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Abstract

Recently proposed clustering-based methods considerably reduce numerical cost for homogenizing heterogeneous materials,
while maintaining the accuracy of mechanical property predictions in an online stage. In such an algorithm, however, the
calculation of interaction tensors consumes much of the total computing time. We introduce a new method that expedites
the interaction tensors calculation, thereby enhancing the clustering-based methods. We first cast a cubic/rectangular coarse
grid over the representative volume element. Using analytical expressions for the integral of the Green’s functions, we then
calculate interaction tensors on the coarse grid. Finally, the desired interaction tensors on the clusters are approximated based
on composition ratios. Moreover, in virtual clustering analysis, we derive the Lippmann—Schwinger equation for finite strain
problems. Numerical tests in two and three space dimensions verify the efficiency and accuracy of the proposed method.

Keywords Homogenization - Virtual clustering analysis - Lippmann—Schwinger equation - Green’s function - Interaction

tensor - Finite strain

1 Introduction

Macroscopic behaviors of heterogeneous materials are dic-
tated by the materials’ microscopic fine structures. This lays
a basis for material design. The goal of homogenization is
to predict quickly and faithfully the macroscopic behavior,
i.e., to relate the average stress to the corresponding aver-
age strain. Analytical micromechanical methods [1-7] have
been proposed over the years. These methods are efficient
because of their explicit analytical expressions. However,
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based on mean-field assumptions and linear relations with-
out fully accounting for the detailed microscopic structure,
they do not ensure the accuracy when dealing with complex
microstructures and localized nonlinear material behaviors,
such as plasticity. On the other hand, although finite element
or meshfree methods make use of detailed microstructures
and provide accurate results, their computational cost is usu-
ally immense.

To balance between cost and accuracy, reduced order
models, such as the transformation field analysis (TFA)
[8], the nonuniform transformation field analysis (NTFA)
[9,10] and proper orthogonal decomposition (POD) [11] have
been proposed. More recently, clustering-based homogeniza-
tion methods [12-18] were developed to further improve
efficiency. These methods have two stages: an offline train-
ing/learning stage and an online prediction/discovery stage.
In the offline stage, material points are grouped into a few
clusters based on high-fidelity direct numerical simulation
(DNS) or experimental measurements, using the clustering-
based data compression method. Then the interaction tensors
among the clusters are calculated. The degrees of freedom
(DoFs) in a typical application could be reduced from a few
hundred million (which is often the case for image based
direct numerical simulation) to only a few hundred. The
online stage involves a highly reduced mechanical properties
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prediction by solving the Lippmann—Schwinger equation,
which is an integral equation equivalent to the equilibrium
problem, assuming all variables (local stress, strain and
related state variables) be uniform in each cluster. When non-
linearity presents, the interaction tensors precalculated in the
offline stage are frequently used to assemble the Jacobian
matrix for the Newton’s iterative scheme in the online pre-
diction stage. In virtual clustering analysis (VCA) [13], the
calculation of the interaction tensors can be expensive, espe-
cially when the DNS mesh is fairly fine and a large number
of clusters are used.

In this paper, we propose a new method to approximate
interaction tensors with much reduced complexity. First, we
cast a coarse grid over the domain under consideration and
calculate “coarse-grained” interaction tensors using explicit
formulas of Green’s functions in physical space. Then we
approximate interaction tensors for clusters based on their
composition ratios in the coarse grid cells. Moreover, we
derive the Lippmann—Schwinger equation for finite strain
problems and improve VCA with fast calculated interaction
tensors. We apply it to a simple hyper-elastic model for exam-
ple. The fast method may also be used in Self-consistent
Clustering Analysis (SCA) [12].

The rest of the paper is organized as follows. We intro-
duce the problem setup and VCA in Sect. 2.1, and then show
the details for calculating interaction tensors in two space
dimensions. The fast calculating method is proposed in Sect.
2.3. Section 3 shows numerical results for different nonlin-
ear materials, and discusses the accuracy and efficiency of
the method. Some concluding remarks are drawn in Sect. 4.

2 Methodology

In this section, we sketch VCA algorithm first. Then we show
the details for calculating interaction tensors in two space
dimensions. Finally, we propose a fast method to compute it.

2.1 Virtual clustering analysis

To predict macroscopic properties of materials, high-fidelity
representative volume elements (RVE) of the microstruc-
ture are commonly adopted in various methods such as
finite element or meshfree methods. Although they make
accurate predictions of the material behavior, an enormous,
sometimes prohibitive amount of computing cost is induced
for many practical applications where a stepwise loading
process is under consideration. To alleviate the computing
load, SCA [12] was proposed and afterwards VCA [13].
They are clustering-based reduced order modeling meth-
ods for numerical homogenization. In an offline stage, the
RVE is decomposed into a number of clusters. In an online
stage, based on an integral equation called as the Lippmann—

@ Springer

Schwinger equation, the system can be solved on the reduced
order (clustering-based) model. Here, we sketch VCA for
illustration.

Consider an elastic material in domain 2 C R?. The
governing system reads

V.-o=0, (1)
1

e=3 (Vu + (Vu)T> : )

o =o0(e;x,q), (3)

where 0 = o(e; x,q) is a function of the strain &, the

position x and state variables g (e.g. the effective plastic
strain). They define respectively the equilibrium Eq. (1),
strain-displacement Eq. (2), and constitutive Eq. (3).

The goal of homogenization is to relate the average stress

g Macro — l%/ga(x)dx 4)

with the corresponding average strain

gMacro — Lé—l/;ze(x)dx. (5)

Instead of using the periodic boundary conditions, we
introduce a fictitious homogeneous isotropic material, also
termed as comparison material, with stiffness tensor C 0, sur-
rounding the original domain. We load it with a uniform strain
" at infinity. That is to say,

_Jo(e;x), x € £2;
0_{C0:e,x¢[2, ©
lim e(x) = &°. (7
X—00
Due to homogeneity, the resulting stress at infinity is
lim o(x) = o' =00 & ®)
X—>00

We rewrite Eq. (1) as
V-(Coz(a—ao)>+v-r=0. ©)]

Here the polarization tensor T = 6 — C : & vanishes outside
of £2. A body force V - T acts on the comparison material
within the domain £2 only.

By virtue of the Green’s function and Betti’s reciprocal
work theorem over £2, it can be shown that Eq. (9) leads to a
Lippmann—Schwinger (integral) equation for x € §2 [13]

e(x)—ao—i—d)*(a—CO:s)

= —yg U(ix—%)-(n-(cx) —C":e%)ds
982
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—f (@(x —%):C% -n) - (uF) —u’®))ds,
082
(10)

where * denotes convolution by f * g = |, of(x —Xx):
g(x)dx. Here the kernel functions are

Lo o, 9 i
by = — [ — _— , 11
ijkl ) <8Xj Er + ax; Erl (1)
Lo @, 0 ¢
o, = — [ — . , 12
k=3 <ax,~”k T (12

where ¢ and u¥) are the fundamental solutions under a con-
centrated unit force in x’ direction. Their detailed expressions
in two space dimensions will be given in the next subsection.
The Lippmann—Schwinger equation (10) is equivalent to the
original governing system (1)—(3).

If we replace §2 by a suitably enlarged domain 2 O 2,
Saint-Venant’s principle shows that the effect of the bound-
aries of the enlarged domain on stress and strain response in
£2 can be neglected. Since the polarization tensor T equals
to zero in $2\82, Eq. (10) reduces to a boundary-term-free
Lippmann—Schwinger equation and the convolution is per-
formed only over £2:

e(x)—eo+¢>x<<o—CO:e)=0. (13)

In the offline stage, the high-fidelity RVE is represented
by n voxels or elements denoted as w;,i = 1,---,n.
These voxels are grouped into k clusters according to their
responses under several selected loadings. These responses
are obtained from DNS results. The clustering is performed
by a machine learning technique such as k-means or Self-
Organizing Map (SOM). The clustering results are collected
in index sets Z(27) = {ilw; c 2',i = 1,2,--- ,n} for
I1=1,2,--- k.

In the online stage, we assume the response (strain) at
material points of the same cluster to be the same and denote
the strain in cluster £27 as e!. The corresponding average
stress in this domain can be calculated from

1

I I

o' = — o(e';x)dx, I=1,2,...,k, 14
\sﬂl/gz %) (1

where |-| denotes the volume. Approximating the stress by
its average, we integrate (13) over 2 I and obtain the discrete
form

k
el—€0+z D' . <GJ -V ej) =0,
J=1

with the interaction tensor

D = ﬁfm /mfb(x—fc)didx. (16)

We remark that D’/ depends only on the clusters for given
reference material. Hence, D'’ can be precomputed in the
offline stage.

If the microscopic constitutive relation is linear, (15) is a
linear algebraic system for &’. In general, a nonlinear con-
stitutive relation presents, such as in plasticity. The algebraic
system is then nonlinear, and may be solved by the Newton-
Raphson method.

After obtaining stress and strain in each cluster, we com-
pute the averages.

k

O,Macro — LZ‘Q[‘UI’ (17)
121 =
1 k

€Macr0: HZ‘QI‘EI. (18)
=1

2.2 Calculation of D” in two and three space
dimensions

This subsection presents the analytical expressions and
numerical evaluation of D’ in two space dimensions. Three
dimensional results are shown in “Appendix B”.

The fundamental solution to

V.-(C%:¢e)= (3(8‘)> (19)

is uD for displacement, and 1) for corresponding strain.
That to

0. _ 0
V. e) = <5(x)) (20)

is u® for displacement, and &® for corresponding strain.
Taking Fourier transform (x1, x2) — (&, 1), we solve (19)
and (20), and obtain

W _ _ —%0  [ro€*+ 0o+ 2#0)172}

= (2 +1n?)? [ —(ho + 0)EN ; 21
@__ % [ —Co+nodn }

s &2 +n?)? |:()~o +210)E2 + pon? (22)

for displacement, and
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—igp
(E2 +n2)2
[ £(1o&2 + (Ao + 2u0)1%)
(=082 + (o + 200)0)

Fe) —

T(—noE2 + (ho + 2#0)772)}
—(ho + R0)EN?
(23)
—igo
(2 4 n2)?
[ —Go+n0En  §(=non® + (o + 210082 }

Fe@ —

§ (=200 + (o +210)E3) 1((ho +2140)E> + 1on®)
(24)

for strain. Here Aq, 1o are the Lamé coefficients of the ref-
. 0 _ 1

erence stlf.fness C", and ¢ = T2 . .

‘We notice that the fundamental solution to the biharmonic

equation

1 2 2 2 2
fzﬁ(xl +x3) In (x] + x3) (25)
takes a Fourier transform m It is used to express
a _ wofi1 + ()»o+2//«0)f22}
u’ =— 26
¢ [ —(Xo + 1o) f12 (26)
@ _ — (2o + po) f12 }
us = - 27
% [(?»o + 210) f11 + 1o f22 @7

by its derivatives f;;,i, j = 1,2. As a matter of fact, they
are the Kelvin’s solutions. Thus entries in the tensor @ are

B = ¢0[ o fiinn + (ko + 2p0) f1122
$(=hofi112 + (Ao + 210) f1222)

By = o [ —(Xo + po) fr122
l(—?»oflzzz + (Ao + 210) f1112)

—A + (Ao +2
D= By = ofi112 + (o + 210) f1222

¢0[
2

$(=xofiri2 + (Ao + 210) f1222)
—(Ro + po) f1122

$(=xofi222 + (Ao + 210) f1112)
(Ao + 210) f1122 + 1o f2222

—hofi122 + 3 (o + 2u0) (fi111 + f2222)
—hofi122 + 3o + 200) (fiinn + f222)

They are homogeneous functions, singular at the origin. We
have indefinite integrals

// Siin1(xp — X1, x2 — X2)dxdx

1
= Ton ((X2 — %)% In((x) — %) 4 (x2 — $2)?)

—3(x; — F)2 In((xg — 1) + (22 — X2)2)

)
X1 —xl

1
= g (= FD 0 — %) In(0n — )+ (2 — 2)?)

—2(x; — %1)? arctan <——x2 +~x2>

X1 — X1

—(x1 — X1)(x2 — X2)), (37)
/f S1122(x1 — X1, x2 — X2)dxdx

+8(x1 — X1)(xp — Xp) arctan <

// fi112(x1 — X1, x2 — X2)dxdx

1
= 1o (@1 - D2+ (0 — ©2)) In((x] — 71)2
T

+(x2 — $2)9). (38)

Other terms are obtained by rotating x; and x». It is noticed
that the indefinite integrals (36)—(38) are singular for x; = x|
or xo = X». When calculating interaction tensors, we take a
numerical limit along (1,1) direction.

] ; (28)
] ; (29)

—xo f1222 + (Ao + 2100) f1112) } ) 30)

The involved fourth-order derivatives are

—xl 6x2 x2 + 3x2
47'[()cl + x22)3

fiin =

€1y

x?xz — 3x1xg
27 (x7 4 x3)3

S = (32)

4 2.2 4

—x| +6x7x5 — x5
_ , 33
Sz 42 4 D) (33)

—3x?x2 + xlxg

— (34)
27 (x? 4+ x3)3

fiom =

3xf' — 6x12x§ — xé’

47 (x? + x3)3

f200 = (35)
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With these, we are ready to compute all terms in the inter-
action tensors D!7, provided the clusters are meshed with
voxels/pixels.

For independent subdomains A and B of §2, we denote

S(A, B):/ / & (x — ¥)dwdx. (39)
AJB

The interaction tensors are then
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1
DYV = —_s!, 27

2]
Z S(a)i,wj),

1
e

ieZ(R!) jeZT(R7)

1,J=1,2,- k.
(40)

That is, we sum up all the interaction terms between a
voxel/pixel in 227 and a voxel/pixel in £27.

2.3 Fast calculation of DV

We propose the following technique to compute interaction
tensors D'’ more efficiently.

First, we introduce a cubic/rectangular domain Q to cover
the RVE 2. See Fig. 1. Q is partitioned into m small
cubes/rectangles Q,, p = 1,2, ---, m. They form a coarse
grid. Here, m is usually chosen much smaller than the number
of voxels/pixels n.

Second, we calculate S(Q,, Q) with the indefinite inte-
grals given in 2.2. Then we use S(Q,, Q) to approximate
S(w;, a)j) for w; C Qp, wj C Qq- That is,

S(wi, w;))

ol o]

WIQ |S(va Qq), wi C Qp,w; C Qy,p #4‘1{1’)
|Q |5118(va Qp) wi, wj C Qp’

where §;; is the Kronecker delta. The approximation is moti-
vated as follows. If w; and w; belong to different coarse
grid cells, the double integral is approximately proportional
to the product of |w;| and |w;|, because the kernel function
@ (x — X) is approximately constant over both coarse grid
cells. Otherwise, for w; and w; both belonging to O, sin-

i

RVE

Q1 >~ ] Q

Fig.1 A schematic plot of pixels, clusters, coarse grid and RVE in two
space dimensions. The RVE £2 is represented by an arbitrarily-shaped
domain (here U-shaped for illustration). It is covered by a coarse grid
over a rectangle Q with cells Q, (rectangles with edges shown by
heavy lines). The RVE is also split into pixels (small rectangles with
edge shown by light lines). For clarity, we only show part of the pixels.
The pixels are categorized into clusters, where the gray ones belong to
' asan example

gularity of the integrand at the origin x — ¥ = 0 requires
more delicate treatment. Since the integrand is a homoge-
neous function, the integral is proportional to the volume
rather than the square of the volume. Thus in this case, we
use %S (Qp. Qp) to approximate S(w;, w;), and enforce
S(w;, 5) ) = 0fori # j to conserve the relation

YY) Sie)=8Q,[ 2.0, 2. “2)
®;CQpw;jCQp
According to Egs. (40) and (41), we obtain
1
Dl ~ |Q_ Z Zapa S(Qp, Qy)
p=1 q#p q=1
g Q, Za 8118(Qp, Qp)- (43)
Here, we use
. foll
o= Y ||°Q”’|| _| }Qf”‘ (44)
ieT(h '<7? P
wiCQp

to stand for the volume fraction of the cluster £27 in the coarse
grid cell O, which is called as composition ratio.

It is noticed that even if a voxel/pixel w; is not fully con-
tained in a coarse grid cell Q, its contribution to D'/ still
counts according to the volume ratio. Therefore the above
approximation (43) is still valid. This approximation only
depends on the integral S(Qp,, Q) over the coarse grid and
the volume fraction ai, in each cell.

It is remarked that we usually make an equidistant parti-
tion in each space dimension. The kernel function @ (x — X)
depends on the relative position between x and x. Hence, the
integral S(Q,, Q) also only depends on the relative posi-
tion of Q) and Q4. Thus we can precompute the integral
S(Qp, Qy) andrestoreitintheset M = {S(Q,, Qy)|p,q =
1,2, .-, m}. The number of non-repetitive elements in the
set M is less than 2¢m, so the computational complexity of
M is only of order O (m).

The calculation of interaction tensors D!” is summarized
in the following chart:
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1. Draw a coarse grid over the RVE 2 with m coarse
gridcells Qp, p=1,--- ,m.

2. Compute the volume proportion 01[1, of the cluster
27 in the coarse grid cell Q -

3. Compute D'’ according to (43):

(a) Set D'/ =0;

(b) Loop p and g from 1 to m:
a. if p # ¢, add a)a) S(Q,, Qy) to D'/,
b. if p =g, add a/8;;5(Q,. Qp) to D'.

2.4 A comparison of the complexity for different
method

In 2.2, the calculation of D!’ based on voxels/pixels leads
to numerical cost of the order O (n?). In 2.3, we construct a
coarse grid to replace the voxels/pixels and then propose the
fast calculating method based on composition ratios. With
this approximation, the cost for calculating D'” is only of
the order O (k2m?), which is far less than the original method.
Furthermore, The complexity of the computation decreases
when we choose bigger cells for the coarse grid. Moreover, it
is remarked that the complexity of the fast Fourier transform
method (FFT) used in SCA is of the order O (k*n log (n)).
The comparison of the complexity for different methods is
summarized in Table. 1.

3 Numerical tests

In this section, we apply VCA improved with the fast method
for interaction tensors calculation to both elasto-plastic mate-
rials and hyperelastic materials.

3.1 Elasto-plastic materials

We apply VCA to 2D plane strain and 3D heterogeneous
materials under different loading conditions to illustrate the
efficiency of fast calculation of D'

For both 2D and 3D problems considered, the RVE £2 is
a two-phase material consisting of inclusion (phase 2) and
matrix (phase 1). To predict the plastic behavior, we use a
simple material law: Jo plasticity with piece-wise linear

isotropic hardening. The plasticity law for the matrix material
(phase 1) considers a von Mises yield surface

& —ay(8) =0, (45)

where o is the von Mises equivalent stress and ¢ is the equiv-
alent plastic strain.

3.1.1 Two dimensional elasto-plastic materials

In the 2-D plane strain test, the volume fraction of the fibers
is 50% as shown in Fig. 2. The Young’s moduli and Poisson’s

Fig. 2 Geometry for two-phase composite material in the 2D plane
strain example, where the color blue represents the matrix and the color
yellow represents the inclusion. (Color figure online)

Fig.3 Clustering distribution for 4 clusters in the matrix and 4 clusters
in the inclusion

Table 1 A comparison of the

complexity for different Method FFT

The original method The fast method

methods Complexity

0 (k*n logn)

0(n?) 0 (kK*m?)

n is the number of voxels/pixels. m is the number of coarse grid cells. k is the number of clusters
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ratios of the matrix (phase 1) and inclusion (phase 2) are:

Ey =100 MPa, v; =0.3,
E> =500 MPa, v, =0.19,

in phase 1;

in phase 2.

The yield stress oy is given by a piece-wise linear hardening
law that depends on &

- 0.5+ 5¢, £ €[0,0.04);
oy () = { 0.62 + 28, & € [0.04, 00). (46)

The RVE £2 is represented by 600 x 600 elements (pixels)
with finite element method. A fine scale DNS is performed for
the RVE under a far-field strain from 0 to 0.05 in x direction,
while the strain is enforced to zero in other directions. The
response of each pixel at load 0.001 is restored as the data-
base. In an offline stage, the DNS mesh is compressed into
ki(ki = 4, 8, 16) clusters in the matrix and k; clusters in the
inclusion by SOM. We take ko = k| as the volume fraction is
50%. The cluster distribution for k; = 4 is shown in Fig. 3.

We apply SOM in each phase based on two reasons. First,
we get a discrete form of the Lippmann—Schwinger equa-
tion by approximating the stress with its average, and the
stress fluctuations need to be small for better approximation.
Second, the plasticity is only considered for the matrix mate-
rial in elasto-plastic examples, thus phases are needed to be
identified in the computational process.

In fact, clustering method can also work without consider-
ation of the phases in general, because the strain responses in
each phase perform differently according to different mate-
rial properties. In [13], we consider a field-character (or
checkboard) problem and make clustering without consid-
ering the phases. The boundaries of clusters fit almost those
of phases.

Once the clustering is performed, the interaction tensors
D'’ are computed. The computational time for different
coarse grid sizes is listed in Table 2. The domain is evenly
partitioned into m coarse grid cells.

The selection of the reference material influences the pre-
dictions [13], which will be further explored in a future work.
Here, we choose the reference material with the Young’s
modulus Eg = 20 MPa and Poisson’s ratio vy = 0.4.

The predictions of the online GMacro — gMacro for ;=
2007 in Fig. 4 show the nonlinearity in our numerical exam-
ples. The UIA{’ acro 8{"1’ acro curves for m = 2007 are shown in
Fig. 5. The solid line shows the DNS results for comparison.

07
Tl
‘E“ /
g 0411
£ |
Z\b | I [LTLE 1o
| k1=8
= =k1=16
0.1 |
0 0.025 -
elgacm

Fig.4 oMacro_ sﬁ""”’ curves for m = 200%. 54 is the von Mises
equivalent stress. These curves show strong nonlinearity of the material

The numerical error of VCA compared to DNS is reduced
when increasing the number of clusters both in elastic region
and plastic region. The error under the loading g7 = 0.05 is
less than 1.5% when 16 clusters are used in the matrix.

The of‘f acro sf’f 4cr9 curves for different coarse grid sizes

m = 2007, 1202, 60%, 30? are plotted in Fig. 6 to illustrate the
accuracy of our method in the calculation of D!/ when taking
8 clusters in the matrix. The fast method makes numerical
responses harder and the error increases when taking less
coarse grid cells. Table 2 manifests the efficiency. We use
an Intel Xeon €5-2650 v2 processor and parallel pool (16
workers) in MATLAB. For m = 2007, it takes about 3354 s
fork = 8inthe calculation of D!/ while form = 302, it only
takes about 3 s. The results for m = 307 are satisfactory, for
the error maitains less than 2% with high efficiency. Figure
7 shows that the computational time is roughly proportional
to the square of the coarse grid cell number m.

3.1.2 Three dimensional elasto-plastic materials

Similar to 2D plane strain test, our method applies to 3D
nonlinear elasto-plastic materials. The volume fraction of the
inclusion particle phase is about 15.58% as shown in Fig. 8.
The Young’s moduli and Poisson’s ratios of the matrix (phase
1) and inclusion (phase 2) are:

Ey = 3800 MPa, v; = 0.387,
E> = 38000 MPa, v, = 0.387,

in phase 1;

in phase 2.

The matrix has a von Mises yield surface and a piece-wise
hardening law depending on the effective plastic strain &

Table 2 Computational time for
interaction tensors and

deviations of reference solution
under the loading €17 = 0.05 for
k1 =8

2002 1207 60? 30?
CPU time (s) 3353.72 367.97 28.83 3.12
Speed-up - 9.11 116.33 107491
Deviations from DNS results (%) 1.59 1.74 1.95 1.98
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Fig.5 01"]’“”" — e{"f””" curves 8.0 7.7
for m = 200%: The reference = DNS = DNS y
b T imae 0 P |memss -4 S 4 0 |l |ewwss= -— Py 1
solution plotted by solid line = El:g - E}:g g
o - o 76}t - e
s = -ki=16 S Ol wste)
o 40 o s
2 §.
= - =~ 75
S S
0 7.4
0 0.025 0.05 0.0485 0.049 0.0495
6Macro €Macro
1 1
Fig.6 01"]’“"’” — 8{"{“””’ curves 8.0 7.7
for different coarse grid cell ——DNS ——DNS
number m when taking k; = 8 P m=200*200 —_ | e m=200*200
S m=120*120 & m=120*120
s = =m=60"60 S = =m=60"60
;’ 4.0 == m=30"30 : 76 === m=30"30
3] ' 19) '
S S
= - g
s} s}
0 7.5
0 0.025 0.05 0.0485 0.049 0.0495
6Macro Macro
11 11
104
® CPU time
== Line with slope 1.83
@ i
2
= 102
-}
o
(@)
10° 2 4
10 108 10 10°

m

Fig.7 The computational time for calculating interaction tensors versus
the number of coarse grid cells m for k1 = 8. The slope of the line is

about 1.83

. [50+2508, € [0,0.04);
or(®) = { 56+ 100z, & € [0.04, 00). “7)

We take k1 = 4,8,16,k» = ki/4. Reference solution
is obtained from [19] with a 41 x 41 x 41 mesh. In the
online stage, the reference material takes Young’s modulus
1000 MPa and the Poisson’s ratio v 0.387.

The olﬁf acro 8%“” ¢ curves predicted by VCA with var-
ious number of clusters are depicted in Fig. 9 when taking
m = 213. The predictions converge to the reference solution
when the number of clusters k increases. The deviations from
the DNS results and the computational time when computing

@ Springer

Fig. 8 The 41 x 41 x 41 mesh of the 3D material displayed in the
inclusion phase (phase 2)

D'’ are shown in Table 3. The reduction of the computa-
tional cost is significant when the coarse grid cell number m
decreases. The coarse grid for m = 602, k; = 8 in previous
2D example takes a CPU time about 28.83 s. The coarse grid
form = 143, k; = 8 in 3D case takes a CPU time about
137.32 s. Both the number of the coarse grid cells and the
number of clusters in 3D are smaller than those in 2D, but
the computational time is larger, because there involve more
fourth-order derivatives, and more complex form of the indef-
inite integrals of these derivatives in three space dimensions.
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Fig.9 01"]’“”" — e{"f‘“”’ curves
for m = 213: The reference

solution plotted by solid line

Table 3 Computational time for
interaction tensors and
deviations of reference solution
under the loading €17 = 0.05 for
k1 =8

e® %00 O o
[ [ )
e ®
Fig. 10 Geometry for two-phase composite material in the 2D finite

strain example, where the color blue represents the matrix and the color
yellow represents the inclusion. (Color figure online)

Fig. 1 P][ll/lacro _ F]I\]lacra
curves: m = 200% and the
reference solution plotted by
solid line

m when taking k| = 8
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Fig. 12 PlAll acre — F IAI’ 4cro curves for different coarse grid cell number
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Table4 Computational time for
interaction tensors and

deviations of the results from
DNS under the loading
Fii =12fork; =8

m 2007 1202 60? 30?
CPU time (s) 2995.24 361.24 25.18 2.76
Speed-up - 8.29 118.97 1084.15
deviations from DNS results (%) —1.18 —1.20 1.71 5.71

3.2 Hyper-elastic materials

In this section, we deal with the finite strain problem. The
setup and the Lippmann—Schwinger equation in this problem
are shown in “Appendix C”.

One of the simplest constitutive model in this class of
problem is a hyper-elastic model. In the undeformed con-
figuration, we assume a linear relation between the second
Piola—Kirchhoff stress S and the Green strain E

S=C:E, (48)

where C is the standard fourth-order isotropic stiffness ten-
SOr.

By VCA, we simulate the 2D plane strain problem under
uniaxial tension. In this example, we consider a two-phases
material with some fibers (phase 2) embedded in the matrix
(phase 1) where the volume fraction of the inclusions is 20%
as shown in Fig. 10. The Young’s moduli and Poisson’s ratios
of phases 1 and 2 are:

Ei=7x 10* MPa, vi = 0.33 in phase 1;

Er), =4 x 10° MPa, v; = 0.2  in phase 2.

The mesh size for the high-fidelity RVE model is 600 x 600.
Here, the reference result is obtained with the FFT-based
method with the basic scheme [18,19]. The results under the
unixial tension loading €17 = 0.001 are used as data-base of
clustering. As the volume fraction of the inclusion phase is
20%, we take ky = k1 /4 in the clustering process.

The reference material takes Young’s modulus 1.4 x
103 MPa and the Poisson’s ratio v 0.33.

The response curves Plj‘{[ acro _ 11‘{1 4¢r9 predicted by VCA
and the reference results are shown in Figs. 11 and 12. The
reference solution is plotted as solid lines. The loading ranges
from 0 to 0.2, much beyond the limit of small deformation.
Although the response performs differently compared to the
small strain case, the accuracy of the prediction improves
when the number of clusters increases. VCA results is close
to the reference solution, but is slightly softer. Figure 12
shows the response curves for different coarse grid cell num-
ber m when 8 clusters in the matrix. The response performs
harder when m decreases. The corresponding CPU time and
errors are shown in Table 4. CPU time increases rapidly while
gaining higher accuracy. In consideration of efficiency and
accuracy, the results for m = 60 are satisfactory.
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4 Conclusion

In this paper, we propose a fast method to calculate inter-
action tensors based on two major components. First, we
give explicit formulas for integrating terms in the Green’s
functions, in both two and three dimensions. Second, we
propose an efficient approximation technique based on inter-
action tensors over coarse grid cells and composition ratios.
In the numerical tests, we improve VCA by the fast method
for calculating interaction tensors and apply it to a simple
hyper-elastic model for illustration. Advantages of the pro-
posed method are summarized as follows.

1. Efficiency: The computational time is reduced consider-
ably when the number of coarse grid cells decreases.

2. Convergence: The numerical results converge to the DNS
results when voxels/pixels and coarse grid cells are all
cubes/rectangles and coincide.

3. Applicability: Our method applies to any shape RVE and
voxels/pixels.

In the calculation of interaction tensors, there are some
issues to be further studied. First, when unstructured mesh
and coarse grid are used, the convergence needs to be
explored. Secondly, the singularity of the Green’s functions
needs delicate and effective treatment if the kernel functions
are not homogeneous functions. Finally, the method requires
the analytical forms of interaction tensors.
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Appendix A: The Lippmann-Schwinger equa-
tion in the Fourier space for two space
dimensions

We solve the governing system (1-3) in the Fourier space for
two space dimensions to show the differences of interaction
tensors between VCA and SCA.

First, (2) can be replaced by the strain compatibility equa-
tion
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VxexV=0, (49)
and we rewrite the governing system as

VxexV=0, (50)

V- (C':8)+V-1=0 (51)
in terms of the difference & = & — &°.

In VCA, the RVE is surrounded by the reference mate-
rial with constant stiffness C°. Therefore it is remarked
that & equals to zero at infinity. Taking Fourier transform
(x1,x2) — (&, n), the equation is expressed in the Fourier
space as

> FEn + E>Fea — 26nFE1n =0, (52)
(Ao + 210)E Ferr + A& Féxn + 2nonFenn

+EFt11 +nFr2 =0, (53)
206 Fea + ronFeén + (ko + 2po)nFéxn

+EFt0 +nF1p =0. (54)

Thus we have

-1

11 n* g2 —2&n
F | én |+ | (o+21m0) ro§ 2pom
12 Aon (2o + 2p0)n 2108
000 T11
EO0n | F| ™
0né 12
g1l 11
= g |+HF| o | =0, (55)
£12 12

where we denote

1
H =
wo(ho + 2u0) (6% + n?)?

0% + (ho + 2120)E%10?
—(ho + 1o)E%n?

—(ho + Ho)En?
pon* + (o + 2p0)&%n?

rather than the Fourier transform over the whole space. We
denote

400 —+00
e~ > > EpgexpQipn/T +2ign/T), (58)

p=—00g=—00

where T is the period. The system for each pair (§,, n,) =
Q2pn/T,2qm/T) is expressed by

o FE1 + &5 Fen — 26,y FE12 = 0, (59)
(Ao +210)6pF 11 + roEpFén + 2nong Fera

+&Fti +ngFri2 =0, (60)
2u0ép FErn + ong Fer + (Ao + 210)ng Féxn

+&pFrio +ngFrn =0. 61)

Similar to the process above, we can also derive the equation
in the form of tensor

Fe+®,,: Fr=0. (62)

The form of entries in the tensor @ pq 18 same as that in @
but @k depends on (§,, ng).

VCA uses Green’s functions with zero strain boundary
condition at infinity, while SCA uses Fourier series of them
to express interaction tensors.

Appendix B: Calculation of interaction ten-
sors in three space dimensions

In the same way as for two space dimensions, we show the
details of the calculation of D’/ in three space dimensions.
We also denote u@, ¢ as the fundamental solution to

—20E3n + (Ao + 2u0)én’
—10En + (o + 2120)E%n . (56)

T(=20E3n 4+ (Mo 4 200)En%) F(—hoEn> + (Mo + 210)E30) —Ao&2n? + § (0 + 210) (E* + 1*)

(55) is expressed in the form of tensor as
Fe+@:Fr=0. (57)

The entries in @ are from entries in the matrix H. The tensor
@ is the Fourier transform of the kernel functions @ actually
and the equation above (57) is the Lippmann—Schwinger in
the Fourier space.

In SCA, periodic boundary conditions are applied to the
RVE problem and FFT is used to calculate interaction tensors.
Hence, the problem is solved based on the Fourier series

V- (C%:¢) =68(x)e;, (63)

where e; is the unit vector at x; direction.
Taking Fourier transform (xy, x2, x3) — (&, 1, {), we get
the corresponding solution

E2+(s+D(n*+¢?)
—sén ,
—sE¢

o)

Fu = _
‘ E+n>+02)?

(64)
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[ —s&n | Fe® 1%
Fu e ’;’;°+ | PG DE R |, ’ 2+ 07 +7)?
L =8¢ i —s&2n 511 — $)n® + (1 + 5)(E? + £2)] —séng
(65) wxk P+ A +9)E +HH] wxx
N " i —sEC T sk % S[(L—9)n? + (1 +)E>+ D] —sng?
Fu? = -5 —sng (68)
(E +77 +§) _§2+(s+1)(€_-2+n2)_ l¢()

(66)

again with Ao, o as the Lamé coefficients of the reference
material. We also denote s = )‘0:0“0 and let ¢y =
In terms of strain, we have

1
po(1+s)*

i$o

Fe —____ "7
T T@rr oy

(€ e
N
—s&2¢ xxx 5[ =92+ (1 +5)E + )]
—s&ng —sn*¢ A =)+ A+ )E>+nD)] |-
CIE2 4+ (14 $)E2 + 1)

kokok ok ok ok

(69)

Here  * * denotes an entry determined by symmetry. We use
the fundamental solution to the biharmonic equation

E[E2+ (L + )%+ 2] koK koK k
FA = 9E+ A +9)0° + )] —sén® x| I
S = )82 + (1 + )0 + ¢ —séng —s&¢? f= gVt ts 70
(67)
to express the kernel function @ as
o [ i+ A+ 91122 + f1133) kokk kkk |
Pu=g-|d =s)firz + (A +9)(f2221 + f3312) —sfr122 —2s/f1123 (71)
| I =s5)fi113 + A +9)(f2213 + f3331)  ***  —sf1133
o [ —sf1122 (1 = 5) f2201 + (1 +9)(f1112 + f3312) —25/2213 |
Pun=g | *** fa200 + (1 +5)(f1122 + f2233) kx|, (72)
L xxx (1 —s)f003 + (1 +5)(f1123 + f3332) —5/2233 |
o [ —sf1133 —2s/3312 (1 —5) f3331 + (1 + ) (f1113 + f2213) ]
3= | *xx —sf233 (L-9)f33+ (L +9)(fli2s + f2223) (73)
| okkk ko 3333+ (L +5)(f1133 + /2233)
o [ —sfi123 3((1=35) f213 + (1 + ) (fi113 + f3331)) 31 =39) f3312 + (L + ) (112 + f2221)) ]
Pz =g | wxx 3((1=9) f2203 + (L + ) (1123 + f3332)) (1= 9) f233 + 3 (L +9)(f1133 + fr122 + f3333 + fo22) |+ (T4)
|k s ok o 3((1=5) 3332 + (1 +9)(F1123 + f2223) i
o i S =) fiiz + A +9)(f13+ f331)  #%% (1—5)f1133 + %(1 +9) (233 + f3333 + fin1 + f1122) |
P13 = o $(1=35) fi123 + (1 +5)(f2203 + f3332) —5f2213 $((1 =35 f3312 + (L +9)(fi112 + f2201)) , (75)
i ok ok ok ok 3((1=9) f3331 + L+ ) (1113 + f2213)
o i %((1 =) f12 + A +5)(f2221 + f3312)) (L =) fr12 + %(1 +9) (2 + f2233 + finnn + f1133) kxx ]
2=c sk % (1 =5) 201 + L+ 9)(fi112 + f3312)) wxx | (76)
i 3((1=35) fi123 + (1 +$)(f2223 + f3332)) 3((1=35) f2213 + (1 +9)(f1113 + f3331)) —sf3312 |
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Here fijki, 1, j.k,I = 1,2,3 are the fourth-order deriva-
tives of f. Before computing D7 for three dimentions, the
indefinite integrals of these derivatives are needed. Because
of the complex forms, we just show the integral for fii12 to
illustrate as below.

877/ Sfii12(x, y, z)dxdydzdxdydz

= l/72(—((15x3y)/\/m)
—<6xy3>/\/m + (9xyz2)/\/m
30wy, /X2 4 92 4 22

—(24x°2(—((y2)/ (¥* + y* + 25

—(y2)/ (X2 + y2 + 22/

+(* )/ P+ ¥+ 7))
—(9x%)/(y/x2 + y2 4+ 22(y + /52 + y2 4+ 22))

HUBP ) /(52 + 32+ 22y + /22 + 32 +22)

+(3xz“)/(\/x2 + 32+ 22(y + \/x2 + 52 +z2))

+(36x3yz)/(\/x2 +y2+ 22z + \/xz +y2+2%)

+(12x3°2) /(22 + ¥ + 222+ /22 + ¥ + 22)

—72x%z arctan ((yz)/(x\/x2 + y2 + z2))
—36x°In V+/x2+y2+72)
+36xz%In (y + 1/x2 + y2 + 22)

+72xyzIn (z 4+ /x% + y2 + 22)), 77
For the sake of clarify, here we present by replacing
(x1, x2, x3) with (x, y, ).

Appendix C: Finite strain formulation

The finite strain problem is different from the case with small
deformation, which is governed by the following equations
in the undeformed configuration:

v.-PT(F) =0, (78)
F=Vx(x)=1I,+VuX), VX € 2, (79)

where P is the first Piola—Kirchhoff stress, F is the defor-
mation gradient at each material point X.

The loading is also applied at infinity through the reference
material. The homogeneous isotropic reference material is

described by a constitutive relation:
0. L 7 0
P(F)=C": (E(F +F)—1) =C": (F(X)—12). (30)

€Y is the standard fourth-order isotropic elastic stiffness ten-
SOr.

Similar to Eq. (13), the finite strain system can also be
reformulated by the Lippmann—Schwinger equation

F(X)—F'+® % (P(X)—C°: (F(X)—1I,)=0. (81)

Here, we neglect the boundary term. @ is the fourth-order
tensor defined by

0!

ﬁuk’l. (82)

Dijr =

After clustering the material points based on DNS results,
we can also obtain the discrete Lippmann—Schwinger equa-
tion

k
FI - FO+ Z Dgt{nitestrain : (PJ - CO : (FJ —12)) =0,
J=1

(83)

where D;{nneszmm is the interaction tensor for the finite

strain problem given by

1

pl/ _
[£27] Jo1

finitestrain

(/ (X — X)df() dX. (84)
_QJ
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