.

In these two example problems, the design zone is described
with a 60 × 30 mesh of rectangular, linear elements. Each
element is a 1 cm × 1 cm square. The elastic material prop-
erties are from the homogenized SCA results: E = 200MPa
and ν = 0.27. An approximated non-linear elastic mate-
rial response is extracted from the RVE simulation obtained
from Sect. 3, as described in the following sections. Note that
while plasticity is used in Sect. 3, our FFNN is only valid for
a non-linear elastic approximation of the material response.
A point load of 75 N is applied at right bottom corner. The
desired volume fraction of the optimized part is set as 0.35
of the original design zone. For the second case with damage
the critical stress is defined as 0.7MPa.

4.1 Topology optimization with FFNN

The formulation of microstructure sensitive topology opti-
mization with an FFNN is shown in Eq. (35). The objective
function is defined as the overall strain energyof the structure,
Φ, which is to be minimized. A subtle but important differ-
ence in the present example in this work is that the FFNN
is used to replace the usual linear elastic material response
with a nonlinear one. By using a nonlinearmaterial responses
database depicted in Sect. 3.3, a new avenue for data-driven
material and structure design is illustrated. This is depicted
graphically in Fig. 18, which shows the use of an FFNN to
generate microstructure-based stress-strain response within
a topology design framework.

minimize : Φ =
∫

ΩM
f udΩM +

∫
∂ΩM

tudSM ,∀u ∈ U∗

wi th : Φ ≡
∫

ΩM
σ (XM)ε(XM)dΩM ,∀XM ∈ ΩM

subject to : V
(
ρ(XM)

)
≤ V ∗

0 ≤ ρ(XM) ≤ 1,∀XM ∈ ΩM

σ (XM) = ρ(XM)FFFNN

(
ε(XM)

)
,∀XM ∈ ΩM ← FFNNfor

microstructural response, Eq.(24a)

where : V (ρ(XM)) = 1

ΩM

∫
ΩM

ρ(XM)dXM

ΩM : macro domain, Ω : micro domain

XM : coordinate in macro domain, X : coordinate in micro domain

(35)

123

300 Computational Mechanics (2019) 64:281–305

Design Zone

60 cm

30
 c

m

ΩM

εxx

τxy

εyyΩ

xM

yM

 Solve microscale with FFNN

x

y

XM: (XM) = (XM))

Fig. 18 Topology optimization setup with FFNN. The FFNN will
be used to compute non-linear material responses to drive for a
new design. This replaces the constitutive law commonly used for
the macroscale with a homogenized response of the microstruc-
ture for each point in the macroscale. Mathematically, σ M (XM) =
ρ(XM)FFFNN

(
ε(XM)

)
,∀XM ∈ ΩM , as defined in Eq. (35)

where f is the body force, t is the applied traction on the
boundary of the design zone, and u is the local displace-
ment in the design zone. U∗ is the admissible displacement
field, and SM defines the boundaries of the macrostructure
(the design region). σ (XM) and σ (XM) are macro stress
and strain. The density for each macro mesh is ρ(XM). The
desired volume of material remaining in the design zone is
V ∗ and defined as 0.35, and V

(
ρ(XM)

)
is the optimized vol-

ume in the design zone. The density of location XM isρ(XM)

in the design zone, and the homogenized stress is σ (XM),
defined as the product of ρ(XM) and FFFNN

(
ε(XM)

)
.

Here, FFFNN represents a trained FFNN that will gener-
ate stress predictions based on given strain input ε(XM), as
defined in Eq. (17)

In this case, the FFNN is used to approximate the RVE
responses.Hence,σ M is directly approximated by the FFNN.
In truth, constraints of the software used for optimization
require a functional description of the behavior (this limita-

tion will be addressed in future work), thus the effective von
Mises RVE stress versus effective strain curve is approx-
imated using an exponential function: σ̄ M = 0.7784 ∗
e22.18∗ε̄M − 0.8071 ∗ e−378∗ε̄M . This hyperelastic material
definition was fit to the FFNN results. This ad-hoc approach
ensures stability of the optimization process by minimizing
the overall strain energy using condition-based optimiza-
tion [60].

The optimized beam structures are illustrated in Fig. 19a
and19b for linear elasticmaterial andnon-linear elasticmate-
rial, respectively. Necessary results are provided in Table 7.
The two structures show substantial difference in the final
shape of the structure. This means the material non-linearity
plays an important role in topology optimization, where a
new truss structure is realized in order to ensure minimal
strain energy. The result suggests the importance of con-
siderable of microstructure-based material non-linearity into
structure optimization. It may also be possible to include
microstructure variation, such as different particle volume
fractions, into the structure. In short, FFNN provides an
alternative for a data-driven microstructure-based topology
optimization, where the microstructural effect can be incor-
porated into the process to achieve different designs thatmeet
the design criteria.

4.2 Topology optimization with constraints defined
by FFNN+CNN

Topology optimization results may have high stress con-
centration zones. If not treated properly, the concentration
zones may cause unexpected damage and affect the function
of the structure. A traditional way to address this is to add
stress or strain constraints to optimization. Previous authors
have focused on optimization with stress concentration and
singularities, e.g. [61–64]. In these previous studies, most
damage criteria are only related to the macroscopic mate-
rial model and do not consider microstructure mechanical
behavior. In this work, an FFNN+CNN framework trained
by the database generated with SCA in Sect. 3 provides a
microstructure-based prediction of damage as the damage
criterion.

In order to do this, the FFNN defined in Eq. (24b) that
performs the operation σ (X) = Fmicro

FFNN

(
εM

)
is used. As

mentioned in Sect. 3, this predicts local, rather than homog-
enized, stresses in the RVE. These local stress distributions
serve as input to the CNN outlined in Sect. 3.7, which indi-
cates whether or not damage has occurred. The optimization
formulations are thus:

123

Computational Mechanics (2019) 64:281–305 301

(a) (b)

Fig. 19 a Optimized beam structure with elastic material responses b
Optimized beam structure with non-linear material responses. Compar-
ing a and b, the joint of all truss members for the non-linear case is

located towards the bottom side of the truss structure. This means the
material non-linear responses plays an important role in determining
optimized truss structure

Table 7 Results of the FFNN-based non-linear-elastic optimization problem

Linear
material

FFNN
(nonlinear)

FE-SCA
concurrenta

FE–FE
concurrenta

Initial compliance (strain energy) (Ncm) 12.6 (6.3) 20.0 (10.0) – –

Optimized compliance (strain energy) (Ncm) 28.0 (14.0) 38.0 (19.0) – –

Database generation + training (s) 0 313 – –

Optimization calculation time (s) 338 472 23,328 220 × 106

Factor of speed-up over FE–FE – 280,255 9431 –

No. of iterations 14 18 – –

aEstimated, assuming the same number of iterations as FFNN.Note that substantial speedup is achievedwhile retaining the accuracy andmicrostruc-
tural basis of the concurrent approaches. This would provide further speed advantages in 3D

minimize : Φ =
∫

�M
f ud�M +

∫
∂�M

tudSM ,∀u ∈ U∗

≡ UT KU =
N∑

e=1

(ρ(XM))puTe k0ue

subject to : V
(
ρ(XM)

)
≤ V ∗

0 ≤ ρ(XM) ≤ 1 ∀XM ∈ ΩM

∀XM ∈ ΩM (XM),

∀X ∈ Ω(X) : F classi f y
CNN (σ (X)) = 0

← Microscale damage criterion, Eq.(34)

where : σ (X) = Fmicro
FFNN

(
εM

)

← Microscale stress prediction, Eq.(24b)

ΩM : macro domain, Ω : micro domain

XM : coordinate in macro domain,

X : coordinate in micro domain (36)

where Φ = ∑N
e=1 (ρ(XM))puTe k0ue is the compliance of

the overall structure, N is the number of elements, p is the
penalization power (typically p = 3), ue is the displacement
for each element, and k0 is the element stiffness. The aver-
aged strain response of the RVE is εM . The local stresses
within the RVE are defined as σ , and are calculated with

a trained FFNN Fmicro
FFNN . Other variables are the same as

defined above for the FFNN-only optimization. For any X
in RVE Ωm(X), the output value of F classi f y

CNN should be 0,
which represents a non-damaged state.

Since the FFNN+CNN database only gives a criterion,
sensitivity analysis is not preferred in this case. The algo-
rithm here follows a refined optimally criteria (OC) method.
The optimization program structure is based on the 99-line
topology optimization code written by Sigmund [65] (and
thus the problem is similar, though the implementation is not
identical to the FFNN-based optimization above). During the
density update, for each element, three strain components
will be passed to the FFNN+CNN. The FFNN+CNN will
determine whether the current strain state is acceptable by
assessing the local microstructural response. This is shown
schematically in Fig. 20. If an element has been damaged,
the density of this element will be increased by applying a
penalty factor, while the densities of the rest of the elements
will be decreased to satisfy the volume constraint.

Similarly to the FFNN example, Fig. 21a shows the refer-
ence case: a linear elastic optimization without a damage
constraint. The final compliance is 30Ncm. Figure 21b
shows the optimized design with a microstructure-based
damage constraint. The final compliance is 31N cm. Notice
that while the compliance is quite similar, the design under
a microstructural damage constraint resembles a more con-

123

302 Computational Mechanics (2019) 64:281–305

Fig. 20 Topology optimization
setup with FFNN and CNN. For
each material point within the
design zone, the FFNN is used
to compute the material
response, be it linear or
non-linear, considering the
effect of microstructure. The
CNN is used to incorporate
microstructure damage, which
will drive the optimization
algorithm for a new design
compared to a topology
optimization with only linear
material. Mathematically, this is
∀XM ∈ ΩM (XM): σ (X) =
Fmicro

FFNN

(
εM (XM)

)
, ∀X ∈

Ω(X) : d
(
XM

) =(
F

classi f y
CNN (σ (X))

)
, as defined

in Eq. (36). If any d(X) is
marked as damaged in the
microstructure, the XM point in
the design zone containing that
microstructure will be marked
as damaged

Design Zone

ΩM

60 cm

30
 c

m

Microscale stress distribution

Microstructure from RVE simulation

Classify with CNN

εxx

τxy
εyy

 Compute with FFNN

damage?

Ω

Ω
xM

yM

x

y micro
FFNNσ(X) =F (εM(XM))

classify
CNNd(XM) =F (σ(X))

d(XM) = 0 or 1

XM: εM(XM)

σM(XM) = ∫Ωσ(X)dΩ1
|Ω|

Fig. 21 a Optimized beam
structure without damage
constraints b Optimized beam
structure with damage
constraints. In b there are more
trusses to avoid high local
stresses that result in damage

F F

(a) (b)

ventional truss structure; the optimization has avoided sharp
angles and has fewer beams that give rise to stress concen-
trations likely to result in microstructure-driven damage.

A summary of the design variables and important param-
eters related to the optimization is provided in Table 8. The
simple examples above show the potential application of an
FFNN+CNN database generated by clustering reduce order
methods. However, the optimization is just based on an arti-
ficially defined optimality criterion. The algorithm may not
be stable for all kinds of problems. In the future, we should
study the sensitivity and singularity of constraints based on
an FFNN+CNN database.

5 Conclusion

5.1 Summary

Two challenges with current approaches to machine learning
methods in the mechanical science of materials are: (1) the
database generation time and effort are extensive, and (2)
the application of machine learning is not well developed
or understood by the community. This paper covers several
different topics related to these challenges:

– We have outlined, related, and compared three different
clustering-discretizationmethods (SCA,VCA, andFCA)

123

Computational Mechanics (2019) 64:281–305 303

Table 8 Results of the FFNN+CNN constraint optimization problem

Linear material FFNN+CNN FE-SCA concurrenta FE–FE concurrenta

Initial compliance (strain energy) (Ncm) 295 (148) 295 (148) – –

Optimized compliance (strain energy) (Ncm) 30.0 (15.0) 31.0 (15.5) – –

Database generation + training time(s) 0 512 – –

Optimization calculation time (s) 12.6 14.5 69,674 660 × 106

Factor of speed-up over FE–FE – 45 × 106 9473 –

No. of iterations 53 61 – –

aEstimated, assuming the same number of iterations as CNN. Note that substantial speedup is achieved while retaining the accuracy and microstruc-
tural basis of the concurrent approaches. This would provide further speed advantages in 3D

that rely on unsupervised learning for order reduction
and the solution of mechanistic governing equations for
prediction.

– One of these methods, SCA, was used to develop an
example material behavior database suitable for training
neural networks. This approach to database development
substantially reduces the effort required to acquire the
information upon which neural networks may be trained.

– The basic operations, and how these combine to make
predictions of mechanical responses, in an FFNN were
outlined. This includes the role of weights, biases and
activation functions aswell as the description of the train-
ing stage of the neural network as aminimization problem
using notation common within the mechanical sciences.

– A similar description of convolutional neural networks
was developed for two different possible applications: (1)
to solve inverse problems where the boundary conditions
need to be identified from a known stress distribution and
(2) as a classifier to identify if damage will occur within
a microstructure given a known stress distribution.

– Two microstructure-sensitive topology optimizations are
demonstrated. In the first case, the material response at
themicroscale is derived from theFFNNresults, and used
to perform design against a load that causes the material
to behave in a non-linear elastic way. In the second case,
a material damage constrain is added to the optimization,
where the CNN is used to identify if damage has occur
on the microscale and penalize the design accordingly.

In short, we have provided methods to more rapidly pro-
duce the data needed to train neural networks, developed
further insight into the working of neural networks from a
mechanical sciences perspective, and highlighted the poten-
tial for these methods to enhance practical design tasks. The
database of responses made with SCA, code used for train-
ing and predictionwith the neural networks, and the topology
optimization codes are available at https://github.com/wing-
kam-liu-group. We hope that this will encourage the use of
data science and machine learning as a tool for mechanistic

analysis, rather than simple as an unknown black-box oper-
ator.

5.2 Future work

Several areas where further investigation might be useful
have already been noted:

– Further development of clustering methods to represent
large deformations, better capture anisotropic behavior
or behavior that changes due to loading conditions, and
even refine clusters during the prediction stage might be
promising. The development of contact or self-contact
formulations applicable to clustering discretizationmeth-
ods would aid in generality.

– Formulations of clustering discretization solutions appli-
cable to the component scale (rather that only the RVE
scale), and the extension of concurrent multiscale solu-
tions that use clustering discretization at multiple scales
are currently under development.

– For neural networks, methods to include history-depen-
dence (e.g. plasticity) are currently an active area. Includ-
ing physics in the neural network directly is another
developing area, e.g. with physics-informed neural net-
works (PINNs).

– For optimization, sensitivity analysis for topology opti-
mization with FFNN and CNN should be further devel-
oped. More flexible software to support this would also
be desirable.

– Multiscale topology optimization with various material
microstructure databases is still a developing area. The
approach outlined here may be a promising method to
simultaneously optimize topology and microstructure
given sufficient constraints.

– The “data-driven” component of these methods (both
clustering-based discretization and neural networks) are
not restricted to the use of computational data. Informa-
tion fromother sources, e.g. experimental sensor data and
images, could be included if it is available. If mixed data

123

https://github.com/wing-kam-liu-group
https://github.com/wing-kam-liu-group

304 Computational Mechanics (2019) 64:281–305

streams are used extra care in data representation would
be required.

– Continuous validation and verification studies will help
make these methods robust and reliable.

Acknowledgements The authors thank Sourav Saha and Satyajit
Mojumder for their helpful suggestions during the writing process.
W.K.L. acknowledges the support of the National Science Foundation
under Grant No. MOMS/CMMI-1762035. O.L.K. thanks the United
States National Science Foundation (NSF) for their support through
the NSF Graduate Research Fellowship Program under financial award
number DGE-1324585. H. L. acknowledges the support by the North-
western University Data Science Initiative (DSI) under Grant No. 171
4745002 10043324. L.Z. and SQ.T. were supported partially by the
National Science Foundation of China under Grant numbers 11832001,
11521202, and 11890681.

References

1. Hashin Z, Shtrikman S (1963) A variational approach to the theory
of the elastic behaviour ofmultiphasematerials. JMechPhysSolids
11(2):127

2. Hill R (1965) A self-consistent mechanics of composite materials.
J Mech Phys Solids 13(4):213

3. Ghosh S, Lee K, Moorthy S (1996) Two scale analysis of hetero-
geneous elastic-plastic materials with asymptotic homogenization
and Voronoi cell finite element model. Comput Methods Appl
Mech Eng 132(1–2):63

4. PaleyM,Aboudi J (1992)Micromechanical analysis of composites
by the generalized cells model. Mech Mater 14(2):127

5. Dvorak GJ (1992) Transformation field analysis of inelastic com-
posite materials. Proc R Soci London Series A Math Phys Sci
437(1900):311–327

6. Michel JC, Suquet P (2003) Nonuniform transformation field anal-
ysis. Int J Solids Struct 40(25):6937

7. Yvonnet J, He QC (2007) The reduced model multiscale method
(R3M) for the non-linear homogenization of hyperelastic media at
finite strains. J Comput Phys 223(1):341

8. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal
decomposition in the analysis of turbulent flows. Annu Rev Fluid
Mech 25(1):539

9. Liu Z, Bessa M, Liu W (2016) Self-consistent clustering analysis:
an efficient multi-scale scheme for inelastic heterogeneous mate-
rials. Comput Methods Appl Mech Eng 306:319

10. ShakoorM,KafkaOL,YuC, LiuWK (2018)Data science for finite
strainmechanical science of ductile materials. ComputMech 1–13

11. Kafka OL, Yu C, Shakoor M, Liu Z, Wagner GJ, Liu WK (2018)
Data-driven mechanistic modeling of influence of microstructure
on high-cycle fatigue life of nickel titanium. JOM 70(7):1154

12. YuC,KafkaOL, LiuWK(2019) Self-consistent clustering analysis
for multiscale modeling at finite strains. Comput Methods Appl
Mech Eng 349:339

13. Oishi A, Yagawa G (2017) Computational mechanics enhanced by
deep learning. Comput Methods Appl Mech Eng 327:327

14. Kirchdoerfer T, Ortiz M (2016) Data-driven computational
mechanics. Comput Methods Appl Mech Eng 304:81

15. Liu Z, Wu C, Koishi M (2018) A deep material network for
multiscale topology learning and accelerated nonlinear modeling
of heterogeneous materials. Comput Methods Appl Mech Eng
345:1138–1168

16. TangS, ZhangL,LiuWK(2018) Fromvirtual clustering analysis to
self-consistent clustering analysis: a mathematical study. Comput
Mech 1–18

17. Cheng G, Li X, Nie Y, Li H (2019) FEM-Cluster based reduction
method for efficient numerical prediction of effective properties of
heterogeneous material in nonlinear range. Comput Methods Appl
Mech Eng 348:157–184

18. Kröner E (1972) Statistical continuummechanics, vol 92. Springer,
Berlin

19. Gan Z, Li H,Wolff SJ, Bennett JL, Hyatt G,Wagner GJ, Cao J, Liu
WK (2019) Data-driven microstructure and microhardness design
in additive manufacturing using self-organizing map. Engineering
(in press)

20. Zhang L, Tang S, Yu C, Zhu X, Liu W K (2019) Fast calculation
of interaction tensors in clustering-based homogenization. Comput
Mech (in press)

21. Nie Y, Cheng G, Li X, Xu L, Li K (2019) Principle of cluster
minimum complementary energy of FEM-cluster-based reduced
order method: fast updating the interaction matrix and predicting
effective nonlinear properties of heterogeneous material. Comput
Mech. https://doi.org/10.1007/s00466-019-01710-6

22. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press. http://www.deeplearningbook.org. Accessed 28 Apr 2019

23. Haykin S (1994) Neural networks: a comprehensive foundation.
Prentice Hall PTR, Upper Saddle River

24. Schmidhuber J (2015) Deep learning in neural networks: an
overview. Neural Netw 61:85

25. Funahashi KI (1989) On the approximate realization of continuous
mappings by neural networks. Neural Netw 2(3):183

26. HornikK, StinchcombeM,WhiteH (1989)Multilayer feedforward
networks are universal approximators. Neural Netw 2(5):359

27. Ghaboussi J, Garrett J Jr,WuX (1991) Knowledge-basedmodeling
of material behavior with neural networks. J EngMech 117(1):132

28. Furukawa T, Yagawa G (1998) Implicit constitutive modelling for
viscoplasticity using neural networks. Int J Numer Methods Eng
43(2):195

29. Qingbin L, Zhong J, Mabao L, Shichun W (1996) Acquiring the
constitutive relationship for a thermal viscoplastic material using
an artificial neural network. J Mater Process Technol 62(1–3):206

30. Yeh IC (1998) Modeling of strength of high-performance concrete
using artificial neural networks. Cement Concrete Res 28(12):1797

31. Huber N, Tsakmakis C (2001) A neural network tool for identify-
ing the material parameters of a finite deformation viscoplasticity
model with static recovery. Comput Methods Appl Mech Eng
191(3–5):353

32. Pichler B, Lackner R, Mang HA (2003) Back analysis of model
parameters in geotechnical engineering by means of soft comput-
ing. Int J Numer Methods Eng 57(14):1943

33. Kucerová A, LepsM, Zeman J (2009) Back analysis of microplane
model parameters using soft computing methods. arXiv preprint
arXiv:0902.1690

34. Feyel F, Chaboche JL (2000) FE2 multiscale approach for mod-
elling the elastoviscoplastic behaviour of long fibre SiC/Ti com-
posite materials. Comput Methods Appl Mech Eng 183(3–4):309

35. Kouznetsova V, Geers MG, Brekelmans WM (2002) Multi-scale
constitutive modelling of heterogeneous materials with a gradient-
enhanced computational homogenization scheme. Int J Numer
Methods Eng 54(8):1235

36. Feyel F (2003)Amultilevel finite elementmethod (FE2) to describe
the response of highly non-linear structures using generalized con-
tinua. Comput Methods Appl Mech Eng 192(28—-30):3233

37. Ghaboussi J, Pecknold DA, Zhang M, Haj-Ali RM (1998) Auto-
progressive training of neural network constitutive models. Int J
Numer Methods Eng 42(1):105

38. ShinH, PandeG (2000)On self-learning finite element codes based
on monitored response of structures. Comput Geotech 27(3):161

123

https://doi.org/10.1007/s00466-019-01710-6
http://www.deeplearningbook.org
http://arxiv.org/abs/0902.1690

Computational Mechanics (2019) 64:281–305 305

39. Shin H, Pande G (2003) Identification of elastic constants for
orthotropic materials from a structural test. Comput Geotech
30(7):571

40. Gawin D, Lefik M, Schrefler B (2001) ANN approach to sorption
hysteresis within a coupled hygro-thermo-mechanical FE analysis.
Int J Numer Methods Eng 50(2):299

41. Lefik M, Schrefler B (2002) One-dimensional model of cable-in-
conduit superconductors under cyclic loading using artificial neural
networks. Fusion Eng Des 60(2):105

42. Lefik M, Schrefler B (2003) Artificial neural network as an incre-
mental non-linear constitutive model for a finite element code.
Comput Methods Appl Mech Eng 192(28–30):3265

43. Le B, Yvonnet J, He QC (2015) Computational homogenization
of nonlinear elastic materials using neural networks. Int J Numer
Methods Eng 104(12):1061

44. Bhattacharjee S, Matouš K (2016) A nonlinear manifold-based
reduced order model for multiscale analysis of heterogeneous
hyperelastic materials. J Comput Phys 313:635

45. Cecen A, Dai H, Yabansu YC, Kalidindi SR, Song L (2018)
Material structure-property linkages using three-dimensional con-
volutional neural networks. Acta Mater 146:76

46. Wang K, Sun W (2019) Meta-modeling game for deriving theory-
consistent, microstructure-based traction-separation laws via deep
reinforcement learning. ComputMethods ApplMech Eng 346:216

47. Han J, Moraga C (1995) The influence of the sigmoid function
parameters on the speed of backpropagation learning. In: Interna-
tional workshop on artificial neural networks. Springer, Berlin, pp
195–201

48. Matlab deep learning toolbox (2018b) MATLAB deep learning
toolbox. The MathWorks, Natick

49. LevenbergK (1944) Amethod for the solution of certain non-linear
problems in least squares. Q Appl Math 2(2):164

50. Marquardt DW (1963) An algorithm for least-squares estimation
of nonlinear parameters. J Soc Ind Appl Math 11(2):431

51. Goodfellow I, Bengio Y, Courville A (2017) Deep learning. MIT
Press, Cambridge

52. Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject indepen-
dent facial expression recognition with robust face detection using
a convolutional neural network. Neural Netw 16(5–6):555

53. LubbersN,LookmanT,BarrosK (2017) Inferring low-dimensional
microstructure representations using convolutional neural net-
works. Phys Rev E 96(5):052111

54. Kondo R, Yamakawa S, Masuoka Y, Tajima S, Asahi R (2017)
Microstructure recognition using convolutional neural networks for
prediction of ionic conductivity in ceramics. Acta Mater 141:29

55. DeCost BL, Francis T, Holm EA (2017) Exploring the microstruc-
ture manifold: image texture representations applied to ultrahigh
carbon steel microstructures. Acta Mater 133:30

56. Ling J, Hutchinson M, Antono E, DeCost B, Holm EA, Meredig B
(2017) Building data-driven models with microstructural images:
generalization and interpretability. Mater Discov 10:19

57. Cang R, Li H, Yao H, Jiao Y, Ren Y (2018) Improving direct physi-
cal properties prediction of heterogeneous materials from imaging
data via convolutional neural network and a morphology-aware
generative model. Comput Mater Sci 150:212

58. Yang Z, Yabansu YC, Al-Bahrani R, Wk Liao, Choudhary AN,
Kalidindi SR,AgrawalA (2018)Deep learning approaches formin-
ing structure-property linkages in high contrast composites from
simulation datasets. Comput Mater Sci 151:278

59. Yang Z, Yabansu YC, Jha D, Wk Liao, Choudhary AN, Kalidindi
SR, Agrawal A (2019) Establishing structure-property localization
linkages for elastic deformation of three-dimensional high contrast
composites using deep learning approaches. Acta Mater 166:335

60. Abaqus V (2014) 6.14 Documentation. Dassault Systemes Simulia
Corporation 651

61. Cheng G, Guo X (1997) ε-relaxed approach in structural topology
optimization. Struct Optim 13(4):258

62. Duysinx P, Bendsøe MP (1998) Topology optimization of contin-
uum structures with local stress constraints. Int J Numer Methods
Eng 43(8):1453

63. Guo X, Cheng G, Yamazaki K (2001) A new approach for the solu-
tion of singular optima in truss topology optimization with stress
and local buckling constraints. Struct Multidiscip Optim 22(5):364

64. GuoX,ZhangWS,WangMY,WeiP (2011)Stress-related topology
optimization via level set approach. Comput Methods Appl Mech
Eng 200(47–48):3439

65. Sigmund O (2001) A 99 line topology optimization code written
in MATLAB. Struct Multidiscip Optim 21(2):120

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Clustering discretization methods for generation of material performance databases in machine learning and design optimization
	Abstract
	1 Introduction
	2 Overview of two-stage clustering analysis methods
	2.1 Continuous and discretized Lippmann–Schwinger equation
	2.2 Offline: clustering and interaction tensor
	2.2.1 Data collection
	2.2.2 Clustering
	2.2.3 Interaction tensor

	2.3 Online: reduced order response prediction
	2.4 Comparison of the methods

	3 Machine learning on databases generated with predictive ROMs
	3.1 Motivation
	3.2 Database generation for machine learning using SCA
	3.3 Feed forward neural networks
	3.4 Feed forward neural network with database generated by SCA
	3.4.1 Training
	3.4.2 Prediction

	3.5 Convolutional neural network
	3.6 Convolutional neural network for boundary condition identification with database generated by SCA
	3.6.1 Training
	3.6.2 Prediction

	3.7 Convolutional neural network for classification with database generated by SCA
	3.7.1 Training
	3.7.2 Prediction

	4 Microstructure-based, multiscale topology optimization using neural networks
	4.1 Topology optimization with FFNN
	4.2 Topology optimization with constraints defined by FFNN+CNN

	5 Conclusion
	5.1 Summary
	5.2 Future work

	Acknowledgements
	References

