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Abstract
Recently proposed clustering-based methods considerably reduce numerical cost for homogenizing heterogeneous materials,
while maintaining the accuracy of mechanical property predictions in an online stage. In such an algorithm, however, the
calculation of interaction tensors consumes much of the total computing time. We introduce a new method that expedites
the interaction tensors calculation, thereby enhancing the clustering-based methods. We first cast a cubic/rectangular coarse
grid over the representative volume element. Using analytical expressions for the integral of the Green’s functions, we then
calculate interaction tensors on the coarse grid. Finally, the desired interaction tensors on the clusters are approximated based
on composition ratios. Moreover, in virtual clustering analysis, we derive the Lippmann–Schwinger equation for finite strain
problems. Numerical tests in two and three space dimensions verify the efficiency and accuracy of the proposed method.

Keywords Homogenization · Virtual clustering analysis · Lippmann–Schwinger equation · Green’s function · Interaction
tensor · Finite strain

1 Introduction

Macroscopic behaviors of heterogeneous materials are dic-
tated by the materials’ microscopic fine structures. This lays
a basis for material design. The goal of homogenization is
to predict quickly and faithfully the macroscopic behavior,
i.e., to relate the average stress to the corresponding aver-
age strain. Analytical micromechanical methods [1–7] have
been proposed over the years. These methods are efficient
because of their explicit analytical expressions. However,
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based on mean-field assumptions and linear relations with-
out fully accounting for the detailed microscopic structure,
they do not ensure the accuracy when dealing with complex
microstructures and localized nonlinear material behaviors,
such as plasticity. On the other hand, although finite element
or meshfree methods make use of detailed microstructures
and provide accurate results, their computational cost is usu-
ally immense.

To balance between cost and accuracy, reduced order
models, such as the transformation field analysis (TFA)
[8], the nonuniform transformation field analysis (NTFA)
[9,10] andproper orthogonal decomposition (POD) [11] have
been proposed.More recently, clustering-based homogeniza-
tion methods [12–18] were developed to further improve
efficiency. These methods have two stages: an offline train-
ing/learning stage and an online prediction/discovery stage.
In the offline stage, material points are grouped into a few
clusters based on high-fidelity direct numerical simulation
(DNS) or experimental measurements, using the clustering-
based data compressionmethod. Then the interaction tensors
among the clusters are calculated. The degrees of freedom
(DoFs) in a typical application could be reduced from a few
hundred million (which is often the case for image based
direct numerical simulation) to only a few hundred. The
online stage involves a highly reduced mechanical properties
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prediction by solving the Lippmann–Schwinger equation,
which is an integral equation equivalent to the equilibrium
problem, assuming all variables (local stress, strain and
related state variables) be uniform in each cluster.When non-
linearity presents, the interaction tensors precalculated in the
offline stage are frequently used to assemble the Jacobian
matrix for the Newton’s iterative scheme in the online pre-
diction stage. In virtual clustering analysis (VCA) [13], the
calculation of the interaction tensors can be expensive, espe-
cially when the DNS mesh is fairly fine and a large number
of clusters are used.

In this paper, we propose a new method to approximate
interaction tensors with much reduced complexity. First, we
cast a coarse grid over the domain under consideration and
calculate “coarse-grained” interaction tensors using explicit
formulas of Green’s functions in physical space. Then we
approximate interaction tensors for clusters based on their
composition ratios in the coarse grid cells. Moreover, we
derive the Lippmann–Schwinger equation for finite strain
problems and improve VCA with fast calculated interaction
tensors.We apply it to a simple hyper-elasticmodel for exam-
ple. The fast method may also be used in Self-consistent
Clustering Analysis (SCA) [12].

The rest of the paper is organized as follows. We intro-
duce the problem setup and VCA in Sect. 2.1, and then show
the details for calculating interaction tensors in two space
dimensions. The fast calculating method is proposed in Sect.
2.3. Section 3 shows numerical results for different nonlin-
ear materials, and discusses the accuracy and efficiency of
the method. Some concluding remarks are drawn in Sect. 4.

2 Methodology

In this section, we sketchVCA algorithm first. Thenwe show
the details for calculating interaction tensors in two space
dimensions. Finally, we propose a fast method to compute it.

2.1 Virtual clustering analysis

To predict macroscopic properties of materials, high-fidelity
representative volume elements (RVE) of the microstruc-
ture are commonly adopted in various methods such as
finite element or meshfree methods. Although they make
accurate predictions of the material behavior, an enormous,
sometimes prohibitive amount of computing cost is induced
for many practical applications where a stepwise loading
process is under consideration. To alleviate the computing
load, SCA [12] was proposed and afterwards VCA [13].
They are clustering-based reduced order modeling meth-
ods for numerical homogenization. In an offline stage, the
RVE is decomposed into a number of clusters. In an online
stage, based on an integral equation called as the Lippmann–

Schwinger equation, the system can be solved on the reduced
order (clustering-based) model. Here, we sketch VCA for
illustration.

Consider an elastic material in domain Ω ⊂ R
d . The

governing system reads

∇ · σ = 0, (1)

ε = 1

2

(
∇u + (∇u)T

)
, (2)

σ = σ (ε; x, q), (3)

where σ = σ (ε; x, q) is a function of the strain ε, the
position x and state variables q (e.g. the effective plastic
strain). They define respectively the equilibrium Eq. (1),
strain-displacement Eq. (2), and constitutive Eq. (3).

The goal of homogenization is to relate the average stress

σ Macro = 1

|Ω|
∫

Ω

σ (x)dx (4)

with the corresponding average strain

εMacro = 1

|Ω|
∫

Ω

ε(x)dx. (5)

Instead of using the periodic boundary conditions, we
introduce a fictitious homogeneous isotropic material, also
termed as comparison material, with stiffness tensor C0, sur-
rounding the original domain.We load itwith a uniform strain
ε0 at infinity. That is to say,

σ =
{

σ (ε; x), x ∈ Ω;
C0 : ε, x /∈ Ω,

(6)

lim
x→∞ ε(x) = ε0. (7)

Due to homogeneity, the resulting stress at infinity is

lim
x→∞ σ (x) = σ 0 = C0 : ε0. (8)

We rewrite Eq. (1) as

∇ ·
(
C0 :

(
ε − ε0

))
+ ∇ · τ = 0. (9)

Here the polarization tensor τ = σ −C0 : ε vanishes outside
of Ω . A body force ∇ · τ acts on the comparison material
within the domain Ω only.

By virtue of the Green’s function and Betti’s reciprocal
work theorem over Ω , it can be shown that Eq. (9) leads to a
Lippmann–Schwinger (integral) equation for x ∈ Ω [13]

ε(x) − ε0 + Φ ∗
(
σ − C0 : ε

)

= −
∮

∂Ω

Ψ (x − x̃) · (n · (σ (x̃) − C0 : ε0))dS
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−
∮

∂Ω

((Φ(x − x̃) : C0) · n) · (u(x̃) − u0(x̃))dS,

(10)

where ∗ denotes convolution by f ∗ g = ∫
Ω

f (x − x̃) :
g(x̃)dx̃. Here the kernel functions are

Φi jkl = 1

2

(
∂

∂x j
ε
(i)
kl + ∂

∂xi
ε
( j)
kl

)
, (11)

Ψi jk = 1

2

(
∂

∂x j
u(i)
k + ∂

∂xi
u( j)
k

)
, (12)

where ε(i) and u(i) are the fundamental solutions under a con-
centrated unit force in xi direction. Their detailed expressions
in two space dimensions will be given in the next subsection.
The Lippmann–Schwinger equation (10) is equivalent to the
original governing system (1)–(3).

If we replace Ω by a suitably enlarged domain Ω̃ ⊃ Ω ,
Saint-Venant’s principle shows that the effect of the bound-
aries of the enlarged domain on stress and strain response in
Ω can be neglected. Since the polarization tensor τ equals
to zero in Ω̃\Ω , Eq. (10) reduces to a boundary-term-free
Lippmann–Schwinger equation and the convolution is per-
formed only over Ω:

ε(x) − ε0 + Φ ∗
(
σ − C0 : ε

)
= 0. (13)

In the offline stage, the high-fidelity RVE is represented
by n voxels or elements denoted as ωi , i = 1, · · · , n.
These voxels are grouped into k clusters according to their
responses under several selected loadings. These responses
are obtained from DNS results. The clustering is performed
by a machine learning technique such as k-means or Self-
Organizing Map (SOM). The clustering results are collected
in index sets I(Ω I ) = {i |ωi ⊂ Ω I , i = 1, 2, · · · , n} for
I = 1, 2, · · · , k.

In the online stage, we assume the response (strain) at
material points of the same cluster to be the same and denote
the strain in cluster Ω I as ε I . The corresponding average
stress in this domain can be calculated from

σ I = 1∣∣Ω I
∣∣
∫

Ω I
σ (ε I ; x)dx, I = 1, 2, . . . , k, (14)

where |·| denotes the volume. Approximating the stress by
its average, we integrate (13) overΩ I and obtain the discrete
form

ε I−ε0+
k∑

J=1

D I J :
(
σ J − C0 : ε J

)
= 0, I = 1, 2, . . . , k,

(15)

with the interaction tensor

D I J = 1∣∣Ω I
∣∣
∫

Ω I

∫

Ω J
Φ(x − x̃)d x̃dx. (16)

We remark that D I J depends only on the clusters for given
reference material. Hence, D I J can be precomputed in the
offline stage.

If the microscopic constitutive relation is linear, (15) is a
linear algebraic system for ε I . In general, a nonlinear con-
stitutive relation presents, such as in plasticity. The algebraic
system is then nonlinear, and may be solved by the Newton-
Raphson method.

After obtaining stress and strain in each cluster, we com-
pute the averages.

σ Macro = 1

|Ω|
k∑

I=1

∣∣∣Ω I
∣∣∣ σ I , (17)

εMacro = 1

|Ω|
k∑

I=1

∣∣∣Ω I
∣∣∣ ε I . (18)

2.2 Calculation of DIJ in two and three space
dimensions

This subsection presents the analytical expressions and
numerical evaluation of D I J in two space dimensions. Three
dimensional results are shown in “Appendix B”.

The fundamental solution to

∇ · (C0 : ε) =
(

δ(x)

0

)
(19)

is u(1) for displacement, and ε(1) for corresponding strain.
That to

∇ · (C0 : ε) =
(

0

δ(x)

)
(20)

is u(2) for displacement, and ε(2) for corresponding strain.
Taking Fourier transform (x1, x2) → (ξ, η), we solve (19)

and (20), and obtain

Fu(1) = −φ0

(ξ2 + η2)2

[
μ0ξ

2 + (λ0 + 2μ0)η
2

−(λ0 + μ0)ξη

]
, (21)

Fu(2) = −φ0

(ξ2 + η2)2

[ −(λ0 + μ0)ξη

(λ0 + 2μ0)ξ
2 + μ0η

2

]
(22)

for displacement, and
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Fε(1) = −iφ0
(ξ2 + η2)2[

ξ(μ0ξ
2 + (λ0 + 2μ0)η

2)
η
2 (−λ0ξ

2 + (λ0 + 2μ0)η
2)

η
2 (−λ0ξ

2 + (λ0 + 2μ0)η
2) −(λ0 + μ0)ξη2

]
,

(23)

Fε(2) = −iφ0
(ξ2 + η2)2[
−(λ0 + μ0)ξ

2η
ξ
2 (−λ0η

2 + (λ0 + 2μ0)ξ
2)

ξ
2 (−λ0η

2 + (λ0 + 2μ0)ξ
2) η((λ0 + 2μ0)ξ

2 + μ0η
2)

]

(24)

for strain. Here λ0, μ0 are the Lamé coefficients of the ref-
erence stiffness C0, and φ0 = 1

(λ0+2μ0)μ0
.

We notice that the fundamental solution to the biharmonic
equation

f = 1

16π
(x21 + x22 ) ln (x21 + x22 ) (25)

takes a Fourier transform 1
(ξ2+η2)2

. It is used to express

u(1) = −φ0

[
μ0 f11 + (λ0 + 2μ0) f22

−(λ0 + μ0) f12

]
, (26)

u(2) = −φ0

[ −(λ0 + μ0) f12
(λ0 + 2μ0) f11 + μ0 f22

]
(27)

by its derivatives fi j , i, j = 1, 2. As a matter of fact, they
are the Kelvin’s solutions. Thus entries in the tensor Φ are

Φ11 = φ0

[
μ0 f1111 + (λ0 + 2μ0) f1122

1
2 (−λ0 f1112 + (λ0 + 2μ0) f1222)

1
2 (−λ0 f1112 + (λ0 + 2μ0) f1222) −(λ0 + μ0) f1122

]
, (28)

Φ22 = φ0

[ −(λ0 + μ0) f1122
1
2 (−λ0 f1222 + (λ0 + 2μ0) f1112)

1
2 (−λ0 f1222 + (λ0 + 2μ0) f1112) (λ0 + 2μ0) f1122 + μ0 f2222

]
, (29)

Φ12 = Φ21 = φ0

2

[ −λ0 f1112 + (λ0 + 2μ0) f1222 −λ0 f1122 + 1
2 (λ0 + 2μ0)( f1111 + f2222)

−λ0 f1122 + 1
2 (λ0 + 2μ0)( f1111 + f2222) −λ0 f1222 + (λ0 + 2μ0) f1112)

]
. (30)

The involved fourth-order derivatives are

f1111 = −x41 − 6x21 x
2
2 + 3x42

4π(x21 + x22 )
3

, (31)

f1112 = x31 x2 − 3x1x32
2π(x21 + x22 )

3
, (32)

f1122 = −x41 + 6x21 x
2
2 − x42

4π(x21 + x22 )
3

, (33)

f1222 = −3x31 x2 + x1x32
2π(x21 + x22 )

3
, (34)

f2222 = 3x41 − 6x21 x
2
2 − x42

4π(x21 + x22 )
3

. (35)

They are homogeneous functions, singular at the origin. We
have indefinite integrals

∫∫
f1111(x1 − x̃1, x2 − x̃2)dxd x̃

= 1

16π

(
(x2 − x̃2)

2 ln((x1 − x̃1)
2 + (x2 − x̃2)

2)

−3(x1 − x̃1)
2 ln((x1 − x̃1)

2 + (x2 − x̃2)
2)

+8(x1 − x̃1)(x2 − x̃2) arctan

(
x2 − x̃2
x1 − x̃1

))
, (36)

∫∫
f1112(x1 − x̃1, x2 − x̃2)dxd x̃

= 1

8π
((x1 − x̃1)(x2 − x̃2) ln((x1 − x̃1)

2 + (x2 − x̃2)
2)

−2(x1 − x̃1)
2 arctan

(−x2 + x̃2
x1 − x̃1

)

−(x1 − x̃1)(x2 − x̃2)), (37)∫∫
f1122(x1 − x̃1, x2 − x̃2)dxd x̃

= 1

16π
((x1 − x̃1)

2 + (x2 − x̃2)
2) ln((x1 − x̃1)

2

+(x2 − x̃2)
2). (38)

Other terms are obtained by rotating x1 and x2. It is noticed
that the indefinite integrals (36)–(38) are singular for x1 = x̃1
or x2 = x̃2. When calculating interaction tensors, we take a
numerical limit along (1,1) direction.

With these, we are ready to compute all terms in the inter-
action tensors D I J , provided the clusters are meshed with
voxels/pixels.

For independent subdomains A and B of Ω , we denote

S(A, B) =
∫

A

∫

B
Φ(x − x̃)dx̃dx. (39)

The interaction tensors are then
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D I J = 1∣∣Ω I
∣∣S(Ω I ,Ω J )

= 1∣∣Ω I
∣∣

∑

i∈I(Ω I )

∑

j∈I(Ω J )

S(ωi , ω j ), I , J = 1, 2, · · · , k.

(40)

That is, we sum up all the interaction terms between a
voxel/pixel in Ω I and a voxel/pixel in Ω J .

2.3 Fast calculation of DIJ

We propose the following technique to compute interaction
tensors D I J more efficiently.

First, we introduce a cubic/rectangular domain Q to cover
the RVE Ω . See Fig. 1. Q is partitioned into m small
cubes/rectangles Qp, p = 1, 2, · · · ,m. They form a coarse
grid.Here,m is usually chosenmuch smaller than the number
of voxels/pixels n.

Second, we calculate S(Qp, Qq) with the indefinite inte-
grals given in 2.2. Then we use S(Qp, Qq) to approximate
S(ωi , ω j ) for ωi ⊂ Qp, ω j ⊂ Qq . That is,

S(ωi , ω j )

≈
⎧⎨
⎩

|ωi ||Qp|
|ω j ||Qq |S(Qp, Qq), ωi ⊂ Qp, ω j ⊂ Qq , p 
= q;

|ωi ||Qp|δi jS(Qp, Qp), ωi , ω j ⊂ Qp,
(41)

where δi j is the Kronecker delta. The approximation is moti-
vated as follows. If ωi and ω j belong to different coarse
grid cells, the double integral is approximately proportional
to the product of |ωi | and |ω j |, because the kernel function
Φ(x − x̃) is approximately constant over both coarse grid
cells. Otherwise, for ωi and ω j both belonging to Qp, sin-

RVE

Q1 Q

Fig. 1 A schematic plot of pixels, clusters, coarse grid and RVE in two
space dimensions. The RVE Ω is represented by an arbitrarily-shaped
domain (here U -shaped for illustration). It is covered by a coarse grid
over a rectangle Q with cells Qp (rectangles with edges shown by
heavy lines). The RVE is also split into pixels (small rectangles with
edge shown by light lines). For clarity, we only show part of the pixels.
The pixels are categorized into clusters, where the gray ones belong to
Ω1, as an example

gularity of the integrand at the origin x − x̃ = 0 requires
more delicate treatment. Since the integrand is a homoge-
neous function, the integral is proportional to the volume
rather than the square of the volume. Thus in this case, we
use |ωi ||Qp|S(Qp, Qp) to approximate S(ωi , ωi ), and enforce

S(ωi , ω j ) = 0 for i 
= j to conserve the relation

∑
ωi⊂Qp

∑
ω j⊂Qp

S(ωi , ω j ) = S(Qp

⋂
Ω, Qp

⋂
Ω). (42)

According to Eqs. (40) and (41), we obtain

D I J ≈ 1∣∣Ω I
∣∣

m∑
p=1,q 
=p

m∑
q=1

α I
pα

J
q S(Qp, Qq)

+ 1∣∣Ω I
∣∣

m∑
p=1

α I
pδI JS(Qp, Qp). (43)

Here, we use

α I
p =

∑

i∈I(Ω I )
ωi⊂Qp

|ωi |∣∣Qp
∣∣ =

∣∣Ω I ⋂
Qp

∣∣
∣∣Qp

∣∣ (44)

to stand for the volume fraction of the clusterΩ I in the coarse
grid cell Qp, which is called as composition ratio.

It is noticed that even if a voxel/pixel ωi is not fully con-
tained in a coarse grid cell Qp, its contribution to D I J still
counts according to the volume ratio. Therefore the above
approximation (43) is still valid. This approximation only
depends on the integral S(Qp, Qq) over the coarse grid and
the volume fraction α I

p in each cell.
It is remarked that we usually make an equidistant parti-

tion in each space dimension. The kernel function Φ(x − x̃)

depends on the relative position between x and x̃ . Hence, the
integral S(Qp, Qq) also only depends on the relative posi-
tion of Qp and Qq . Thus we can precompute the integral
S(Qp, Qq) and restore it in the setM = {S(Qp, Qq)|p, q =
1, 2, · · · ,m}. The number of non-repetitive elements in the
set M is less than 2dm, so the computational complexity of
M is only of order O(m).

The calculation of interaction tensors D I J is summarized
in the following chart:
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1. Draw a coarse grid over the RVE Ω with m coarse
grid cells Qp, p = 1, · · · ,m.

2. Compute the volume proportion α I
p of the cluster

Ω I in the coarse grid cell Qp.
3. Compute D I J according to (43):

(a) Set D I J = 0;
(b) Loop p and q from 1 to m:

a. if p 
= q, add α I
pα

J
q S(Qp, Qq) to D I J ;

b. if p = q, add α I
pδI JS(Qp, Qp) to D I J .

2.4 A comparison of the complexity for different
method

In 2.2, the calculation of D I J based on voxels/pixels leads
to numerical cost of the order O(n2). In 2.3, we construct a
coarse grid to replace the voxels/pixels and then propose the
fast calculating method based on composition ratios. With
this approximation, the cost for calculating D I J is only of
the order O(k2m2), which is far less than the originalmethod.
Furthermore, The complexity of the computation decreases
when we choose bigger cells for the coarse grid. Moreover, it
is remarked that the complexity of the fast Fourier transform
method (FFT) used in SCA is of the order O(k2n log (n)).
The comparison of the complexity for different methods is
summarized in Table. 1.

3 Numerical tests

In this section, we apply VCA improved with the fast method
for interaction tensors calculation to both elasto-plasticmate-
rials and hyperelastic materials.

3.1 Elasto-plastic materials

We apply VCA to 2D plane strain and 3D heterogeneous
materials under different loading conditions to illustrate the
efficiency of fast calculation of D I J .

For both 2D and 3D problems considered, the RVE Ω is
a two-phase material consisting of inclusion (phase 2) and
matrix (phase 1). To predict the plastic behavior, we use a
simple material law: J2 plastici t y with piece-wise linear

isotropic hardening. The plasticity law for thematrixmaterial
(phase 1) considers a von Mises yield surface

σ̄ − σY (ε̄) = 0, (45)

where σ̄ is the vonMises equivalent stress and ε̄ is the equiv-
alent plastic strain.

3.1.1 Two dimensional elasto-plastic materials

In the 2-D plane strain test, the volume fraction of the fibers
is 50% as shown in Fig. 2. The Young’s moduli and Poisson’s

Fig. 2 Geometry for two-phase composite material in the 2D plane
strain example, where the color blue represents the matrix and the color
yellow represents the inclusion. (Color figure online)

Fig. 3 Clustering distribution for 4 clusters in the matrix and 4 clusters
in the inclusion

Table 1 A comparison of the
complexity for different
methods

Method FFT The original method The fast method

Complexity O(k2n log n) O(n2) O(k2m2)

n is the number of voxels/pixels. m is the number of coarse grid cells. k is the number of clusters
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ratios of the matrix (phase 1) and inclusion (phase 2) are:

E1 = 100 MPa, ν1 = 0.3, in phase 1;
E2 = 500 MPa, ν2 = 0.19, in phase 2.

The yield stress σY is given by a piece-wise linear hardening
law that depends on ε̄

σY (ε̄) =
{

0.5 + 5ε̄, ε̄ ∈ [0, 0.04);
0.62 + 2ε̄, ε̄ ∈ [0.04,∞).

(46)

The RVEΩ is represented by 600×600 elements (pixels)
withfinite elementmethod.Afine scaleDNS is performed for
the RVE under a far-field strain from 0 to 0.05 in x1 direction,
while the strain is enforced to zero in other directions. The
response of each pixel at load 0.001 is restored as the data-
base. In an offline stage, the DNS mesh is compressed into
k1(k1 = 4, 8, 16) clusters in the matrix and k2 clusters in the
inclusion by SOM.We take k2 = k1 as the volume fraction is
50%. The cluster distribution for k1 = 4 is shown in Fig. 3.

We apply SOM in each phase based on two reasons. First,
we get a discrete form of the Lippmann–Schwinger equa-
tion by approximating the stress with its average, and the
stress fluctuations need to be small for better approximation.
Second, the plasticity is only considered for the matrix mate-
rial in elasto-plastic examples, thus phases are needed to be
identified in the computational process.

In fact, clusteringmethod can also work without consider-
ation of the phases in general, because the strain responses in
each phase perform differently according to different mate-
rial properties. In [13], we consider a field-character (or
checkboard) problem and make clustering without consid-
ering the phases. The boundaries of clusters fit almost those
of phases.

Once the clustering is performed, the interaction tensors
D I J are computed. The computational time for different
coarse grid sizes is listed in Table 2. The domain is evenly
partitioned into m coarse grid cells.

The selection of the reference material influences the pre-
dictions [13], which will be further explored in a future work.
Here, we choose the reference material with the Young’s
modulus E0 = 20 MPa and Poisson’s ratio ν0 = 0.4.

The predictions of the online σ̄ Macro − εMacro
11 for m =

2002 in Fig. 4 show the nonlinearity in our numerical exam-
ples. The σ Macro

11 −εMacro
11 curves form = 2002 are shown in

Fig. 5. The solid line shows the DNS results for comparison.

0 0.025 0.05
0.1

0.4

0.7

k1=4
k1=8
k1=16

Fig. 4 σ̄ Macro −εMacro
11 curves form = 2002. σ̄ Macro is the vonMises

equivalent stress. These curves show strong nonlinearity of the material

The numerical error of VCA compared to DNS is reduced
when increasing the number of clusters both in elastic region
and plastic region. The error under the loading ε11 = 0.05 is
less than 1.5% when 16 clusters are used in the matrix.

The σ Macro
11 −εMacro

11 curves for different coarse grid sizes

m = 2002, 1202, 602, 302 are plotted inFig. 6 to illustrate the
accuracy of ourmethod in the calculation of D I J when taking
8 clusters in the matrix. The fast method makes numerical
responses harder and the error increases when taking less
coarse grid cells. Table 2 manifests the efficiency. We use
an Intel Xeon e5-2650 v2 processor and parallel pool (16
workers) in MATLAB. For m = 2002, it takes about 3354 s
for k = 8 in the calculation of D I J ,while form = 302, it only
takes about 3 s. The results for m = 302 are satisfactory, for
the error maitains less than 2% with high efficiency. Figure
7 shows that the computational time is roughly proportional
to the square of the coarse grid cell number m.

3.1.2 Three dimensional elasto-plastic materials

Similar to 2D plane strain test, our method applies to 3D
nonlinear elasto-plastic materials. The volume fraction of the
inclusion particle phase is about 15.58% as shown in Fig. 8.
TheYoung’smoduli and Poisson’s ratios of thematrix (phase
1) and inclusion (phase 2) are:

E1 = 3800 MPa, ν1 = 0.387, in phase 1;
E2 = 38000 MPa, ν2 = 0.387, in phase 2.

The matrix has a von Mises yield surface and a piece-wise
hardening law depending on the effective plastic strain ε̄

Table 2 Computational time for
interaction tensors and
deviations of reference solution
under the loading ε11 = 0.05 for
k1 = 8

m 2002 1202 602 302

CPU time (s) 3353.72 367.97 28.83 3.12

Speed-up – 9.11 116.33 1074.91

Deviations from DNS results (%) 1.59 1.74 1.95 1.98
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Fig. 5 σ Macro
11 − εMacro

11 curves
for m = 2002: The reference
solution plotted by solid line
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Fig. 6 σ Macro
11 − εMacro

11 curves
for different coarse grid cell
number m when taking k1 = 8
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Fig. 7 The computational time for calculating interaction tensors versus
the number of coarse grid cells m for k1 = 8. The slope of the line is
about 1.83

σY (ε̄) =
{
50 + 250ε̄, ε̄ ∈ [0, 0.04);
56 + 100ε̄, ε̄ ∈ [0.04,∞).

(47)

We take k1 = 4, 8, 16, k2 = k1/4. Reference solution
is obtained from [19] with a 41 × 41 × 41 mesh. In the
online stage, the reference material takes Young’s modulus
1000 MPa and the Poisson’s ratio ν 0.387.

The σ Macro
11 − εMacro

11 curves predicted by VCA with var-
ious number of clusters are depicted in Fig. 9 when taking
m = 213. The predictions converge to the reference solution
when the number of clusters k increases. The deviations from
the DNS results and the computational timewhen computing

Fig. 8 The 41 × 41 × 41 mesh of the 3D material displayed in the
inclusion phase (phase 2)

D I J are shown in Table 3. The reduction of the computa-
tional cost is significant when the coarse grid cell number m
decreases. The coarse grid for m = 602, k1 = 8 in previous
2D example takes a CPU time about 28.83 s. The coarse grid
for m = 143, k1 = 8 in 3D case takes a CPU time about
137.32 s. Both the number of the coarse grid cells and the
number of clusters in 3D are smaller than those in 2D, but
the computational time is larger, because there involve more
fourth-order derivatives, andmore complex formof the indef-
inite integrals of these derivatives in three space dimensions.
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Fig. 9 σ Macro
11 − εMacro

11 curves
for m = 213: The reference
solution plotted by solid line
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Table 3 Computational time for
interaction tensors and
deviations of reference solution
under the loading ε11 = 0.05 for
k1 = 8

m 213 143 73 33

CPU time (s) 829.31 137.32 12.89 0.92

Speed-up – 6.04 64.33 905.66

Deviations from DNS results (%) 0.55 0.64 0.79 0.87

Fig. 10 Geometry for two-phase composite material in the 2D finite
strain example, where the color blue represents the matrix and the color
yellow represents the inclusion. (Color figure online)
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11 − FMacro

11 curves for different coarse grid cell number
m when taking k1 = 8

Fig. 11 PMacro
11 − FMacro

11
curves: m = 2002 and the
reference solution plotted by
solid line
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Table 4 Computational time for
interaction tensors and
deviations of the results from
DNS under the loading
F11 = 1.2 for k1 = 8

m 2002 1202 602 302

CPU time (s) 2995.24 361.24 25.18 2.76

Speed-up – 8.29 118.97 1084.15

deviations from DNS results (%) −1.18 −1.20 1.71 5.71

3.2 Hyper-elastic materials

In this section, we deal with the finite strain problem. The
setup and the Lippmann–Schwinger equation in this problem
are shown in “Appendix C”.

One of the simplest constitutive model in this class of
problem is a hyper-elastic model. In the undeformed con-
figuration, we assume a linear relation between the second
Piola–Kirchhoff stress S and the Green strain E

S = C : E, (48)

where C is the standard fourth-order isotropic stiffness ten-
sor.

By VCA, we simulate the 2D plane strain problem under
uniaxial tension. In this example, we consider a two-phases
material with some fibers (phase 2) embedded in the matrix
(phase 1) where the volume fraction of the inclusions is 20%
as shown in Fig. 10. TheYoung’s moduli and Poisson’s ratios
of phases 1 and 2 are:

E1 = 7 × 104 MPa, ν1 = 0.33 in phase 1;
E2 = 4 × 105 MPa, ν2 = 0.2 in phase 2.

The mesh size for the high-fidelity RVE model is 600×600.
Here, the reference result is obtained with the FFT-based
method with the basic scheme [18,19]. The results under the
unixial tension loading ε11 = 0.001 are used as data-base of
clustering. As the volume fraction of the inclusion phase is
20%, we take k2 = k1/4 in the clustering process.

The reference material takes Young’s modulus 1.4 ×
105 MPa and the Poisson’s ratio ν 0.33.

The response curves PMacro
11 −FMacro

11 predicted by VCA
and the reference results are shown in Figs. 11 and 12. The
reference solution is plotted as solid lines. The loading ranges
from 0 to 0.2, much beyond the limit of small deformation.
Although the response performs differently compared to the
small strain case, the accuracy of the prediction improves
when the number of clusters increases. VCA results is close
to the reference solution, but is slightly softer. Figure 12
shows the response curves for different coarse grid cell num-
ber m when 8 clusters in the matrix. The response performs
harder when m decreases. The corresponding CPU time and
errors are shown inTable 4. CPU time increases rapidlywhile
gaining higher accuracy. In consideration of efficiency and
accuracy, the results for m = 602 are satisfactory.

4 Conclusion

In this paper, we propose a fast method to calculate inter-
action tensors based on two major components. First, we
give explicit formulas for integrating terms in the Green’s
functions, in both two and three dimensions. Second, we
propose an efficient approximation technique based on inter-
action tensors over coarse grid cells and composition ratios.
In the numerical tests, we improve VCA by the fast method
for calculating interaction tensors and apply it to a simple
hyper-elastic model for illustration. Advantages of the pro-
posed method are summarized as follows.

1. Efficiency: The computational time is reduced consider-
ably when the number of coarse grid cells decreases.

2. Convergence: The numerical results converge to theDNS
results when voxels/pixels and coarse grid cells are all
cubes/rectangles and coincide.

3. Applicability: Our method applies to any shape RVE and
voxels/pixels.

In the calculation of interaction tensors, there are some
issues to be further studied. First, when unstructured mesh
and coarse grid are used, the convergence needs to be
explored. Secondly, the singularity of the Green’s functions
needs delicate and effective treatment if the kernel functions
are not homogeneous functions. Finally, the method requires
the analytical forms of interaction tensors.

Acknowledgements Lei Zhang, Xi Zhu and Shaoqiang Tang were sup-
ported partially by NSFC under Grant Numbers 11832001, 11521202,
and 11890681. Cheng Yu and Wing Kam Liu were supported by award
70NANB14H012 from US Department of Commerce, National Insti-
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Materials Design (CHiMaD).

Appendix A: The Lippmann–Schwinger equa-
tion in the Fourier space for two space
dimensions

We solve the governing system (1–3) in the Fourier space for
two space dimensions to show the differences of interaction
tensors between VCA and SCA.

First, (2) can be replaced by the strain compatibility equa-
tion
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∇ × ε × ∇ = 0, (49)

and we rewrite the governing system as

∇ × ε̃ × ∇ = 0, (50)

∇ · (C0 : ε̃) + ∇ · τ = 0 (51)

in terms of the difference ε̃ = ε − ε0.
In VCA, the RVE is surrounded by the reference mate-

rial with constant stiffness C0. Therefore it is remarked
that ε̃ equals to zero at infinity. Taking Fourier transform
(x1, x2) → (ξ, η), the equation is expressed in the Fourier
space as

η2F ε̃11 + ξ2F ε̃22 − 2ξηF ε̃12 = 0, (52)

(λ0 + 2μ0)ξF ε̃11 + λ0ξF ε̃22 + 2μ0ηF ˜ε12
+ ξFτ11 + ηFτ12 = 0, (53)

2μ0ξF ε̃12 + λ0ηF ε̃11 + (λ0 + 2μ0)ηF ε̃22

+ ξFτ12 + ηFτ22 = 0. (54)

Thus we have

F
⎡
⎣

ε̃11
ε̃22
ε̃12

⎤
⎦ +

⎡
⎣

η2 ξ2 −2ξη

(λ0 + 2μ0)ξ λ0ξ 2μ0η

λ0η (λ0 + 2μ0)η 2μ0ξ

⎤
⎦

−1

⎡
⎣
0 0 0
ξ 0 η

0 η ξ

⎤
⎦F

⎡
⎣

τ11
τ22
τ12

⎤
⎦

= F
⎡
⎣

ε̃11
ε̃22
ε̃12

⎤
⎦ + HF

⎡
⎣

τ11
τ22
τ12

⎤
⎦ = 0, (55)

where we denote

H = 1

μ0(λ0 + 2μ0)(ξ2 + η2)2⎡
⎣

μ0ξ
4 + (λ0 + 2μ0)ξ

2η2 −(λ0 + μ0)ξ
2η2 −λ0ξ

3η + (λ0 + 2μ0)ξη3

−(λ0 + μ0)ξ
2η2 μ0η

4 + (λ0 + 2μ0)ξ
2η2 −λ0ξη3 + (λ0 + 2μ0)ξ

3η
1
2 (−λ0ξ

3η + (λ0 + 2μ0)ξη3) 1
2 (−λ0ξη3 + (λ0 + 2μ0)ξ

3η) −λ0ξ
2η2 + 1

2 (λ0 + 2μ0)(ξ
4 + η4)

⎤
⎦ . (56)

(55) is expressed in the form of tensor as

F ε̃ + Φ̂ : Fτ = 0. (57)

The entries inΦ are from entries in the matrix H . The tensor
Φ̂ is the Fourier transform of the kernel functions Φ actually
and the equation above (57) is the Lippmann–Schwinger in
the Fourier space.

In SCA, periodic boundary conditions are applied to the
RVEproblemandFFT is used to calculate interaction tensors.
Hence, the problem is solved based on the Fourier series

rather than the Fourier transform over the whole space. We
denote

ε ∼
+∞∑

p=−∞

+∞∑
q=−∞

ε̂pq exp (2i pπ/T + 2iqπ/T ), (58)

where T is the period. The system for each pair (ξp, ηq) =
(2pπ/T , 2qπ/T ) is expressed by

η2qF ε̃11 + ξ2pF ε̃22 − 2ξpηqF ε̃12 = 0, (59)

(λ0 + 2μ0)ξpF ε̃11 + λ0ξpF ε̃22 + 2μ0ηqF ˜ε12
+ ξpFτ11 + ηqFτ12 = 0, (60)

2μ0ξpF ε̃12 + λ0ηqF ε̃11 + (λ0 + 2μ0)ηqF ε̃22

+ ξpFτ12 + ηqFτ22 = 0. (61)

Similar to the process above, we can also derive the equation
in the form of tensor

F ε̃ + Φ̂ pq : Fτ = 0. (62)

The form of entries in the tensor Φ̂ pq is same as that in Φ̂

but Φ̂k depends on (ξp, ηq).
VCA uses Green’s functions with zero strain boundary

condition at infinity, while SCA uses Fourier series of them
to express interaction tensors.

Appendix B: Calculation of interaction ten-
sors in three space dimensions

In the same way as for two space dimensions, we show the
details of the calculation of D I J in three space dimensions.
We also denote u(i), ε(i) as the fundamental solution to

∇ · (C0 : ε) = δ(x)ei , (63)

where ei is the unit vector at xi direction.
Taking Fourier transform (x1, x2, x3) → (ξ, η, ζ ), we get

the corresponding solution

Fu(1) = − φ0

(ξ2 + η2 + ζ 2)2

⎡
⎣

ξ2 + (s + 1)(η2 + ζ 2)

−sξη

−sξζ

⎤
⎦ ,

(64)
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Fu(2) = − φ0

(ξ2 + η2 + ζ 2)2

⎡
⎣

−sξη

η2 + (s + 1)(ξ2 + ζ 2)

−sηζ

⎤
⎦ ,

(65)

Fu(3) = − φ0

(ξ2 + η2 + ζ 2)2

⎡
⎣

−sξζ

−sηζ

ζ 2 + (s + 1)(ξ2 + η2)

⎤
⎦

(66)

again with λ0, μ0 as the Lamé coefficients of the reference
material. We also denote s = λ0+μ0

μ0
and let φ0 = 1

μ0(1+s) .
In terms of strain, we have

Fε(1) = − iφ0

(ξ2 + η2 + ζ 2)2⎡
⎣

ξ [ξ2 + (1 + s)(η2 + ζ 2)] ∗ ∗ ∗ ∗ ∗ ∗
η
2 [(1 − s)ξ2 + (1 + s)(η2 + ζ 2)] −sξη2 ∗ ∗ ∗
ζ
2 [(1 − s)ξ2 + (1 + s)(η2 + ζ 2)] −sξηζ −sξζ 2

⎤
⎦ ,

(67)

Fε(2) = − iφ0

(ξ2 + η2 + ζ 2)2⎡
⎣

−sξ2η ξ
2 [(1 − s)η2 + (1 + s)(ξ2 + ζ 2)] −sξηζ

∗ ∗ ∗ η[η2 + (1 + s)(ξ2 + ζ 2)] ∗ ∗ ∗
∗ ∗ ∗ ζ

2 [(1 − s)η2 + (1 + s)(ξ2 + ζ 2)] −sηζ 2

⎤
⎦ ,

(68)

Fε(3) = − iφ0

(ξ2 + η2 + ζ 2)2⎡
⎣

−sξ2ζ ∗ ∗ ∗ ξ
2 [(1 − s)ζ 2 + (1 + s)(ξ2 + η2)]

−sξηζ −sη2ζ η
2 [(1 − s)ζ 2 + (1 + s)(ξ2 + η2)]

∗ ∗ ∗ ∗ ∗ ∗ ζ [ζ 2 + (1 + s)(ξ2 + η2)]

⎤
⎦ .

(69)

Here ∗∗∗ denotes an entry determined by symmetry. We use
the fundamental solution to the biharmonic equation

f = − 1

8π

√
x21 + x22 + x23 (70)

to express the kernel function Φ as

Φ11 = φ0

8π

⎡
⎣

f1111 + (1 + s)( f1122 + f1133) ∗ ∗ ∗ ∗ ∗ ∗
(1 − s) f1112 + (1 + s)( f2221 + f3312) −s f1122 −2s f1123
(1 − s) f1113 + (1 + s)( f2213 + f3331) ∗ ∗ ∗ −s f1133

⎤
⎦ , (71)

Φ22 = φ0

8π

⎡
⎣

−s f1122 (1 − s) f2221 + (1 + s)( f1112 + f3312) −2s f2213
∗ ∗ ∗ f2222 + (1 + s)( f1122 + f2233) ∗ ∗ ∗
∗ ∗ ∗ (1 − s) f2223 + (1 + s)( f1123 + f3332) −s f2233

⎤
⎦ , (72)

Φ33 = φ0

8π

⎡
⎣

−s f1133 −2s f3312 (1 − s) f3331 + (1 + s)( f1113 + f2213)
∗ ∗ ∗ −s f2233 (1 − s) f3332 + (1 + s)( f1123 + f2223)
∗ ∗ ∗ ∗ ∗ ∗ f3333 + (1 + s)( f1133 + f2233)

⎤
⎦ , (73)

Φ23 = φ0

8π

⎡
⎢⎣

−s f1123
1
2 ((1 − 3s) f2213 + (1 + s)( f1113 + f3331))

1
2 ((1 − 3s) f3312 + (1 + s)( f1112 + f2221))

∗ ∗ ∗ 1
2 ((1 − s) f2223 + (1 + s)( f1123 + f3332)) (1 − s) f2233 + 1

2 (1 + s)( f1133 + f1122 + f3333 + f2222)
∗ ∗ ∗ ∗ ∗ ∗ 1

2 ((1 − s) f3332 + (1 + s)( f1123 + f2223))

⎤
⎥⎦ , (74)

Φ13 = φ0

8π

⎡
⎢⎣

1
2 ((1 − s) f1113 + (1 + s)( f2213 + f3331)) ∗ ∗ ∗ (1 − s) f1133 + 1

2 (1 + s)( f2233 + f3333 + f1111 + f1122)
1
2 ((1 − 3s) f1123 + (1 + s)( f2223 + f3332)) −s f2213

1
2 ((1 − 3s) f3312 + (1 + s)( f1112 + f2221))

∗ ∗ ∗ ∗ ∗ ∗ 1
2 ((1 − s) f3331 + (1 + s)( f1113 + f2213))

⎤
⎥⎦ , (75)

Φ12 = φ0

8π

⎡
⎢⎣

1
2 ((1 − s) f1112 + (1 + s)( f2221 + f3312)) (1 − s) f1122 + 1

2 (1 + s)( f2222 + f2233 + f1111 + f1133) ∗ ∗ ∗
∗ ∗ ∗ 1

2 ((1 − s) f2221 + (1 + s)( f1112 + f3312)) ∗ ∗ ∗
1
2 ((1 − 3s) f1123 + (1 + s)( f2223 + f3332))

1
2 ((1 − 3s) f2213 + (1 + s)( f1113 + f3331)) −s f3312

⎤
⎥⎦ . (76)
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Here fi jkl , i, j, k, l = 1, 2, 3 are the fourth-order deriva-
tives of f . Before computing D I J for three dimentions, the
indefinite integrals of these derivatives are needed. Because
of the complex forms, we just show the integral for f1112 to
illustrate as below.

8π
∫∫

f1112(x, y, z)dxdydzdxdydz

= 1/72(−((15x3y)/
√

(x2 + y2 + z2))

−(6xy3)/
√
x2 + y2 + z2 + (9xyz2)/

√
x2 + y2 + z2

−30xy
√
x2 + y2 + z2

−(24x3z(−((yz)/(x2 + y2 + z2)3/2)

−(yz)/(x2
√
x2 + y2 + z2)))/(1

+(y2z2)/(x2(x2 + y2 + z2)))

−(9x5)/(
√
x2 + y2 + z2(y +

√
x2 + y2 + z2))

+(18x3z2)/(
√
x2 + y2 + z2(y +

√
x2 + y2 + z2))

+(3xz4)/(
√
x2 + y2 + z2(y +

√
x2 + y2 + z2))

+(36x3yz)/(
√
x2 + y2 + z2(z +

√
x2 + y2 + z2))

+(12xy3z)/(
√
x2 + y2 + z2(z +

√
x2 + y2 + z2))

−72x2z arctan ((yz)/(x
√
x2 + y2 + z2))

−36x3In (y +
√
x2 + y2 + z2)

+36xz2In (y +
√
x2 + y2 + z2)

+72xyzIn (z +
√
x2 + y2 + z2)), (77)

For the sake of clarify, here we present by replacing
(x1, x2, x3) with (x, y, z).

Appendix C: Finite strain formulation

The finite strain problem is different from the case with small
deformation, which is governed by the following equations
in the undeformed configuration:

∇ · PT (F) = 0, (78)

F = ∇X (x) = I2 + ∇u(X), ∀X ∈ Ω, (79)

where P is the first Piola–Kirchhoff stress, F is the defor-
mation gradient at each material point X .

The loading is also applied at infinity through the reference
material. The homogeneous isotropic reference material is

described by a constitutive relation:

P(F) = C0 : (
1

2
(FT +F)− I2) = C0 : (F(X)− I2). (80)

C0 is the standard fourth-order isotropic elastic stiffness ten-
sor.

Similar to Eq. (13), the finite strain system can also be
reformulated by the Lippmann–Schwinger equation

F(X) − F0 + Φ̃ ∗ (P(X) − C0 : (F(X) − I2)) = 0. (81)

Here, we neglect the boundary term. Φ̃ is the fourth-order
tensor defined by

Φ̃i jkl = ∂

∂X j
u(i)
k,l . (82)

After clustering the material points based on DNS results,
we can also obtain the discrete Lippmann–Schwinger equa-
tion

F I − F0 +
k∑

J=1

D I J
f ini testrain : (P J −C0 : (F J − I2)) = 0,

(83)

where D I J
f ini testrain is the interaction tensor for the finite

strain problem given by

D I J
f ini testrain = 1

|ΩI |
∫

Ω I

(∫

Ω J
Φ(X − X̃)d X̃

)
dX . (84)
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