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ABSTRACT
Today’s automotive engine control systems adopt several control
strategies that come with tradeoffs between computational load and
performance. The current practice is that the switching speeds at
which the engine control system changes control strategy is fixed
offline, typically based on the average driving need in a standard
driving cycle (i.e., vehicle speed profile over time). This is clearly
suboptimal since it fails to capture the variation in the driving cycle,
and the actual driving cycle may be considerably different from the
standard one. In this paper, we propose to dynamically adjust switch-
ing speeds based on the predicted driving cycle. We develop a hybrid
set of schedulability analysis techniques to tame the complexity of
ensuring the real-time schedulability of engine control tasks. We
design an effective and efficient optimization algorithm that pro-
vides close-to-optimal solutions. Experimental results demonstrate
that our approach efficiently finds dynamic switching speeds that
significantly improve engine performance over static ones.
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1 INTRODUCTION
In vehicles powered by the internal combustion engine, the engine
control system determines the timing and amount of fuel injected
in the engine, where the execution of certain software tasks (called
angular tasks) is triggered at predefined rotation angles of the engine
crankshaft. Due to its great impact on our environment and economy,
any improvement on engine control performance (in terms of emis-
sion and fuel efficiency) may have significant benefits. For example,
a mere one percent improvement in fuel economy for light-duty
vehicles could save over $2.8 billion per year in U.S. in their fuel
costs, based on the gas usage and price in 2017 [26].

Today’s engine control systems adopt different control strategies
at different engine rotation speed intervals [10]. The most sophis-
ticated control strategy (e.g., with multiple fuel injections during
one revolution) has the best performance. However, its excessively
large computational demand will result in CPU overload on the
hosting microcontroller at high engine speeds. Hence, engine con-
trol systems are designed to be self-adaptive in that they switch to
simpler control strategies (such as single fuel injection) at higher
engine speeds. Hence, angular tasks are often referred to as Adaptive
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Variable-Rate (AVR) tasks in the literature [25]. The behavior of
AVR tasks strongly depends on the dynamics of the engine, making
its analysis and optimization uniquely challenging.

Currently the configuration and calibration of the engine con-
trol system are performed offline using standard driving cycles. The
engine configuration is then fixed at runtime (i.e., during vehicle
operation) even if the driving route demands a completely different
vehicle speed profile. This includes the optimization of the switch-
ing speeds (at which engine speeds engine control switches control
strategies) [2]. However, this is clearly suboptimal due to the signif-
icant difference between the standard driving cycle and the actual
ones, not to mention the variation within the same driving cycle.

This inefficiency will hopefully be mitigated in the upcoming era
of Connected and Automated Vehicles (CAVs). With various sensing
(e.g., camera, radar, lidar) and communication (such as vehicle-to-
vehicle and vehicle-to-infrastructure) capabilities in place, valuable
real-time information about the driving environment will become
readily available. By carefully leveraging such information, it is
possible to significantly improve the vehicle operations including
path and speed planning [17], vehicle dynamics control [22], and
engine control [6]. With the CAV techniques making the driving
profile and engine speed more predictable than ever, we propose the
concept of engine control with dynamic switching speeds to improve
engine performance, where the switching speeds are dynamically
adjusted according to the upcoming (expected) engine speed. The
corresponding AVR tasks are called dynamic AVR tasks, or dAVR
tasks. In contrast, the AVR tasks in systems with statically configured
switching speeds are called static AVR tasks or sAVR tasks.

Optimizing engine control performance requires to address two
problems [2]. One is to select the right set of control strategies and
the corresponding switching speeds. The other is the schedulability
analysis to make sure that the time-critical software tasks finish
before their deadlines. Below we first review related work.
Related Work. The schedulability analysis of engine control sys-
tems is extensively studied in recent years. Kim et al. [16] describe
AVR tasks with the rhythmic task model, but it comes with a few
assumptions that may not match the engine dynamics, e.g., the inter-
release time is shortened by a fixed ratio during any acceleration.
Buttle introduces the typical software implementation of engine con-
trol systems [10], which is adopted by most of the studies thereafter.

Below we provide a selective review on the schedulability analy-
sis techniques for studies consistent with the model by Buttle [10],
and refer the readers to [25] for a more comprehensive discussion.
For systems scheduled with fixed priority, Davis et al. [11] use quan-
tization to discretize the continuous engine speed space, and present
a sufficient analysis on the worst-case interference from AVR tasks.
Instead, Biondi et al. [1] discover that a finite set of speeds is suffi-
cient for calculating the exact worst-case interference, each of which
dominates a range of speeds. This allows to develop exact analyses
for systems scheduled with fixed priority [9] or Earliest Deadline
First (EDF) [8]. Guo and Baruah [14] present a sufficient utilization-
based schedulability test for EDF scheduled systems. Mohaqeqi



et al. [18] transform AVR tasks to digraph real-time tasks [19, 23]
where each vertex represents a disjoint speed interval. Feld et al. [13]
improve the analysis efficiency, whose approach may be inaccurate
if the maximum acceleration and deceleration are different.

With respect to engine performance optimization, the lone work
is by Biondi et al. [2], which proposes to maximize the engine
performance by configuring the switching speeds at design time.
Our Contributions. All the above studies assume that the engine
switching speeds are fixed offline. Differently, we propose the dAVR
task model to allow dynamic adjustment to the switching speeds,
and study the real-time schedulability analysis of such systems [20].
In this paper, we develop optimization algorithms that can efficiently
configure engine switching speeds at runtime. However, adjusting
switching speeds at runtime is extraordinarily difficult due to its high
complexity. The studies on sAVR task systems (a special case of
dAVR) take hours to find an engine configuration [2]. Also, existing
analysis on systems with dAVR tasks is too complex to be scalable
for direct online usage [20].

To address the above challenges, we develop a set of new analysis
and optimization techniques. Specifically, we present a fast heuristic
which avoids exploring the infinite space of switching speeds but
still achieves performance that is close to the performance upper
bound. Also, to mitigate the complexity of existing schedulability
analysis, we combine a hybrid set of necessary-only and sufficient-
only analyses to gain 10× speedup without losing any accuracy.

2 PROBLEM DEFINITION
2.1 System Model
Engine Dynamics. The engine is described by its current rotation an-
gle θ , angular speed ω, and angular acceleration α . Due to the engine
physical attributes, the angular speed and acceleration are restricted
in certain ranges, i.e., ω ∈ (︀ωmin,ωmax⌋︀ and α ∈ (︀αmin,αmax⌋︀.
Engine Control System. The engine control system consists of
a set of periodic tasks {τ1, . . . ,τp} and a set of AVR tasks. It is
scheduled with fixed priority as specified by the automotive standard
AUTOSAR and OSEK on operating systems. Since the AVR tasks
share the same angular phase and period, for the purpose of analysis
and optimization of switching speeds, we can use one AVR task τA to
represent the AVR tasks [2]. The AVR task τA implements multiple
engine control strategies Λ = {Λ1, . . . ,ΛM}. Each strategy Λj is
characterized by a WCET C j and a performance function Pj(ω).
Similar to [2], we assume these implementations satisfy

∀i > j,∀ω, Ci < C j and Pi(ω) < Pj(ω) (1)

This is based on the rationale that a more complex control imple-
mentation only makes sense if it improves the performance [2].
Periodic Task Model. A periodic task τi is characterized by a tuple
∐︀Ti ,Ci ,Di ,Pi ̃︀, whereTi is the period,Ci is the WCET, Di ≤ Ti is the
constrained deadline, and Pi is the priority. The execution of periodic
tasks, and thus their parameters are all independent from the engine
dynamics as well as the events triggering engine reconfiguration.
AVR Task Model. The AVR task τA is triggered at predefined
crankshaft angles θ = Ψ + kΘ,∀k ∈ N, where N is the set of non-
negative integers, Ψ is the angular phase, and Θ is the angular period.
Its angular deadline is ρ = λ ⋅ Θ where λ ≤ 1 (hence τA also has
a constrained deadline). Clearly the AVR task parameters WCET,
inter-release time, and deadline all depend on the engine dynamics.

The static AVR (or sAVR) task model [10] assumes a fixed con-
figuration including the switching speeds. In this model, an sAVR

task τA contains a set 𝒮ℳ of SM execution modes. Each mode m
implements a control strategy ϒm = Λj , and is executed when the an-
gular speed at the task release time is in the range (ςm−1,ςm⌋︀. Here
ς0 = ωmin, ςSM = ωmax. Also ∀m < SM , let ϒm = Λi , ϒm+1 = Λj ,
it must be ςm < ςm+1 and i < j (hence Ci > C j ). Thus, the set of
execution modes of an sAVR task τA can be described as

𝒮ℳ = {(ϒm ,ςm),m = 1, . . . ,SM} (2)

The WCET of a job of τA only depends on the instantaneous angular
speed ω at its release time. Hence, we may define a WCET function
for the sAVR task τA as

𝒮𝒞(ω) = C j if ω ∈ (ςm−1,ςm⌋︀ and ϒm = Λj (3)

The dynamic AVR (or dAVR) task model [20] allows to dynam-
ically adjust the switching speeds. The reconfiguration happens at
times 𝒯 = {γ1,⋯,γT }, and may be triggered by events independent
from those activating the periodic tasks. The dynamic AVR task τA
has a series of execution mode sets defined as

𝒬 = {(ℳk ,γk),k = 1, . . . ,T}, (4)

where ℳk = {(Ξmk , ξ
m
k ),m = 1, . . . ,Mk} contains a set of Mk

modes, within which each mode (Ξmk , ξ
m
k ) implements the strategy

Ξmk ∈ Λ in the speed interval (ξm−1k , ξmk ⌋︀. The WCET of the dAVR
job released at time t with instantaneous engine speed ω is

𝒞(t ,ω) = C j if t ∈ (︀γk ,γk+1) and ω ∈ (ξm−1k , ξmk ⌋︀ and Ξmk = Λ
j
.

2.2 Problem Formulation
Inputs. As part of the input, the engine control system will receive
an updated prediction of the engine speed. We assume that the
predicted engine speed ω(γk) will be effective at time γk . This can
be done in two steps. First, the vehicle speed can be predicted using
CAV techniques, as studied in a number of papers (see a recent
review [12]). Second, the engine speed can be derived using, e.g.,
the relationship between vehicle cruise speed and engine speed [15].

The other inputs are the set of real-time tasks consisting of peri-
odic tasks {τ1, . . . ,τp}, and the dAVR task τA containing multiple
engine control implementations {Λ1, . . . ,ΛM}. The task parameters
are all fixed, including all parameters of periodic tasks, the angular
period and deadline of the dAVR task, the WCET and performance
function of the engine control implementations, and task priorities.
Variables. In this paper, we focus on the switching speed configu-
rations as the variable to be dynamically adjusted. That is, once a
prediction on the engine speed at γk is received, we seek to find a
new execution mode setℳk to be effective at γk . Note that at time
γk we do not assume any knowledge on the next reconfiguration
time γk+1, nor its predicted engine speed ω(γk+1).
Constraints. We must ensure that the engine control system is
schedulable due to its time-criticality [2]. That is, all tasks in the
system must finish no later than their deadlines. We remark that, due
to the possible prediction errors or other uncertainties, we shall make
pessimistic assumptions in the schedulability analysis: the system
shall be schedulable under any possible engine speed profile in the
future, as long as it is compliant with the engine dynamics.
Objective. We seek to optimize the engine control performance. We
do not assume any particular form of the performance metric, as
long as it satisfies the property in (1).



3 OPTIMIZATION ALGORITHM
Unlike design time configuration where the designer may spend
days to optimize, dynamic switching speed reconfiguration has to be
performed in a fraction of a second (to catch up with the dynamics of
typical driving cycle). There are two difficulties to make the recon-
figuration algorithms scalable while providing good solution quality.
One is to find the most performant yet schedulable set of control
implementations and their switching speeds, where the space for
switching speeds is continuous. The other is schedulability analysis,
to check if the system is schedulable with a given solution. The
existing analysis is of exponential complexity [20].

In this section, we discuss how to efficiently tackle the optimiza-
tion problem. We first present a simple yet effective heuristic in
Section 3.1 to select the control implementations and switching
speeds. We then explain in Section 3.2 how to reduce the complexity
of schedulability analysis without losing any accuracy.

3.1 Overall Optimization Algorithm
Our algorithm is based on Equation (1): a more complicated con-
trol implementation comes with the benefit of better performance.
Hence, we consider a reconfiguration that only contains two control
strategies. One may have high WCET but good control performance,
the other is ΛM which has the smallest WCET but bad performance,
switching at the predicted engine speed ω(γk). Intuitively, such a so-
lution provides the best average-case performance for the expected
engine speed, while trying to accommodate possible worst-case
computational demand as much as possible.

Algorithm 1 Pseudo-code for the optimization procedure.

1: procedure OPTIMIZATION({Λ1, . . . ,ΛM},γk ,ω(γk))
2: form ← 1 to M do
3: ℳk ← {(Λm ,ω(γk)), (ΛM ,ωmax)};
4: if SCHEDULABLE(𝒬 ∪ {(ℳk ,γk)}) then
5: 𝒬← 𝒬 ∪ {(ℳk ,γk)};
6: return (ℳk ,γk);
7: return INFEASIBLE;

The pseudo-code is illustrated in Algorithm 1. Specifically, given
the speed prediction ω(γk) at time γk , the algorithm iterates from
the most sophisticated implementation Λ1 to the simplest one ΛM ,
and tries to combine it with ΛM to form a new configuration that
switches at the predicted engine speed ω(γk) (Line 3). If one such
configuration makes the system schedulable (as checked in Line 4
and detailed in Section 3.2), then it is chosen as the new configu-
ration effective at time γk (Line 6) and added to the list of engine
configurations stored in𝒬 (Line 5). Otherwise, the system is deemed
as infeasible (Line 7).

We now discuss the properties of the proposed algorithm.

PROPERTY 1. If the task system is feasible, Algorithm 1 is able
to find a feasible solution.

PROPERTY 2. Our approach directly assigns each switching
speed according to the predicted engine speed and is independent
from the performance function.

PROPERTY 3. Each engine configuration contains at most two
execution modes.

In Line 3 of Algorithm 1, a configuration containing only the
simplest implementation ΛM (thus with the smallest WCET) will be

checked whenm =M , before claiming the system is infeasible. Since
any other configuration will require more computational demand
and is thus more difficult to schedule than the configuration with a
single implementation ΛM , it must mean that Property 1 is true.

Property 2 is true since Line 3 of Algorithm 1 sets the switch-
ing speed according to the predictive speed, without using any
information on the performance function (except that it satisfies
Equation (1)). This is in sharp contrast with the state-of-the-art ap-
proach [2]. In the experiments, we will show that such a simple
approach works very well, as it provides close-to-optimal solutions
for a variety of performance functions.

Property 3 is straightforward (see Line 3). It may significantly
reduce the analysis time due to the small number of execution modes.

3.2 Schedulability Analysis
The schedulability of the task systems containing the set of periodic
tasks {τ1, . . . ,τp} and an AVR task τA can be verified by the anal-
ysis technique presented in [20]. In this section, we focus on the
schedulability of each periodic task τi interfered by τA, which is the
main contributor of the analysis runtime [20]. We first briefly recap
the analysis in [20] and then provide an efficient hybrid approach
that leverages a new set of schedulability analyses with different
accuracy and complexity.

Before we detail our approach, we make three comments. First,
unlike the optimization objective that aims to improve the average
performance, the system schedulability shall provide worst-case
guarantees. Hence, we make no assumptions on the engine speed at
time γk or any time afterwards, since these predictions may not be
accurate due to uncertainties. Second, since the next reconfiguration
time γk+1 and the engine speed ω(γk+1) are unknown, we configure
the engine at γk assuming it may be used for an undefined amount
of time. Finally, for any task instance (i.e., job) with a deadline no
larger than γk , its schedulability will not be affected by the new
configuration, hence we exclude them from the analysis for time γk .

3.2.1 Existing schedulability analysis (S4). Let τi be the pe-
riodic task under analysis, and hp(i) be the set of periodic tasks
with higher priority than τi . An exact analysis can be established
by exhaustively enumerating all job sequences of τA, where τA con-
tains the series of execution mode sets 𝒬 until γk−1 and the new set
(ℳk ,γk). We first define two useful concepts.

DEFINITION 1 (DAVR JOB SEQUENCE [20]). A job (σl ,ωl ) of
the dAVR task τA is denoted by its release time σl and the engine
speed ωl at time σl . A job sequence 𝒜 = (︀(σ1,ω1), . . . , (σn ,ωn)⌋︀
released by a dAVR task τA, written as 𝒜 ∈ τA, is composed of a
legal sequence of jobs, such that any two consecutive jobs (σl ,ωl )
and (σl+1,ωl+1), ∀l = 1,⋯,n − 1 satisfy the engine dynamics.

DEFINITION 2 (INTERFERENCE FUNCTION OF DAVR JOB SE-
QUENCE [20]). ∀t ≥ 0, the interference function 𝒜.I(t) of a dAVR
job sequence 𝒜 = (︀(σ1,ω1), . . . , (σn ,ωn)⌋︀ in τA is its cumulative
execution request within the interval (︀σ1,σ1 + t⌋︀. That is,

𝒜.I(t) = 𝒞A(σ1,ω1) +
n
∑
l=2

δ(σ1 + t ,σl ) ⋅ 𝒞A(σl ,ωl ) (5)

where function δ(⋅, ⋅) is defined as δ(a,b) = { 1 if a ≥ b
0 otherwise.

By the two definitions, the worst case response time (WCRT)
R(τi ,𝒜) of τi interfered by a set of periodic tasks hp(i) and a dAVR



job sequence 𝒜 = (︀(σ1,ω1), . . . , (σn ,ωn)⌋︀ of τA is [20]

R(τi ,𝒜) = min
t>0

)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀
t ⋃︀ Ci + ∑

τj∈hp(i)
⌈︂ t
Tj
⟩Cj +𝒜.I(t) ≤ t

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
(6)

The above equation is based on the assumption that the periodic
tasks and the dAVR task are triggered by independent sources, thus
the worst-case scenario is that τi is released simultaneously with all
its interfering tasks (including τA). Further, the WCRT R(τi ,τA) of
τi is the maximum over all possible dAVR job sequences of τA

R(τi ,τA) = max
𝒜∈τA∩∆i

R(τi ,𝒜) (7)

Here ∆i = (︀max(0,γk − Di),γk ⌋︀ defines the analysis window for
task τi , and 𝒜 ∈ ∆i denotes that the first job release time of 𝒜
is contained in ∆i , i.e., σ1 ∈ ∆i . Any schedulable job of τi with
a deadline earlier than γk (hence with a release time smaller than
max(0,γk −Di)) must have finished. Also, any job of τi released at
or afterγk is interfered in the same way by τA, since the analysis only
concerns the engine configurations until γk (Line 4, Algorithm 1).

Obviously, the analysis in (7) is impractical, as it enumerates all
dAVR job sequences which are infinitely many due to the continuous
spaces of both job release time and engine speed. In [20] a set of
techniques are developed to discretize them, but the complexity
is still prohibitively high. In this paper, we propose to judiciously
combine a set of necessary-only and sufficient-only analyses. This
may improve analysis efficiency by an order of magnitude without
losing any accuracy.

3.2.2 An efficient hybrid approach for schedulability analysis.
Our approach is detailed in Figure 1. Besides the existing analysis
S4 as the last sanity check, we additionally propose three analy-
ses S1-S3. These analysis techniques are very efficient with good
accuracy. They are called before S4, either to quickly confirm the
schedulability of the solution (in the case of sufficient-only analysis
S2 and S3), or to promptly rule out many unschedulable solutions
(in the case of necessary-only analysis S1).

schedulable w/ necessary-
only analysis S1?

Yes

Task system corresponding to new series 
of execution mode sets Q U {(Mk, γk)}

No Report 
unschedulability

schedulable w/ sufficient-
only analysis S2?

No

Yes Report 
schedulability

schedulable w/ sufficient-
only analysis S3?

No

Yes Report 
schedulability

schedulable w/ existing 
analysis S4?

No

Yes Report 
schedulability

Report unschedulability

Figure 1: A hybrid approach for schedulability analysis.

This procedure preserves the same accuracy as S4, since (i) any
solution that is deemed schedulable by a sufficient-only analysis
must be schedulable by S4 as well; (ii) any solution that is deemed
unschedulable by a necessary-only analysis must be unschedulable
by S4 as well. Below we detail each of the new analyses S1-S3, but
in a different order than that of Figure 1 for better readability.

3.2.3 Necessary-only analysis S1. The necessary-only analysis
S1 (and the analysis S3) is based on the observation that the analysis
for systems with sAVR tasks is substantially simpler than those with
dAVR tasks. Specifically, an sAVR task has a unique characteristic
that dAVR tasks do not satisfy: its WCET is independent from its
release time. This makes two efficiency improvements possible. (i)
Consider two job sequences𝒜 and𝒜′ which release jobs at the same
sequence of angular speeds, but jobs in𝒜 are always released no later
than 𝒜′. It is safe to ignore 𝒜′ and only consider 𝒜 in Equation (7),
since the interference function of 𝒜 is always no smaller than that
of 𝒜′. (ii) There exist a small number of dominant speeds [1]. Each
dominant speed dominates a range of smaller speeds which always
produce sAVR job sequences with the same sequence of job WCETs
as that of the dominant speed. That is, the dominant speed allows
shorter inter-release times than the dominated ones while matching
their sequence of job WCETs.

The analysis S1 is derived by creating an sAVR task τ S1A with an
execution mode set 𝒮ℳS1 =ℳk = {(Λm ,ω(γk)), (ΛM ,ωmax)},
and then applying the existing analysis method on sAVR task sys-
tems [1, 18]. Hence, the WCET function 𝒮𝒞S1(ω) of τ S1A is defined
as Cm if ω ≤ ω(γk), and CM otherwise.

The following theorem shows that S1 is necessary-only.

THEOREM 1. If τi interfered by the dAVR task τA is schedulable,
then τi interfered by the sAVR task τ S1A must be schedulable too.
Proof. We prove its contrapositive. If τi interfered by τ S1A is un-
schedulable, then there must exist a job sequence of τ S1A , written
as 𝒜 = (︀(σ1,ω1), . . . , (σn ,ωn)⌋︀, such that R(τi ,𝒜) > Di . We can
construct another job sequence𝒜′ = (︀(σ ′1,ω1), . . . , (σ ′n ,ωn)⌋︀ by de-
laying the release time of each job by γk , i.e., ∀j ≤ n ∶ σ ′j = σj + tk .
Obviously, 𝒜′ is a valid job sequence of τA since the engine config-
uration of τA after γk isℳk . Moreover, ∀t ≥ 0, 𝒜′.I(t) = 𝒜.I(t).
Hence, R(τi ,𝒜′) = R(τi ,𝒜) > Di , and R(τi ,τA) > Di . □

3.2.4 sAVR task based sufficient-only analysis S3. We now
generate another sAVR task τ S3A which permits a sufficient-only
analysis. Specifically, for τi under analysis with an analysis window
∆i , the WCET of the job of τ S3A released at speed ω is set as the
maximum WCET of τA released at ω over ∆i

𝒮𝒞S3(ω) = max
l ∶γl ∈∆i

{C j ⋃︀ ω ∈ (ωm−1l ,ωml ⌋︀ and Ξml = Λ
j} (8)

Obviously the interference function of τ S3A upper bounds that of
τA: for any job sequence 𝒜 = (︀(σ1,ω1), . . . , (σn ,ωn)⌋︀ ∈ τA, we can
construct another one 𝒜′ ∈ τ S3A that has the same job release times
and engine speeds as 𝒜. It is easy to see that ∀t ≥ 0, 𝒜.I(t) ≤
𝒜′.I(t). Hence, S3 must be a sufficient-only analysis.

3.2.5 Utilization-based sufficient-only analysis S2. Given the
sAVR task τ S3A , we present a utilization-based schedulability test.
Specifically, Davis et al. [11] propose an upper bound on the inter-
ference function of a job sequence for an sAVR task τ S3A as

∀t ≥ 0,∀𝒜 ∈ τ S3A ∶ 𝒜.I(t) ≤ UA ⋅ t +Cmax
A (1 −UA) (9)



where UA and Cmax
A denote the maximum utilization and maximum

WCET of τ S3A , respectively. However, the direct calculation of UA is
complicated, and an upper-bound on UA can be calculated as [7]

Uub
A = max

ω

𝒞max(ω)
T (ω,αmax) ≥ UA (10)

where T (ω,αmax) is the minimum time to rotate Θ angles with the
initial speed ω and maximum acceleration αmax. They also show
that the lower-bound utilizationU lb

A can be achieved by the so-called
steady-state utilization, i.e.,

U lb
A = max

ω

𝒮𝒞S3(ω)
Tmin(ω)

≤ UA (11)

where Tmin(ω) is the minimum inter-release time between two
consecutive jobs both of which are released at speed ω [18, 20].

Since U lb
A ≤ Umax ≤ Uub

A , by Equation (9), the interference
function of any job sequence of τ S3A , and consequently that of τA, is
bounded by Uub

A ⋅ t +Cmax
A (1 −U lb

A ). Hence, using this bound on
the interference of τ S3A provides a sufficient-only analysis.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate the benefits of dynamic switching speed
reconfiguration on engine control performance, as well as the ef-
ficiency of the proposed optimization algorithm. We adopt the en-
gine parameters in [2]: (i) the minimum/maximum engine speed
is 500⇑6500 rpm; (ii) the maximum acceleration/deceleration is
1.62 × 10−4 rev/msec2. Hence, the engine needs 35 revolutions to
accelerate/decelerate between the minimum and maximum speeds.
We compare a list of optimization algorithms as follows:

● Ours-hybrid (resp. Ours-dAVR): Our proposed optimization al-
gorithm to dynamically adjust the switching speeds, while using
the proposed hybrid approach (resp. the one in [20]) for schedula-
bility analysis.
● Heuristic: The backward search optimization algorithm from [2],

which assumes full knowledge on the driving cycle. The schedu-
lability analysis is from [9], which is exact for sAVR tasks. The
original algorithm [2] simply returns failure when a calculated
switching speed is less than the minimum engine speed. In such
cases, we set its performance to be zero.
● Heuristic-improved: A small improvement over Heuristic. That

is, when the original algorithm [2] fails to find a schedulable
solution, we try to use a single execution mode that has the best
performance while keeping the system schedulable.
● PERF-UB: The performance upper bound [2], which provides an

upper bound on the optimal performance.

We note that there is another optimization algorithm (plain branch-
and-bound) for sAVR task model in [2]. We compare with Heuris-
tic only, since (i) Heuristic is very close to branch-and-bound in
the optimized performance; (ii) branch-and-bound takes a long time
(on average 10 minutes on an Intel i7 3.2GHz processor), which is
ill-suited for online adjustment of engine switching speeds.
Engine Speed Profiles. We use ten standard driving cycles to evalu-
ate the performance: IDC, NEDC, FTP-75, HWFET, ECE 15, JA 10-
15, EUDC, US SC03, ARTEMIS ROAD, and ARTEMIS URBAN.
IDC is available from [4], while the rest is from [24]. Given a driving
cycle, we use the commercial vehicle simulator AVL Cruise [5] to
get the corresponding engine speed profile.

Engine Control Performance Functions. Like [2], we consider
two types of engine control performance rate functions, which may
be used to approximate a set of engine control performance metrics,
such as power, fuel consumption, and emissions. The first type of
performance functions is a constant function independent from the
engine speed: Pc(ω) = j, where j is a constant.The second is an
exponential function of the engine speed Pe(ω) = k1 ⋅e−k2⇑ω , where
k1 and k2 are two constant coefficients.

For constant functions, j is selected uniformly from (︀jmin, jmax⌋︀
with a minimum separation of 1 for each control strategy. For ex-
ponential functions, k1 is always set to 1, while k2 is generated
as follows: the seed value k2,sed of k2 is randomly selected fol-
lowing a uniform distribution (︀logkmin

2 , logkmax
2 ⌋︀, and the actual

performance coefficient k2 is computed as k2 = ek2,sed .
Task System Generation. We leverage an industrial case study [3],
which contains an AVR task and 19 periodic tasks with period rang-
ing from 700µs to 200ms. The task priorities are given, where the
AVR task has an overall priority order of 13 (hence with a higher
priority than 7 periodic tasks). The task WCETs are unknown, but
the number of instructions of the periodic tasks is provided.

We then follow [2] to generate the rest of the task parameters. The
WCETs of periodic tasks are assigned proportionally to the number
of instructions, such that their total utilization is 75%. The AVR
task implements six different control strategies. Since the switching
speeds and consequently the inter-release times of the AVR task are
design variables, its utilization is also unknown. Hence, we generate
the WCET of each control strategy as a product of a base WCET and
a scaling factor η. The base WCETs of these strategies are uniformly
selected from (︀100, 1000⌋︀µs with a minimum step of 100µs. The
scaling factor η is used to control the computational requirement
from the AVR task. The AVR task has an angular period/deadline of
one full revolution of the crankshaft.

We generate 500 random task sets where we filter out the sets that
are unschedulable under any switching speeds configuration, 30 per-
formance functions, and apply the methods over the aforementioned
10 driving cycles. Hence, each point in the following figures is the
average over 500 × 30 × 10 = 150, 000 different combinations of task
set, performance function, and driving cycle.
Performance Comparison. We first compare the average control
performance of the optimization methods, normalized by the upper
bound PERF-UB. Hence PERF-UB is omitted from the figures.

For constant performance functions, we vary the scaling factor η
from 3 to 10 with a step of 1, and set jmin = 1, jmax = 50. The per-
formances of the optimization algorithms are illustrated in Figure 2.
For exponential functions, Figures 3 shows the results where we fix
kmin
2 = 50 rpm, kmax

2 = 100 ⋅ kmin
2 . Figure 4 shows how the methods

perform under different ratios of kmax
2 ⇑kmin

2 , by fixing the scaling
factor η = 8 and vary kmax

2 ⇑kmin
2 from 10 to 300 (the higher the ratio,

the larger the difference between the performance functions).
As in the figures, Ours-hybrid is always approaching to the per-

formance upper bound PERF-UB (hence is always close to optimal).
In contrast, Heuristic and Heuristic-improved both are substan-
tially suboptimal, even if they know the complete driving cycle a
priori. This is because of their incapability to capture the dynamics in
a driving cycle. Meanwhile, as in Figure 5 for systems with varying
scaling factor η, Heuristic-improved improves upon Heuristic, and
(like Ours-hybrid) always finds a schedulable solution.
Runtime Comparison. We now demonstrate how the hybrid analy-
sis approach improve the efficiency while keeping the same solution



Figure 2: Normalized performance vs. scal-
ing factor η for constant functions.

Figure 3: Normalized performance vs. scal-
ing factor η for exponential functions.

Figure 4: Normalized performance vs. ra-
tio kmax

2 ⇑kmin
2 for exponential functions.

Figure 5: Ratio of schedulable solutions vs.
scaling factor η for constant functions.

Figure 6: Average runtime vs. scaling fac-
tor η.

Figure 7: Maximum runtime vs. scaling
factor η.

quality. We measure the runtime on a low-cost Raspberry Pi 3 [21]
with a 1.2GHz 64-bit quad-core CPU and 1GB memory.

Figures 6 and 7 illustrate the average and maximum runtimes
with varying scaling factor η. Overall, each of the analyses S1-S3
can effectively reduce the runtime and make our approach suitable
for online usage. On average Ours-hybrid is 5.0× faster than Ours-
hybrid-w/o-S1 (the analysis without S1), while the maximum run-
time is 13.5× smaller. For S2, the speedups on average and maximum
runtimes are 1.1× and 1.4× respectively. For S3, the speedups are
2.1× and 10.6× respectively. Hence, S1-S3 reduce the average and
maximum runtimes of Ours-hybrid to 250µs and 2.2ms respectively,
much smaller than the typical driving cycle sample time (500ms).

5 CONCLUSION
In this paper, we propose an approach to dynamically adjust the
switching speeds in engine control systems. Our approach contains
an effective heuristic that can obtain control performances close to
the upper bound, and a hybrid set of schedulability analyses that
significantly reduce the runtime while keeping the same solution
quality. Experimental results demonstrate that our approach provides
much better solutions than static configuration of switching speeds
while being feasible for online usage.
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