IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

The Concept of Unschedulability Core for
Optimizing Real-Time Systems with
Fixed-Priority Scheduling

Yecheng Zhao, and Haibo Zeng, Member, IEEE

Abstract—In the design optimization of real-time systems scheduled with fixed priority, schedulability analysis is used to define the
feasibility region within which tasks meet their deadlines, so that optimization algorithms can find the best solution within the region.
However, the complexity of schedulability analysis techniques often makes it difficult to leverage existing optimization frameworks and
scale to large designs. In this paper, we propose the concept of unschedulability core, a compact representation of the schedulability
conditions, and develop efficient algorithms for its calculation. We present a new optimization framework that leverages such a concept.
We show that this concept is applicable to a range of optimization problems, for example, when the decision variables include the task
priority assignment and the selection of mechanisms protecting shared buffers. Experimental results on two case studies demonstrate
that the new optimization procedure maintains the optimality of the solutions, but is a few orders of magnitude faster than other exact

algorithms (branch-and-bound, integer linear programming).

Index Terms—Real-Time Systems, Fixed-Priority Scheduling, Design Optimization, Audsley’s Algorithm, Unschedulability Core.

1 INTRODUCTION

HE design of real-time embedded systems is often sub-
Tject to many requirements and objectives in addition
to real-time schedulability constraints, including limited
resources (e.g., memory), cost, quality of control, and energy
consumption. For example, the automotive industry is hard
pressed to deliver products with low cost, due to the large
volume and the competitive international market [1]. Simi-
larly, technology innovations for medical devices are mainly
driven by reduced size, weight, and power (SWaP) [2]. In
these application domains, it is important to perform design
optimization in order to find the best design (i.e., optimized
according to an objective function) while satisfying all the
critical requirements.

Formally, a design optimization problem is defined by
decision variables, constraints, and an objective function.
The decision variables represent the set of design choices
under the designers’ control. The set of constraints forms
the feasibility region, the domain of allowed values for
the decision variables. The objective function characterizes
the optimization goal. In general, the optimal design can
be obtained by solving an optimization problem where the
objective function is optimized within the feasibility region.
For real-time systems, the feasibility region (also called schedu-
lability region if concerning only real-time schedulability)
must only contain the designs that satisfy the schedulability
constraints where each task completes before its deadline.

In this paper, we consider the design optimization for
real-time systems scheduled with fixed priority. The deci-
sion variables may include task priority assignment and
the selection of mechanisms to ensure data consistency

e Y. Zhao and H. Zeng are with the Department of ECE, Virginia Tech,
Blacksburg, VA, 24060. E-mail: {zyecheng, hbzeng}@ut.edu
Source code is available at https://github.com/zyecheng/UnschedCore. This
work is partially supported by NSF Grants No. 1739318 and No. 1812963.

of shared variables. Besides real-time schedulability, these
problems often contain constraints or an objective function
related to other metrics (such as memory, power, thermal,
etc.). Typically, this makes the problem complexity NP-hard,
including the two case studies in this paper: the optimiza-
tion of mixed-criticality Simulink models with Adaptive
Mixed Criticality (AMC) scheduling (Section 7.1), and the
memory minimization in the implementation of automotive
AUTOSAR models (Section 7.2). Below we provide a sum-
mary of related work, focusing on the underlining approach
but not intended to be complete.

1.1 Related Work

There is a large body of work on priority assignment for
real-time systems with fixed priority scheduling. In partic-
ular, Audsley’s algorithm [3] is proven to be “optimal” for
many task models and scheduling schemes, if the designer
is only concerned to find a schedulable solution. See a recent
survey by Davis et al. [4] on a complete list of applicable set-
tings. However, if the design optimization problem contains
constraints or an objective function related to other metrics
(such as memory, power, thermal, etc.), Audsley’s algorithm
is no longer guaranteed to be optimal.

In general, the current approaches for optimizing pri-
ority assignment in complex design optimization problems
(i.e., those without known polynomial-time optimal algo-
rithms) can be classified into three categories. The first
is based on meta heuristics such as simulated annealing
(e.g., [5], [6]) and genetic algorithm (e.g., [7]). The second is to
develop problem specific heuristics (e.g., [8], [9], [10]). These
two categories do not have any guarantee on optimality.

The third category is to search for the exact optimum,
often applying existing optimization frameworks such as
branch-and-bound (BnB) (e.g., [11]), or integer linear pro-



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

gramming (ILP) (e.g., [12]). However, this approach typi-
cally suffers from scalability issues and may have difficulty
to handle large industrial designs. For example, automotive
engine control system contains over a hundred functional
blocks [13], but the ILP based approach can only scale up to
about 40 functional blocks (see Section 7). Furthermore, not
all problems can easily be formulated in a particular frame-
work due to the complexity of schedulability conditions.
For example, the exact schedulability analysis for tasks with
non-preemptive scheduling requires to check all the task
instances in the busy period, but the number of instances
is unknown a priori. Hence, it is difficult to formulate the
exact schedulability constraints in ILP [14].

The above existing mindset is also followed by opti-
mization of problems with other decision variables, such
as the selection of mechanisms for protection of shared
memory buffers [15], the mapping of functional blocks to
tasks [16], and the use of rate transition buffers for semantics
preservation in Simulink models [17]. Different from all
existing work, our approach is to develop a domain-specific
optimization framework that is optimal, scalable, yet still
applicable to a large class of real-time systems.

1.2 Contributions and Paper Structure

In this paper, instead of directly reusing standard techniques
(BnB, ILP, etc.), we present customized optimization tech-
niques for real-time systems with fixed priority scheduling.
Our framework can guarantee the optimality of the solution
while drastically improving the scalability. Specifically, we
make the following contributions:

o We propose the concept of unschedulability core, an
abstraction of the schedulability conditions in real-
time systems scheduled with fixed priority. It can be
represented by a set of new and compact constraints
to be learned efficiently during the execution of the
optimization procedure (i.e., at runtime).

e We devise an optimization procedure that judi-
ciously utilizes the unschedulability cores to drasti-
cally improve the scalability.

e We use two design optimization problems to illus-
trate the benefit of the proposed approach. The new
unschedulability core guided optimization algorithm
runs several orders of magnitude faster than other
optimal algorithms (BnB, ILP) while maintaining the
optimality of the solutions.

The rest of the paper is organized as follows. From
Section 2 to Section 4, we first consider the optimization
problems that assign priority orders to tasks. Specifically,
Section 2 describes the task models and gives a formal
definition of the problems that are suitable for the proposed
approach. Section 3 defines the concept of unschedulability
core that contains a set of partial priority orders among
tasks, and studies its efficient calculation. Section 4 presents
the optimization procedure that leverages the unschedula-
bility cores for optimizing priority assignment, with proven
properties on termination and optimality. In Section 5, we
extend the framework to optimization problems with other
decision variables. We generalize the concept of unschedu-
lability core that allows to take problem-specific interpreta-
tions. We also discuss the applicability and efficiency for the

2

proposed optimization framework. Section 6 gives two ex-
amples of application. Section 7 evaluates the effectiveness
of the proposed approach with industrial case studies and
synthetic systems. Finally, Section 8 concludes the paper.

2 PRELIMINARY

We consider a real-time system scheduled by fixed priority.
It consists of a set of tasks I' = {7, 7,...7,}. Each task
7; is assumed to have a unique priority m; (the higher the
number, the higher the priority) to be assigned by the
designer. The concept of unschedulability core applies to
any systems scheduled with fixed priority. However, its
application in design optimization is most effective when
there is a simple algorithm to determine the existence of a
schedulable priority assignment for a given task set. Hence,
we consider a list of task models and scheduling schemes
where Audsley’s algorithm [3] is applicable (i.e., it can find
a schedulable priority assignment if there exists one). The
list, as summarized in [4], includes a large number of task
models and scheduling schemes:

e The periodic task model, where independent tasks
are scheduled on a single-core platform with pre-
emptive scheduling. Each task is characterized by a
tuple of parameters: T; denotes the period; D; = T;
represents the implicit relative deadline; C; denotes
the worst-case execution time (WCET).

o Tasks with arbitrary deadlines, and/or static offsets.

e DProbabilistic real-time systems where task WCETs
are described by independent random variables [18].

o Systems scheduled with deferred preemption [19].

o Tasks modeled as arbitrary digraphs [20], where the
vertices represent different kinds of jobs, and the
edges represent the possible flows of control.

e Tasks accessing shared resources protected by
semaphore locks to ensure mutual exclusion.

We note that Audsley’s algorithm runs very efficiently: out
of the possible n! priority assignments, it only needs to
explore O(n?) of them.

A priority assignment can be represented using a set of
binary variables P = {p; ;|i # j, 7, 7; € I'} denoting the
partial priority orders among tasks, where p; ; is defined as

po={ s 1)

A priority assignment shall satisfy the antisymmetric
and transitive properties: If 7; has a higher priority than
7j (pi,; = 1), then 7; has a lower priority than 7; (p;; = 0);
If 7; has a higher priority than 7; (p;; = 1) and 7; has
a higher priority than 7, (pjr = 1), then 7; must have a
higher priority than 7, (p;r = 1). These properties can be
formally formulated as

™ > Tj,
otherwise.

Antisymmetry: p;; +p;; =1,
Transitivity: p; ; +pje <14 pik,

ViF ]
vizith @
We first focus on a design optimization problem where the
decision variables X include the task priority assignment,
ie, P CX.

min C(X)
s.t. system schedulability 3)
F(X) <0



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX
TABLE 1: An Example Task System I',

Ty Dy Ci|m Ty Di G
1 10 10 2 To 20 20 3
T3 40 40 16 | 74 100 100 3
75 200 200 17 | 7¢ 400 400 32

Here C(X) is the objective function to be minimized,
F(X) < 0 defines the set of additional constraints that
the solutions in the feasibility region shall satisfy, including
those in Equation (2).

3 THE CONCEPT OF UNSCHEDULABILITY CORE

Our technique is centered around the concept of unschedu-
lability core. Intuitively, it is an irreducible set of partial
priority orders that cause the system unschedulable. In this
section, we first introduce its formal definition, and study
its properties and usage in modeling the schedulability
region. We then introduce an efficient algorithm for com-
puting unschedualbility cores. We use an example system
I'c configured as in Table 1 to illustrate, where all tasks are
assumed to be independent and preemptive.

3.1 Definition of Unschedulability Core

Definition 1. A partial priority order (PPO), denoted
as r;; = (m > m) = (pi; = 1), defines a priority
order that 7; has a higher priority than 7;. A PPO set
R = {Tiy j1:Tisjas s Tim,jm } 15 @ collection of one or more
partial priority orders that are consistent with the properties in
Equation (2). The number of elements in R is defined as its
cardinality, denoted as |R|.

Definition 2. Let I be a task system and R be a PPO set on
I'. I is R-schedulable if and only if there exists a feasible
priority assignment P that respects all elements (i.e., all
partial priority orders) in R.

For convenience, we also say that “R is schedulable”
when I' is R-schedulable, and similarly “R is unschedula-
ble” when I' is not R-schedulable.

Example 1. Consider the system I'. in Table 1 and two
PPO sets R; = {7“172,7“2,3}, Ro = {7‘574,7“473}. I'. is Rq-
schedulable, since the system is schedulable under rate-
monotonic priority assignment which respects R;. How-
ever, I'. is not Ra-schedulable: 7 must have a higher
priority than 73 (due to C'3s > D7), hence assigning 74 and 75
with higher priority than 73 will make 73 miss its deadline.

The following theorem intuitively states that if the sys-
tem is schedulable for a PPO set, then the system is also
schedulable for any of its subset.

Theorem 1. Let R and R’ be two PPO sets on I such that
R' C R. The following always holds

I' is R-schedulable = I'is R’'-schedulable (4)

The proof is straightforward as any priority assignment
satisfying R must also satisfy R’. Applying the law of
contrapositive on Theorem 1, we have that for any R’ C R,

I is not R/-schedulable = T is not R-schedulable (5)

3

We now give the definition of unschedulability core.
Intuitively, it is an unschedulable PPO set that is irreducible,
such that removing any element from it allows a schedulable
priority assignment.

Definition 3. Let I' be a task system and R be a PPO set
on I'. R is an unschedulability core for I' if and only if R
satisfies the following two conditions:

e ['isnot R-schedulable;
e VR' C R, T is R'-schedulable.

Remark 1. By Theorem 1, the second condition in Defini-
tion 3 can be replaced by

e VR' CRst |R'|=|R|-1, I'is R'-schedulable.

Example 2. Consider the PPO set Rs = {r5 4,743,736},
which equivalently defines the priority order 75 > my >
w3 > mg. Obviously, I'. is not Rs3-schedulable as it is not
schedulable for the subset Ry = {754, 74,3} of R3 (see Ex-
ample 1). However, R3 is not an unschedulability core since
it has a proper subset R, for which I'. is not schedulable.
Rz is a valid unschedulability core, as for each of its proper
subset, there exists a respecting feasible priority assignment:
P = [m > mg > mg > w5 > my > 7g| respects Rgl) ={rsa}
and R(22) =0, and P’ = [ > m > my > 73 > W5 > Tg)
respects ’Ré‘o’) ={rys}.

Let U denote an unschedulability core. The constraint
that the PPOs in U cannot be simultaneously satisfied is:

Z pij < U -1 (6)

ri, i €U

Remark 2. An unschedulability core U/ essentially gives a
necessary condition for schedulability, that any feasible pri-
ority assignment shall differ from U for at least one partial
priority order. Constraint (6) captures such requirement and
is much more friendly to ILP solver. Its coefficients on the
left hand side are all small integers (0 or 1), which in many
cases makes the ILP solver more efficient [21].

We now prove that the set of all unschedulability cores is
a necessary and sufficient condition that makes the system
unschedulable.

Lemma 2. Let I' be a schedulable task system and R be a PPO
set on I'. I' is not R-schedulable if and only if R contains at
least one unschedulability core.

Proof. “If” Part: It is straightforward by the definition of
unschedulability core and the result in Equation (5).
“Only If” Part: Proof by induction on the cardinality of R.
Base case. Let R be any PPO set such that |[R| =1 and T’
is not R-schedulable. The only proper subset of R is R’ = (.
Since I is schedulable, R itself is an unschedulability core.
Inductive step. Assume any PPO set of cardinality from 1
to k—1 such that I' is not schedulable contains an unschedu-
lability core. We prove that any R of cardinality & such that
I" is not R-schedulable shall contain an unschedulability
core. By Definition 3, there must exist R’ C R such that
T is not R/-schedulable (otherwise, R itself is an unschedu-
lability core). Now we consider R’, which has a cardinality
smaller than k. By the assumption for the inductive step, R’
contains an unschedulability core, so does R. O



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

4

Algorithm 1 Computing One Unschedulability Core

Algorithm 2 Computing Multiple Unschedulability Cores

1: function UNSCHEDCORE(Task set I', PPO set R)
2 for eachr € R do

3 if T is not R\{r}-schedulable then

4: remove r from R

5: end if

6 end for

7 return R

8: end function

Theorem 3. Let U denote the complete set of unschedula-
bility cores. The exact feasibility region can be represented
by constraints (6) of all unschedulability cores in U, i.e.,

Z pij <|U|—1, YUET @)
Vi, ;€U

Proof. By Lemma 2, every infeasible priority assignment
must contain at least one unschedulability core. Thus the
space of feasible priority assignments can be obtained by
guaranteeing the absence of any unschedulability cores,
which is equivalent to constraint (7). O
Theorem 3 states that if all the unschedulability cores
for the system are known, then we can formulate the exact
schedulability region by adding constraint (6) for each un-
schedulability core. However, the number of unschedulabil-
ity cores may be exponential to the number of tasks. Hence,
it is inefficient to rely on the complete knowledge of the
unschedulability cores. In the following, we develop proce-
dures that judiciously and efficiently add a selective subset
of unschedulability cores to gradually form the needed part
of the schedulability region. Specifically, in the rest of this
section, we present procedures (Algorithms 1-2) that, given
an unschedulable priority assignment, efficiently calculate
unschedulability cores. In the next section, we propose an
unschedulability core guided optimization algorithm.

3.2 Computing Unschedulability Core

Algorithm 1 takes as inputs the task set I' and a PPO set
R, where I' is not R-schedulable. It leverages Remark 1
and checks if those subsets of R with cardinality |R| — 1
(i.e., one less element) can allow I' schedulable. Hence,
it iterates through and tries to remove each element 7 in
R. If the resulting PPO set still does not allow I' to be
schedulable, then r is removed. In the end, it will return one
unschedulability core. Since the cardinality of R is O(n?),
the number of iterations in Algorithm 1 is O(n?).

We now prove that the resulting PPO set R of Algo-
rithm 1 is indeed an unschedulability core.

Theorem 4. Given a task set I' and a PPO set R where I
is not R-schedulable, Algorithm 1 produces an unschedula-
bility core R that satisfies Definition 3.

Proof. The first condition in Definition 3 is satisfied since
the algorithm maintains that I' is not R-schedulable.

For the second condition, it is sufficient to show that
the condition in Remark 1 is satisfied. Consider any r* in
the returned R. While Algorithm 1 iterates on r* at Line 2,
the corresponding PPO set R* must satisfy that R*\{r*} is
schedulable (otherwise r* will be removed and cannot be in

1: function MULTIUNSCHEDCORE(Task set I', PPO set R,
Number of Unschedulability cores k, Set of cores U)
while U] < & do
(status, R’) = PERTURB(T', R, U)
if status == false then
return
end if
U = UNSCHEDCORE(T", R')
U=UuuU{Uu}
end while
10: end function
11: function PERTURB(Task set I', PPO set R, Set of cores U)
12: for each PPO combination {r, 7, ..., 7|y} of U do

13: remove 71,72, ..., Tjy| from R to get R
14: if I' is not R/-schedulable then

15: return (true, R’)

16: end if

17: end for
18 return (false, 0)
19: end function

R). Also, it must be R C R* since the later iterations will
only delete elements from R*. Hence, by Theorem 1, IT" is
R\{r*}-schedulable. O

Algorithm 1 depends on an efficient R-schedulability
test (Line 3 in the algorithm). In this paper, we assume that
Audsley’s algorithm is applicable to the task system (i.e., it
can find a schedulable priority assignment if one exists). For
such systems, a revised Audsley’s algorithm can check if I" is
‘R-schedulable. Similar to Audsley’s algorithm, it iteratively
tries to find a task that can be assigned with a particular
priority level starting from the lowest priority. However,
when choosing the candidate task, it shall guarantee that
assigning the priority does not violate any partial priority
order in R. This is done by checking if the current task is a
legal candidate: A task 7; is a legal candidate if and only if
(a) it has not been assigned with a priority; and (b) all the
tasks that should have a lower priority than 7; according to
‘R have already been assigned with a priority.

Note that a PPO set R may contain more than one
unschedulability cores. One way to compute multiple un-
schedulability cores from a single unschedulable R is to
perturb the input PPO set R after every invocation of
Algorithm 1, such that successive calls would not return
repetitive results. The key observation is that an unschedu-
lability core U can be computed from R only if i/ C R. Thus
to prevent Algorithm 1 from returning U/ (that is computed
in the previous invocations), it suffices to modify R such
that i/ ¢ R. A simple solution is to select a partial priority
order r € U and remove it from R but still keep the resulting
‘R unschedulable. In this sense, given a &/ C R, there can
be |U| different modifications of R such that R 2 U (ie.,
each by removing a different r € U from R). Accordingly,
given a set of already computed unschedulability cores
U = {Uy,..Uy}, there can be HMIWZ'\ different modifi-

cations to ensure that R 2 U;, VU; €U It may be necessary
to examine each of them to find one modification that still

maintains R to be unschedulable. The new unschedulability



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

core is guaranteed to be different from any ¢/; € U.

Algorithm 2 details a procedure for computing multiple
unschedulability cores from an unschedulable PPO set R.
It takes as inputs the system I', a PPO set R, the desired
number of unschedulability cores k to compute, and U for
storing computed unschedulability cores.

Algorithm 2 leverages a subroutine Perturb, which
explores all possible PPO combinations {r1, ro, ..., T|U|} con-
sisting of one PPO r; from each unschedulability core U
in U (Lines 12-17). For each PPO combination, it removes
the elements in the PPO combination from R (Line 13). If
any resulting PPO set is unschedulable, then the subroutine
Perturb returns true and an R’ that leads to a new un-
schedulability core (Lines 14-16). Otherwise, it returns false
to indicate there is no more unschedulability core.

In case Perturb returns true and an R’, Algorithm 2
uses Algorithm 1 to compute a new unschedulability core
and adds it to the set U (Lines 7-8). It iterates until &
unschedulability cores are found or there is no more un-
schedulability core (in which case Perturb returns false).

4 UNSCHEDULABILITY CORE GUIDED OPTIMIZA-
TION ALGORITHM

In this section, we develop a domain-specific optimization
algorithm that leverages the concept of unschedulability
core. As discussed earlier, finding all the unschedulability
cores can form the complete schedulability region, but this is
impractical due to their exponential growth with the system
size. However, we observe that the optimization objective
may be sensitive to only a small set of unschedulability
cores. Hence, we consider the lazy constraint paradigm
that only selectively adds unschedulability cores into the
problem formulation. The paradigm starts with a relaxed
problem that leaves out all the schedulability constraints.
That is, the schedulability constraints are temporarily put in
a lazy constraint pool. A constraint from the pool is added
back only if it is violated by the solution returned for the
relaxed problem. In addition, instead of adding the violated
schedulability constraints back, we leverage the concept of
unschedulability core to provide a much more compact
representation of these constraints. In the following, we
first details the proposed algorithm and then discusses its
benefits compared with existing approaches.

4.1 Optimization Algorithm

The proposed procedure is summarized in Algorithm 3. It
takes as inputs the task system I' and an integer number
k which denotes the maximum number of unschedulabil-
ity cores to compute for each unschedulable solution (see
Remark 3 below). The algorithm works as follows.

Step 1 (Line 2). Instantiate the relaxed problem IT as

min C'(X)
st F(X)<0 ®

Different from the original problem in (3), (8) excludes all
the system schedulability constraints.

Step 2 (Lines 4-9). Solve problem II in (8). If II is in-
feasible, then the algorithm terminates. Otherwise, let X*

5

Algorithm 3 Unschedulability Core Guided Optimization
Algorithm

1: function FINDOPTIMAL(Task set I', Integer k)

2 Build initial problem II as in (8) // Step 1

3 while true do

4: X* =SoLVE(II)

5: if II is infeasible then

6: return Infeasibility

7 end if

8 Compute Rx~ as in (9)

9: if I is not Rx+-schedulable then
10: MULTIUNSCHEDCORE(I', Rx~, k, U)
11: Add Constraint (10) corresponding to U to II
12: else
13: return priority assignment P respecting Rx-
14: end if

15: end while
16: end function

denote the obtained optimal solution of II. Construct the
corresponding PPO set Rx - as follows

Rx+ = {rijlpi; = 1in X*} 9)

Apply the revised Audsley’s algorithm to test Ry--
schedulability. If I' is not Rx«-schedulable, go to step 3.
Otherwise go to step 4.

Step 3 (Lines 10-11). Apply Algorithm 2 to compute a set
of (at most k) unschedulability cores U. Update problem II
by adding the following constraints, then go to step 2.

Z pij < Ul -1, YUecU
T, €U

(10)

Step 4 (Line 13). Return the optimal priority assignment
P that respects Rx+ with the revised Audsley’s algorithm.

We now study the properties of Algorithm 3. We first
prove that it always terminates.

Theorem 5. Algorithm 3 is guaranteed to terminate.

Proof. Let n denote the number of tasks in the system. There
can be at most n x (n — 1) partial priority orders. Since
an unschedulability core is a subset of all PPOs, the total
number of unschedulability cores is bounded by 27* (=1,
We now prove by contradiction that each iteration in
Algorithm 3 will compute a set of new unschedulability
cores, hence the total number of iterations is bounded by
onx(n=1) = At any iteration, let U* be the set of known
unschedulability cores, and U/ be a newly computed un-
schedulability core returned from Line 10 of Algorithm 3
with Rx- as the second input and U* as the fourth input.
Since U is computed from Rx~, it is Rx+ 2 U. Now assume
that &/ € U*, then problem II contains the constraint (6)
induced by U, which X* and Rx- must satisfy. That is, Rx-
cannot satisfy all PPOs from U/. However, this contradicts
with the fact that Rx- 2O U. O
We now prove the correctness of Algorithm 3.

Theorem 6. Upon termination, Algorithm 3 reports infea-
sibility if the original problem (3) is infeasible; otherwise it
returns a feasible and globally optimal solution.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

Proof. Since each iteration of Algorithm 3 computes only a
subset of all unschedulability cores, the algorithm adds only
a subset of the constraints in (7) to II. By Theorem 3, the
feasibility region of II is always maintained to be an over-
approximation of that of the original problem. We consider
the following two cases on how Algorithm 3 terminates.

Case 1: The algorithm terminates at Line 6. This means
that problem II is infeasible. Since the feasibility region of II
is always no smaller than that of the original problem, the
original problem must be infeasible as well.

Case 2: The algorithm exists at Line 13. Line 13 is
reached only when the system is Rx=-schedulable, which
by Definition 2 is a stricter condition on schedulability. Thus
the returned P is guaranteed to be feasible. Since an optimal
solution in the over-approximated region that is also feasible
must be optimal in the exact feasibility region, the returned
priority assignment is guaranteed to be optimal. O

Remark 3. The parameter k in Algorithm 3 does not affect
the optimality of the algorithm, but influences its runtime.
If k is too small, the algorithm may need many iterations to
terminate, which incurs solving a large number of problem
II. If k is too large, Algorithm 2 may need to explore
numerous PPO combinations. In Section 7, we will use
dedicated experiments to study the best choice of k.

We now illustrate Algorithm 3 by applying it to the
example I'; in Table 1, where the parameter £ is set to 1.

Example 3. Consider the following objective function

C(X) = —p31 —DPa1— P42 —Pa3— P54 (11)

The algorithm constructs the relaxed problem II as (8),
where F(X) < 0 only contains the set of antisymmetry and
transitivity constraints as defined in (2).

The algorithm enters the first iteration and solves II by
possibly using ILP solvers. The solution is (for simplicity,
we omit those not affecting the objective function)

X* = [p3,1,P4,1,P4,2,P4,3,P5,4] = [1,1,1,1,1]

and the PPO set is Rx* = {7‘371, T4,1,74,2,74,3, T574}. Clearly,
I'c is not Rx--schedulable. Algorithm 3 computes one
unschedulability core of Rx~ as Uy = {ra3,754}. The
corresponding constraint is added to II which becomes

min C'(X)
st. F(X)<0 (12)
P43+ P54 <1
In the second iteration, solving (12) gives the solution
X* = [ps,1,p4,1,P1,2,P43,P54] = [1,1,1,1,0]. The cor-
responding PPO set is Rx~ = {r3,1,74,1,74,2,74,3,T4,5}-

Since I' is still not Rx --schedulable, the algorithm computes
another unschedulability core as Uy = {r31}. The problem
IT is correspondingly updated as

min C(X)
st. F(X)<0
Pa3z+psa<1, p31<0

(13)

In the third iteration, (13) is solved to obtain the so-
lution X* = [p3,17p4,1ap4,27p4,37p5,4] = [07 1a 17170] The
corresponding PPO set is Rx+ = {r1,3,74,1,74,2,74,3, 74,5}

6

At this point, I'; becomes Rx+-schedulable. The algorithm
then terminates and returns the following optimal solution

’PZ[W4>7Tl>7T2>7T3>7T5>71’6]

4.2 Advantages

We now discuss the possible limitations of standard opti-
mization frameworks such as BnB and ILP, before highlight-
ing the advantages of our approach. First, a straightforward
formulation of the schedulability region in these standard
frameworks may force to check the schedulability of a
large number of solutions, since the schedulability condition
is often sophisticated and makes it difficult to find sim-
ilarities among different solutions. Second, the complexity
of the schedulability analysis may even prevent us from
leveraging existing optimization frameworks. Consider the
problem in Section 7.1, i.e., to optimize the mixed-criticality
Simulink models under Adaptive Mixed Criticality (AMC)
scheduling [22]. The most accurate schedulability analysis
for AMC, AMC-max [22], hinders a possible formulation in
ILP: It requires to check, for each possible time instant c of
criticality change, whether the corresponding response time
is within the deadline. However, the range of c is unknown
a priori as it depends on the task response time in LO mode.

Comparably, Algorithm 3 comes with three advantages.
First, it avoids modeling the complete schedulability region.
Instead, it explores, in an objective-guided manner, much
simpler over-approximations that are sufficient to estab-
lish an optimal solution. Second, it hides the complicated
schedulability conditions by converting them into simple
constraints induced from unschedulability cores, where sys-
tem schedulability is checked using a separate and dedi-
cated procedure (Line 3, Algorithm 1). This also allows to
easily accommodate any form of schedulability analysis that
may be difficult to formulate in frameworks such as ILP.
Third, the conversion to unschedulability core is essentially
a generalization from one infeasible solution to many, which
is a key in the algorithm efficiency.

5 GENERALIZATION

In this section, we generalize to problems that may involve
decision variables other than priority assignment. We first
provide an alternative interpretation of the original opti-
mization problem and generalize the concept of unschedu-
lability core. We then discuss the applicability and efficiency
of the generalized framework.

5.1 Generalized Concept of Unschedulability Core

Consider the illustrative problem in Example 3. The objec-
tive function depends on the satisfaction of a set of par-
tial priority orders {731,741, 742,743,754}, each of which
represents an additional constraint on scheduling. Unlike
the hard constraint of the problem, e.g., system schedu-
lability, the constraint imposed by r; ; only need to be
optionally satisfied. In other words, r; ; is regarded as a soft
scheduling constraint. Its satisfaction comes with a reward
of an improved objective, but also a possible penalty on the
schedulability since now 7; has to be assigned with a higher
priority than 7;. The optimization problem in Example 3 is



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

to optimally satisfy a subset of those scheduling constraints
{rs1,74,1,74,2,74,3, 75,4} subject to system schedulability.
Besides priority assignment, there are many design
choices that may affect system schedulability and can be
considered as a scheduling constraint. Examples include

o Functional block to task mapping, where all blocks
mapped to the same task share the same priority;

o The use of semaphore locks to protect shared re-
source, where a task suffers a blocking time equal
to the largest WCET of the critical section from lower
priority tasks;

e As an alternative to semaphore locks, it is also
sufficient to prove that the tasks sharing the same
resources do not preempt each other. However, this
imposes a tighter execution window as a task must
finish before the next activation of higher priority
tasks that share the same resource.

We now introduce the general form of optimization
problems that can be handled by the proposed framework.

Definition 4. Let £ = {(1,...(;n} be a set of scheduling
constraints that only need to be optionally satisfied. The
satisfaction of each constraint (; is associated with a cost. A
scheduling constraint optimization problem is to optimally
satisfy the given scheduling that the total cost is minimized.
Formally, the problem is expressed as follows

min C(b)
s.t. system schedulability
by =1 = (} is enforced, V(; € L

where b = {b1,...b,,,} is the set of binary variables that
define by, for each (} as follows

1
{1

The problem considered in the previous three sections
can be understood as a special instance of (14) where (. is
a partial priority order. Still, for this general form of opti-
mization problem, the challenge mainly lies in the difficulty
of efficiently formulating the feasibility region. To address
this challenge, we extend the idea of schedulability region
abstraction using unschedulability core. We first establish
similar concepts and properties as those in Section 3.

(14)

(x, is enforced,

otherwise. (15)

Definition 5. A scheduling constraint set R is a set of schedul-
ing constraints in £, i.e., R C L. R is said to be schedulable
if and only if the following problem is feasible.

min 0
s.t. system schedulability
Ck is enforced, V(; € R
Comparing to problem (14), problem (16) removes the
objective and treats all scheduling constraints (; in R as
hard constraints. Informally, R is schedulable if and only

if there exists a feasible solution such that all scheduling
constraints in R are satisfied and all tasks are schedulable.

(16)

Theorem 7. Given two scheduling constraint sets R; and
R2 such that R O Rg, the following properties hold.

‘R is schedulable =— R is schedulable
R is not schedulable =— R is not schedulable

17)

7

Proof. Each element in a scheduling constraint set R
imposes an additional constraint on problem (16). Since
R1 D Ra, Ry is stricter than R». Thus if R, is schedulable,
R> must also be schedulable. O

Definition 6. A scheduling constraint set I/ is an unschedu-
lability core if and only if the following two conditions hold.

e U is not schedulable.
e Forall R C U, R is schedulable.

Intuitively, an unschedulability core refers to a minimal
subset of £ that can not be simultaneously satisfied. It
implies the following constraints that must always be met.

Z b < U] =1

V(U

(18)

We refer to (18) as the implied constraint by unschedu-
lability core U{. Similar to the framework for optimizing
partial priority orders, our overall idea is to use (18) as an
alternative form for modeling the feasibility region of (14).
The algorithms (Algorithms 1-3) for calculating unschedula-
bility cores and the optimization procedure are applicable to
the new concept of unschedulability core. This comes from
the general property of the scheduling constraints as stated
in Theorem 7: the system schedulability is monotonic with
respect to the set of scheduling constraints.

5.2 Applicability and Algorithm Efficiency

In the following, we discuss the factors that affect the
algorithm efficiency of the proposed framework and high-
light where it is beneficial (i.e., much faster than existing
approaches such as ILP). We note in each iteration Algo-
rithm 3 mainly performs two operations: the computation
of unschedulability cores (Line 10 in the algorithm) and
solving the relaxed problem II (Line 4).

By Algorithm 1, the computation of unschedulability
core can be further decomposed into a series of schedu-
lability test on a given scheduling constraint set R, ie.,
testing the feasibility of (16). Obviously, such a subroutine
depends on the actual form of the scheduling constraint (j,
and the task model. For example, the problem considered
in Sections 2—4 defines (;, as a partial priority order. In
this case, for many task models and scheduling schemes as
summarized in [4], schedulability of R can be tested using
a revised Audsley’s algorithm. It only needs to check O(n?)
priority assignments out of the n! possible ones.

However, for some other forms of scheduling constraints
or task models, the test for the schedulability of R may
be much more difficult. For example, for systems with
preemption threshold scheduling [11], Audsley’s algorithm
is inapplicable, and the exact test of schedulability of R
may require to check an exponential number of priority
assignments. In general, if checking the schedulability R
needs to explore a large number of scheduling constraint
sets, the proposed framework may not be advantageous
compared to other approaches (such as ILP). In the next
section, we use two examples to illustrate how certain
scheduling constraints can be handled.

An important consideration in the development process
is how the priority assignments are stable with respect
to small changes, which may arise unforeseeably. In cases



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

where (revised) Audsley’s algorithm is still optimal, for
example, for robustness to additional interference [23], our
framework can be applied.

To compute unschedulability cores, it also relies on the
schedulability analysis, i.e., to analyze if the system is
schedulable for a given valuation on the decision variables.
Although our framework is applicable for any schedula-
bility analysis technique, its efficiency depends on that of
the schedulability analysis. In practice, the schedulability
analysis is typically efficient enough (as demonstrated in
Section 7.1 for AMC-scheduled systems). However, it can
still be a major bottleneck. For example, the analysis of
digraph real-time tasks [24] (and similarly systems mod-
eled with finite state machines [25]) requires to enumer-
ate all paths in the digraph of a higher priority task to
identify its worst-case interference. In this scenario, our
framework has the flexibility, and it is usually beneficial,
to optimize the implementation of schedulability analysis.
For example, within one invocation of Algorithm 2, the re-
sulting unschedulability cores across consecutive iterations
are mostly similar, suggesting that some previous results
of schedulability analysis can likely be reused. In addition,
during the computation of unschedulability cores, typically
most invocations of schedulability analysis will return un-
schedulability. This suggests that the use of fast, but mostly
accurate necessary only analysis may be helpful, as it can
quickly detect obviously unschedulable solutions. We apply
the proposed framework in Algorithm 3 to optimizing the
implementation of synchronous finite state machines [26].
Our experimental results show that with a direct use of the
analysis technique in [25], over 95% of the total runtime is
spent on schedulability analysis. However, this bottleneck
is avoided and the overall runtime is reduced by 3 orders
of magnitude, by combining a schedulability memoization
technique (which exploits the reuse of previous schedula-
bility analysis results), and a relaxation-recovery strategy
(which leverages a simple necessary only analysis for ruling
out obviously infeasible solutions).

We now discuss the difficulty of solving the relaxed
problem II. Since II does not contain the schedulability
constraints, it opens the possibility to use appropriate math-
ematical programming framework while adopting the most
accurate, but possibly sophisticated schedulability analysis.
For example, if the objective and constraints in (14) are
all linear (except the schedulability constraints), then we
can leverage integer linear programming solvers such as
CPLEX to solve II. Our framework allows to combine the
power of these modern solvers (which adopt numerous
highly sophisticated techniques for generic branch and cut
strategy) and domain-specific algorithms (such as Audsley’s
algorithm for finding a schedulable priority assignment).

6 EXAMPLES OF APPLICATION

In this section, we provide two examples of optimization
problems that fit the proposed optimization framework,
both proven to be NP-hard [17], [27]. The first is optimizing
semantics-preserving implementation of Simulink models,
optionally with memory constraint. The second is minimiz-
ing memory consumption for shared resource protection,
in the context of the automotive AUTOSAR standard. In

8

Section 7, we apply our framework to these two example
systems and compare with standard techniques (BnB, ILP).

6.1 Optimizing Implementation of Simulink Models

A Simulink model is a Directed Acyclic Graph (DAG) where
nodes represent functional blocks and links represent data
communication between the blocks [17].

For simplicity and demonstration purpose only, we
assume that each functional block is implemented in a
dedicated task (hence use the terms functional block and
task interchangeably). However, it should be noted that in
practice, a design may contain hundreds or thousands of
blocks and thus a more common strategy is to allocate
multiple blocks to a single task where blocks inside the
task are statically scheduled. Mapping of blocks to tasks
have been studied in various works (e.g., [9]). The focus
of this paper is instead on priority assignment. It is possible
to simultaneously consider both function-to-task mapping
and priority assignment, and we leave it as future work.

The semantics-preserving implementation of a Simulink
model has to match its functional behavior. This typically
requires the addition of a Rate Transition (RT) block between
a reader and a writer with different but harmonic periods,
which is a special type of wait-free communication buffers.
However, the costs of RT blocks are additional memory
overheads and in some cases, functional delays in result
delivery. The latter degrades control performance.

Consider a fast reader 7, and slow writer 7,, that writes
to 7,.. Assigning higher priority to 7;. generally helps schedu-
lability as it conforms with the rate monotonic policy. How-
ever, since the reader now executes before the writer, an RT
block is needed to store the data from the previous instance
of the writer, which also incurs a functional delay. On the
other hand, if 7, can be assigned with a lower priority while
keeping the system schedulable, then no RT block is needed
and no functional delay is introduced.

The software synthesis of Simulink model is to ex-
ploit priority assignment as the design variable to minimize the
weighted sum of functional delays introduced by the RT blocks
(hence improving control quality). We note that Audsley’s
algorithm is no longer optimal as system schedulability
is not the only constraint. Formally, the problem can be
formulated as follows.

min Z Bw,’r * Prow
V(w,r) (19)
s.t. system schedulability

constraints in (2)

where (w, ) represents a pair of communicating tasks, and
the parameter (3, is the penalty on control performance if
T, is assigned with a higher priority than 7,,.

Optionally, the implementation of Simulink models may
be subject to memory constraints. An RT block is essentially
a wait-free buffer between the reader and the writer, and
thus comes with memory cost. A unit delay RT block,
necessary whenever the reader task 7, has a higher priority
than the writer 7, is twice the size of the protected shared
variable. For a higher priority writer and a lower priority
reader, the RT block has a memory cost of the same size as
the shared variable. However, it can be avoided if we can



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

ensure the absence of preemption, i.e., the lower priority
reader finishes before the next activation of the writer to
ensure the absence of preemption by the writer. In Simulink,
the reader and writer tasks always have harmonic peri-
ods (one period is an integer multiple of the other) with
synchronized release offsets. Hence, it suffices to ensure
that the worst-case response time of the reader R, satisfies
R, < 0,4 = min{T,,T,}, where o, ,, is the smallest offset
from an activation of 7, to the next activation of 7,. To
summarize, an RT block can be avoided if the following

scheduling constraint is satisfied
(pw,r = 1) A RT' < min{T,., Tw} (20)

Thus, for each writer and reader pair (7, 7), we intro-
duce the additional scheduling constraint

Cw,r = constraint by (20) (21)

The associated binary variable b¢,, . is defined as 1 if (.
is enforced and 0 otherwise. To ensure the memory budget,
we add the following constraint to the problem (19)

Z (mw,r (pw,r -

Y(Tw,Tr)

wam) + 2mw,r 'pT,w) <M (22)

where m,, . is the size of the memory buffer shared between
Ty and 7,, and M is the available memory for RT blocks.

We now discuss the schedulability test for R with the
newly defined scheduling constraint (21). In addition to
a partial priority order, it also specifies an upper-bound
on the worst-case response time of the reader tasks 7,, or
equivalently a virtual deadline. Thus, a given scheduling
constraint set R essentially specifies a set of partial priority
orders as well as virtual deadlines for certain reader tasks.
The revised Audsley’s algorithm discussed in Section 3 can
still be applied to test the schedulability of R: it tries to
find a feasible priority assignment respecting R where the
deadline of any task 7, for (., € R is set to min{7},T,}.
Thus the problem can be efficiently solved by the general
framework in Algorithm 3.

6.2 Minimizing Memory of AUTOSAR models

The second example is to minimize the memory usage
of AUTOSAR components [28], where a set of runnables
(the AUTOSAR term for functional blocks) communicates
through shared buffers that shall be appropriately protected
to ensure data integrity. We assume that each runnable
is implemented in a dedicated task, and use the terms
runnable and task interchangeably. We consider the problem
for the optimal selection of (a) the priority assignment to
tasks; (b) the selection of the appropriate mechanism for
protecting shared buffers among a set of possible choices, in-
cluding ensuring absence of preemption, lock-based method
(priority ceiling semaphore lock), and wait-free method [28].
These mechanisms are associated with different scheduling
constraints and memory costs.

1) Ensuring absence of preemption. It has no memory or
timing cost, but requires that the two communicating tasks
satisfy that the lower priority task always finish before the
next activation of the higher priority task. Specifically, the
minimum distance between activations of two communi-
cating tasks 7; and 7; is given by the greatest common

9

divisor of their period, i.e., ged(T;,T;). To ensure absence
of preemption, it suffices to guarantee that

{RZ < ged(T;, T;) 23)

2) Wait-free method imposes no extra timing constraints
but incurs a memory cost equal to the size of the shared
buffer.

3) Lock-based method introduces blocking delay to higher
priority tasks but reduces the memory overhead to minimal
(only one-bit for implementing semaphore locks). Let s
denote the shared variable between 7; and 7;. The timing
constraints are formally expressed as follows

(24)

B; > C; , if 7; has lower priority than 7;
B; > C7, if 7; has lower priority than 7;

where B; (Bj) represents the blocking time of 7; (7;), and C}
(C5) represents the worst-case execution time of the critical
section for 7; (7;) to access s.

The objective is to minimize the total memory usage
while ensuring system schedulability. In the following, we
show how the problem can be solved by the general frame-
work in Algorithm 3.

Specifically, for each pair of communicating tasks (7;, 7;),
we define the following scheduling constraints for each of
the three mechanisms to protect the shared variable

a

absence of preemption: constraint by (23)

ij =
wait-free method: ;% = None (25)
lock-based method: f ; = constraint by (24)

Note that the wait-free method does not impose an addi-
tional scheduling constraint but comes with an additional
memory cost, hence the scheduling constraint associated
with ¢;?; is empty. Also, we define the binary variables b¢a ,
bew, and bqu to denote the use of each of the mechanisms.

bea, =1 = (j; is enforced
bew, =1 = (; is enforced (26)
b =1 = nyj is enforced

It is sufficient to protect each communication pair with one
of the mechanisms

The optimization objective can be written as
CX)= > Bijber, +Bisba, (28)
V(T@,Tj)
where (}"; and B! ; are the memory cost for wait-free

method and lock-based method, respectively. The optimiza-
tion problem is to minimize the memory cost in (28), subject
to the constraints in (26), (27), (2), and system schedulability.

We now examine whether there is an efficient schedula-
bility test for R over the scheduling constraints. Constraint
(23) is equivalent to setting a virtual deadline for 7; and 7;.
Constraint (24) specifies how blocking time should be com-
puted. Thus a given scheduling constraint set R essentially
specifies a PPO set as well as a setting of virtual deadlines



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

and blocking times for associated tasks. Finding a schedu-
lable priority assignment under the specified setting can
still be performed using the revised Audsley’s algorithm.
This allows to keep the algorithm efficiency of the general
framework in Algorithm 3.

7 EXPERIMENTAL EVALUATION

In this section, we present results of our experimental eval-
uation for the proposed technique. We consider the two
example problems discussed in the previous section.

7.1 Optimizing
Simulink Models
To demonstrate that our approach can accommodate any
schedulability analysis, we consider the problem of software
synthesis for Simulink model as discussed in Section 6.1,
but the model contains functional blocks with different crit-
icality levels scheduled with the Adaptive Mixed Criticality
(AMC) scheme [22]. This problem is NP-hard as the special
case where all tasks are LO-critical is proven to be NP-
hard [17]. The schedulability of AMC scheduled systems can
be analyzed with two methods [22]: AMC-max and AMC-
rtb. We compare the proposed technique and a direct ILP
formulation. The straightforward ILP formulation of AMC-
max is excluded due to its extreme high complexity (see
Section 4). We also include brute-force BnB algorithms, to
evaluate the benefit from modern ILP solvers (e.g., CPLEX).
The list of compared methods includes:

Implementation of Mixed-Criticality

e UC-AMC-max: Unschedulability core guided algo-
rithm (Algorithm 3) with AMC-max as schedulabil-
ity analysis;

e UC-AMC-rtb: Algorithm 3 with AMC-rtb analysis;

e ILP-AMC-rtb: ILP with AMC-rtb analysis, solved by
CPLEX;

e BnB-AMC-max: BnB with AMC-max analysis;

e BnB-AMC-rtb: BnB with AMC-rtb analysis.

We use TGFF [29] to generate random systems. Each
functional block has at most an in-degree of 3 and an
out-degree of 2. We first randomly choose a number of
sink functional blocks and assign it with HI-criticality. The
criticality of the remaining blocks are determined by the
following rules [30]:

o If a block is the predecessor of any HI-critical block,
then it is assigned an HI-critical level as well;

e All blocks not assigned Hl-critical by the above rule
are assigned LO-critical level.

We first study the scalability with respect to the number
of functional blocks which varies from 5 to 100. The system
utilization in LO-criticality mode is randomly selected from
[0.5, 0.95]. For each task in the system, its utilization is
generated using the UUnifast-Discard algorithm [31]. Task
period is randomly chosen from a predefined set of values
{10,20,40,50,100,200,400,500,1000}. The criticality factor of
HI-criticality task is uniformly set to 2.0 (gzéfolg = 2.0).
We generate 1000 systems and report their average for each
point in the plots. We first set k to 5 in Algorithm 3 as
the corresponding runtime is typically within 10% of the

10
1x10° T T T T T T T T T
100000 [
)
c
S 10000
Q
i)
-g 1000
£ 100 | :
= J
4 10 | ;
& 1
© 1F %X g BnB-AMC-max —-8-—
‘1)) E; BnB-AMC-rtb — =
< A ILP-AMC-rtb
0.1 F =" UC-AMC-max —— 7
UC-AMC-rtb - -x- -
0.01 ! ! ! ! ! ! ! 1 !

0 10 20 30 40 50 60 70 80 90 100
Number of Function Blocks

Fig. 1: Runtime vs. System Size for Implementation of
Simulink Model

1400 T T T T T T T T
1200 +
)
c
]
© 1000 -
0
£ 800 |
[
£
5 600
o
&
@ 400
]
E

200

UC-AMC-max —+—
UC-AMC-rtb - -x- -
0 L L L L L L L L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
System Utilization

Fig. 2: Runtime vs. Utilization for Implementation of
Simulink Model

optimal setting. For all random systems (including those
in Section 7.2), we set a timeout of 900s for each problem
instance for all algorithms to avoid excessive waiting.

Figure 1 illustrates the runtime of these methods. AMC-
max based methods give slightly better optimal solutions
(no more than 5%) due to the better accuracy of AMC-
max than AMC-rtb, but they also run slower than their
counterpart based on AMC-rtb (e.g., UC-AMC-max vs.
UC-AMC-rtb). The superiority of branch-and-bound based
algorithms in small-sized systems is mainly due to the over-
head in ILP model construction in other methods, which
consumes a significant portion of the runtime when the
ILP problem is rather simple. The scalability for UC-AMC-
rtb and UC-AMC-max is remarkably better than that of
the other methods. For example, for systems with 35 tasks,
the unschedulability core guided techniques are more than
1000 times faster compared to ILP-AMC-rtb. In addition,
UC-AMC-rtb and UC-AMC-max are quite close in their
runtimes, demonstrating that Algorithm 3 is not very sensi-
tive to the complexity of the schedulability analysis. Finally,
ILP-AMC-1tb scales much better than BnB-AMC-rtb. This
demonstrates that modern ILP solvers, which are equipped
with various sophisticated techniques, are generally more
efficient than brute force BnB.

We also evaluate the scalability of UC-AMC-max and
UC-AMC-rtb with respect to different system utilization



|FI:C TDANCQANTINNC NN ANMDIITERQ VNI YY NN VY VYVYVY YVYVY

7000 ‘ ‘
T —@— UC-AMC-rtb
— == (JC-, =
6000 - UC-AMC-max
5000
E 4000 t
Q
£
=
< 3000
&
2000 |
1000 |
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 20

Fig. 3: Runtime vs. Parameter k for Implementation of
Simulink Model

TABLE 2: Results on fuel injection case study

Method Objective | Runtime Status
UC-AMC-max 23 1.32s Terminate
UC-AMC-rtb 23 0.19s Terminate
ILP-AMC-rtb 23 17.3h Terminate
BnB-AMC-max 23 > 24h Timeout
BnB-AMC-rtb 23 > 24h Timeout

ranging from 0.05 to 0.90. The number of functional blocks
in a system is fixed to 70 while the other parameters remain
the same. The result is shown in Figure 2. The optimization
problem is relatively easy at very low utilization levels, as
the system is easily schedulable for most of the priority
assignments. As utilization continues to increase, the run-
time grows but eventually remains at a similar value. The
result illustrates that the scalability of unschedulability core
guided algorithms is not sensitive to system utilization.

We next study the effect of parameter k, the number of
unschedulability cores to compute for each infeasible solu-
tion, on the algorithm efficiency. The number of functional
blocks and system utilization are fixed to 70 and 70% respec-
tively. The other parameters and system generation scheme
remain the same. Figure 3 shows the average runtime of the
algorithms UC-AMC-max and UC-AMC-rtb w.r.t. different
values of k. It can be seen that the algorithms run the
fastest when k£ = 5. In cases with other system sizes and
utilizations, k = 5 still remains to be a good choice.

Finally, we apply the proposed technique to an industrial
fuel injection controller case study [17]. The system contains
90 functional blocks and 106 communication links. The total
utilization in LO mode is 94.1%. We assign task criticality in
the same way as the randomly generated synthetic systems,
which results in 42 HI-critical tasks. The criticality factor is
set to 2.0. We compare the same methods, and we set a time
limit of 24 hours. The results are summarized in Table 2. As
in the table, the proposed UC-AMC-max and UC-AMC-rtb
solve the optimization problem in about a second, which is
4 orders of magnitude faster than the other approaches.

11

1x106
< 100000 | e
c
o
3 x
£ 10000 F E
= P
£ 1000 b - .
€
3
o
) 100 n
[)]
o
g
= 10 i
o T
1 x | | | | | *
0 10 20 30 40 50 60

Number of Runnables

Fig. 4: Runtime vs. System Size for Memory Minimization
of AUTOSAR

Time (s)

Fig. 5: Runtime vs. Parameter k£ for Memory Minimization
of AUTOSAR

7.2 Minimizing Memory of AUTOSAR Components

In this experiment, we consider the problem discussed in
Section 6.2, where the tasks are assumed to be periodic. We
compare our technique (denoted as UC) with the request
bound function based ILP formulation [14] (denoted as ILP)
on randomly generated synthetic task systems. We omit
BnB as it is demonstrated to be less scalable than ILP. Task
utilization and period are generated in the same way as
Section 7.1. Each task communicates with 0 to 5 other tasks.
The size of the shared buffer is randomly selected between
1 to 512 bytes. The WCET of the critical section for each
task 7; on each shared buffer is randomly generated from
(0,0.1-C].

Figure 4 plots the runtime versus system sizes for the
synthetic systems. As in the figure, UC always takes sig-
nificantly smaller amount of time than ILP while giving the
same optimal results, and the difference becomes larger with
larger systems. For example, for systems with 25 runnables,
UC runs about 200 times faster than ILP. This demonstrates
that the carefully crafted algorithm UC can achieve much
better scalability than the other exact algorithms while
maintaining optimality.



IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX XXXX

Finally, we study the effect of k£ on the algorithm run-
time. Figure 5 shows the results for systems with 35 tasks.
Similar to Figure 3, k being too large or too small may
negatively affect the algorithm efficiency, and &k = 5 is
typically suitable for most problem settings.

8 CONCLUSIONS

In this work, we introduce the concept of unschedulability
core, a compact representation of schedulability conditions
for use in design optimization of real-time systems with
fixed priority scheduling. We develop efficient algorithms
for calculating unschedulability cores and present an un-
schedulability core guided optimization framework. Exper-
iments show that our framework can provide optimal solu-
tions while scaling much better than standard optimization
approaches such as BnB and ILP.

REFERENCES

[1] S. Chakraborty, “Keynote talk: Challenges in automotive cyber-
physical systems design,” in International Conference on VLSI De-
sign, 2012.

[2] K. Bazaka and M. V. Jacob, “Implantable devices: issues and
challenges,” Electronics, vol. 2, no. 1, pp. 1-34, 2012.

[3] N. Audsley, “On priority assignment in fixed priority scheduling,”
Information Processing Letters, vol. 79, no. 1, pp. 39 — 44, 2001.

[4] R. I Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns, “A
review of priority assignment in real-time systems,” J. Syst. Archit.,
vol. 65, no. C, pp. 64-82, Apr. 2016.

[5] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-
time tasks: An np-hard problem made easy,” Real-Time Syst., vol. 4,
no. 2, pp. 145-165, May 1992.

[6] I Bate and P. Emberson, “Incorporating scenarios and heuristics to
improve flexibility in real-time embedded systems,” in IEEE Real-
Time and Embedded Technology and Applications Symposium, 2006.

[7] A. Hamann, M. Jersak, K. Richter, and R. Ernst, “Design space
exploration and system optimization with symta/s - symbolic
timing analysis for systems,” in IEEE Real-Time Systems Symposium,

[8] M. Saksena and Y. Wang, “Scalable real-time system design using
preemption thresholds,” in IEEE Real-Time Systems Symposium,
2000.

[9] H. Zeng, M. Di Natale, and Q. Zhu, “Minimizing stack and com-
munication memory usage in real-time embedded applications,”
ACM Trans. Embed. Comput. Syst., vol. 13, no. 5s, pp. 1-25, Jul. 2014.

[10] C. Wang, Z. Gu, and H. Zeng, “Global fixed priority scheduling
with preemption threshold: Schedulability analysis and stack size
minimization,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 27, no. 11, pp. 3242-3255, 2016.

[11] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with
preemption threshold,” in International Conference on Real-Time
Computing Systems and Applications, 1999.

[12] Q. Zhu, H. Zeng, W. Zheng, M. D. Natale, and A. L. Sangiovanni-
Vincentelli, “Optimization of task allocation and priority assign-
ment in hard real-time distributed systems,” ACM Trans. Embedded
Comput. Syst., vol. 11, no. 4, pp. 85:1-85:30, 2012.

[13] M. Panic, S. Kehr, E. Quiones, B. Boddecker, ]J. Abella, and
F. J. Cazorla, “Runpar: An allocation algorithm for automotive
applications exploiting runnable parallelism in multicores,” in
International Conference on Hardware/Software Codesign and System
Synthesis, 2014.

[14] H. Zeng and M. Di Natale, “An efficient formulation of the real-
time feasibility region for design optimization,” IEEE Transactions
on Computers, vol. 62, no. 4, pp. 644-661, April 2013.

[15] H. Zeng and M. D. Natale, “Efficient implementation of autosar
components with minimal memory usage,” in IEEE International
Symposium on Industrial Embedded Systems, 2012.

[16] P. Deng, Q. Zhu, F. Cremona, M. Di Natale, and H. Zeng, “A
model-based synthesis flow for automotive cps,” in ACM/IEEE
International Conference on Cyber-Physical Systemsn, April 2015.

12

[17] M. D. Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli,
“Synthesis of multi-task implementations of simulink models with
minimum delays,” IEEE Trans. Industrial Informatics, vol. 6, no. 4,
pp- 637-651, 2010.

[18] S. Altmeyer, L. Cucu-Grosjean, and R. I. Davis, “Static probabilistic
timing analysis for real-time systems using random replacement
caches,” Real-Time Syst., vol. 51, no. 1, pp. 77-123, Jan. 2015.

[19] R. Davis and M. Bertogna, “Optimal fixed priority scheduling
with deferred pre-emption,” in IEEE Real-Time Systems Symposium,
2012.

[20] M. Stigge and W. Yi, “Combinatorial abstraction refinement for
feasibility analysis of static priorities,” Real-Time Systems, vol. 51,
no. 6, pp. 639-674, 2015.

[21] A.N. Letchford and A. Lodi, “Strengthening chvatal-gomory cuts
and gomory fractional cuts,” Oper. Res. Lett., vol. 30, no. 2, pp.
74-82, Apr. 2002.

[22] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for
mixed criticality systems,” in IEEE Real-Time Systems Symposium,
2011.

[23] R. I. Davis and A. Burns, “Robust priority assignment for fixed
priority real-time systems,” in 28th IEEE International Real-Time
Systems Symposium, Dec 2007, pp. 3-14.

[24] M. Stigge and W. Yi, “Combinatorial abstraction refinement for
feasibility analysis of static priorities,” Real-time systems, vol. 51,
no. 6, pp. 639-674, 2015.

[25] H. Zeng and M. D. Natale, “Schedulability analysis of periodic
tasks implementing synchronous finite state machines,” in Euromi-
cro Conference on Real-Time Systems, 2012.

[26] Y. Zhao, C. Peng, H. Zeng, and Z. Gu, “Optimization of real-
time software implementing multi-rate synchronous finite state
machines,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp.
175:1-175:21, Sep. 2017.

[27] E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, and
S. Gerard, “An optimization approach for the synthesis of autosar
architectures,” in IEEE 18th Conference on Emerging Technologies
Factory Automation, Sept 2013.

[28] A. Ferrari, M. Di Natale, G. Gentile, G. Reggiani, and P. Gai, “Time
and memory tradeoffs in the implementation of autosar compo-
nents,” in Conference on Design, Automation and Test in Europe, 2009.

[29] R.P.Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”
in 6th international workshop on Hardware/software codesign, 1998.

[30] S. Baruah, “Implementing mixed-criticality synchronous reactive
programs upon uniprocessor platforms,” Real-Time Syst., vol. 50,
no. 3, pp. 317-341, 2014.

[31] R. L. Davis and A. Burns, “Priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time sys-
tems,” in IEEE Real-Time Systems Symposium, 2009.

Yecheng Zhao Yecheng Zhao is currently pur-
suing the PhD degree in Computer Engineering
at Virginia Tech. He received his B.E. in Electri-
cal Engineering from Harbin Institute of Technol-
ogy, Harbin, China. His main research interest
is design optimization for real-time embedded
X systems.

Haibo Zeng Haibo Zeng is currently a fac-
ulty member at Virginia Tech. He received his
Ph.D. in Electrical Engineering and Computer
Sciences from University of California at Berke-
ley, and B.E. and M.E. in Electrical Engineer-
ing from Tsinghua University, Beijing, China. He
was a senior researcher at General Motors R&D
until October 2011, and an assistant professor
at McGill University, Canada until August 2014.
His research interests are embedded systems,
cyber-physical systems, and real-time systems,
with four best paper/best student paper awards in the above fields.

~/
W\ '



