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We propose a new mechanism of friction in resonantly driven vibrational systems. The form of the
friction force follows from the time- and spatial-symmetry arguments. We consider a microscopic
mechanism of this resonant force in nanomechanical systems. The friction can be negative, leading to the
onset of self-sustained oscillations of the amplitude and phase of forced vibrations, which result in a
frequency comb in the power spectrum.
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The physics of friction keeps attracting attention in
diverse fields and at different spatial scales, from cold
atoms to electrons on helium to locomotion of devices and
animals [1–6]. An important type of systems where friction
plays a critical role and which has been studied in depth,
both theoretically and experimentally, are vibrational sys-
tems. The simplest form of friction in these (and many
other) systems is viscous friction. For a vibrational mode
with the coordinate q, the viscous friction force is ∝ _q. It
describes a large number of experiments on various kinds
of vibrational systems, nano- and micromechanical modes
and electromagnetic cavity modes being examples of the
particular recent interest [7,8].
In vibrational systems, viscous friction is often called

linear friction, to distinguish it from nonlinear friction, which
nonlinearly depends on q and _q. Phenomenologically, the
simplest nonlinear friction force is ∝ q2 _q (the van der Pol
form [9]) or ∝ _q3 (the Rayleigh form [10]). Both these forms
of the force are particularly important for weakly damped
systems. This is because in such systems the vibrations are
nearly sinusoidal, whereas both forces have resonant com-
ponents which oscillate at the mode frequency. Moreover,
both forces lead to the same long-term dynamics of a weakly
dampedmode and in this sense are indistinguishable [11,12].
External driving of vibrational modes can modify their

dissipation. The change has been well understood for a
periodic driving tuned sufficiently far away from the mode
eigenfrequency. Such driving can open new decay channels
where transitions between the energy levels of the mode are
accompanied by absorption or emission of excitations of
the thermal reservoir and a drive quantum ℏωF, with ωF
being the drive frequency [13]. This can lead to both linear
[14,15] and nonlinear friction [16,17]. It has been also
found that, in microwave cavities and nanomechanical
systems, resonant driving can reduce linear friction by
slowing down energy transfer from the vibrational mode to
two-level systems due to their saturation [18–20].

In this Letter, we consider nonlinear friction induced by
resonant driving, which significantly differs from other
forms of friction. We show that, in nanomechanical
systems, the proposed friction can become important
already for a moderately strong drive and can radically
modify the response to the drive, including the onset of
slow oscillations of the amplitude and phase of the driven
mode with the increasing drive.
Phenomenologically, a mode with inversion symmetry

driven by a force FðtÞ ¼ F cosωFt can experience a
resonant induced friction force (RIFF) of the form

fRIFF ¼ −ηRIFFFðtÞq _q: ð1Þ

Such force has the proper spatial symmetry, as it changes
sign on spatial inversion (q → −q and F → −F) and is
dissipative, as it changes sign on time inversion t → −t.
The driving frequency ωF is assumed to be close to the
mode eigenfrequency ω0, so that the force fRIFF has a
resonant component, as FðtÞ, qðtÞ, and _qðtÞ all oscillate at
frequencies equal or close to ωF. The friction coefficient
ηRIFF is undetermined in the phenomenological theory. It
can be positive or negative, as the very onset of the force
fRIFF is a nonequilibrium phenomenon. Therefore, fRIFF
can either increase or decrease the decay rate, or even make
it negative, in a certain parameter range.
The form of the RIFF reminds the form of the van der Pol

friction force, except that q2 is replaced by FðtÞq. In some
sense, the force FðtÞ is “smaller” than the displacement q
near resonance: this is the well-known effect that a small
resonant force leads to large vibration amplitude for weak
damping. Therefore, fRIFF can be significant if there is a
mechanism that compensates the relative smallness of FðtÞ.
For nanomechanical resonators, a simple microscopic

mechanism of the RIFF is heating. The absorbed power
FðtÞ _q leads to a temperature change δT, which can be
relatively large due to the small thermal capacity of a
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nanoresonator (generally, the temperature change depends
on the coordinates in the resonator [21]). In turn, the
temperature change modifies the resonator eigenfrequency
ω0, e.g., due to thermal expansion, cf. [26,27]. To
the lowest order in δT, the eigenfrequency change is
δω0 ¼ −λωδT. The coefficient λω depends on the material
and the spatial structures of the mode and the temper-
ature field.
In many cases, the relaxation time of the temperature in

the resonator is much longer then the vibration period
tF ¼ 2π=ωF. Then the temperature change is proportional
to the period-averaged power

δTðtÞ ¼ λT ½FðtÞ _qðtÞ�av ≡ λTt−1F

Z
tþtF

t
dt0Fðt0Þ _qðt0Þ;

(in fact, δT is spatially nonuniform [21]). As a result, the
restoring force −mω2

0q is incremented by fT,

fTðtÞ ¼ 2mω0λωλT ½FðtÞ _qðtÞ�avqðtÞ: ð2Þ

The force fTðtÞ is a specific form of the RIFF. The
thermal mechanism is not the only RIFF mechanism, but
it is often important, and moreover, the ratio of the
conventional nonlinear friction to the RIFF contains a
small parameter [21].
We now consider the dynamics of a driven nanoresonator

in the presence of RIFF. Nanoresonators are often well
described by the Duffing model, which takes into account
quartic nonlinearity [11], but the analysis below immedi-
ately extends to other nonlinearity mechanisms, cf. [28].
The Hamiltonian of the Duffing oscillator in the absence of
coupling to the thermal reservoir is

H0 ¼
1

2
ðp2 þ ω2

0q
2Þ þ 1

4
γq4 − qF cosωFt: ð3Þ

Here p is the oscillator momentum. We scaled the variables
so that the mass ism ¼ 1. For concreteness, we assume that
the Duffing nonlinearity parameter γ is positive. The
driving is assumed resonant, jωF − ω0j ≪ ω0, and com-
paratively weak, so that jγjhq2i ≪ ω2

0.
To analyze the behavior on the timescale long

compared to ω−1
F , one can change to the rotating frame

and introduce slowly varying in time canonically conjugate
coordinate q0 and momentum p0 (the analogs of the
quadrature operators [7])

qðtÞ þ iω−1
F pðtÞ ¼ ðωFÞ−1=2ðq0 þ ip0Þ expð−iωFtÞ:

In the standard rotating wave approximation (RWA), from
Eq. (3) we obtain Hamiltonian equations for q0, p0 with the
time-independent Hamiltonian HRWA

ð _q0ÞH ¼ ∂p0
HRWA; ð _p0ÞH ¼ −∂q0HRWA;

HRWAðq0; p0Þ ¼ −
1

2
δωðq20 þ p2

0Þ þ
3γ

32ω2
F
ðq20 þ p2

0Þ2

− Fq0=2
ffiffiffiffiffiffi
ωF

p
; δω ¼ ωF − ω0: ð4Þ

The value of HRWA gives the quasienergy of the driven
nanoresonator in the RWA.
It is well known how to incorporate linear friction into

the RWA equations of motion starting from both a micro-
scopic formulation and the phenomenological friction force
−2Γ _q [29–32]. An extension to the RIFF is straightforward.
Keeping only smoothly varying terms in the equations for
_q0; _p0, in the case of the heating-induced RIFF (2) we
obtain the following equations of motion

_q0 ¼ −Γq0 − JTp2
0 þ ∂p0

HRWA;

_p0 ¼ −Γp0 þ JTq0p0 − ∂q0HRWA: ð5Þ

Here JT ¼ ω1=2
F FλωλT=2. In Eq. (5), we have disregarded

noise. It is typically weak in weakly damped nanoresona-
tors and leads primarily to small fluctuations about the
stable states of forced vibrations and occasional switching
between the stable states in the range of bistability,
cf. [32–38] and references therein; here we do not consider
these effects.
Parameter JT that characterizes the RIFF increases

with the driving amplitude F; the RIFF also increases with
the vibration amplitude A ¼ ½ðq20 þ p2

0Þ=ωF�1=2. From
Eq. (5), the effects of the RIFF become pronounced for
jJTAjω1=2

F ∼ Γ and should be seen already for a moderately
strong drive if the decay rate Γ due to the linear friction
is small.
If both the linear friction and the RIFF can be dis-

regarded, the values ðqst; pstÞ of ðq0; p0Þ at the stationary
states of forced vibrations are given by the conditions
∂q0HRWA ¼ ∂p0

HRWA ¼ 0, which reduce to equations

3γ

8ω2
F
q3st − δωqst ¼ F=2

ffiffiffiffiffiffi
ωF

p
; pst ¼ 0: ð6Þ

The equation for qst has one real root in the range of F; δω
where the oscillator is monostable in the weak dissipation
limit or three real roots in the range of bistability. In the
latter range, of primary interest for the analysis of the RIFF
is the root with the maximal qst, and in what follows qst
refers to this root. For small Γ and JT ¼ 0 it corresponds to
a stable state of forced vibrations at frequency ωF, as does
also the real root qst in the range of monostability [39]. In
the both cases, the considered ðqst; pstÞ corresponds to the
minimum of HRWA.
For JT > 0, the RIFF can lead to an instability of the

forced vibrations. Indeed, to the leading order in Γ; JT , the
sum of the eigenvalues of Eq. (5) linearized about the stable
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state is −2Γþ JTqst. When this sum becomes equal to zero,
the system undergoes a supercritical Hopf bifurcation. This
means that, for JTqst > 2Γ, the state of forced vibrations
with constant amplitude and phase becomes unstable.
The amplitude and phase oscillate in time, which corre-
spond to oscillations of the system in the rotating frame
about ðqst; pstÞ.
For small Γ and JTqst (the condition is specified below),

one can think of the steady motion in the rotating frame as
occurring with a constant value of the Hamiltonian HRWA
along the Hamiltonian trajectory (4); see Fig. 1(a). This
value is determined by the balance of the damping ∝ Γ and
the RIFF. The dissipative losses ∝ Γ drive HRWA toward its
minimum, whereas the RIFF pumping increases HRWA.
The stable value of HRWA can be found by averaging
over the trajectories (4) the equation of motion for
HRWAðq0; p0Þ, which follows from Eq. (5). We denote
such averaging by an overline

UðtÞ ¼ 1

TðHRWAÞ
Z

tþTðHRWAÞ

t
dt0Uðt0;HRWAÞ;

where Uðt;HRWAÞ is a function calculated along the
trajectory (4) for a given value of HRWA, and TðHRWAÞ
is the period of motion along this trajectory. After straight-
forward algebra, we obtain from Eq. (5)

dHRWA=dt ¼
1

TðHRWAÞ
Z
SðHRWAÞ

dq0dp0ð−2Γþ JTq0Þ:

ð7Þ

Here, SðHRWAÞ is the area inside the Hamiltonian trajec-
tory (4) with a given HRWA.
From Eq. (7), the condition of the balance of gain and

loss that gives the stable value of HRWA is

ðJTqst=2ΓÞK ¼ 1; ð8Þ

where

K ¼ q−1st

Z
SðHRWAÞ

q0dq0dp0

�Z
SðHRWAÞ

dq0dp0

�
−1
: ð9Þ

Parameter K is the ratio of the rates of decay due to the
linear friction and gain due to the RIFF. The dependence of
K on HRWA is illustrated in Fig. 1(b). Figure 1 is plotted in
the scaled variables Q0, P0 and for the scaled Hamiltonian
hRWA ¼ ð6γ=F4Þ1=3HRWA,

hRWA¼ 1

4
ðQ2

0þP2
0Þ2−

1

2
β−1=3ðQ2

0þP2
0Þ−Q0;

Q0¼ q0=ζ; P0¼p0=ζ; ζ¼ð4F=3γÞ1=3ω1=2
F : ð10Þ

Function hRWA depends only on one dimensionless param-
eter, the scaled strength of the driving field

β ¼ 3γF2=32ω3
FðδωÞ3: ð11Þ

As seen fromFig. 1(b) and also fromEq. (9),K ¼ 1where
HRWA is at its minimum. Importantly, K monotonically
decreases with increasingHRWA in a broad range ofHRWA.
This decrease holds both in the range of β where the
oscillator is bistable and where it is monostable in the
absence of the RIFF. Therefore, in the presence of the RIFF,
once the condition of the onset of oscillations in the rotating
frame is met, JTqst > 2 Γ, these oscillations are stabilized at
the value of HRWA given by K ≡ KðHRWAÞ ¼ 2 Γ=JTqst.
We emphasize that the frequency of these oscillations
2π=TðHRWAÞ is small compared to ωF, yet it exceeds Γ
and JTqst.
Parameter JTqst depends on the amplitude of the driving

field F and the frequency ωF. By varying F and ωF one can
control the stable value of HRWA and thus the amplitude
and frequency of the oscillations in the rotating frame.
Remarkably, these oscillations become significantly non-
sinusoidal already for comparatively small difference
between HRWA and its minimal value. This is seen in
Fig. 1(a). The profoundly nonelliptical trajectories are a
signature of nonsinusoidal vibrations. Formally, the oscil-
lations are described by the Jacobi elliptic functions [40],
which allows finding their Fourier components in the
explicit form [21].

The instability of the forced vibrations at the drive
frequency and the onset of nonlinear self-sustained oscil-
lations in the rotating frame lead to a qualitative change of
the power spectrum of the driven oscillator. There emerge
multiple equally spaced peaks on the both sides of ωF that
correspond to the vibration overtones in the rotating frame.
This frequency comb effect occurs for an isolated mode and
is thus qualitatively different from the frequency combs
resulting from a linear [41] or nonlinear [42] resonance

(a)
(b)

FIG. 1. (a) The Hamiltonian trajectories (4) for different values
of the scaled RWA energy hRWA ¼ ð6γ=F4Þ1=3HRWA, Eq. (10).
The scaled field strength defined in Eq. (11) is β ¼ 2=27. The
driven oscillator is bistable for this β and shown are the trajectories
that circle the large-amplitude state at the minimum of hRWA
ðQ0 ≈ 1.72; P0 ¼ 0Þ. This state becomes stable in the presence of
weak linear friction. For other values of β, the trajectories not too
close to the minimum of hRWA also have a horse-shoe form.
(b) The scaled ratio of the decay and gain rates K, Eq. (9), as a
function of hRWA.
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between vibrational modes in the presence of Duffing
nonlinearity.
The spacing between the frequency comb peaks

2π=TðHRWAÞ is small compared to ωF. The widths of
the peaks are determined by phase diffusion due to the
noise in a nanoresonator, in particular, thermal fluctuations
ofHRWA around its stable value and the related fluctuations
of the frequency 2π=TðHRWAÞ. These fluctuations are
efficiently averaged out by the relaxation, the process
reminiscent of motional narrowing in nuclear magnetic
resonance [32,43]. Therefore, the widths of the peaks
should be much smaller than the damping rate Γ [44].
In conclusion, we have shown that, from the symmetry

and resonance arguments, a resonantly driven vibrational
mode can experience a specific friction force. This force,
the RIFF, is nonlinear in the mode coordinate and explicitly
depends on the driving force. The RIFF can be negative. In
this case, already for a moderately strong resonant drive, it
can lead to an instability of forced vibrations of a weakly
damped nonlinear mode, qualitatively modifying the
response of such a mode to the drive. The instability
causes the onset of self-sustained oscillations of the
vibration amplitude and phase. In turn, this leads to a
frequency comb in the power spectrum of the driven mode.
The effect is general and may emerge in various vibrational
systems. We have shown that, in nanomechanics, an
important microscopic mechanism of the RIFF is associ-
ated with the driving-induced spatially nonuniform heating
of a nanoresonator and the resulting change of the mode
eigenfrequency.
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I. THERMALLY INDUCED NONLINEAR
FRICTION

Here we discuss the temperature change and the result-
ing change of the vibration eigenfrequency of a resonantly
driven nanomechanical resonator. In the units used in
the main text, where we set the effective mass equal to
unity, the displacement at the mode antinode has dimen-
sion [q] = g1/2cm, whereas the resonant force has dimen-
sion [F ] = g1/2cm/s2. If we consider a flexural mode in
a quasi one-dimensional beam or a string, the displace-
ment as a function of the coordinate x along the beam is

u(x, t) = ρ
−1/2
1D φ(x)q(t), where ρ1D is the density per unit

length and φ(x) gives the shape of the mode,
∫
φ2dx = 1.

The energy in the driving field is −
∫
dxf(x, t)u(x, t),

where f(x, t) is the “true” force per unit length. If we
think of the force-induced term in the equation of mo-
tion as [ρ1Dü(x)]F = f(x, t), then we have for the force
in the equation for q [Eq. (3) of the main text] the ex-

pression F (t) = ρ
−1/2
1D

∫
dx f(x, t)φ(x). Experiments on

nanomechanical systems can be usually well described if
one assumes that the force f(x, t) can be factored into

a space- and time-dependent parts, f(x, t) = f̃sp(x)ft(t).
Then

F (t) = ρ
−1/2
1D ft(t)

∫
dx fsp(x)φ(x). (1)

The power dissipated by the force per unit length is
f(x, t)∂tu(x, t). For a uniform isotropic resonator, the
full equation for the increment of the temperature field
is

Cr∂tδT = kr∂
2
xδT + f(x, t)∂tu(x, t)/S, (2)

where Cr is the specific heat of the resonator per unit
volume, kr is the thermal conductivity, and S is the
cross-section area. We assume here that the tempera-
ture is constant across the resonator; an extension to
a more general case, including the Zener thermoelastic
relaxation [1] (see also [2]) is beyond the scope of this
paper.

Equation (2) has to be complemented by the bound-
ary conditions. Often it is assumed that the temperature
at the boundary of a nanoresonator is fixed by the sup-
port [3], a condition that applies if the support has a
large mass and a high thermal conductivity, for example.
Equation (2) can be then solved by expanding δT (x, t)
in the orthogonal eigenmodes Tn(x) of the temperature

field in the absence of the drive,

(kr/Cr)∂2
xTn = −λnTn,

∫
dxTn(x)Tm(x) = δnm

(the analysis can be easily extended to a more compli-
cated geometry of the resonator and to more complicated
boundary conditions than Tn = 0).

The major contribution to the temperature change
comes from the mode Tn(x) that has the form close to
that of f(x)φ(x). It depends on the boundary conditions
for the temperature field, the spatial structure of the dis-
placement field of the mode φ(x), and also the coordinate
dependence of the driving field.

For dielectric nanoresonators the thermal conductiv-
ity is comparatively low. At room temperature kr ∼
106 erg/(cm · s ·K), and the specific heat is Cr ∼
107 erg/(cm3 ·K). Then for the resonator length lr ∼
10 µm, the relaxation time of low-lying thermal modes
is τT ∼ Crl

2
r/kr ∼ 10−5 s. This time significantly ex-

ceeds the period (reciprocal frequency) of the vibrational
modes, which is typically below 10−6− 10−7 s. Then the
temperature field averages out the oscillating terms in
f(x, t)∂tu(x, t) in Eq. (2). At the same time, τT is typi-
cally much shorter than the relaxation times of low-lying
vibrational modes, which often exceeds the vibration pe-
riod by a factor > 104. In this important case the tem-
perature adiabatically follows the vibration amplitude.

The driving-induced temperature change is then of the
form δT (x, t) =

∑
cn(t)Tn(x) with

cn = ρ
−1/2
1D (SCr)−1λ−1

n

∫
dxTn(x)φ(x)[f(x, t) q̇]av, (3)

where [. . .]av indicates averaging over the vibration pe-
riod. For low-lying vibrational modes and for a weakly
nonuniform driving force f(x, t) the major contribution
to δT (x, t) comes from low-lying temperature modes,
with λn ∼ 1/τT . Then the magnitude of the temper-
ature change averaged over the resonator is

δT ∼ l2rk−1
r S−1 [F (t)q̇(t)]av.

We note that the assumption of the temperature be-
ing constant in the resonator cross-section requires that
Crl

2
⊥/kr (l⊥ is the typical transverse dimension) be much

shorter than the vibration period, the condition well sat-
isfied for the typical l⊥ . 0.1 µm.

The temperature change causes a change of the vi-
bration frequency. There are several mechanisms of this
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effect [4]. One of them is the coupling of the mode to the
phonons in the nanoresonator that is nonlinear in the
mode strain. This coupling is fairly general. It emerges
already from the combination of the standard cubic cou-
pling of the considered low-frequency mode (in particu-
lar, a flexural mode) to acoustic phonons and the geomet-
ric nonlinearity, but it also comes from other terms in the
nonlinear Hamiltonian of the vibrations in the resonator.

Phenomenologically, the mechanism can be described
by taking into account the term in the free energy den-
sity of the nanoresonator δF , which is quadratic in the
linear strain tensor ε̂(r) and linear in the temperature
change δT (r). A simplified form of this term in the one-

dimensional model for a flexural mode is

δF = −γF
∫
dx δT (x)(∂2

xu)2, (4)

where γF is the coupling constant; it is determined by the
thermal expansion coefficient, the specific heat, and the
resonator geometry [4]. The elastic part of the free energy
in the harmonic approximation can be written as FE =
1
2γω

∫
dx [∂2

xu]2 with γω determined in the standard way
by the elasticity and the geometry [5]; this term gives
the vibration frequency ω0 for constant temperature. It
corresponds to the potential energy of the mode written
as ω2

0q
2/2.

Then the change of the vibration frequency due to the temperature change is

δω0 = −(ω0ρ1D)−1γF

∫
dx δT (x)(∂2

xφ)2. (5)

From Eqs. (1), (3), and (5) we find that, for a slow thermal relaxation, the resonant driving induced force in the
equation for q(t) is

fT =GT [F (t)q̇(t)]avq(t), GT = 2γF (ρ1DSCr)−1
∑
n

λ−1
n

∫
dxTn(x)φ(x)fsp(x)

×
∫
dy Tn(y)(∂2

yφ)2

[∫
dxfsp(x)φ(x)

]−1

. (6)

The coefficient GT gives the coefficient 2mω0λωλT in Eq. (2) of the main text, with the account taken of the spatial
dependence of the temperature change.

It should be noted that the coupling (4) also leads to
the standard nonlinear friction, with the friction force
that corresponds to q2q̇ or q̇3 in the phenomenological
picture [4]. However, in the considered case of slow ther-
mal relaxation this force has an extra factor ∝ (τTω0)−2.
Therefore it can be small compared to the force fT .

In prestressed nanoresonators, an important mecha-
nism of the coupling of the frequency and temperature
changes is related to the change of the tension due to
thermal expansion, cf. [3] and references therein. It can
be analyzed in a way similar to that described above and
leads to a qualitatively similar result. If the thermal ex-
pansion coefficient is positive, this mechanism leads to
the decrease of the vibration frequency with an increas-
ing drive strength, as does the geometric nonlinearity.

II. NONLINEAR OSCILLATIONS IN THE
ROTATING FRAME AND THE FREQUENCY

COMB IN THE POWER SPECTRUM

In this section we discuss the power spectrum of the os-
cillator when the resonantly induced friction force is neg-
ative and compensates the damping, so that, in the rotat-
ing frame, the oscillator vibrates with a given value of its
Hamiltonian HRWA, i.e., with a given quasienergy. This

analysis is not limited to nanomechanical resonators. It
applies to any resonantly driven weakly nonlinear oscil-
lator with Duffing (or Kerr, as it is called in quantum
optics) nonlinearity.

The spectral density of fluctuations of the displacement
q(t) of the resonantly driven oscillator near the driving
frequency ωF has the form

S(ω) =
1

2tl

∣∣∣∣∫ tl

−tl
dt q(t)eiωt

∣∣∣∣2
≈ 1

8tlωF

∣∣∣∣∫ tl

−tl
dt [q0(t) + ip0(t)]ei(ω−ωF )t

∣∣∣∣2 (7)

where it is implied that tl →∞. We have assumed that
|ω− ωF | � ωF and expressed q(t) in terms of the slowly
varying in time quadratures q0(t), p0(t) of the oscillator,
or equivalently, the coordinate and momentum in the
rotating frame, see the main text. In other words, we
are using the rotating wave approximation, in which the
variables q0(t), p0(t) do not contain fast-oscillating terms
∝ exp(±iωF t).

The Hamiltonian equations for q0(t), p0(t), see Eq. (4)
and Fig. 1(a) of the main text, show that q0, p0 are peri-
odic functions of time, for a given value of HRWA. There-
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fore we can write

[q0(t) + ip0(t)]H =
∑
m

zme
imΩt. (8)

Here, [·]H indicates that the value is evaluated for a
given HRWA; Ω ≡ Ω(HRWA) is the oscillation frequency
in the rotating frame, i.e., the frequency of the oscilla-
tions of the amplitude and phase of the forced vibra-
tions, Ω � ωF . The Fourier components zm are also
determined by HRWA. For a resonantly driven Duffing
oscillator they were discussed in the context of quantum
theory of interstate switching in the range of bistabil-
ity of the oscillator [6]. However, the expressions for zm
were not presented and have not been later discussed for
the large-amplitude state in the range of bistability, nor
have they been discussed where the oscillator has only
one stable state.

From Eqs. (7) and (8), the power spectrum of the
driven oscillator for a given HRWA is S(ω) = SH(ω),

SH(ω) =
π

2ωF

∑
m

|zm|2δ(ω − ωF +mΩ). (9)

The spectrum (9) is a frequency comb. It consists of a
set of equidistant peaks separated by Ω. The intensity
(area) of the peaks is given by the Fourier components
zm; note that, generally, z−m 6= z∗m.

The calculation of the spectrum can be conveniently
done by switching from the variables q0, p0 to variables

Q0 = q0/ζ, P0 = p0/ζ with ζ = (4F/3γ)1/3ω
1/2
F , see

Eq. (10) of the main text. The Hamiltonian equations
of motion for the variables Q0, P0 in dimensionless time
τ = β1/3(δω)t read

[dQ0/dτ ]H = ∂P0
hRWA ≡ P0(Q2

0 + P 2
o − β−1/3), (10)

[dP0/dτ ]H = −∂Q0
hRWA ≡ −Q0(Q2

0 + P 2
0 − β−1/3) + 1,

where β = 3γF 2/32ω3
F (δω)3 is the scaled intensity of the

driving force. Here we have used the explicit form of the
Hamiltonian hRWA given by Eq. (10) of the main text.

As a next step, we introduce an auxiliary variable X(τ)
defined by the expression

X(τ) = Q2
0(τ) + P 2

0 (τ)− β−1/3. (11)

From the expression for hRWA we find

X2(τ) = 4Q0(τ) + 4hRWA + β−2/3. (12)

From Eqs. (10) - (12) we obtain an equation for X(τ) in
the form

dX

dτ
= 2P0

= ±1

2

{
(a1 −X)(X − a2)[(X − a3)2 + a2

4]
}1/2

, (13)

with a1 > a2 being the real roots and a3 ± ia4 being the
complex roots of the equation

(x2 − β−2/3 − 4hRWA)2 − 16x− 16β−1/3 = 0. (14)

As seen from this equation, a3 = −(a1 + a2)/2. Also,
a1 > |a2|.

We are interested in the oscillating trajectory with
a2 ≤ X(τ) ≤ a1; the sign of dX/dτ in Eq. (13) is changed
at the turning points a1, a2. It follows from Eq. (13) (see
[7], 3.145.2) that X(τ) is expressed in terms of the Jacobi
elliptic functions as

X(τ) =
a1b2 + a2b1 − (a1b2 − a2b1)cn(τ ′|mh)

b1 + b2 + (b1 − b2)cn(τ ′|mh)

b1 = |a3 + ia4 − a1|, b2 = |a3 + ia4 − a2|
mh = [(a1 − a2)2 − (b1 − b2)2]/4b1b2 (15)

where τ ′ = (b1b2)1/2τ/2.
The Jacobi elliptic function cn(τ ′|mh) has a real period

4K(mh), where K(mh) is the complete elliptic integral
of the first kind. Therefore the period of vibrations with
a given quasienergy HRWA is

T(HRWA) ≡ 2π

Ω
= 8K(mh)/β1/3(b1b2)1/2(δω). (16)

This expression describes the dependence of the spacing
between the frequency comb lines Ω on the quasienergy,
for given intensity and frequency of the drive.

From Eq. (8), the Fourier components zm that deter-
mine the intensity of the comb lines are given by the
expression

zm =
ζ

4K

∫ 4K

0

dτ ′(Q0 + iP0) exp(−imπτ ′/2K) (17)

where K ≡ K(mh); in what follows we use the conven-
tional notation K for the elliptic integral, it should not
be confused with the parameter K used in the main text
for the ratio of the friction and gain coefficients.

Equations (11) - (15) show that Q0, P0 are elliptic func-
tions. As functions of τ ′, along with the real period
4K(mh), they have the imaginary period 4iK ′(mh) ≡
4iK(1 − mh). Therefore the Fourier components (17)
can be calculated by integrating over a rectangular con-
tour in the complex τ ′-plane that goes from −2K to 2K,
then to 2K + 4iK ′, then to −2K + 4iK ′, and then back
to −2K. The integrals over the vertical sections of the
contour cancel, whereas on the upper horizontal section
Q0, P0 are the same as on the real axis.

Inside the contour, X(τ) has two poles. They are lo-
cated at a purely imaginary τ ′ = τ ′p

(1,2) given by the
equation

cn(τ ′p
(1,2)) = −b1 + b2

b1 − b2
, |τ ′p(1)| < |τ ′p(2)|. (18)

Near the pole X(τ) has the form

X(τ) ≈ (−1)j+1 i
(b1b2)1/2

τ ′ − τ ′p(j)
(j = 1, 2), (19)
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From Eqs. (12), (13), and (19), Q0 + iP0 has a pole of
order 2 at τ ′ = τ ′p

(2), with

Q0 + iP0 ≈ 2Q0 ≈ −
1

2

b1b2
(τ ′ − τ ′p(2))2

. (20)

One can see from the expression for the Hamiltonian
hRWA that near the pole there are no corrections to
Eq. (20) that would be ∝ (τ ′ − τ ′p(2))−1. Therefore

zm = −mπ
2ζb1b2

8K2

exp(−imπτ ′p(2)/2K)

1− exp(2mπK ′/K)
. (21)

Expression (21) reduces the problem of calculating the
frequency comb to a solution of the 4th order polyno-
mial equation (14) and the transcendental equation (18).
By construction, 0 < Im τ ′p

(2) < 4K ′. Therefore for
large m > 0 the intensities of the comb lines, which
are ∝ |zm|2, fall off as exp[−mπ(4K ′ − Imτ ′p

(2))/K].
On the other hand, for m < 0 and |m| � 1 they
fall off as exp[−|m|πImτ ′p

(2)/K]. For not too small
HRWA − (HRWA)min the spectral comb displays several
pronounced equidistant spectral lines. We note that the
|zm|2 6= |z−m|2 and the comb is therefore asymmetric.
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