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A Unified Framework for Period and Priority
Optimization in Distributed Hard Real-Time Systems

Yecheng Zhao, Vinit Gala, Haibo Zeng

Abstract—Modern embedded systems such as automotive are
physically distributed with an increasing number of microcon-
trollers and buses. They support complex functions such as active
safety and autonomous driving features with a high degree of
data dependencies. The most common configuration uses periodic
activation of tasks and messages coupled with priority-based
scheduling. Selecting task and message parameters so that end-
to-end deadlines are met can be very challenging, since such
deadlines are enforced across a set of microcontrollers and buses.

In this paper, we address the problem of optimal selection
of task and message activation periods and priorities. Existing
approaches cannot scale to large designs and have to settle
to optimize period or priority separately, largely due to the
complexity of response time analysis techniques. Instead, we
present a new, unified framework that simultaneously optimizes
period and priority assignment. It avoids the pitfalls of existing
approaches by abstracting the response time calculation with
the new concept of Maximal Unschedulable Period and Deadline
Assignment (MUPDA). We demonstrate with two industrial case
studies that our approach runs magnitudes faster than existing
approach on period optimization, while providing substantially
better solutions.

I. INTRODUCTION

Modern embedded systems in application domains such as
avionics, automotive, and smart buildings contain complex
functional contents deployed on a distributed platform. For
example, new active safety and autonomous driving features
are integrated in today’s vehicles, which collect data from 360◦

sensors (e.g., camera, radar, and LIDAR) to understand the
position of surrounding objects and detect hazardous condi-
tions. Once a hazard is detected, they inform the driver and/or
provide control overlays to reduce the risk. Two examples
are adaptive cruise control and lane keeping systems. These
embedded systems have the following characteristics:
• Functional dependencies are modeled by a complex graph

rather than a set of linear transactions. At the user level, timing
constraints and performance metrics are expressed on end-
to-end paths from sensors to actuators. In addition, sensor,
control, and actuator functions operate with their own periodic
tasks, with constraints on periods imposed by the need for
stability and accuracy.
• The system is inherently multi-rate, because of techno-

logical constraints (e.g. off-the-shelf sensors operate at dif-
ferent rates), but also because the same inputs and outputs
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are shared by multiple control functions, characterized by
different control laws with their period constraints. Merging
flows with different rates and communication with oversam-
pling/undersampling are common.

In this paper, we consider the optimization of period and
priority assignment, a problem common in the system-level
design stage of such embedded systems. Specifically, given an
allocation of tasks and messages, our approach automatically
assigns periods and priorities to all tasks and messages, in
order to satisfy the period constraints and hard real-time con-
straints including end-to-end deadline requirements. Clearly,
the solution quality depends on both and, ideally, the two
decision variables should be optimized at once. However, in
the past this optimization problem is considered to be too large,
such that an integrated problem formulation cannot be solved
in feasible time [7]. Thus, existing approaches are to optimize
periods and priorities separately and possibly iteratively.

On the contrary, we develop a unified framework capa-
ble of co-optimizing both periods and priorities for large
industrial designs. Our observation is that existing approaches
try to directly leverage standard mathematical programming
frameworks such as geometric programming (GP), but they
face substantial difficulty due to the complexity of response
time analysis. Instead, we establish an abstraction layer which
hides the details of response time analysis but still faithfully
respects its accuracy. This allows us to prudently combine the
power of commercial integer linear programming (ILP) solver
for generic branch-and-bound based search and customized
algorithms to explore problem-specific optimization structures.

The contributions and paper organization are as follows.
Section II discusses the related work. Section III presents
the system model including a summary on the analysis of
the timing metrics, and defines the optimization problem.
Section IV introduces a set of concepts including Maximal
Unschedulable Period and Deadline Assignment (MUPDA),
to accurately capture the real-time schedulability conditions.
Section V presents an optimization framework based on these
concepts, to judiciously combine the efficient algorithm for
calculating MUPDA and ILP solver for generic branch-and-
bound. Section VI applies the framework to two industrial case
studies. Compared to an existing GP-based approach that only
optimizes the periods, our approach runs up to 100× faster
while providing much better solutions. Finally, the paper is
concluded in Section VII.

II. RELATED WORK

The problem of priority assignment in hard real-time sys-
tems scheduled with fixed priority has been studied extensively.
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See an authoritative survey by Davis et al. [11]. Among
them, Audsley’s algorithm [1] is optimal for finding a schedu-
lable priority assignment for a variety of task models and
scheduling policies, as summarized in Davis et al. [11]. The
three necessary and sufficient conditions for its optimality are
presented in [9]. Besides schedulability, Audsley’s algorithm
can be revised to optimize several other objectives, including
the number of priority levels [1], lexicographical distance (the
perturbation needed to make the system schedulable from an
initial priority order) [6], [11], robustness (ability to tolerate
additional interferences) [8], and as a subproblem of this paper,
the average worst case response time [33].

For complex problems on priority assignment optimiza-
tion where Audsley’s algorithm do not apply, the cur-
rent approaches include (a) meta heuristics such as simu-
lated annealing (e.g., [24], [3], [30]) and genetic algorithm
(e.g., [16], [27]); (b) problem specific heuristics (e.g., [22],
[29], [25]); and (c) directly applying existing optimization
frameworks such as branch-and-bound (BnB) (e.g., [26]) and
ILP (e.g., [14], [31], [28]). These approaches either have no
guarantee on solution quality, or suffer from scalability issues
and may have difficulty to handle large industrial designs.

Such approaches are also followed for the problem of period
optimization or the co-optimization of period and priority.
On single-core platforms, examples include [23], [5], [4],
[18]. [23] approximates the schedulability condition with a
utilization bound, hence the solution may be arbitrarily subop-
timal. Bini et al. [5] develop a branch-and-bound (BnB) based
algorithm and a fast suboptimal heuristic. In another work, Bini
et al. [4] derive analytical solutions that are specific for period
assignment to optimize a particular form of control perfor-
mance, and the method relies on an approximate response time
analysis. A BnB algorithm is built on top of [4] to additionally
find the best priority assignment [18]. Davare et al. [7] consider
a simpler problem than this paper, the period optimization in
distributed hard real-time systems. They formulate it in mixed
integer GP (MIGP) framework, and also propose an iterative
procedure that relies on an approximate, direct formulation in
GP. This procedure is also leveraged in several recent works
on period optimization, such as [12].

Like our approach, Zhao et al. develop customized optimiza-
tion procedures that are exact and efficient [32], [33], [34].
However, these works [32], [33], [34] consider the problem
of priority assignment and assume periods are fixed. Different
from all the above, we are the first to simultaneously optimize
periods and priorities in distributed hard real-time systems
with end-to-end deadline constraints. Although we also build a
customized procedure, the concepts and algorithms from [32],
[33], [34] are not directly applicable.

III. SYSTEM MODEL AND NOTATION

We consider a distributed real-time system represented by
a directed acyclic graph Γ = {V,L}. V = {τ1, · · · , τn}
denotes the set of objects, each representing a scheduling
entity (i.e., task or message). L is the set of directed edges
representing the communication flow between the objects.
Also, R = {r1, · · · , rc} is the set of (possibly heterogeneous)

resources supporting the execution of the objects, i.e., ri is
a microcontroller for task execution or a bus for message
transmission. In this work, we assume that mapping of objects
to resources is fixed, and is not part of the decision variables.

An object τi is characterized by a worst-case execution time
(WCET) Ci, an activation period Ti, a deadline Di, and a
scheduling priority πi. We assume that Ci, Di and Ti take
only integer values. We do not assume any particular type
of resources as long as they are scheduled with partitioned
fixed priority, and the objects can be either preemptive or non-
preemptive. Such scheduling policies are widely adopted in dif-
ferent real-time applications and standards, such as automotive
AUTOSAR/OSEK real-time operating systems (RTOS) stan-
dard, the modern RTOSes including LynxOS and QNX, and
the Controller Area Network (CAN) protocol and its extension
CAN-FD (CAN with Flexible Data-rate). τi is schedulable if
its worst-case response time (WCRT) or simply response time,
denoted as Ri, is no larger than its deadline Di.

A directed edge 〈τi, τj〉 exists in L if τi writes to τj . At the
start of execution, τj samples the input of τi, which are then
processed during its execution. Upon completion, the result is
delivered to its output for its successors to sample. An end-
to-end path p in the system consists of a set of directed edges
connecting from a source to a sink, which represents a chain
of communicating objects. One semantics of the end-to-end
latency of path p is the total amount of time from the instant
when the input data is first sampled by the source object to
the instant when the output is produced by the sink object.
For periodic activation, the worst case end-to-end latency is
the summation of the processing latency of each object τj ,
i.e.,

∑
j lj where lj = Rj + Tj [7].

Intuitively, this can be understood as a scenario where τj
just misses the output of τi produced at the start of its current
execution and thus has to wait until the next activation to
sample it. This introduces a sampling latency equal to the
period of τj . Correspondingly, the end-to-end latency of path
pi is then [7]

Lp =
∑
∀j∈p

li =
∑
∀j∈p

(Ri + Ti) (1)

For multiple communicating tasks with harmonic periods on
the same microcontroller, the analysis can be less pessimistic
if the designer can select the relative activation phase of all
tasks [13]. In addition, other semantics on end-to-end latency
may exist, and we refer the readers to [15].

Each path p is characterized by an end-to-end deadline Dp

requiring that Lp ≤ Dp. A correct design of the system should
satisfy not only the schedulability of each object, but also the
end-to-end deadline constraints for all paths.

We now provide a summary on the response time analysis.
For fixed priority preemptive scheduling with constrained (i.e.,
Di ≤ Ti) or implicit (i.e., Di = Ti) deadline, the WCRT Ri of
an object τi is the least fixed-point of the following equation

Ri = Ci +
∑

∀τj∈hp(i)

⌈
Ri
Tj

⌉
Cj (2)
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where hp(i) represents the set of higher priority objects
allocated on the same execution platform as τi.

For arbitrary deadline, Ri may not occur in the first instance
in the busy period, and it is necessary to check all instances
in the busy period. Specifically, Ri is computed as follows

Ri(q) = (q + 1)Ci +
∑

∀τj∈hp(i)

⌈
Ri(q)

Ti

⌉
Cj

Ri = max
q
{Ri(q)− qTi}

where q = 0...q∗ until Ri(q∗) ≤ (q∗ + 1)Ti

(3)

For non-preemptive scheduling, we summarize the accurate
analysis and a safe approximation proposed in [10]. Specifi-
cally, it is necessary to check all instances in the busy period
even if the object has constrained deadline. τi now suffers a
worst case blocking time equal to the maximum WCET from
the lower priority objects

Bi = max
∀τj∈lp(i)

{Cj} (4)

where lp(i) is the set of lower priority objects allocated on the
same platform as τi. The longest busy period tbi at the priority
level of τi is the fixed point of the following equation

tbi = Bi +

⌈
tbi
Ti

⌉
Ci +

∑
∀τj∈hp(i)

⌈
tbi
Tj

⌉
Cj (5)

The WCRT of τi is then computed as follows

wi(q) = qCi +Bi +
∑

∀τj∈hp(i)

⌈
wi(q)

Tj

⌉
Cj

Ri = max
q=0...q∗

{wi(q)− qTi + Ci} where q∗ =

⌈
tbi
Ti

⌉
− 1

(6)

For constrained deadline, τi can either suffer the blocking of
a lower priority object or the push through interference from
the previous instance of the same object, but not both [10].
Hence, it is sufficient to only check the first instance in the
busy period

Ri = Ci + B̂i +
∑

∀τj∈hp(i)

⌈
Ri − Ci
Tj

⌉
Cj (7)

where B̂i is defined as B̂i = max{Ci, Bi}.

A. Problem Definition
In this paper, we consider the design optimization problem

where the decision variables include the set of periods T and
priority assignments P for all tasks/messages. The feasibility
constraints include the schedulability of each task/message
and the end-to-end deadline requirements for all critical paths.
Moreover, the period assignments must maintain harmonicity
for the specified pairs of objects. This can be enforced by the
following constraint

Ti = hi,j · Tj , ∀ harmonicity pair τi, τj (8)

where hi,j represents the harmonicity factor and is integral.
When hi,j is a given constant, (8) is simply a linear constraint.
When hi,j is also a decision variable (i.e,. the designer is
allowed to choose the harmonicity factor), (8) becomes a
quadratic integer constraint. Such harmonicity constraints may
be motivated by the possibility to reduce the end-to-end
latency [13], but also may be imposed by development tools
such as Simulink (which requires any pair of communicating
functions have harmonic periods [19]).

Also, period bounds may be specified, especially for feed-
back control applications

T lb
i ≤ Ti ≤ T ub

i , ∀τi (9)

Finally, the total utilization of an execution platform rk may
not exceed a specified threshold Umax

k for future extensibility.∑
τi∈rk

Ci
Ti
≤ Umax

k , ∀rk (10)

Formally, the problem can be expressed as follows.

min
∀X

F (X)

s.t. Schedulability: Ri ≤ Di, ∀τi
Lp ≤ Dp, ∀p
(8)− (10)

(11)

where X represents the set of decision variables including the
periods T and priorities P of the tasks and messages. F (X)
represents an optional objective function. In this paper, we
consider the objective of minimizing the average WCRT over a
selected set of tasks/messages Ω, as adopted in several previous
works [7], [33]

F (X) =
∑
∀τi∈Ω

Ri (12)

This metric is a quantification of the responsiveness of the
selected tasks/messages. Although our framework may be
extended to other objectives, we leave it to future work.

IV. THE CONCEPT OF MUPDA
Before presenting our approach, we first discuss the chal-

lenges and the possible drawbacks from existing exact algo-
rithms on period optimization for distributed hard real-time
systems [7]. Specifically, [7] (like many other works on design
optimization of hard real-time systems, as discussed in Sec-
tion II) tries to leverage standard mathematical programming
framework, including a direct formulation of the response time
analysis. This suffers from the following issues.
• Response time analysis is notoriously inefficient to for-

mulate in standard mathematical programming framework.
Consider the analysis in (2) and the simplified problem of
optimizing period (as addressed in [7]). It has been shown that
a mixed integer geometric programming (MIGP) formulation
of the analysis requires O(n2) number of integer variables,
each for calculating the number of interferences

⌈
Ri

Tj

⌉
[7]. This

makes the formulation difficult to solve even for small and
medium size problems. To avoid this difficulty, [7] introduces
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TABLE I: An Example Task System Γe

τi T lb
i T ub

i Ci τi T lb
i T ub

i Ci

τ1 0 10 2 τ2 0 20 3
τ3 0 40 10 τ4 0 100 3

an iterative procedure but still relies on a direct formulation in
GP. Specifically, it introduces an additional set of parameters
αi,j and approximates the WCRT analysis as follows

R′i = Ci +
∑

∀τj∈hp(i)

(
R′i
Tj

+ αi,j)Cj (13)

The analysis is then formulated as a geometric program
integrated into an iterative procedure to adjust αi,j . The cost of
these approximations however, is a possible loss of optimality
and sometimes the procedure may not even converge.
• The applicability of these approaches is typically limited

to the schedulability analysis such as (2) and (7), which
only needs to evaluate the first instance in the busy period
for estimating WCRT. For more sophisticated scenario (e.g.,
arbitrary deadline setting) that requires analysis like (3) and
(6), the major difficulty is that the number of instances q∗
in the busy period cannot be determined in advance, as the
length of the busy period is unknown a priori when periods are
variables. This essentially makes it impractical for any possible
formulation in standard mathematical programming.
• When priority assignment is also part of the decision

variables, the problem becomes even more challenging. MIGP
is no longer able to handle it due to the additional constraints
from priority assignment. For example, the asymmetric con-
straints require that if τi has a higher priority than τj (pi,j = 1),
then τj must have a lower priority than τi (pj,i = 0) [32].
Such constraints have the form of pi,j + pj,i = 1, which
is incompatible with MIGP [20]. This hinders the possibility
of achieving significant improvement of optimization quality
brought by co-optimizing both period and priority assignment.

Instead, we propose a technique that avoids the above
pitfalls in existing approaches. The main idea is to use a
set of compact constraints for schedulability that hides the
details of the underlying schedulability analysis from the
mathematical programming solver. Our approach is applicable
to two scenarios. The first assumes that priority assignment
is given and periods are the decision variables. The second
considers the more general problem where both periods and
priority assignments are decision variables. Both variants of
the problem can be solved by the proposed framework. For
the first, the proposed technique is optimal w.r.t. the objective
function for any schedulability analysis that is sustainable w.r.t.
periods and deadlines (e.g., all the analyses summarized in
Section III). For the second version, the proposed technique
preserves optimality with the WCRT analysis in (2) and (7),
and is close to optimal for others.

In this section, we introduce a set of concepts for abstracting
the schedulability conditions, including Maximal Unschedu-
lable Period-Deadline Assignment (MUPDA). MUPDA is an
extension of the concept of MUDA (maximal unschedulable

deadline assignment) proposed in [33], by adding period
assignment information.

For clarity, we use an illustrative example system in Table I
in this section and Section V. All the four tasks are allocated on
the same execution platform. They are preemptive with implicit
deadline, hence the WCRT analysis in (2) is accurate. There
is one end-to-end path τ2 → τ3 with a deadline requirement
of 63. There is no harmonicity constraint or utilization bound.
Both periods T and priorities P are decision variables, thus
the design optimization of the example system is

min
∀T,P

R1 +R2 +R3 +R4

s.t. Schedulability : Ri ≤ Ti, ∀τi
R2 + T2 +R3 + T3 ≤ 63

T lb
i ≤ Ti ≤ T ub

i , ∀τi

(14)

Definition 1. [33] A Virtual Deadline (VD) is a tuple 〈τi, di〉D
where di is a positive integer, which represents an over-
estimated WCRT Ri ≤ di. A WCRT summation bound is a
tuple 〈Ω, d〉W where d is a positive integer. It represents the
following constraint ∑

∀τi∈Ω

Ri ≤ d (15)

Intuitively, in 〈τi, di〉D, di is an estimated value on the
WCRT Ri that shall be pessimistic (such that we will not
give false positive on the schedulability of τi). Similarly, d in
〈Ω, d〉W is an over-estimation on the objective (the summation
of WCRTs).

Definition 2. A period assignment is a tuple 〈τi, ti〉T where
ti ≤ T ub

i is a positive integer. It represents that the period of
τi is assigned to be ti, namely Ti = ti.

Definition 3. A period-deadline assignment, or shortly a T-D
assignment R is a collection of (i) a virtual deadline 〈τi, di〉D

for each τi, (ii) a period assignment 〈τi, ti〉T for each τi, and
(iii) a WCRT summation bound 〈Ω, dΩ〉W . Namely, R can be
expressed as

R = { 〈τ1, d1〉D .. 〈τn, dn〉D , 〈τ1, t1〉T .. 〈τn, tn〉T , 〈Ω, dΩ〉W }

The following definition gives a partial order relationship
among period-deadline assignments.

Definition 4. R1 is said to dominateR2, denoted asR1 � R2,
if the following conditions hold.

di ≥ d′i, ∀ 〈τi, di〉
D ∈ R1, 〈τi, d′i〉

D ∈ R2

ti ≥ t′i, ∀ 〈τi, ti〉
T ∈ R1, 〈τi, t′i〉

T ∈ R2

dΩ ≥ d′Ω, 〈Ω, dΩ〉W ∈ R1, 〈Ω, d′Ω〉
W ∈ R2

(16)

Equivalently, R1 � R2, if and only if R1 is component-
wise no smaller than R2. R1 is said to strictly dominate R2,
denoted as R1 � R2, if R1 � R2 and R1 6= R2.
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Example 1. Consider the following T-D assignments for Γe

R1 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 40〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }
R2 ={〈τ1, 10〉D , 〈τ2, 15〉D , 〈τ3, 40〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }
R3 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 30〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }
R1 � R2 and R1 � R3, as the virtual deadlines, period
assignments and WCRT summation bound inR1 is component
wise no smaller than those of R2 and R3. Also, neither R2 �
R3 nor R3 � R2: compared to R2, R3 has a larger virtual
deadline on τ2 but a smaller virtual deadline on τ3. Thus,
Definition 4 defines a partial order among all T-D assignments.

Definition 5. Let R = {〈τ1, d1〉D , ... 〈τn, dn〉D,
〈τ1, t1〉T ,...〈τn, tn〉T , 〈Ω, dΩ〉W } be a T-D assignment. The
system Γ is R-schedulable, or informally R is schedulable,
if and only if there exists a priority assignment such that
(i) Ti = ti, ∀ 〈τi, ti〉T ∈ R; (ii) Ri ≤ di, ∀ 〈τi, di〉D ∈ R;
and (iii)

∑
τi∈ΩRi ≤ dΩ. That is, R is schedulable if and

only if there exists a priority assignment that respects all
the assignments on periods, virtual deadlines, and WCRT
summation bound in R.

Example 2. Consider the following T-D assignments

R1 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 40〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }
R2 ={〈τ1, 10〉D , 〈τ2, 15〉D , 〈τ3, 2〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }
R3 ={〈τ1, 10〉D , 〈τ2, 15〉D , 〈τ3, 2〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 18〉W }
R1 assigns the most relaxed period, virtual deadlines
and WCRT summation bound and is schedulable by rate-
monotonic priority assignment. R2 is obviously unschedulable
as the virtual deadline on τ3 cannot even accommodate its
worst-case execution time. R3 differs from R1 in the WCRT
summation bound. Though individual virtual deadlines can
be satisfied for R3 by rate-monotonic priority assignment,
its WCRT summation bound, which equals the summation of
WCETs of all objects, obviously cannot be satisfied for any
priority assignment. Thus R3 is also unschedulable.

We now reformulate the original problem (11) into the
following form with the concept of R-schedulability.

min
∀R

dΩ

s.t. Γ is R-schedulable
L′p ≤ Dp, ∀p
(8)′ − (10)′

(17)

L′p is calculated in the same way as Lp, but instead Ri is
replaced with di where 〈τi, di〉D ∈ R and Ti is replaced with

ti where 〈τi, ti〉T ∈ R. Similarly, (8)’-(10)’ are derived from
(8)-(10) by replacing Ti with ti.

Informally, the reformulated problem (17) is to find a
schedulable R with minimum value on dΩ that satisfies all
the end-to-end latency deadline constraints and (8)-(10). The
equivalence between (17) and (11) is straightforward. Con-
sider a feasible solution of (11). Construct a period-deadline
assignment R by setting di = Ri for all virtual deadlines
〈τi, di〉D, ti = Ti for all period assignments 〈τi, ti〉T and
dΩ =

∑
∀τi∈ΩRi. R is also a feasible solution of problem

(17). Similarly, consider a feasible solution R of problem
(17). Since R-schedulability guarantees that Γ is feasible with
Ri ≤ di for all objects and

∑
τi∈RRi ≤ dΩ under period

assignment Ti = ti for all τi, R also implies the existence of
a feasible solution for (11).

We now introduce an abstraction scheme that efficiently
models the feasibility region of R-schedulability for (17).

Theorem 1. Let R be an unschedulable period-deadline as-
signment. Any R′ such that R � R′ is also unschedulable.

Proof. The schedulability analyses in (2)–(7) are all sus-
tainable w.r.t. deadlines and periods of the objects [2], i.e.,
increasing the deadline or period of any object can only make
the system more schedulable. The sustainability property also
trivially extends to the WCRT summation bound dΩ in R,
hence the proof.

Theorem 1 implies that each unschedulable period-deadline
assignment R captures also the unschedulability of other
period-deadline assignments R′ dominated by it. The use-
fulness of the theorem is that it generalizes from one un-
schedulable period-deadline assignment to a potentially large
set of unschedulable ones. The following definition introduces
a special type of period-deadline assignment that is “most
general” in capturing unschedulability.

Definition 6. U is a maximal unschedulable period-deadline
assignment (MUPDA) if it satisfies the following condition
• Γ is not U -schedulable;
• For all R such that R � U , Γ is R-schedulable.

Example 3. Consider the following T-D assignments

R1 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 10〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 10〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }
R2 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 40〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 16〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }

R1 is unschedulable for the following reason. τ1 must have
higher priority than τ3 as C3 ≥ T ub

1 . Under this constraint,
the virtual deadline and period assignment for τ3 cannot
accommodate its schedulability. R2 is also unschedulable.
Consider the rate-monotonic priority assignment, known to be
optimal for schedulability of individual tasks. τ2 suffers the
interference of at least two instances of τ1 and one instances
of τ3. Thus R2 is at least 17. When T3 = 16, τ2 suffers
one more instance of interference from τ3, which violates
its schedulability. However, If T3 is increased by one (i.e.,
T3 = 17), τ2 will be schedulable. With the above result, R1
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Algorithm 1 Algorithm for Computing MUPDA

1: function MUPDA(System Γ, Unschedulable R)
2: for each element ζ ∈ R (ζ may be 〈τi, v〉D or 〈τi, v〉T

or 〈Ω, v〉W ) do
3: Use binary search to find out the largest value u

that v can be increased to while keeping R unschedulable
4: Update the value of v to be u
5: end for
6: return R
7: end function

is not a MUPDA since R2 � R1 and R2 is unschedulable.
R2 is a MUPDA however, as all R � R2 (which only consist
of Rs with larger period assignment on τ3, as all other virtual
deadlines, periods assignment and WCRT summation bound
are at their upper bounds) are schedulable.

Remark 1. A MUPDA is a maximal generalization of un-
schedulable period-deadline assignment in the sense that there
is no other unschedulable R that strictly dominates U . MUP-
DAs are not unique: it is possible that a system Γ has multiple
MUPDAs by Definition 6.

We now show how MUPDAs can be used to
derive an abstract form of schedulability constraint
for use in problem (17). A MUPDA U =
{〈τ1, d′1〉

D
, ... 〈τn, d′n〉

D
, 〈τ1, t′1〉

T
, ... 〈τn, t′n〉

T
, 〈Ω, d′Ω〉

W }
suggests that all period-deadline assignments

R = {〈τ1, d1〉D .. 〈τn, dn〉D , 〈τ1, t1〉T .. 〈τn, tn〉T , 〈Ω, dΩ〉W }

satisfying the following constraints are unschedulable
di ≤ d′i, ∀τi
ti ≤ t′i, ∀τi
dΩ ≤ d′Ω,

(18)

Contra-positively, the following constraints are necessary to
be satisfied for any schedulable period-deadline assignment R.

R � U ⇔ ¬


di ≤ d′i, ∀τi
ti ≤ t′i, ∀τi
dΩ ≤ d′Ω,

⇔

∥∥∥∥∥∥
di > d′i, ∀τi
ti > t′i, ∀τi
dΩ > d′Ω,

(19)

where ‖ represents the logical OR (disjunction) operation.
We call (19) MUPDA implied constraints by U . Our general

idea is to use (19) as the form of constraints for shaping the
feasibility region of R-schedulability in problem (17). The
disjunction can be formulated as integer linear constraint [32].

We now discuss how MUPDAs can be obtained given an
unschedulable R. This is detailed in Algorithm 1. Specifically,
Algorithm 1 is based on the property that the schedulability
analysis is sustainable w.r.t. deadline, period, and WCRT sum-
mation. When performing the binary search for determining
the largest value u (Line 2-3) on a particular element (virtual
deadline, period assignment, or WCRT summation bound) in
R, the other elements are kept unchanged. If the system is still
unschedulable even by setting v to the upper bound, then v is
updated to the upper bound. The order of visit in Line 2 may

affect the returned MUPDA in the sense that different orders
may return different MUPDAs. To compute multiple MUPDAs
from a single R, it suffices to perturb R into R′ such that any
previously computed MUPDA U does not dominate R′, i.e.,
U � R′. This guarantees that the MUPDA computed from R′
is different from all previous ones.

Example 4. We now illustrate Algorithm 1 by applying it
to R1 in Example 3. Suppose the algorithm iterates through
each element in R1 according to the order shown in the
example. 〈τ1, 10〉D and 〈τ2, 20〉D are explored in the first two
iterations, but they already at their upper bound, thus nothing
is performed. In the third iteration, the algorithm considers
〈τ3, v〉D where v = 10. It uses binary search to find out
the maximum value v can be increased to while maintaining
unschedulability, assuming all other elements in R1 remain
unchanged. By the reasoning in Example 3, even if v is
increased to the upper bound 40, τ2 is still unschedulable due
to 〈τ3, 10〉T . Thus 〈τ3, 10〉D is updated to 〈τ3, 40〉D. Similarly,
when the algorithm iterates on 〈τ3, 10〉T , it discovers that the
system becomes schedulable after T3 is increased to 17. Thus it
updates 〈τ3, 10〉T to 〈τ3, 16〉T , the largest value that maintains
unschedulability. In the end, given R1 as input, Algorithm 1
finds the MUPDA R2 shown in Example 3.

Next we consider computing a second MUPDA from R1.
The key is to perturb R1 into R′1 such that R′1 � R2. This can
be done, for example, by setting 〈τ3, 10〉T in R1 to 〈τ3, 17〉T ,
which gives

R′1 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 10〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 17〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }

R′1 is still unschedulable as the deadline assignment
〈τ3, 10〉D, which equals C3, is too small. Applying Algo-
rithm 1 gives the following MUPDA.

R′2 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 11〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 17〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }

Algorithm 1 requires an efficient procedure to check the
schedulability of R (Line 3). As mentioned earlier in this
section, we consider two scenarios. The first assumes that
priority assignment is given. In this case, R-schedulability
is straightforward to test, by (i) setting the period of each
object according to the period assignment in R; (ii) computing
the WCRT Ri of each object τi as well as the summation∑
∀τi∈ΩRi; and (iii) verifying if all constraints on schedula-

bility and WCRT summation are satisfied by R. The procedure
is summarized in Algorithm 2. In this scenario, the algorithm
is exact w.r.t. to any given response time analysis.

The second scenario assumes the priority assignments are
also variables. This is harder as an exact R-schedulability test
requires to solve an optimization problem as below

min
∀P

∑
∀τi∈Ω

Ri

s.t. System Γ is schedulable
(20)
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Algorithm 2 R-schedulability test with priority assignment

1: function R-SCHEDULABILITY(System Γ, T-D Assign-
ment R)

2: Set Ti = ti for all 〈τi, ti〉T ∈ R
3: Compute WCRT Ri for each object τi
4: if Ri ≤ di, ∀ 〈τi, di〉D ∈ R then
5: if

∑
∀τi∈ΩRi ≤ dΩ, where 〈Ω, dΩ〉W ∈ R then

6: return true
7: end if
8: end if
9: return false

10: end function

Algorithm 3 R-schedulability test without priority assignment

1: function R-SCHEDULABILITY(System Γ, T-D Assign-
ment R)

2: Set Ti = ti for all 〈τi, ti〉T ∈ R.
3: Set Di = di for all 〈τi, di〉D ∈ R.
4: Assign priorities according to [33, Algorithm 1]
5: Compute WCRT Ri for each object τi
6: if Ri ≤ di, ∀ 〈τi, di〉D ∈ R then
7: if

∑
∀τi∈ΩRi ≤ dΩ, where 〈Ω, dΩ〉W ∈ R then

8: return true
9: end if

10: end if
11: return false
12: end function

The optimal objective is then compared to the WCRT sum-
mation bound dΩ specified in R, which determines whether
R is schedulable. Though the problem is generally difficult,
[33] shows that for systems with constrained deadlines using
response time analyses in (2) and (7), a variant of Audsley’s
algorithm that always consider tasks with larger WCET first
at each priority level is optimal for the above problem. For
arbitrary deadline setting or response time analyses in (3)
and (6), this algorithm does not guarantee optimality but is
typically very close to optimal[33].

Algorithm 3 summarizes our proposed procedure for testing
R-schedulability in the second scenario. It differs from Al-
gorithm 2 in Lines 3–4: in Line 3 Algorithm 3 updates the
deadline of each object to be the virtual deadline in R, which
is necessary for performing priority assignment in Line 4.

Another issue is that the total number of MUPDAs for
a system may be exponential to the number of tasks. It is
obviously impractical to compute all of them and add the
implied constraint to problem (17). However, we observe that
in most cases, not all MUPDAs are related to the objective and
end-to-end latency constraints. In fact, the optimal solution of
(17) can usually be defined by a small number of MUPDA
implied constraints. In the next section, we propose an iterative
procedure that prudently explores only a subset of all MUPDAs
that are sufficient to establish the optimal solution.

 Step 2: 
Solve ILP formulation ∏  

Step 4: 

Schedulable?
No

Yes

Compute MUPDAs and 
add the implied 
constraints to ∏

 Step 3: 
Period-deadline relaxation

 Step 1: 
Start with ILP ∏ without any  R-

schedulability constraints

Period-deadline 
assignment R 

Relaxed period-deadline 
assignment

Feasible?

Yes

Report infeasibility

No

Report optimal solution

Fig. 1: The MUPDA guided optimization framework.

V. MUPDA GUIDED OPTIMIZATION

We now present the complete optimization framework, an
iterative procedure as summarized in Figure 1. The basic idea
is to leverage ILP solvers for generic branch-and-bound based
search and the efficient algorithms for calculating MUPDAs.
Specifically, at any point of the procedure execution where
a subset U of all MUPDAs are calculated, we partition the
problem into two parts: (i) a relaxation Π of the problem
(17) that includes MUPDA implied constraints from U (and
implicitly part of the schedulability conditions), the end-to-
end deadline constraints, and (8)’–(9)’, which will be handled
by the ILP solver; and (ii) those constraints not included in Π,
which will be handled by the algorithms in Section IV.

To make Π compatible with ILP, the MUPDA implied
constraints, as in the form of (19), can be formulated as
integer linear constraints by adding a set of auxiliary binary
variables [32]. Also, linearization techniques [21] can convert
(8)’ to integer linear constraints.

Finally, we enforce (10)’ by modifying Algorithms 2 and 3.
Specifically, before verifying schedulability, the total utiliza-
tion of each execution platform is checked. If any utiliza-
tion bound is violated, the system is considered to be R-
unschedulable. In this sense, we extend the definition of R-
schedulability to include also the utilization bound constraints
in addition to the system schedulability. We note this is con-
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sistent since (10)’, like the system schedulability constraints,
is also sustainable to the periods and deadlines: increasing the
periods and deadlines can only make (10)’ more satisfiable. In
the rest of the section, we slightly abuse the term “schedula-
bility” to also include the utilization bound constraints.

We now detail the procedure in a step-wise manner.
Step 1-Initial Problem. The algorithm first starts with the

following optimization problem Π,

min
∀R

dΩ

s.t. R � U , ∀U ∈ U (as formulated in (19))
L′p ≤ Dp, ∀p
(8)′ − (9)′

(21)

where U = ∅ initially (i.e., no MUPDA implied constraints).
Step 2-Solve Problem Π. The second step solves the opti-

mization problem Π. If the Π is infeasible, then the algorithm
terminates reporting the infeasibility. This is possible when,
for example, the end-to-end deadlines are too tight such that
no schedulable solution can satisfy them. Otherwise solving Π
returns a solution R∗ that is optimal w.r.t. the current known
set of MUPDAs U.

Step 3-R∗ Relaxation. Problem Π only concerns minimiz-
ing dΩ. The values assigned to other virtual deadlines 〈τi, di〉D

and periods 〈τi, ti〉D for all τi /∈ Ω, though feasible w.r.t. the
constraints of Π, may still be arbitrary and unnecessarily small.
The consequence is that the resulting solution R is less likely
to be schedulable.

Let the solution obtained from Step 2 be

R∗ = {〈τ1, d∗1〉
D
.. 〈τn, d∗n〉

D
, 〈τ1, t∗1〉

T
.. 〈τn, t∗n〉

T
, 〈Ω, d∗Ω〉

W }

This step tries to relax R∗ by solving the following problem

max
∀R

∑
∀ti,di∈R

ti + di

s.t. L′p ≤ Dp, ∀p
(8)′ − (9)′

R � R∗

dΩ = d∗Ω

(22)

Intuitively, (22) aims to increase each entry of ti and di in
R while maintaining the objective value dΩ. Constraint R �
R∗ guarantees that the new solution R is a relaxation of the
original one R∗, hence R is also an optimal solution to (21).
The purpose of the relaxation is to increase the likelihood of
termination at Step 2. Generally, the larger ti and di are, the
more likely the period and deadline assignment is schedulable.

Step 4. MUPDA Computation. Let R be the adjusted
solution obtained from Step 3. If R is schedulable, then R is
the optimal solution to the full problem (17) and the algorithm
terminates. Otherwise, the algorithm computes several MUP-
DAs and add them to U (consequently their implied constraints
in the form (19) to problem Π). Then it returns to Step 2.

In the following, we demonstrate the proposed optimization
algorithm using on the example system problem in Table I.

The original problem is described in (14). The algorithm first
starts with the following initial problem Π

min
∀R

dΩ

s.t. d2 + t2 + d3 + t3 ≤ 63

Ci ≤ di ≤ ti ≤ T ub
i , ∀τi

(23)

which contains only the objective, end-to-end latency con-
straint, and the bounds on the variables. The R-schedulability
constraints are ignored. The algorithm then enters the iteration
in Steps 2–4.
Iteration 1. Solving the initial problem Π, we get

R∗1 = { 〈τ1, 10〉D , 〈τ2, 3〉D , 〈τ3, 10〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 3〉T , 〈τ3, 10〉T , 〈τ4, 100〉T , 〈Ω, 18〉W }
The estimated end-to-end latency by the returned solution is

d2 + t2 + d3 + t3 = 26 (24)

which is unnecessarily smaller than the required end-to-end
latency deadline. Thus the following relaxation is performed
on R∗ to increase the period and virtual deadline assignment.

max
∑
∀τi

di + ti

s.t. d2 + t2 + d3 + t3 ≤ 63

di ≤ ti ≤ T ub
i , ∀τi

d2 ≥ 3, t2 ≥ 3, d3 ≥ 10, t3 ≥ 10

dΩ = d∗Ω

(25)

Solving the above problem returns the following adjusted
period-deadline assignment.

R
′∗
1 = { 〈τ1, 10〉D , 〈τ2, 3〉D , 〈τ3, 10〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 10〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 18〉W }

While also satisfying the end-to-end deadline constraint, R′∗1
is more relaxed than the original R∗1 and is more likely to be
schedulable. For the rest of the example, we omit the details of
relaxation and only show the adjusted solution after relaxation.
R′∗1 is not schedulable. The following two MUPDAs are

computed using Algorithm 1.

U1 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 40〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 34〉W }
U2 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 19〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 43〉W }
U1 implies the following constraint in the form of (19)

(d1 > 10) ∨ (d2 > 20) ∨ (d3 > 40) ∨ (d4 > 100)∨
(t1 > 10) ∨ (t2 > 20) ∨ (t3 > 40) ∨ (t4 > 100) ∨ (dΩ > 34)

where ∨ is another way to represent logical OR operations.
Taking into consideration the bounds and integrality of

variables, The above constraint can be simplified as

dΩ ≥ 35 (26)
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Similarly, U2 implies the following constraint

(d3 ≥ 20) ∨ (dΩ ≥ 44) (27)

The above two constraints are added to problem Π.
Iteration 2. The updated problem Π has the following solution.

R∗2 ={〈τ1, 10〉D , 〈τ2, 3〉D , 〈τ3, 20〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 3〉T , 〈τ3, 37〉T , 〈τ4, 100〉T , 〈Ω, 170〉W }
R∗2 is not schedulable. The following two MUPDAs are

computed.

U3 ={〈τ1, 10〉D , 〈τ2, 20〉D , 〈τ3, 40〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 19〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 39〉W }
U4 ={〈τ1, 10〉D , 〈τ2, 4〉D , 〈τ3, 40〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 40〉T , 〈τ4, 100〉T , 〈Ω, 35〉W }
The following MUPDA implied constraints are added to Π.

((t2 ≥ 20) ∨ (dΩ ≥ 40)) ∧ ((d2 ≥ 5) ∨ (dΩ ≥ 36))

where ∧ represents the logical AND operation.
Iteration 3. The updated problem Π allows the solution below.

R∗3 ={〈τ1, 10〉D , 〈τ2, 3〉D , 〈τ3, 20〉D , 〈τ4, 100〉D

〈τ1, 10〉T , 〈τ2, 20〉T , 〈τ3, 20〉T , 〈τ4, 100〉T , 〈Ω, 36〉W }
R∗3 is now schedulable, which gives the optimal period as-

signment. The corresponding schedulable priority assignment,
which is returned from Algorithm 3 with R∗3 as the input, is
τ2 � τ1 � τ4 � τ3. The optimal objective is dΩ = 36.

Remark 2. Each MUPDA implied constraint introduces addi-
tional binary variables for modeling disjunction. For example,
consider (d3 ≥ 20) ∨ (dΩ ≥ 44). It can be formulated in ILP
as

(d3 ≥ 20b1) ∧ (dΩ ≥ 44b2)

b1 + b2 ≥ 1
(28)

where b1 and b2 are binary variables. A MUPDA U may
introduce |U| number of variables in the worst case. Thus,
given a set of MUPDAs U, the number of additional binary
variables for the ILP problem is O(

∑
∀U∈U |U|).

As the total number of MUPDAs for a system is bounded,
the proposed procedure in Figure 1 is guaranteed to terminate.
Upon termination, the procedure either returns an optimal
solution if the problem is feasible, otherwise it reports infea-
sibility. This is because in each iteration, only a subset of
the MUPDA implied constraints is added into the problem Π,
hence Π maintains to be a relaxation of the original problem.
An optimal and schedulable solution to Π must also be an
optimal solution of the original problem.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results on two
industrial case studies. We compare our approach with the
state-of-the-art method for period optimization that is based
on a MIGP formulation or a GP-based iterative procedure [7].
All runtimes are the wall-clock time on a dedicated machine

with a 2.5GHz eight-core processor and 8GB memory. Since
the previous approaches only handle the period optimization
problem where the priority assignment is given, we consider
this version for a direct comparison. Then we us problem
where priority assignment is also part of the decision variables
to show the benefit of our unified framework.

A. Vehicle with Active Safety Features
Our first case study consists of an industrial experimental

vehicle system with active safety features [7]. The system con-
tains 29 Electronic Control Units (ECUs) connected through 4
CAN buses. A total of 92 tasks are deployed on the ECUs and
192 CAN messages are exchanged on the CAN buses. Tasks
are scheduled preemptively and messages are non-preemptive.
End-to-end deadlines are imposed on 12 pairs of source-
sink tasks, between which a total of 222 unique end-to-end
paths exist. 9 pairs of communicating tasks on the same ECU
are imposed with period harmonicity requirements. The total
utilization of each execution platform must not exceed 70%
for future extensibility.

The allocation of tasks to ECUs and messages to CAN
buses is given. Worst case execution time of each object is
also measured. An initial assignment of periods and priorities
is given by the designer, which fails to satisfy any of the
end-to-end deadline constraints. The problem is then to find a
new feasible assignment that meets schedulability and end-to-
end deadline constraints. Different from [7], the initial period
assignments are used as the upper bound T ub

i of the period
variable Ti.
Optimization of Period Assignment. To give a direct com-
parison with the approaches in [7], we first consider the
optimization of period assignment with given priorities, and the
objective is to optimize the WCRT summation over all objects.
Since [7] can only handle the response time analyses in (2)
and (7), we assume tasks/messages have implicit deadline and
adopt the same analyses. We first fix the harmonicity factors
to the value initially given by the designer.

We try to solve the MIGP formulation proposed in [7] by the
BnB solver in YALMIP [17] which leverages gpposy [20] to
solve geometric programming problems. However, YALMIP
always reports “out of memory” before finding any feasible
solution.

We now compare our approach (called MUPDA-guided
later) with the iterative geometric programming based algo-
rithm (IterGP) proposed in [7], as well as genetic algo-
rithm (GA). The main idea of IterGP is to approximate
the response time analysis, i.e., (2) as that of (13), which
allows to formulate the problem as a geometric program.
When the approximated response time R′i is different from
the actual one Ri, the parameter αi,j is updated to try to
reduce the approximation error, after which the optimization is
performed again. The algorithm terminates when the maximum
approximation error is within an acceptable bound or the
iteration limit is reached. As in [7], we set the maximum
iteration limit to be 15 (which is sufficient as IterGP usually
gets stuck at local minimum before that). The algorithm is
implemented in YALMIP framework [17] using the gpposy
geometric programming solver [20].
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TABLE II: Optimization results for the experimental vehicle
with given priority assignment

Method Objective Time Status
MUPDA-guided 541708 24.35s Terminate

IterGP 541767 185.68s Iteration Limit Reached
GA-105 N/A 6.3h Abort
GA-106 N/A ≥ 48h Timeout

TABLE III: Optimization results for the experimental vehicle
with given priority assignment, relaxed harmonicity factor

Method Objective Time Status
MUPDA-guided 532938 6.43s Terminate

IterGP 533770 999.54s Iteration Limit Reached

We implement the GA-based approach leveraging the MAT-
LAB optimization toolbox. The objective is set as the fitness
function, and system schedulability and end-to-end deadline
requirement are provided as nonlinear constraints. We use
two initial population sizes 105 and 106, denoted as GA-105

and GA-106 respectively. All other parameter settings are the
default values in MATLAB.

The results are summarized in Table II. MUPDA-guided
terminates with the optimal solution after around 24 seconds.
IterGP terminates with a slightly sub-optimal solution after
exceeding the limit of 15 iterations. GA-105 aborts after failing
to find any feasible solution for three generations. GA-106

on the other hand, is unable to complete the first generation
within 48 hours. Figure 2 plots the objective value during the
optimization process of IterGP. Each data point in the plot
corresponds to the objective value of a particular iteration.
The curve “Approximated GP Objective” corresponds to the
objective value of the geometric optimization, which is given
by the approximated response time (13). The “Actual Objec-
tive” corresponds to the objective value by the actual response
time (2). If the period assignment is actually infeasible (w.r.t.
schedulability and end-to-end deadline constraints), the corre-
sponding data point is omitted in the figure, which is why for
some data points on the “Approximated GP Objective” curve,
there is no corresponding one on the “Actual Objective” curve.
As shown in the figure, the solution summarized in Table II
is found by IterGP after the third iteration at time 39s.
However, after that IterGP oscillates between a feasible and
an infeasible period assignments, and cannot find any better
solution. This highlights a major drawback of IterGP: unlike
MUPDA-guided, IterGP cannot guarantee convergency.

Next, we relax the harmonicity factor hi,j from a fixed
constant to an integer decision variable. We omit GA for
this setting since the ga function provided in MATLAB is
not capable of handling equality constraints with integer vari-
ables. The corresponding results are summarized in Table III.
MUPDA-guided finds optimal solution after only around 6
seconds. IterGP again starts oscillating between a feasible
and infeasible solution after a few iterations. The best solution
it finds is at the first iteration after 52 seconds.
Optimization of Both Period and Priority. One advantage
of MUPDA-guided is its ability to optimize both periods
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Fig. 2: Optimized objective of IterGP.

TABLE IV: Optimization results for the experimental vehicle
without given priority assignment

Harmonicity Factor Objective Time Status
Fixed 300156 14.09s Terminate

Relaxed 298492 9.80s Terminate

and priority assignments. In this experiment, we ignore the
given priority assignment and consider it to be also part of
the decision variables. All other experimental settings remains
the same as the previous one. Since the approaches in [7]
(IterGP and MIGP) are no longer applicable, we evaluate
only the proposed technique MUPDA-guided.

Table IV summarizes the optimization results with fixed and
relaxed harmonicity factor settings. Comparing with the results
in Table II and Table III, the inclusion of priority assignment
into the decision space significantly improves the optimization
results: for fixed harmonicity factor the improvement is about
44.6%, and for relaxed harmonicity factor the objective is
about 44.0% smaller. This is expected as the design becomes
much more flexible.

In summary, the results in Tables II–IV demonstrate the
three advantages of MUPDA-guided compared to IterGP:
(i) it guarantees convergency; (ii) it may run magnitudes faster
(e.g., 9.80s vs. 999.54s for the setting of relaxed harmonicity
factor); (iii) it can handle the co-optimization of both periods
and priority assignments, hence has the potential to provide
substantially better solutions.
Optimization with Arbitrary Deadline Setting. Another
advantage of the proposed algorithm is its capability of ac-
commodating schedulability analysis that may be difficult or
even impossible to use in standard mathematical programming
framework, such as those in (3) and (6) for arbitrary deadline
setting. In this experiment, we seek to evaluate the benefit
brought by this feature. Intuitively, larger deadline allows more
flexibility in system design in the sense that more priority
assignments would be considered schedulable compared to
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TABLE V: Optimization results for relaxed deadline settings

Implicit Deadline
Objective Time Status
134502 6.12s Terminate

Relaxed Deadline
ρ Objective Time Status
1 134502 6.06s Terminate
2 128972 9.49s Terminate
3 120832 7.36s Terminate

constrained or implicit deadline settings. This would be bene-
ficial, for example, when the design objective only involves a
subset of objects and other objects may be scheduled at lower
priority levels when given longer deadlines. In the following,
we optimize a variant of the original problem as follows.
• Instead of the sum of WCRTs over all objects, we now

optimize the sum over only those objects in the end-to-end
paths (i.e., Ω is the set of objects in the end-to-end paths).
• The set of objects in Ω still uses implicit deadline setting.

Other objects use the more relaxed arbitrary deadline setting
with response time analysis in (3) and (6). The deadline of an
object τi not in Ω is set to ρT init

i , where T init
i is the initial period

assignment for τi from the designer, and ρ is a scaling factor.
The higher the ρ, the more relaxed the deadline constraint is.

Other settings remain the same with the previous experiment
on optimizing both period and priority. For simplicity, only
fixed harmonicity factor setting is considered.

Table V summarizes the results of MUPDA-guided for the
baseline case that all tasks/messages have implicit deadline, as
well as the setting with relaxed deadlines for tasks/messages
not in the end-to-end paths. Intuitively, the modified problem
places more emphasis on the set of objects in Ω: the higher
the priority that can be assigned to objects in Ω, the smaller
the objective value.

As shown in the table, the use of relaxed deadline setting
does bring improvement of optimization results. The larger
the ρ value, the smaller the objective value. Intuitively, when
objects not in Ω are given relaxed deadlines, they are able to
tolerate lower priorities, which makes it possible to schedule
objects in Ω at higher priorities. This reduces the sum of
WCRTs over Ω. However, this requires to use sophisticated
analyses in (3) and (6) that is very difficult in standard
mathematical programming framework.

B. Distributed System with Redundancy based Fault-Tolerance
Our second case study is an example system used in [24].

The system is designed in a fault-tolerant manner by replicat-
ing tasks in the original design onto different ECUs, which
results in a total of 43 tasks and 36 messages deployed
onto an architecture with 8 ECUs. However, for merely the
purpose of period optimization, we do not distinguish between
original and replicated tasks and simply treat all of them as
different periodic tasks in a normal periodic task system. Initial
allocation, period assignments for tasks are given, and the
initial period of each message is assumed to be the same as
its source task. Tasks are preemptive and messages are non-
preemptive, with an initial priority assignment that follows the

TABLE VI: Optimization results for the fault-tolerant system
with given priority assignment

Method Objective Time Status
MUPDA-guided 50656 0.29s Terminate

IterGP 51600 9.3s Iteration Limit Reached
MIGP 50656 13.27s Terminate

rate-monotonic policy. End-to-end deadlines are imposed on 6
paths, which are assumed to be the initial end-to-end latency
on the path. There is no harmonicity constraint. The utilization
bound of each ECU and bus is set to 70%.

This case study is noticeably smaller than the previous
one on the experimental vehicle, which allows the MIGP
formulation for optimizing period to be solved by YALMIP.
Table VI summarizes the results on the three methods
(MUPDA-guided, IterGP, and MIGP) for optimizing the
period under the given rate-monotonic priority assignment.
Again, IterGP oscillates and has to settle for a suboptimal
solution after 15 iterations. MUPDA-guided and MIGP both
find the optimal solution but MUPDA-guided is evidently
faster. If we also include the priority assignment as the decision
variable, MUPDA-guided is the only one capable of solving
this problem. It finds a much better solution with an objective
of 42740 in 0.51 second, due to the additional design space of
priority assignment.

VII. CONCLUSION

This paper considers the problem of automating the period
and priority assignment stage in the design of distributed
hard real-time systems. Such problems are common in a wide
variety of embedded systems application domains such as
automotive and avionics. Our approach is to develop a cus-
tomized optimization procedure, that leverages the strength of
ILP solver and problem-specific algorithms. Compared to the
state-of-the-art work for solving a subproblem of optimizing
period assignment only, the proposed algorithm runs much
faster while providing substantially better solutions.
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