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Resonantly Induced Friction and Frequency Combs in Driven Nanomechanical Systems
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We propose a new mechanism of friction in resonantly driven vibrational systems. The form of the
friction force follows from the time- and spatial-symmetry arguments. We consider a microscopic
mechanism of this resonant force in nanomechanical systems. The friction can be negative, leading to the
onset of self-sustained oscillations of the amplitude and phase of forced vibrations, which result in a

frequency comb in the power spectrum.
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The physics of friction keeps attracting attention in
diverse fields and at different spatial scales, from cold
atoms to electrons on helium to locomotion of devices and
animals [1-6]. An important type of systems where friction
plays a critical role and which has been studied in depth,
both theoretically and experimentally, are vibrational sys-
tems. The simplest form of friction in these (and many
other) systems is viscous friction. For a vibrational mode
with the coordinate ¢, the viscous friction force is o g. It
describes a large number of experiments on various kinds
of vibrational systems, nano- and micromechanical modes
and electromagnetic cavity modes being examples of the
particular recent interest [7,8].

In vibrational systems, viscous friction is often called
linear friction, to distinguish it from nonlinear friction, which
nonlinearly depends on ¢ and ¢. Phenomenologically, the
simplest nonlinear friction force is  ¢?§ (the van der Pol
form [9]) or g (the Rayleigh form [10]). Both these forms
of the force are particularly important for weakly damped
systems. This is because in such systems the vibrations are
nearly sinusoidal, whereas both forces have resonant com-
ponents which oscillate at the mode frequency. Moreover,
both forces lead to the same long-term dynamics of a weakly
damped mode and in this sense are indistinguishable [11,12].

External driving of vibrational modes can modify their
dissipation. The change has been well understood for a
periodic driving tuned sufficiently far away from the mode
eigenfrequency. Such driving can open new decay channels
where transitions between the energy levels of the mode are
accompanied by absorption or emission of excitations of
the thermal reservoir and a drive quantum Awp, with wp
being the drive frequency [13]. This can lead to both linear
[14,15] and nonlinear friction [16,17]. It has been also
found that, in microwave cavities and nanomechanical
systems, resonant driving can reduce linear friction by
slowing down energy transfer from the vibrational mode to
two-level systems due to their saturation [18-20].
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In this Letter, we consider nonlinear friction induced by
resonant driving, which significantly differs from other
forms of friction. We show that, in nanomechanical
systems, the proposed friction can become important
already for a moderately strong drive and can radically
modify the response to the drive, including the onset of
slow oscillations of the amplitude and phase of the driven
mode with the increasing drive.

Phenomenologically, a mode with inversion symmetry
driven by a force F(tf) = Fcoswyt can experience a
resonant induced friction force (RIFF) of the form

frier = —1rieeF (1)q4. (1)

Such force has the proper spatial symmetry, as it changes
sign on spatial inversion (¢ - —¢ and F — —F) and is
dissipative, as it changes sign on time inversion ¢ — —.
The driving frequency @y is assumed to be close to the
mode eigenfrequency g, so that the force frr has a
resonant component, as F(t), g(t), and g(t) all oscillate at
frequencies equal or close to wp. The friction coefficient
nrire 18 undetermined in the phenomenological theory. It
can be positive or negative, as the very onset of the force
Sfrirr 18 a nonequilibrium phenomenon. Therefore, fgripr
can either increase or decrease the decay rate, or even make
it negative, in a certain parameter range.

The form of the RIFF reminds the form of the van der Pol
friction force, except that ¢ is replaced by F(t)q. In some
sense, the force F(¢) is “smaller” than the displacement ¢
near resonance: this is the well-known effect that a small
resonant force leads to large vibration amplitude for weak
damping. Therefore, fripr can be significant if there is a
mechanism that compensates the relative smallness of F(z).

For nanomechanical resonators, a simple microscopic
mechanism of the RIFF is heating. The absorbed power
F(t)q leads to a temperature change 67, which can be
relatively large due to the small thermal capacity of a
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nanoresonator (generally, the temperature change depends
on the coordinates in the resonator [21]). In turn, the
temperature change modifies the resonator eigenfrequency
@y, e.g., due to thermal expansion, cf. [26,27]. To
the lowest order in 67, the eigenfrequency change is
owy = —4,0T. The coefficient 4, depends on the material
and the spatial structures of the mode and the temper-
ature field.

In many cases, the relaxation time of the temperature in
the resonator is much longer then the vibration period
tr = 2x/wp. Then the temperature change is proportional
to the period-averaged power

ST (1) = A[F(0a(t)]yy = 217! / " arE@)ae),

t

(in fact, oT is spatially nonuniform [21]). As a result, the
restoring force —mwéq is incremented by fr,

fr(t) = 2mood, A [F(1)q(1)],q(1). (2)

The force f7(r) is a specific form of the RIFF. The
thermal mechanism is not the only RIFF mechanism, but
it is often important, and moreover, the ratio of the
conventional nonlinear friction to the RIFF contains a
small parameter [21].

We now consider the dynamics of a driven nanoresonator
in the presence of RIFF. Nanoresonators are often well
described by the Duffing model, which takes into account
quartic nonlinearity [11], but the analysis below immedi-
ately extends to other nonlinearity mechanisms, cf. [28].
The Hamiltonian of the Duffing oscillator in the absence of
coupling to the thermal reservoir is

1
(p* + w3q*) + ~vq* — qF coswpt.  (3)

H, =
0 4

N[ =

Here p is the oscillator momentum. We scaled the variables
so that the mass is m = 1. For concreteness, we assume that
the Duffing nonlinearity parameter y is positive. The
driving is assumed resonant, |y — wy| <K @y, and com-
paratively weak, so that [y|(¢*) < 3.

To analyze the behavior on the timescale long
compared to wy!, one can change to the rotating frame
and introduce slowly varying in time canonically conjugate
coordinate g, and momentum p, (the analogs of the
quadrature operators [7])

q(t) + iap' p(t) = (0p) gy + ipy) exp(~iwpt).

In the standard rotating wave approximation (RWA), from
Eq. (3) we obtain Hamiltonian equations for g, py with the
time-independent Hamiltonian Hgwa

(l.)())H = _aquRWAv
3y
32wk

dw = wp —wy.  (4)

(90)u = Op,Hrwas

1
Hrwa(qo, po) = =75 80(g5 + pj) + (4§ + p})*

_FqO/ZVa)Fv

The value of Hrwa gives the quasienergy of the driven
nanoresonator in the RWA.

It is well known how to incorporate linear friction into
the RWA equations of motion starting from both a micro-
scopic formulation and the phenomenological friction force
—2I'g [29-32]. An extension to the RIFF is straightforward.
Keeping only smoothly varying terms in the equations for
qo» Po» in the case of the heating-induced RIFF (2) we
obtain the following equations of motion

qo = —T'qo — Jrp§ + 0, Hrwa.
Po=—Ipo+Jrqopo — Oy, Hrwa- (5)

Here J; = a)}r/ 2F/1w/1T/ 2. In Eq. (5), we have disregarded
noise. It is typically weak in weakly damped nanoresona-
tors and leads primarily to small fluctuations about the
stable states of forced vibrations and occasional switching
between the stable states in the range of bistability,
cf. [32-38] and references therein; here we do not consider
these effects.

Parameter J; that characterizes the RIFF increases
with the driving amplitude F’; the RIFF also increases with
the vibration amplitude A = [(g3 + p3)/w]'/?. From
Eq. (5), the effects of the RIFF become pronounced for

|J TA|w;/ % ~ T and should be seen already for a moderately
strong drive if the decay rate I" due to the linear friction
is small.

If both the linear friction and the RIFF can be dis-
regarded, the values (g, ps) of (o, po) at the stationary
states of forced vibrations are given by the conditions
04, Hrwa = 9, Hrwa = 0, which reduce to equations

3y
S qgt —bwqy = F/2\/50 > P = 0. (6)
F

The equation for g has one real root in the range of F', dw
where the oscillator is monostable in the weak dissipation
limit or three real roots in the range of bistability. In the
latter range, of primary interest for the analysis of the RIFF
is the root with the maximal gy, and in what follows g
refers to this root. For small I" and J; = 0 it corresponds to
a stable state of forced vibrations at frequency wp, as does
also the real root g in the range of monostability [39]. In
the both cases, the considered (g, py) corresponds to the
minimum of Hgya.

For J; > 0, the RIFF can lead to an instability of the
forced vibrations. Indeed, to the leading order in I, /7, the
sum of the eigenvalues of Eq. (5) linearized about the stable
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FIG. 1. (a) The Hamiltonian trajectories (4) for different values
of the scaled RWA energy hgwa = (67/F*)'/3Hgwa, Eq. (10).
The scaled field strength defined in Eq. (11) is f# =2/27. The
driven oscillator is bistable for this  and shown are the trajectories
that circle the large-amplitude state at the minimum of hgwa
(Qy = 1.72, Py = 0). This state becomes stable in the presence of
weak linear friction. For other values of /3, the trajectories not too
close to the minimum of hgw, also have a horse-shoe form.
(b) The scaled ratio of the decay and gain rates K, Eq. (9), as a
function of hgwa.

state is —2I" 4 Jr¢q. When this sum becomes equal to zero,
the system undergoes a supercritical Hopf bifurcation. This
means that, for J;q, > 2I', the state of forced vibrations
with constant amplitude and phase becomes unstable.
The amplitude and phase oscillate in time, which corre-
spond to oscillations of the system in the rotating frame
about (g py)-

For small I' and J7¢,, (the condition is specified below),
one can think of the steady motion in the rotating frame as
occurring with a constant value of the Hamiltonian Hyya
along the Hamiltonian trajectory (4); see Fig. 1(a). This
value is determined by the balance of the damping « I" and
the RIFF. The dissipative losses « I" drive Hgya toward its
minimum, whereas the RIFF pumping increases Hrwa-
The stable value of Hrws can be found by averaging
over the trajectories (4) the equation of motion for
Hrwa (g0, Po), which follows from Eq. (5). We denote
such averaging by an overline

1 t+T(Hrwa)
Uult) =———— dru(t;H ,
0= | (1 )

where U(t; Hgwa) is a function calculated along the
trajectory (4) for a given value of Hgwa, and T(Hgwa)
is the period of motion along this trajectory. After straight-
forward algebra, we obtain from Eq. (5)

1

dH dt = ———
R/ T(Hgrwa)

/ dqodpo(—=2T + J1qp).
S(HRWA)
(7)

Here, S(Hrwa) is the area inside the Hamiltonian trajec-
tory (4) with a given Hyya-

From Eq. (7), the condition of the balance of gain and
loss that gives the stable value of Hrwp 1S

(Jrgq/20)K =1, (8)

where

-1
K = q3' / qod%dpo( / qudpo> )
S(Hgwa) S(Hrwa)

Parameter K is the ratio of the rates of decay due to the
linear friction and gain due to the RIFF. The dependence of
K on Hyy, is illustrated in Fig. 1(b). Figure 1 is plotted in
the scaled variables Q, P and for the scaled Hamiltonian

hrwa = (67/F4)1/3HRWA9

1 1
hrwa :Z(Q%+P(2))2 —Eﬁ_lB(Q(Zﬂ'P(z)) — 0o,

Qo=qo/C. Po=po/s. C=(4F/3y) Pl (10)
Function hzw, depends only on one dimensionless param-
eter, the scaled strength of the driving field

B = 3yF*/32w3(5w)>. (11)

Asseen from Fig. 1(b) and also from Eq. (9), K = 1 where
Hyw,a is at its minimum. Importantly, K monotonically
decreases with increasing Hrw, in a broad range of Hgwa.
This decrease holds both in the range of f where the
oscillator is bistable and where it is monostable in the
absence of the RIFF. Therefore, in the presence of the RIFF,
once the condition of the onset of oscillations in the rotating
frame is met, Jrq, > 2 T, these oscillations are stabilized at
the value of Hrwa given by K = K(Hrwa) =2 I'/J7qq.
We emphasize that the frequency of these oscillations
27/T(Hrwa) is small compared to wy, yet it exceeds I’
and J7qg.

Parameter J ;¢ depends on the amplitude of the driving
field F and the frequency wr. By varying F and @y one can
control the stable value of Hgrw, and thus the amplitude
and frequency of the oscillations in the rotating frame.
Remarkably, these oscillations become significantly non-
sinusoidal already for comparatively small difference
between Hiwa and its minimal value. This is seen in
Fig. 1(a). The profoundly nonelliptical trajectories are a
signature of nonsinusoidal vibrations. Formally, the oscil-
lations are described by the Jacobi elliptic functions [40],
which allows finding their Fourier components in the
explicit form [21].

The instability of the forced vibrations at the drive
frequency and the onset of nonlinear self-sustained oscil-
lations in the rotating frame lead to a qualitative change of
the power spectrum of the driven oscillator. There emerge
multiple equally spaced peaks on the both sides of @y that
correspond to the vibration overtones in the rotating frame.
This frequency comb effect occurs for an isolated mode and
is thus qualitatively different from the frequency combs
resulting from a linear [41] or nonlinear [42] resonance
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between vibrational modes in the presence of Duffing
nonlinearity.

The spacing between the frequency comb peaks
27/ T(Hgwa) is small compared to @g. The widths of
the peaks are determined by phase diffusion due to the
noise in a nanoresonator, in particular, thermal fluctuations
of Hrwa around its stable value and the related fluctuations
of the frequency 2z/T(Hgrwa) These fluctuations are
efficiently averaged out by the relaxation, the process
reminiscent of motional narrowing in nuclear magnetic
resonance [32,43]. Therefore, the widths of the peaks
should be much smaller than the damping rate I" [44].

In conclusion, we have shown that, from the symmetry
and resonance arguments, a resonantly driven vibrational
mode can experience a specific friction force. This force,
the RIFF, is nonlinear in the mode coordinate and explicitly
depends on the driving force. The RIFF can be negative. In
this case, already for a moderately strong resonant drive, it
can lead to an instability of forced vibrations of a weakly
damped nonlinear mode, qualitatively modifying the
response of such a mode to the drive. The instability
causes the onset of self-sustained oscillations of the
vibration amplitude and phase. In turn, this leads to a
frequency comb in the power spectrum of the driven mode.
The effect is general and may emerge in various vibrational
systems. We have shown that, in nanomechanics, an
important microscopic mechanism of the RIFF is associ-
ated with the driving-induced spatially nonuniform heating
of a nanoresonator and the resulting change of the mode
eigenfrequency.
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Resonantly induced friction and frequency combs in driven nanomechanical systems
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I. THERMALLY INDUCED NONLINEAR
FRICTION

Here we discuss the temperature change and the result-
ing change of the vibration eigenfrequency of a resonantly
driven nanomechanical resonator. In the units used in
the main text, where we set the effective mass equal to
unity, the displacement at the mode antinode has dimen-
sion [g] = g'/?cm, whereas the resonant force has dimen-
sion [F] = g'/2cm/s?. If we consider a flexural mode in
a quasi one-dimensional beam or a string, the displace-
ment as a function of the coordinate x along the beam is
u(z,t) = plll)p(b(x)q(t), where p1p is the density per unit
length and ¢(z) gives the shape of the mode, [ ¢?dz = 1.
The energy in the driving field is — [ daf(z,t)u(x,t),
where f(z,t) is the “true” force per unit length. If we
think of the force-induced term in the equation of mo-
tion as [p1pi(x)]r = f(z,t), then we have for the force
in the equation for ¢ [Eq. (3) of the main text] the ex-

pression F'(t) _1/2 [ dx f(x,t)¢p(z). Experiments on
nanomechamcal systems can be usually well described if
one assumes that the force f(x,t) can be factored into
a space- and time-dependent parts, f(x,t) = fsp(x)ft (t).
Then

F(t) = py 2 fut) / 0 fop(2) (). (1)

The power dissipated by the force per unit length is
f(x, t)0pu(x,t). For a uniform isotropic resonator, the
full equation for the increment of the temperature field
is

Cr0u 0T = kp030T + f(2,t)dyu(x,t)/S, (2)

where C,. is the specific heat of the resonator per unit
volume, k, is the thermal conductivity, and S is the
cross-section area. We assume here that the tempera-
ture is constant across the resonator; an extension to
a more general case, including the Zener thermoelastic
relaxation [1] (see also [2]) is beyond the scope of this
paper.

Equation (2) has to be complemented by the bound-
ary conditions. Often it is assumed that the temperature
at the boundary of a nanoresonator is fixed by the sup-
port [3], a condition that applies if the support has a
large mass and a high thermal conductivity, for example.
Equation (2) can be then solved by expanding 67 (z,t)
in the orthogonal eigenmodes T),(x) of the temperature

field in the absence of the drive,

(kr/cr)aiTn = =T, /dan(x)Tm(x) = Onm

(the analysis can be easily extended to a more compli-
cated geometry of the resonator and to more complicated
boundary conditions than 7, = 0).

The major contribution to the temperature change
comes from the mode T, (x) that has the form close to
that of f(x)é(x). It depends on the boundary conditions
for the temperature field, the spatial structure of the dis-
placement field of the mode ¢(x), and also the coordinate
dependence of the driving field.

For dielectric nanoresonators the thermal conductiv-
ity is comparatively low. At room temperature k,
10 erg/(cm-s-K), and the specific heat is C, ~
107 erg/(cm3 - K). Then for the resonator length [, ~
10 pm, the relaxation time of low-lying thermal modes
is 77 ~ C.12/k, ~ 1075 s. This time significantly ex-
ceeds the period (reciprocal frequency) of the vibrational
modes, which is typically below 1076 — 10" s. Then the
temperature field averages out the oscillating terms in
f(z,t)0u(z,t) in Eq. (2). At the same time, 77 is typi-
cally much shorter than the relaxation times of low-lying
vibrational modes, which often exceeds the vibration pe-
riod by a factor > 10*. In this important case the tem-
perature adiabatically follows the vibration amplitude.

The driving-induced temperature change is then of the
form 6T (z,t) =Y ¢, (t)Tn(z) with

e = pra/?(SC) 1A / 0z T (2)$(2) [f (2, 1) dlav, (3)

where [...]ay indicates averaging over the vibration pe-
riod. For low-lying vibrational modes and for a weakly
nonuniform driving force f(z,t) the major contribution
to 0T(x,t) comes from low-lying temperature modes,
with A, ~ 1/7p. Then the magnitude of the temper-
ature change averaged over the resonator is

HAGIGI

We note that the assumption of the temperature be-
ing constant in the resonator cross-section requires that
C,12 /k, (1. is the typical transverse dimension) be much
shorter than the vibration period, the condition well sat-
isfied for the typical I, < 0.1 pm.

The temperature change causes a change of the vi-
bration frequency. There are several mechanisms of this

6T ~ 12k 1S~



effect [4]. One of them is the coupling of the mode to the
phonons in the nanoresonator that is nonlinear in the
mode strain. This coupling is fairly general. It emerges
already from the combination of the standard cubic cou-
pling of the considered low-frequency mode (in particu-
lar, a flexural mode) to acoustic phonons and the geomet-
ric nonlinearity, but it also comes from other terms in the
nonlinear Hamiltonian of the vibrations in the resonator.

Phenomenologically, the mechanism can be described
by taking into account the term in the free energy den-
sity of the nanoresonator §F, which is quadratic in the
linear strain tensor é(r) and linear in the temperature
change 0T (r). A simplified form of this term in the one-

J

dimensional model for a flexural mode is
5F =~z [ de ST (o) (020" (4)

where £ is the coupling constant; it is determined by the
thermal expansion coefficient, the specific heat, and the
resonator geometry [4]. The elastic part of the free energy
in the harmonic approximation can be written as Fg =
190 [ dx [02u]? with 7,, determined in the standard way
by the elasticity and the geometry [5]; this term gives
the vibration frequency wy for constant temperature. It
corresponds to the potential energy of the mode written
as wiq?/2.

Then the change of the vibration frequency due to the temperature change is

G = ~(unp1p) "z [ de ST (@)(320)" (5)

From Egs. (1), (3), and (5) we find that, for a slow thermal relaxation, the resonant driving induced force in the

equation for ¢(t) is

fT =Gr [F(t)Q(t)]avq(t)a

Gr = 2irlpinSC T A7 [ de T ()60 (o)

< [artw (@2 | [ detpoios)] (6)

The coefficient G gives the coefficient 2mwoA,Ar in Eq. (2) of the main text, with the account taken of the spatial

dependence of the temperature change.

It should be noted that the coupling (4) also leads to
the standard nonlinear friction, with the friction force
that corresponds to ¢%¢ or ¢ in the phenomenological
picture [4]. However, in the considered case of slow ther-
mal relaxation this force has an extra factor o< (77rwp) 2.
Therefore it can be small compared to the force fr.

In prestressed nanoresonators, an important mecha-
nism of the coupling of the frequency and temperature
changes is related to the change of the tension due to
thermal expansion, cf. [3] and references therein. It can
be analyzed in a way similar to that described above and
leads to a qualitatively similar result. If the thermal ex-
pansion coeflicient is positive, this mechanism leads to
the decrease of the vibration frequency with an increas-
ing drive strength, as does the geometric nonlinearity.

II. NONLINEAR OSCILLATIONS IN THE
ROTATING FRAME AND THE FREQUENCY
COMB IN THE POWER SPECTRUM

In this section we discuss the power spectrum of the os-
cillator when the resonantly induced friction force is neg-
ative and compensates the damping, so that, in the rotat-
ing frame, the oscillator vibrates with a given value of its
Hamiltonian Hgrwa, i.e., with a given quasienergy. This

(

analysis is not limited to nanomechanical resonators. It
applies to any resonantly driven weakly nonlinear oscil-
lator with Duffing (or Kerr, as it is called in quantum
optics) nonlinearity.

The spectral density of fluctuations of the displacement
q(t) of the resonantly driven oscillator near the driving
frequency wg has the form

/ zwt
Qtl

/_ dt [qo(t) + ipo(t)]ei@—wr)t

2

(7)

- 8tle

where it is implied that ¢; — oco. We have assumed that
|w —wp| < wp and expressed ¢(¢) in terms of the slowly
varying in time quadratures go(t), po(t) of the oscillator,
or equivalently, the coordinate and momentum in the
rotating frame, see the main text. In other words, we
are using the rotating wave approximation, in which the
variables qo(t),po(t) do not contain fast-oscillating terms
x exp(tiwgt).

The Hamiltonian equations for go(t), po(t), see Eq. (4)
and Fig. 1(a) of the main text, show that qo, po are peri-
odic functions of time, for a given value of Hrwa. There-



fore we can write

[q0(t) + ipo ()] =Y zme™ . (8)

m

Here, []g indicates that the value is evaluated for a
given Hrwa; 2 = Q(Hgrwa) is the oscillation frequency
in the rotating frame, i.e., the frequency of the oscilla-
tions of the amplitude and phase of the forced vibra-
tions, ) <« wg. The Fourier components z,, are also
determined by Hrwa. For a resonantly driven Duffing
oscillator they were discussed in the context of quantum
theory of interstate switching in the range of bistabil-
ity of the oscillator [6]. However, the expressions for z,,
were not presented and have not been later discussed for
the large-amplitude state in the range of bistability, nor
have they been discussed where the oscillator has only
one stable state.

From Egs. (7) and (8), the power spectrum of the
driven oscillator for a given Hrwa is S(w) = Su(w),

D lzm?o(w —wp +mQ). (9

m

Sp(w) = —

- 2wF

The spectrum (9) is a frequency comb. It consists of a
set of equidistant peaks separated by 2. The intensity
(area) of the peaks is given by the Fourier components
Zm; note that, generally, z_,, # 2},.

The calculation of the spectrum can be conveniently
done by switching from the variables gg,py to variables
Qo = qo/¢, Py = po/¢ with ¢ = (4F/3’y)1/3w11¢/2, see
Eq. (10) of the main text. The Hamiltonian equations
of motion for the variables @)y, Py in dimensionless time
T = BY/3(w)t read

[dQo/dr] 1 = Op,hrwa = Po(Q3 + P2 — B71%),  (10)
[dPy/dr] g = —dg,hrwa = —Qo(Q2 + P — B71/3) + 1,

where 3 = 37F? /32w (dw)? is the scaled intensity of the
driving force. Here we have used the explicit form of the
Hamiltonian hrwa given by Eq. (10) of the main text.

As a next step, we introduce an auxiliary variable X (1)
defined by the expression

X(r) = Qf(r) + P3(r) — B~/ (11)
From the expression for hrwa we find
X2(1) = 4Qo(7) + 4hrwa + 5723 (12)

From Egs. (10) - (12) we obtain an equation for X (7) in
the form
dX
T _op
dr 0
1/2

@ - DX - )X - e ) (13)

with a; > as being the real roots and a3 + ia4 being the
complex roots of the equation

(22 — B72/3 — dhgwa)? — 162 — 16873 =0.  (14)

As seen from this equation, a3 = —(a1 + a2)/2. Also,
ay > \a2|.

We are interested in the oscillating trajectory with
az < X(7) < ay; the sign of dX/dr in Eq. (13) is changed
at the turning points a1, ag. It follows from Eq. (13) (see
[7], 3.145.2) that X () is expressed in terms of the Jacobi
elliptic functions as

a1b2 —+ O,le — ((Zlbg — agbl)cn(7’|mh)

by + by + (bl — bg)Cn(T/Imh)
b1:|a3+ia4—a1|, b2:|a3+ia4—a2|
mp = [(al — a2)2 — (b1 — b2)2]/4b1b2 (15)

X(r) =

where 7/ = (b1bg)'/?7/2.

The Jacobi elliptic function cn(7/|my,) has a real period
4K (myp,), where K(my,) is the complete elliptic integral
of the first kind. Therefore the period of vibrations with
a given quasienergy Hgrwa is

T(Hiwa) = %” — 8K (mn) /B3 (bibo) V2 (5w).  (16)

This expression describes the dependence of the spacing
between the frequency comb lines Q2 on the quasienergy,
for given intensity and frequency of the drive.

From Eq. (8), the Fourier components z,, that deter-
mine the intensity of the comb lines are given by the
expression

C 4K

Zm = dr'(Qo + iPy) exp(—imn7' /2K)  (17)
4K Jy

where K = K(my,); in what follows we use the conven-
tional notation K for the elliptic integral, it should not
be confused with the parameter K used in the main text
for the ratio of the friction and gain coefficients.

Equations (11) - (15) show that Qq, Py are elliptic func-
tions. As functions of 7/, along with the real period
4K (my,), they have the imaginary period 4iK'(my) =
4iK (1 — mp). Therefore the Fourier components (17)
can be calculated by integrating over a rectangular con-
tour in the complex 7/-plane that goes from —2K to 2K,
then to 2K + 4:K’, then to —2K + 4iK’, and then back
to —2K. The integrals over the vertical sections of the
contour cancel, whereas on the upper horizontal section
Qo, Py are the same as on the real axis.

Inside the contour, X (7) has two poles. They are lo-
cated at a purely imaginary 7 = 7/(1:2) given by the

. P

equation
bi+0
1,2)y _ 1 2 1 2

en(ry ) =~ 2 O <@L ()

Near the pole X(7) has the form
) b.bo)1/2
X~ (i 1) )

1 — 1)
T =7



From Egs. (12), (13), and (19), Qo + P, has a pole of
order 2 at 7' = 7'1’7(2), with

. 1 b1bo
Qo +iPy = 2Qo = _57(7_, — 75(2))2.

(20)

One can see from the expression for the Hamiltonian
hrwa that near the pole there are no corrections to
Eq. (20) that would be o (7' — 7(*))~1. Therefore

- mm2Chiby exp(—imﬂ'Tl',(Q)/ZK)
m T TSR 1—expmrK'/K)’

(21)

4

Expression (21) reduces the problem of calculating the
frequency comb to a solution of the 4th order polyno-
mial equation (14) and the transcendental equation (18).
By construction, 0 < Im 71'7(2) < 4K'. Therefore for
large m > 0 the intensities of the comb lines, which
are o< |zp|?, fall off as exp[-mmr(4K' — Imr,¥)/K].
On the other hand, for m < 0 and |m| > 1 they
fall off as exp[—|m|7rImTz’)(2)/K]. For not too small
Hrwa — (HrwaA )min the spectral comb displays several
pronounced equidistant spectral lines. We note that the
|2m|? # |2_m|? and the comb is therefore asymmetric.
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