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Abstract

Existing image inpainting methods typically fill holes by
borrowing information from surrounding pixels. They of-
ten produce unsatisfactory results when the holes overlap
with or touch foreground objects due to lack of information
about the actual extent of foreground and background re-
gions within the holes. These scenarios, however, are very
important in practice, especially for applications such as
the removal of distracting objects. To address the prob-
lem, we propose a foreground-aware image inpainting sys-
tem that explicitly disentangles structure inference and con-
tent completion. Specifically, our model learns to predict
the foreground contour first, and then inpaints the miss-
ing region using the predicted contour as guidance. We
show that by such disentanglement, the contour completion
model predicts reasonable contours of objects, and further
substantially improves the performance of image inpaint-
ing. Experiments show that our method significantly out-
performs existing methods and achieves superior inpainting
results on challenging cases with complex compositions.

1. Introduction

Image inpainting is an important problem in computer
vision, and has many applications including image editing,
restoration and composition. We focus on hole filling tasks
encountered commonly when removing unwanted regions
or objects from photos. Filling holes in images with com-
plicated foreground and background composition is one of
the most significant and challenging scenarios.

Conventional inpainting methods [8, 6, 5, 26] typically
fill missing pixels by matching and pasting patches based on
low level features such as mean square difference of RGB
values or SIFT descriptors [19]. These methods can syn-
thesize plausible stationary textures but often produce crit-
ical failures in images with complex structures. To allevi-
ate the problem, different structures of images have been
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exploited [11, 12, 24]. For example, Huang er al. [11]
explicitly utilize planar structures as guidance to rectify
perspectively-distorted textures. However, these methods
still rely on existing patches and low-level features, and thus
are unable to handle challenging cases where holes overlap
with or are close to foreground objects. In such cases, a
higher understanding of image content is required.

Recently, deep learning based methods [13, 17, 28, 29, 7]
have emerged as a promising alternative avenue by treat-
ing the problem as learning an end-to-end mapping from
masked input to completed output. These learning-based
methods are able to hallucinate novel contents by training
on large scale datasets [15, 30]. To produce visually re-
alistic results, generative adversarial networks (GANs) [9]
are employed to train the inpainting networks. However,
by default all these methods assume that a generative net-
work can learn to predict or understand the structure in the
image implicitly, without explicit modeling of structures or
foreground/background layers in the learning process.

However, this has not been an easy task even for state-
of-the-art models, such as PartialConv [17] and Gated-
Conv [28]. For example, Fig. 1 shows two common failure
cases. On the top case, both GatedConv [28] and Partial-
Conv [17] fail to infer a reasonable contour in the missing
region, and incorrectly predict a gold medal with an obvi-
ous notch. In addition, on the bottom case, both generate
obvious artifacts around the neck of the dog. We conjecture
that these failures may come from several limitations of cur-
rent learning-based inpainting systems: (1) learning-based
inpainting models are usually trained to fill randomly gener-
ated masks which are often completely located in the back-
ground or inside a foreground object. This is inconsistent
with real-world cases where the holes might be close to or
only have a small overlap with the foreground (e.g., cases of
distracting region removal); (2) without explicitly modeling
background and foreground layer boundaries, current deep
neural network-based methods may not be able to predict
the structure accurately inside the holes by simply training
to fill random masks.

To this end, we propose a foreground-aware image in-
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Figure 1. Our results compared with PartialConv [17] and GatedConv [28]. From left to the right are: image with holes, saliency map,
incomplete contour and completed contour generated by our model, inpainting result of our model with completed contour (the green

curve) on it, result of PartialConv [17], result of GatedConv [28], respectively.

painting system that explicitly incorporates the foreground
object knowledge into the training process. Our system
disentangles structure inference and image completion, and
leverages accurate contour prediction to guide image com-
pletion. Specifically, our model first detects a foreground
contour of the corrupted image, and then completes the
missing contours of the foreground objects with a contour
completion module. The completed contour along with the
input image are then fed to the image completion module as
guidance to predict contents in holes.

The disentanglement of structure inference and image
completion is conceptually simple and highly effective.
Fig. 1 shows that our model benefits greatly from the in-
ferred contours. Our contour completion module is able to
infer a reasonable structure in the missing region. Further,
the image completion module takes predicted contours as
guidance and generates cleaner contents around the borders
of the objects.

To summarize, our contributions are as follows: (1) We
propose to explicitly disentangle structure inference and im-
age completion to address challenging scenarios in image
inpainting where holes overlap with or touch foreground
objects. To the best of our knowledge, our work is among
the first of a few studies that inpaint images with explicit
contour guidance. (2) To infer the structure of images, we
propose a contour completion module trained explicitly to
guide image completion. (3) To effectively integrate all the
modules, we propose to adopt curriculum training on both
the contour and image completion modules. (4) Our exper-
iments demonstrate that the system produces higher-quality
inpainting results compared to existing methods.

2. Related Work

Image inpainting approaches can be roughly divided into
two categories: traditional methods based on pixel prop-

agation or patch matching, and recent methods based on
deep neural network training. Traditional methods such
as [3, 4] fill in holes by propagating the neighborhood ap-
pearance based on techniques like isophote direction field.
These methods are quite effective for small or narrow holes,
but when the holes are large or the textures vary heavily,
they often generate significant visual artifacts. Patch-based
methods predict missing regions by searching for the most
similar and relevant patches from the uncorrupted regions of
the image. These methods work in an iterative way and can
generate smooth and photo-realistic results, but at the cost
of high computation cost and memory usage. To reduce
the runtime and improve memory efficiency, tree-structure
based search [21] and randomized methods [5] are pro-
posed. PatchMatch [5] is a typical patch based method that
greatly speeds up the conventional algorithms and achieves
high-quality inpainting results. A major drawback of Patch-
Match lies in the fact that it searches for relevant patches
from the whole image, without using any high-level infor-
mation to guide the search. These methods work reasonably
well for pure background inpainting tasks where holes are
only surrounded by background textures, but could easily
fail if holes overlap with an object or are close to an object.

Recently, learning based inpainting methods [17, 29, 7]
have significantly improved inpainting results by learning
semantics from large scale dataset. These methods typ-
ically train a convolutional neural network as a mapping
function from a corrupted image to a completed one end-
to-end. A significant advantage of these methods over the
non-learning ones is the ability to learn and understand se-
mantics of images for inpainting, which is especially im-
portant in cases of complex scenes, faces, objects and many
others. Among these methods, Context Encoders is one of
the first attempts [22] that use a deep convolutional neural
network to fill in the holes. It maps an image with a square
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hole to a complete image, and trains the model with L2 loss
in the pixel space and an adversarial loss to generate sharper
results. Similarly, lizuka et al. [13] use two discriminators
to enforce that both the global appearance (whole image)
and the local appearance ( content in hole) of the generated
result are visually plausible. The method, however, still re-
lies heavily on the post-processing of the completed image
that blends both results from neural networks and traditional
patch-matching methods. Yu et al. [29] propose contextual
attention to model long-range dependencies in images and
a refinement network to eliminate post-processing, thus the
whole system can be trained and tested end-to-end. How-
ever, these deep learning based inpainting methods typically
infer the missing pixels conditioned on both valid pixels and
the substitute values in the masked holes, which may lead to
artifacts. Liu et al. [17] address this problem by masking
the convolution operation and updating the mask in each
layer, so that the prediction of the missing pixels is only
conditioned on the valid pixels in the original image. Yu
et al. [28] further propose to learn the mask automatically
with gated convolutions, and achieve better inpainting qual-
ities. Additionally, Song et al. [27] apply a pretrained image
segmentation network to obtain the foreground mask of the
corrupted image, then fill the segmentation mask and use it
to guide the completion of the image. However, these meth-
ods do not explicitly model the foreground and background
boundaries. Therefore, they could fail in images where the
masked region covers both foreground and background.

3. Approach

Given an incomplete image, our goal is to output a com-
plete image with a visually pleasing appearance. The over-
all framework of our inpainting system is shown in Fig. 2. It
is a cascade of three modules: incomplete contour detection
module, contour completion module and image completion
module. We automatically detect the contour of the incom-
plete image using the contour detection module. Then we
use the contour completion module to predict the missing
parts of the contour. Finally, we input both the incomplete
image and the completed contour to the image completion
module to predict the final inpainted image. To train our
foreground-aware model, we need to prepare specific train-
ing samples and holes. In the following sections, we first
introduce how we collect data and generate specific hole
masks tailored to our task. Then we introduce the detailed
implementation of our inpainting system.

3.1. Data Acquisition and Hole Generation

Image Acquisition and Processing. Existing datasets
for image inpainting such as Places2 [30], Paris [23], or
CelebFace [18] do not require any annotations, and training
data pairs (image with hole and the ground-truth image) are
typically constructed by generating random masks on the

original images and by setting the original pixel values un-
der the masks as the ground truth. Our proposed framework
for foreground-aware image inpainting requires us to train a
contour completion module and infer the contour automat-
ically, so we need a training dataset with labeled contours.
One possibility is to directly use contour detection datasets,
e.g. BSD500 [2]. However, such datasets are quite small in
size and thus are not adequate to train an image inpainting
model. Instead, we use salient object segmentation datasets
as an alternative. We collect over 15,762 natural images
that contain one or several salient objects, from a variety of
public datasets, including MSRA-10K [10], manually anno-
tated Flickr natural image dataset, and so on. Each image in
this saliency dataset is annotated with an accurate segmen-
tation mask. The dataset is quite diverse in content, con-
taining a large variety of objects, including animals, plants,
persons, faces, buildings, streets and so on. The relative
size of objects in each image has a large variance, making
the dataset quite challenging. We split all the samples into
12,609 training images and 3,153 testing images.

We then apply the Sobel edge operator on the segmen-
tation mask to obtain the contours of the salient objects.
Specifically, we first obtain the filtered mask C'¢ by apply-
ing the Sobel operator: Cy = |G| + |G|, where G, and
G, are the vertical and horizontal derivative approximations
of the image, respectively. Then we binarize the filtered
mask with a simple threshold and obtain the final binary
contour Cy; as the ground-truth contour of the original im-
age.

Hole Mask Sampling. In real-world inpainting applica-
tions, the distractors that users want to remove are usually
arbitrarily-shaped, and usually not square-shaped. In or-
der to simulate the real world inputs and learn a practical
model, we draw holes on each image with arbitrary shapes
randomly with a brush, based on the sampling method in
[28]. We generate two types of holes: 1). arbitrarily-shaped
holes that can appear in any region of the input image. Un-
der this setting, holes have a probability of overlapping with
the foreground objects. This scenario is designed to handle
the situations where unwanted objects are inside the fore-
ground objects or partially occlude the salient objects; 2).
arbitrarily-shaped holes that are restricted so that they have
no overlap with the foreground objects. This type of holes
are generated to simulate the situation where the unwanted
regions or distracting objects are behind the salient objects.
To deal with the second situation, we first randomly gen-
erate arbitrarily-shaped holes, then we remove the parts of
holes that have overlap with the saliency objects.

3.2. Contour Detection

During the inference stage, we do not have a contour
mask of the input image. We therefore use DeepCut [1]
to detect the saliency objects in the image automatically.
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Figure 2. The overall architecture of our inpainting model.

DeepCut uses a CNN-based architecture that extracts and
combines high-level and low-level features to predict a
salient object mask with accurate boundaries. Since the in-
put image is corrupted with holes, the resulting segmenta-
tion map contains noise. In some situations, holes can even
be treated as salient objects. To address this issue, we use
the binary hole mask to remove the regions in the segmen-
tation map that may be mistaken as salient objects. Then
we apply connected component analysis [25] to further re-
move some of the small clusters in the map to obtain the
foreground mask. Then we adopt the Sobel Operator to de-
tect the incomplete contour of the object from the segmenta-
tion map. The incomplete contour is then fed to the contour
completion module to predict the missing contours.

3.3. Contour Completion Module

The goal of our contour completion module is to com-
plete the missing contours of the input image that are inside
the hole regions. Given the incomplete image I;,,, incom-
plete contour C},, and the hole mask H indicating the loca-
tions of the missing pixels, we aim to predict the complete

contour C. for the corrupted foreground objects. C. is a
binary map with the same shape as the input image, with 1
indicating the boundary of the foreground objects and 0O for
other pixels in the image.

3.3.1 Architecture

The contour completion module is composed of a gener-
ator and a discriminator. The generator is a cascade of a
coarse network and a refinement network. For training, in-
stead of using predicted contours, we extract a clean incom-
plete contour C;,, of the foreground objects directly from
the ground-truth contour C'y; with the hole mask H, i.e.,
Cin = H x Cg. Then we input the incomplete image,
the incomplete contour image, and the hole mask into our
coarse network, which outputs a coarse complete contour
C¢°%. The coarse network is an encoder-decoder network
with several convolutional and dilated convolutional layers.
The coarse contour map is a rough estimate of the missing
contours. The predicted contours around the holes can be
blurry and cannot be used as an effective guidance for the
image completion module.
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To infer a more accurate contour, we adopt the refine-
ment network which takes the coarse contour as input, and
output a cleaner and more precise contour C%¢/. The refine-
ment network has a similar architecture as the coarse net-
work, except that we use a contextual attention layer [29],
to explicitly attend on global feature patches while inferring
the missing values. Note that the pixel value of the predicted
contour C¢/ ranges from 0 to 1, indicating the probability
that the pixel to be on the actual contour.

The refined contour is then fed to the contour discrimi-
nator for adversarial training. The contour discriminator is
a fully convolutional PatchGAN discriminator [14] that out-
puts a score map instead of a single score, so as to tell the
realism of different local regions of the generated contour
mask. Unlike discriminators for images, we discover that
if we only input the contour mask (generated or ground-
truth) to the discriminator, the adversarial loss is hard to
optimize and the training tends to fail. This may be due
to the sparse nature of the contour data. Unlike the natural
images which have an understandable distribution on every
local region, the pixels in the contour mask is sparsely dis-
tributed and contain less information for the discriminator
to judge whether the generated distribution is close to the
ground-truth distribution or not.

To address this issue, we propose to adopt the ground-
truth image as an additional condition, and use the image
and contour pair as inputs to the contour discriminator. With
this setup, the generated contour is not only required to
be similar to the ground-truth contour, but also required to
align with the contour of the image. The discriminator then
obtains adequate knowledge to tell the difference between
the generated distribution and the real distribution, and the
training becomes stable.

3.3.2 Loss Functions

To train the contour completion module, we will minimize
the distance between the generated contour map C<°%, C7¢f
and the ground-truth contour map Cg:. A straightforward
way is to minimize the L1 or L2 distance between the masks
in raw pixel space. However, this is not very effective as the
contours in the mask are sparse, leading to the data imbal-
ance problem. Determining the proper weights of each pixel
is difficult. To address this issue, we propose to make use
of the inherent nature of the contour mask, i.e., each pixel
in the mask can be interpreted as the probability that the
pixel is a boundary pixel in the original image. Therefore
we can take the contour map as samples of a distribution,
and calculate the distance with the ground-truth contour by
calculating their binary cross-entropy between each pixel.
We then adopt a focal loss [16] to balance the importance
of each pixel. Since our primary goal is to complete the
missing contours, we pay more attention to the pixels in the
holes by assigning them a larger weight. We formulate this

loss as the content loss for contour completion LS, . The
final loss function for the coarse contour is:

‘Ccc;n (Cccosv Cgt)
= A (HIPCE )~ Colpl)? £ ). Corlp)

S0 ((1 - HID(O ]~ Coulp))* £e(CE o), Carlp) -
(H

where [p] denotes to the pixel spatial location of the con-
tour map, N is the number of pixels in the contour map,
L.(x,y) is the binary cross-entropy loss function, 2 and y
are predicted probability score and the ground-truth proba-
bility, respectively.

Similarly, we use a content loss for the refined contour
L8, (Crel,Cyy). The final content loss function for con-

con
tour completion is:

Loon = Leon (0%, Cor) + LG (CL, Cqr) . ()
The focal loss helps to generate a clean contour. How-
ever, we observe that although we are able to reconstruct
sharp edges in the uncorrupted regions, the contours in the
corrupted regions are still blurry. To encourage the genera-
tor to produce sharp and clean contours, we use the contour
discriminator D¢ to perform adversarial learning. Specifi-
cally, we use the recent technique called Spectral Normal-
ization [20] to stabilize the training of the GAN model. We
use the hinge loss function to determine whether the input
is real or fake. The adversarial loss for training the contour
discriminator and the generator are as follows, respectively,
where o denotes the ReLU function.
L5y, = Elo(1 = DY(Cy))] + E[lo(1+ DY(CL)]. (3)

adv

£8,, = —E[DC(CI)]. 4)

adv

3.3.3 Curriculum Training

Completing the contours is a challenging task. Although
we have adopted a focal loss to balance the sparse data, and
a spectral normalization GAN to obtain sharper results, we
observe that it is still difficult to train the whole contour
completion module. The training tends to fail if both the
content loss and the adversarial loss are applied simulta-
neously even though the weights between the two types of
losses are carefully adjusted. To avoid the issue, we use
curriculum learning to gradually train the model. In the first
stage, the contour completion module is required only to
output a rough contour, thus we only train the model with
the content loss. Then in the second stage, we fine-tune
the pre-trained network with our adversarial loss, but with a
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very small weight compared to the content loss, i.e., 0.01 :
1 to avoid training failure due to the instability of the GAN
loss for contour prediction. In the third stage, we fine-tune
the whole contour completion module with the weight of
adversarial loss and the weight of content loss to be 1:1.

3.4. Image Completion Module
3.4.1 Architecture

Guided by the completed contours, our model gains the ba-
sic knowledge of where the foreground and background pix-
els are. This knowledge provides strong clues for the com-
pletion of the image. The image completion module takes
the incomplete image I;,,, the completed contour and the
hole mask H as inputs, and outputs the completed image
1. It shares a similar architecture as the contour completion
module. The generator of our image completion module
also contains a coarse network and a refinement network.
The coarse network outputs a coarsely completed image,
which can be blurry with missing details. Then the refine-
ment network takes the coarse image as input, and generates
a more accurate result.

By inputting both the incomplete image and completed
contour to the coarse network, however, we observe that
the final output of the generator tends to ignore the guid-
ance of the completed contour. The shape of the generated
image is not consistent with the input contour in the hole
regions. This problem may be caused by the depth of the
image completion networks. After layers of mapping, the
knowledge provided by the completed contour can be for-
gotten or weakened, due to error accumulation. To tackle
this problem, we input the completed contour to both the
coarse network and the refinement network to enhance the
effect of the condition. In this way, the effect of the contour
condition can be stronger in the second stage of the image
completion module.

The discriminator takes the generated image/ground-
truth image along with the hole mask indicating the location
of the missing pixels as inputs, and tells whether the input
pair is real or fake. Similar to the contour completion mod-
ule, we use a PatchGAN structure and a hinge adversarial
loss to train the model.

3.4.2 Loss Functions

The loss function for the image completion module also
consists of a content loss £/, and an adversarial loss £, .
The adversarial loss has a very similar form as the loss for
contour completion, except that we apply the loss to the im-
ages instead of the contours. Note that the adversarial loss
is only applied to the result of the refinement network. We
do not apply the loss to the result of the coarse network. For
the content loss, we use L1 loss to minimize the distance be-

tween the generated image and the ground-truth image. The

W

o0
W

image content loss is:

Lo = 5 S0 (18]~ Tl + 1727 16— Llpl)
’ )

where 1¢°%, I17¢f and I, are the output of the coarse net-
work, the refinement network, and the ground-truth, respec-
tively. [p] denotes the pixel spatial location of the image, N
is the number of pixels in the image.

3.4.3 Training

Our image completion module is first pre-trained on the
large-scale Places2 dataset without the extra channel for
the contour map, then fine-tuned on the saliency dataset
with the guidance from the output of the contour comple-
tion module. Since the network we will fine-tune on the
saliency dataset takes different inputs (takes additional con-
tour as input) compared to the network we pretrain on the
Places?2 dataset, when fine-tuning our network, we keep the
parameters of all the layers in the pretrained network except
the first layer, and randomly initialize the first layers of our
image completion module. To stabilize the training, we use
a similar curriculum training strategy as the training of the
contour completion module.

There are two variations in our training process. The first
one is to fix the parameters of the contour completion mod-
ule, and only fine-tune the image completion module. The
second way is to jointly fine-tune both modules. In our ex-
periments, we observe that there are minor differences be-
tween these two so we fix our method as the second setting.

4. Experiments
4.1. Implementation Details

We obtain the incomplete contour of the foreground ob-
jects from our contour detection module and the pretrained
DeepCut model [1], without any finetuning. Then we train
our contour completion module only on the saliency dataset.
On the third stage, we first train the image completion mod-
ule on the Places2, then finetune it on our saliency dataset.
We also finetune both the contour completion module and
the image completion module end-to-end on our saliency
dataset. We use Adam as the optimizer, with a learning rate
of 0.0002 and batchsize of 64 for both the contour comple-
tion module and the image completion module. A in Eq. 1
is set to 5 on training the contour completion module.

4.2. Comparison with state-of-the-arts methods

In this part, we compare our proposed model with the
state-of-the-art image inpainting methods on the validation
set of our saliency dataset. We compare our full method
(denoted as “Ours Guided”) with GatedConv [28], Partial-
Conv [17], ContextAttention [29], Global&Local [13], and



Input PatchMatch  Global&Local ContextAttention PartialConv

GatedConv Ours Ground-Truth

Figure 3. Qualitative comparison between the state-of-the-art methods. Row 1-4 are samples with overlapped holes, while Row 5-8 are

samples with non-overlapped holes. Please zoom in to see the details.

PatchMatch [5]. For a fair comparison, we also compare
with GatedConv [28] fine-tuned on our saliency dataset,
which can be regarded as the baseline - our model with-
out contour prediction and guidance (denoted as “Ours No
Guide”).

4.2.1 Quantitative Evaluation

We randomly select 500 images from the testing saliency
dataset and generate both overlap and non-overlap holes for
each image. Then we run each method on the corrupted
images to obtain the final results. We use common evalua-

tion metrics, i.e., L1, L2, PSNR, and SSIM, calculated us-
ing the complete image and the ground-truth image in pixel
space, to quantify the performance of the models. Table
1 shows the evaluation results. Among the deep learning-
based methods, our models outperform all the other meth-
ods in all four metrics. The results can be explained by
that existing methods only consider making the textures of
the completed image realistic, but ignore the structures of
the image. Furthermore, our model with contour guidance
brings consistent improvements over the baseline without
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Table 1. Quantitative results on the saliency dataset.

Method L1 Loss L2Loss PSNR SSIM
PatchMatch [5] 0.01386  0.004278 26.94 0.9249
Global&Local [13] 0.02450  0.004445 25.55 0.9005
ContextAttention [29]  0.02116  0.007417  24.01  0.9035
PartialConv [17] 0.01085  0.002437 29.24  0.9333
GatedConv [28] 0.009966  0.002531 29.26  0.9353
Ours No Guided 0.010002  0.002597 29.35 0.9356
Ours Guided 0.009327  0.002329 29.86 0.9383

guidance, demonstrating the validity of our proposed idea
of leveraging contour prediction.

4.2.2 Qualitative Evaluation

Fig. 3 shows visual comparisons of our method with exist-
ing methods. Seen from the figure, PatchMatch [5] gener-
ates quite smooth textures. However, since it lacks an un-
derstanding of the image semantics, the generated image
is not visually realistic when the holes are near the bound-
ary of the foreground objects. Although Global&Local [13]
and ContextAttention [29] show the potential of handling
holes with arbitrary shape (e.g., combining multiple small
square holes to form an arbitrary shaped hole), since they
are not specifically trained on arbitrary-shaped hole masks,
they can generate artifacts which make the images unrealis-
tic. PartialConv [17], GatedConv [28] and our model with-
out contour guidance (denoted as “Ours No Guide”) can
generate smooth and plausible images, but artifacts still ex-
ist around the borders of the objects. In addition, the shapes
of the generated objects are not as natural as the real-world
objects. Our full contour guided model not only generates
a completed image with less artifacts, but also well com-
pletes the missing parts of the objects so that they have a
very natural boundary.

4.2.3 User Study

To make a more thorough evaluation of our method in terms
of visual quality, we conduct a user study and show the re-
sult in Table 2. Specifically, we randomly select 50 images
from our testing dataset, corrupt them with random holes
and then obtain the inpainted results of each method. We
show the results of each image to 22 users and ask them
to select a single best result. Finally we collect 1,099 valid
votes from all users. We count the number of times that
each method is preferred by users. Table 2 shows the user
preferences of each method. Our full model is preferred the
most, outperforming all the other methods by a large mar-
gin. This demonstrates the superiority of our foreground-
aware model in terms of visual quality.

4.3. Ablation Study

We also analyze how our contour completion module
contributes to the final performance of image inpainting.
We compare our full model to the model without contour

Table 2. User preference for the results of each method.

Method Preference Counts
PatchMatch [5] 23
Global&Local [13] 5
ContextAttention [29] 4
PartialConv [17] 90
GatedConv [28] 100

Ours No Guide 146

Ours Guided 731

guidance. From left to right: input image with holes, our model
without contour guidance, our full model, the ground-truth.

as guidance, as is shown in Fig. 4. The top row shows the
results where holes have no overlap with the foreground ob-
ject, while the bottom shows the case where holes overlap
with the object. In both cases, our model without contour
guidance generates obvious artifacts around the border of
the foreground object, while our model with contour guid-
ance can infer object boundaries correctly and produce re-
alistic inpainting results. The comparison indicates that the
completed contours greatly improve the performance of the
image inpainting model and that contour guidance is a cru-
cial part to the success of our model.

5. Conclusion

In this paper, we propose the foreground-aware image in-
painting model for challenging scenarios involving predic-
tion of both foreground and background pixels. Our model
first detects and completes the contours of the foreground
objects in the image, then uses the completed contours as a
guidance to inpaint the image. It is trained on a specifically
collected saliency image dataset. Experiments show that
our model can generate natural contours of objects, which
are of great benefit for image completion. Our model sig-
nificantly outperforms various state-of-the-art models both
quantitatively and qualitatively. This shows that using struc-
tures to indicate the foregrounds and backgrounds of the in-
put image, then explicitly guide the completion of the image
is a promising direction for inpainting tasks.
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