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Approaches for Assigning Offsets to Signals for
Improving Frame Packing in CAN-FD
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Abstract—Controller Area Network (CAN) is a widely used
protocol that allows communication among Electronic Control
Units (ECUs) in automotive electronics. It was extended to CAN-
FD (CAN with Flexible Data-rate) to meet the increasing demand
for bandwidth generated by the growing number of features
in modern automobiles. The signal-to-frame packing problem
has been studied in literature for both CAN and CAN-FD. In
this work, we propose and formulate the signal offset assignment
problem (SOAP) in CAN-FD to improve the bus utilization during
frame packing. We propose two algorithmic themes to solve
SOAP and establish their worst case performance guarantees.
The first is a general approximation framework (GAF) which can
use any approximation algorithm for the makespan minimization
problem (MMP) in multiprocessor systems. Its performance
guarantee is the product of the performance guarantee of the
MMP algorithm and the number of distinct periods in the frame.
The second is a 2-dimensional strip packing based framework
(2DSPF) which uses the Bottom Left Fill algorithm for 2-D
strip packing. The performance guarantee is 2G, where G is
the minimum number of groups into which the set of signals
can be partitioned so that the periods of the signals in the
same group form a geometric series. The experimental results
for GAF and 2DSPF indicate that by carefully assigning offsets
for signals in frame packing schemes, one can achieve about
10.83% improvement in bus utilization in CAN-FD systems.

Index Terms—Frame Packing in CAN-FD, Offset Assignment
to Signals, 2-D Strip Packing.

I. INTRODUCTION

Modern automobiles are equipped with new and more
sophisticated features such as lane keeping and adaptive cruise
control. Hence, there is a significant increase in the number
of software tasks as well as the number of signals that are
transmitted by the Electronic Control Units (ECUs) over the
in-vehicle communication network. Often times, there are over
1000 signals (the data communicated among software tasks)
to be packed into frames and transmitted on one bus. In such
a scenario, there is a huge demand for bandwidth regardless
of the communication protocol (e.g., Controller Area Network
(CAN), FlexRay, Ethernet) used in the automotive system.

CAN, which was standardized in the mid 1990s, is a popular
choice among automotive developers for in-vehicle networks.
It has attracted a significant amount of research from the real-
time systems community ever since its development (e.g., [1],
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[2], [3]). To meet the growing demand for bandwidth, CAN
was extended to CAN-FD in 2012 [4] through two major
improvements: (i) increase of bit-rate (up to 8 Mbps), and (ii)
increase of payload sizes (up to 64 bytes). The physical layer
of CAN was unchanged: the contention resolution mechanism
is still a bitwise arbitration based on frame identifiers.

The signal-to-frame packing (or in short, frame packing)
problem in CAN and CAN-FD has been studied in the
literature and shown to be challenging (e.g., [3], [5], [6], [7]).
Efficient frame packing enables better bus utilization thereby
increasing the amount of data that can be transmitted. In return,
this provides better system extensibility (i.e., the ability to
accommodate future functionalities). However, all the existing
works assume no signal offset assignment even when signals
of different periods are packed into the same frame. This,
combined with the current practice of using frames with a
fixed payload size [8], means that the payload of a frame has
to be no smaller than the sum of the payloads of all its signals.
Instead, in this work we propose to carefully distribute the
signals into frame instances to reduce the frame payload and
consequently the bus utilization. We term this problem as offset
assignment to signals where an offset denotes a displacement
(in terms of time) of the signal from the first instance of the
frame. We now provide a motivational example.

A. Motivational Example
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Fig. 1. An example to motivate signal offset assignment for improving
bandwidth utilization in frame packing.

Consider a CAN-FD system with a single bus and one ECU
transmitting three signals as shown in Figure 1. The signal
payload sizes and periods are also shown in the figure.

We compare two frame packing solutions. In the first
solution, signal offsets are not considered; i.e., all the signals
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have an implicit offset of 0 ms. The resulting frame payload
size is 48 bytes since the signal payloads (4, 20, 20 bytes) sum
up to 44 bytes and the nearest available CAN-FD payload size
is 48 bytes (see Section III). The frame is transmitted every
10 ms, thus incurring a utilization of 3.2% (as explained in
Figure 1). For this solution, there is a payload wastage (as
denoted by the white boxes in the figure) of 4 bytes for frame
instances at 20 - £ ms (when all the signals are transmitted),
and of 44 bytes for instances at (20k 4 10) ms (when only oy
is transmitted), where k is any non-negative integer.

In the second solution, signal o2 with a period of 20 ms is
assigned an offset of 10 ms. The remaining two signals (o1
and o3) are assigned an offset of 0 ms. Thus, the two signals
o2 and o3 with period 20 ms are transmitted alternately in
the frame. The frame payload size is reduced to 24 bytes.
This arrangement leads to zero payload wastage for the frame
and a lower utilization (as compared to the first solution) of
2%. Thus, by assigning appropriate offsets to signals, we can
improve the utilization of a frame.

The above example shows that signal offset assignment can
lead to an improvement in bandwidth utilization even with just
one ECU and three signals. We deliberately choose a simple
example to quickly convey the usefulness of offset assignment.
In real systems, there are multiple CAN-FD buses and many
ECUs, with each ECU generating signals that result in many
frames. Hence, offset assignment can lead to a considerable
improvement in bandwidth utilization in practice.

B. Contributions

In this paper, we motivate and formulate the signal offset
assignment problem (SOAP) in the context of CAN-FD frame
packing, where the goal is to minimize the bus utilization by
appropriately assigning signals into frame instances. To the
best of our knowledge, this is the first attempt to formulate,
solve, and apply the offset assignment problem for frame
packing in CAN-FD. Our contributions are as follows:

o We are the first to motivate, solve and apply SOAP for
signal-to-frame packing in CAN-FD.

« We prove that SOAP is, in general, strongly NP-complete
by a reduction from the 3-Partition problem. This rules
out the existence of pseudo-polynomial algorithms for
SOAP, under the standard assumption that P # NP [9].

e We propose a general approximation framework
(GAF) for SOAP that can use any approximation algo-
rithm for the makespan minimization problem (MMP) for
multiprocessor systems. We prove that GAF provides a
worst-case performance guarantee of p/, where K is the
number of distinct signal periods in the frame and p is the
performance guarantee of the algorithm for MMP used
in GAF. We have presented the GAF for SOAP in [10].
Since several approximation algorithms with p close to 1
are known for MMP (e.g., [11], [12]), the performance
guarantee provided by GAF is close to K.

o We further propose a 2-D Strip Packing Framework
(2DSPF) that uses the Bottom Left Fill 2-D strip packing
algorithm for SOAP. This approach improves the previous
performance bound to 2G, where G is the minimum

number of groups into which the set of signals must be
partitioned so that the periods of the signals in each group
form a geometric series.

e Our experimental results show that assigning signal off-
sets in the frame packing step achieves up to 10.83%
improvement in bus utilization over the baseline approach
with no offset assignment. We also show improved
schedulability from offset assignment compared to the
case without offset assignment.

The rest of the paper is organized as follows. Section II
summarizes the related work. Section III gives a brief overview
of the CAN-FD protocol. Section IV defines the signal offset
assignment problem and briefly discusses its complexity. Sec-
tion V describes the proposed general approximation frame-
work. Section VI presents the 2D Strip Packing approach for
offset assignment. Section VII explains how the offset assign-
ment step can be integrated into frame packing. Section VIII
presents the experimental results on synthetic systems and an
industrial case study. Finally, Section IX concludes the paper
and discusses directions for future work.

II. RELATED WORK

The frame packing problem in CAN and CAN-FD has been
addressed before. Its main difficulty comes from the fact that
signals have different periods, deadlines and sizes. For the
single bus CAN-FD frame packing problem, Bordoloi and
Samii [3] present a heuristic based on dynamic programming
for packing the signals, followed by a priority assignment step.
Di Natale et al. [5] present a single-step Integer Linear Pro-
gramming (ILP) formulation to achieve optimal bus utilization
while respecting the schedulability of frames. Joshi et al. [13]
address the frame packing problem for a multi-bus CAN-
FD system with an ILP formulation and a greedy heuristic.
For standard CAN, Polzlbauer et al. [14] and Sandstrom et
al. [7] present frame packing approaches inspired by the next fit
decreasing heuristic for the well-known bin packing problem.
Saket and Navet [15] present a bi-directional frequency fit
(BDFF) frame packing heuristic which sorts the signals by
their bandwidth utilization and then packs this list of sorted
signals alternately from both sides of the list. However, none of
these papers considers offset assignment for signals in a frame
for the purpose of improving bus utilization or schedulability.

The frame packing problem has also been considered under
other communication protocols that are time-triggered (such as
FlexRay static segment [16], [17], [18], [19], [20]) or mixed
event/time-triggered [21]. However, due to the different timing
properties of these communication protocols, the frame pack-
ing problem (with or without offset assignment) is different
from that for CAN and CAN-FD. Hence, these approaches
are not directly applicable to CAN-FD frame packing.

In this work, we for the first time study the signal offset
assignment problem in frame packing, where suitable offsets
may be assigned to signals in a frame. This problem shares
several characteristics with the makespan minimization prob-
lem (MMP) (also known as the load balancing problem),
which arises in parallel computing. However, the presence
of signals with different periods adds to the complexity and
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Fig. 2. CAN-FD Frame Format (from [4]).

hence we cannot directly use any of the existing heuristics
for MMP to solve SOAP. In general, the goal of MMP is
to distribute a set of independent jobs with known execution
times on multiple processors so that the makespan (i.e., the
maximum completion time on any processor) is minimized.
Graham [22] shows that a simple greedy algorithm for MMP
provides a solution within twice the optimal value. Further,
in [23], he shows that when the jobs are sorted in decreasing
order of execution times, the greedy approach gives a solution
within a factor of 4/3 of the optimal value. Hochbaum and
Shmoys [12] present a polynomial time approximation scheme
for MMP which, for any € > 0, provides a solution within the
factor (1 + ¢) of the optimal value.

In addition to MMP, we also propose a framework for
SOAP that uses an approach based on 2-dimensional strip
packing. References [24], [25] provide comprehensive surveys
on solutions for 2-D strip packing. In this work we use a
Bottom Left Fill algorithm [26], [27] for solving the strip
packing problem. In [16] the authors optimize the FlexRay
static segment using a 2-dimensional bin packing approach.
However, in their problem they consider fixed width and height
and the objective is to minimize the number of utilized bins;
in contrast, the goal of strip packing is to pack all the signals
in one bin so that the height is minimized. Hence the approach
in [16] is not applicable to our setting.

It should be noted that our proposed approach of assign-
ing offset assignments to signals is different from assigning
offsets to frames considered in [28]. In the latter, the offset
assignment to frames is similar to task offset assignment
that is proposed in real-time scheduling theory [29] to im-
prove system schedulability. Unlike our work, in [29], [28]
offsets are assigned to software tasks and frames, i.e., the
scheduling entity. The main benefit of signal offset assignment
is improved bus utilization, although we also observe some
improvement in the schedulability of frames as a by-product
of the main goal. In the frame packing context, we ensure
the real-time schedulability of the packed frames using the
analysis given by Davis et al. in [2], a correction to the original
analysis [1].

III. CAN-FD OVERVIEW

In this section, we briefly describe the main features of
CAN-FD frame format shown in Figure 2. For additional
details, we refer the reader to [3]. A dominant bit is a logical 0
and a recessive bit is a logical 1. A CAN-FD frame is divided
into two phases: arbitration phase and data phase.
Arbitration Phase. The arbitration phase in the CAN-FD
frame consists of the following fields: SOF (Start Of Frame),

arbitration field, part of the control field, ACK (Acknowledg-
ment), EOF (End OF Frame), and IFS (Inter-Frame Space).
The 11-bit (or 29-bit in case of extended format) identifier
denotes the frame priority: the lower the value of the iden-
tifier, the higher the priority. The arbitration for transmission
happens as follows. During the idle state of the bus, all the
nodes with some ready frames send the 11-bit identifier after
the SOF bit. During the transmission of the identifier bits,
if a node transmits a recessive bit but finds a dominant bit
on the bus, it stops transmission due to the presence of a
higher priority frame contesting for transmission. In the end,
the node with the highest priority frame wins the arbitration
and continues the transmission.

The transmission of bits in the arbitration phase occurs at

the arbitration bit-rate, and the duration of transmission for
each bit is denoted as t,. For example, if the arbitration rate
is chosen as 500 Kbps, then t, = 2us.
Data Phase. The BRS (Bit-Rate Switch) bit used to decide
whether the bit-rate in the data phase is the same as that of the
arbitration phase (BRS = 0) or it switches to the increased bit
rate (BRS = 1). It is an addition to the CAN-FD frame format.
Since our focus is on CAN-FD, we consider the BRS bit in
the frames to be recessive (i.e., BRS = 1). At the increased
rate of data transmission, each bit transmission occurs with a
duration denoted by t,4. For example, if the data rate is chosen
as 2 Mbps, t4 = 0.5us. The 4-bit DLC (data-length code) field
specifies the payload size (in bytes) of the data field. CAN-FD
offers 16 distinct frame payload sizes: 0 through 8, 12, 16, 20,
24, 32, 48 and 64 bytes.

The data field is followed by the Cyclic Redundancy Check

(CRC) field, which has 17 bits for payloads up to 16 bytes,
and 21 bits otherwise. The CRC delimiter bit (recessive) is
transmitted next. After this, the bit rate is changed back to
that of the arbitration phase.
Transmission Time. The worst-case transmission time
(WCTT) of a CAN-FD frame is a function of its payload size
(i.e., the size of the data field) and the data rates. As presented
in [3], if p is the payload size (in bytes) of a CAN-FD frame,
its WCTT is given by:

p—16
64

WCTT(p) = 32t, + (28 +5 [ W + IOp)td (1)

IV. OFFSET ASSIGNMENT PROBLEM FOR FRAME PACKING

In this section, we formulate the problem of offset assign-
ment for signals in a frame. As input, we are given a set of
ECUs connected via a CAN-FD bus and a set of periodic
signals from each ECU. The goal is to pack the given signals
into frames and assign suitable offsets to signals such that the
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bus utilization is minimized. Thus, we have a main problem
of packing signals into frames (frame packing) such that
the bus utilization is minimized and a sub-problem of offset
assignment to signals within a frame to augment the main
goal.

Frame Packing in CAN-FD: Let ¥ = {¢; : i = 1,2,...,
||} denote the set of ECUs. The set of signals from an ECU
Y is given by S(v;) = {0} : j=1,2,...,|S(¥;)|}. Each
signal o € S(v;) is specified using a triplet of parameters
(t(0),d(o),p(o)) which denote the period (in ms), deadline
(in ms) and payload size (in bytes) of the signal respectively.
The desired output is a set of frames where each
frame consists of a subset of signals from one ECU. The
output set of frames is denoted as I' = {y1,72,...,},
and each frame + is characterized by a tuple
(8(v), T(v),D(7), P(7),C(7),m(v)), where S(y) is
the set of signals packed into ~. The quantities T'(v),
D(7v), P(v), C(y) and 7(y) are respectively the period,
deadline, payload size, WCTT, and priority of v. (Additional
information about these parameters appears later in this
section.) All the frames must satisfy the following properties:
a) Each signal o is placed in exactly one frame v, and b) For
each frame ~, all the signals in vy are from the same ECU.

Signal Offset Assignment: A frame may consist of a group of
signals with different periods. For every frame having signals
with different periods, each signal o € S(vy) is assigned an
offset from its set of permissible offsets. Figure 1(b) shows an
example of a frame with signals having two different periods:
10 and 20 ms; for the rest of this section we will use it
as a running example for offset assignment. As mentioned
earlier, the goal of offset assignment is to minimize the
bandwidth utilization. To specify the conditions for a valid
offset assignment, we first introduce a few definitions.

e The base period t, for a set S(v) of signals with
two or more distinct periods is defined as the greatest
common divisor (gcd) of the signal periods. That is,
ty = ged{t(o) o € S(v)}. For the example in
Figure 1(b), the base period is the gcd of 10 and 20;
thus ¢, = 10.

o The hyperperiod t;, for a set S(y) of signals is defined
as the least common multiple (Icm) of all the periods;
that is, ¢, = lem{t(c) : o € S(v)}. Note that when
the signal periods are harmonic, ¢; is the smallest and ¢j,
is the largest period in a signal set. In Figure 1(b), the
hyperperiod is the Icm of 10 and 20; thus ¢;, = 20.

o Each frame 7 has a tuple F'(y) = (Fo, F1, ..., Fn(y)-1)
of frame instances, where N () = t;, /t;, denotes the total
number of instances of ~ in the hyperperiod t;. The acti-
vation time A(F,,) of frame instance F,, € F(v), where
n € {0,1,.., N(y) — 1}, is given by A(F,) = n X tp.
The total number of instances in Figure 1(b) in a single
hyperperiod are N = 2 and they are at A(Fy) = 0 and
A(Fy) =10 ms.

We now state the conditions to be satisfied by a valid offset
assignment. Let ¢1, to, ..., tx denote the periods of signals
in S(v), where K is the number of distinct signal periods.

o For a signal o with period t; = t(o), the set of
permissible offsets is given by ®(t(o)) = {j X t
j=0,1,..,N; — 1} where N; = t(o0)/tp. Thus, signal o
must be assigned an offset ¢(c) € ®(t(o)). For values
of j > (N; — 1), the offsets are repeated; hence, we do
not consider them. Note that for a signal ¢ with period
equal to the base period (i.e., t(c) = tp), the set of
permissible offsets is ®(t;,) = {0}. For example, the sets
of permissible offsets in Figure 1(b) are ®(10) = {0}
and ©(20) = {0, 10}.

« Each signal o is transmitted in ¢, /t(o) frame instances
for any valid offset assignment: o is assigned to all frame
instances F;, such that A(F,,) = ¢(0)+(¢—1) x t(o) for
qge{l,..., t%)} We use the notation o € F;, to indicate
that signal o is assigned to frame instance F;,. Thus,
the frame instances act like bins for signals, and each
offset assignment represents an assignment of signals to
a different set of bins.

From the above formulation of offset assignment, we can
observe that assigning non-zero offsets to signals allows us
to carefully balance the loads of frame instances. Given S(7)
and the offset of each signal in S(), the other parameters of
the frame v are determined as follows.

o The period T'(y) of frame ~ is equal to the base period

of the signals in ~.

e D(v) = min{d(o) : o € S(v)}; ie., the deadline of
~ is the smallest deadline among the signals in ~. All
instances of a frame have the same deadline.

e The occupancy of a frame instance F), is defined as the
sum of its constituent signal payloads, i.e., > . p(0).
The payload P(F,) of the frame instance F, is the
smallest CAN-FD payload size that is no smaller than the
occupancy of Fy,; thus, P(F,) > > . p(c). CAN-FD
standard [4] restricts P(y) to be one of the following
values: 0 through 8, 12, 16, 20, 24, 32, 48 and 64 bytes.
The payload of a frame is taken as the maximum payload
of all its frame instances, P(y) = max {P(F,) :n=0, 1,

.., N(v)—1}. For example, the occupancy of each frame
instance in Figure 1(b) is 24; thus, the frame payload is
P(y) = 24.

e The WCTT C(v) of a frame ~ is determined by Equa-
tion (1), with the variable p being replaced by P(7).
The value of WCTT in Figure 1(b), computed using
P(v) = 24, is 200.5us.

o 7(7y) represents the unique priority assigned to frame ~.
(Priority assignment is discussed later in this paper.)

The bandwidth utilization U(y) of frame -y is defined as

C(v)
U = =% 2)
"= 70
In Figure 1(b), the frame bandwidth utilization is given by

U(y) =2%.

SOAP and its Complexity: Given a set S(v) of signals in
frame  which satisfy the conditions mentioned earlier, the
signal offset assignment problem (SOAP) is to ensure: (i) the
number of frame instances per hyperperiod is N () = 1, /ts;
and (ii) the maximum occupancy of all frame instances is
minimized. Here we use the occupancy of a frame as a proxy
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for its bandwidth utilization, for two reasons. First, the band-
width of a frame 7 is a monotonic non-decreasing function
of the occupancy of . Hence, minimizing the occupancy also
reduces the bandwidth. Second, in CAN-FD systems, unlike
the occupancy (which is the sum of the signal payloads), the
frame utilization is a discontinuous and nonlinear function of
the signal payloads. In general, it is difficult to handle such
functions in complexity proofs and approximation analysis.

In [10] we show that SOAP is strongly NP-complete even
if the number of distinct signal periods is 2. Thus, there is no
pseudo-polynomial time algorithm (i.e., an algorithm whose
time complexity is a polynomial function of the size of the
input and the maximum integer value in the input) for SOAP
unless P = NP [9]. Hence, we propose two approximation
frameworks: 1) a Makespan Minimization Problem (MMP)
based Generalized Approximation Framework (GAF) and 2)
a 2-Dimensional Strip Packing based Framework (2DSPF).

V. GAF FOR SOAP

In this section, we present a generalized approximation
framework (GAF) for SOAP. Before describing this frame-
work, we recall a necessary definition. An approximation
algorithm B for a minimization problem provides a (worst-
case) performance guarantee of p > 1 if for every instance
of the problem, the solution value produced by B is at most
px OPT, where OPT is the optimal solution value. The smaller
the value of p, the better the quality of approximation. For
many optimization problems, approximation algorithms with
good performance guarantees are known (e.g., [30]).

GAF relies on approximation algorithms for the well known
makespan minimization problem (MMP) defined below.
Given an approximation algorithm with a performance guar-
antee of p for MMP, we prove that our framework provides a
performance guarantee of at most pK, where K is the number
of different signal periods. After proving this result (Theo-
rem 1), we point out how one can derive several approximation
algorithms for SOAP using known approximation algorithms
for MMP. As mentioned earlier, the goal of SOAP is to mini-
mize the maximum occupancy of the frame. Our performance
guarantee results are with respect to this objective.

We begin by defining the Makespan Minimization Prob-
lem' (MMP) for scheduling jobs on multiprocessor systems. In
MMP, it is assumed that jobs are independent (i.e., there are no
precedence constraints among the jobs) and non-preemptive.
Given an assignment of jobs to processors, the completion
time for a processor is the sum of the execution times of the
jobs assigned to that processor. The makespan of the schedule
is the maximum completion time over all the processors. A
formal statement of the MMP problem is as follows.

Definition 1. (MAKESPAN MINIMIZATION PROBLEM)
(MMP) An instance of MMP consists of a set
T = {T1,Ts,...} of jobs where the processing time of
job T; is B; (a positive integer). The goal is to find an
assignment of each job in T to one of m (identical)
processors so that the makespan is minimized.

This problem is also known as the Load Balancing Problem in the
literature (e.g., [11]).

The decision version of MMP is known to be strongly NP-
complete [9]. However, it has many approximation algorithms
with good performance guarantees (e.g., [11], [12]).

To see the usefulness of MMP in obtaining an approxima-
tion algorithm for SOAP, consider a set of signals S; such
that all the signals in S; have period ¢;. With a slight abuse
of notation, let ®(¢;) denote the set of permissible offsets for
signals with period ¢;. We can think of each signal ¢ € S;
as a job whose execution time is equal to p(o) (i.e., the
payload size of o). Further, each offset value in ®(¢;) can
be thought of as a processor. With this correspondence, it can
be seen that assigning offsets to signals in S; to minimize the
maximum occupancy at any offset value corresponds to the
MMP problem. While this observation is useful when all the
signals have the same period, any heuristic for SOAP must
consider signals with different periods. We now explain how
our approximation framework GAF works.

Idea behind GAF for SOAP: Given a frame v with different
period signals (an instance of SOAP) and an approximation
algorithm A with a performance guarantee of p for MMP,
GAF provides a performance guarantee of at most pK, where
K is the number of distinct periods of signals in the SOAP
instance. Since we consider SOAP for a particular frame, for
simplicity we omit y from the notation in the remainder of this
section. Our framework GAF uses Algorithm .4 for MMP as
a blackbox. Let t; < 9 < ... < tg denote the K distinct
periods of the input signals in increasing order. Let S; denote
the set of signals with period ¢t; in v, 1 < ¢ < K. The
number of frame instances to be used is N = t/t;, where
tp, = lem{t;,1 = 1,..., K} and ¢, = ged{t;,i = 1,...,K}.
As mentioned earlier, let ®(¢;) denote the set of permissible
offsets for signals with period ¢;. The set of all possible offset
values is given by ® = {j xt, : 0<j < N -1}

GAF (detailed in Figure 3) considers each set S; of signals
with period ¢; (1 < ¢ < K) separately and uses A to
assign offsets to those signals as follows. Let N; = ¢;/t.
As explained above, we treat each signal ¢ in S; as a job
with processing time p(o) (the payload size of o) and the set
O(t;))={jxtp : 0<j<N;—1} of possible offset values
for the signals in S; as the set of processors to which the
jobs must be assigned. Any solution to the resulting MMP
represents an offset assignment to the signals in S;. After
A returns a solution, for any signal o € S; which is assigned
offset ¢(o) € ®(t;), we place o in the frame instances F;, such
that A(F,) = ¢(0)+ (¢ — 1) x t;, where ¢ = 1,2,...,t/t;
and 0 <n < N —1. When this process (Step 2.c) in Figure 3)
is repeated for all the K periods, we get K separate offset
assignments. In the last step, we merge all these assignments
by considering each offset value 7 x t, (0 < j < N — 1)
separately and combining the signals from various periods
which are assigned that offset value. Thus, in the final solution,
for 0 < j < N —1, the occupancy of the frame instance with
activation time j X t; is the sum of the occupancies of that
offset value over all the periods.

To establish the performance guarantee for GAF, we need
to introduce some notation and prove a lemma. For the
subset S; of signals (having period ¢;), let OPT; denote the
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Steps of GAF:

1) Let S; be the set of signals with period ¢; (1 <17 < K).

2) for ¢+ = 1 to K do

a) Let Nl = ti/tb.

b) Use the approximation algorithm .4 for the signal
SCtSZ‘ Wlthq)(tl) = {thb : OSJSNZ—].}
as the permissible offsets.

¢) For each signal o which is assigned offset ¢(o) €
®(t;) place o in the frame instances F,, such
that A(F,) = ¢(o)+ (¢ — 1) x t;, where ¢ =
1,2,...,¢p/t;and 0 <n < N — 1.

d) Let P; denote the resulting assignment for S;.

3) Merge the K assignments P;, P, ..., Px into a single
offset assignment P by combining all the signals with
the same offset in different assignments into the same
frame instance. Output the assignment P.

Fig. 3. Proposed GAF for SOAP

optimal solution value (i.e., the largest occupancy of any frame
instance in any optimal solution) for SOAP restricted to subset
S;, 1 <i < K.Let OPT denote the optimal solution value for
SOAP for the set S. The following lemma shows a relationship
between OPT and OPT; for 1 <i < K.

Lemma 1. For 1 <i < K, OPT; < OPT.
Proof. Please refer to Appendix A. O
We now establish the performance guarantee from GAF.

Theorem 1. Let S denote the given set of signals and let K
denote the number of distinct periods of the signals in S. Let
p denote the performance guarantee provided by A for MMP.
GAF provides a performance guarantee of 1 + p(K — 1) if
there are signals with base period; otherwise, GAF provides
a performance guarantee of pK.

Proof. Please refer to Appendix B. O

In the automotive domain, the number K of distinct periods
of the signals is typically a constant which does not depend
on the number of signals. For example, as indicated in [31],
K = 9 in the real-world automotive benchmark. Moreover,
the number of distinct periods of signals actually packed in
a frame is even much smaller (due to the packing algorithm
which minimizes bandwidth utilization). Hence, in practice,
one would expect the approximation algorithm to perform
better than what its worst-case performance guarantee would
indicate.

A. Deriving approximation algorithms from the framework

Several approximation algorithms with proven performance
guarantees are known for MMP. We now point out how GAF
enables us to get different approximation algorithms for SOAP
using known approximations for MMP.

(i) The simple greedy algorithm A, which considers signals
in an arbitrary order and assigns each signal an offset which

corresponds to a frame instance that currently has the least
load, provides a performance guarantee of 2 for MMP [11],
[23]. Using this algorithm in Step 2.b) of Figure 3, our
framework leads to an approximation algorithm for SOAP with
a performance guarantee of 2/ —1 when there are signals with
base period and 2K otherwise.

(i) The variant of the greedy algorithm (denoted by As)
which considers signals in decreasing order of sizes provides
a performance guarantee of 4/3 for MMP [23]. Using this
algorithm, our framework leads to an approximation algorithm
for SOAP with a performance guarantee of (4K —1)/3 when
there are signals with base period and 4K /3 otherwise.

(iii)) Hochbaum and Shmoys [12] present an approximation
scheme (denoted by .A.), which for any given ¢ > 0 pro-
vides a performance guarantee of (1 4 €) for MMP. Using
A., our framework provides a performance guarantee of
[1+ (K —1)(1+ €)] when there are signals of base period
and (14 ¢)K otherwise. By choosing ¢ appropriately, this
performance guarantee can be made arbitrarily close to K.
Theoretically, this algorithm runs in polynomial time. How-
ever, as observed in [12], it is impractical for small values of
e since its time complexity is O((n/€)'/") (For example, for
€ = 0.1, the exponent of n in the running time is 100). Hence
in our experiments we do not use A..

B. An ILP Formulation for the MMP

One can also formulate MMP as an integer linear program
(ILP) as we show in this section. The resulting ILP can
be solved using any ILP solver to get an optimal solution
to MMP. Let us denote this algorithm by As. Using As
(which provides a performance guarantee of 1 for MMP), our
framework provides a performance guarantee of K for SOAP.
While the methods (i), (ii) and (iii) discussed in Section V-A
run in polynomial time, the worst-case running time of A3 is
not polynomial. However, there are many ILP solvers (such
as [32]) that work very well in practice. So, this is indeed a
viable approach. We present the ILP formulation for a group
of signals having the same period. Suppose we are given a
set S of n signals denoted by o1, o9, ..., oy, all of which
have the same period. Signal o; has a size of p; (a positive
real number), 1 < ¢ < n. We are also given a set of m frame
instances denoted by Fi, F5, ..., F,,. The ILP formulation
uses binary variables z;;, 1 <4 <mand 1< j < m. The
interpretation is that x;; = 1 if signal o; is assigned to frame
instance F); otherwise, z;; = 0. A real variable A denotes
the value of makespan (which corresponds to the maximum
occupancy of a frame). Now, the ILP formulation for MMP
is:

Minimize A

such that Zl'ij =1, foralli, 1<i<n 3)
j=1
Z%"pi < A, forallj, 1<j<m (4

i=1

Here, the set of constraints in Equation (3) ensures that each
signal is assigned to exactly one frame instance. The second
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set of constraints (Equation (4)) ensures that the occupancy of
each frame instance is at most A.

VI. IMPROVING OFFSET ASSIGNMENT BY USING 2D
STRIP PACKING APPROACH

With the focus on improving our approach for assigning
offsets to signals in order to further reduce the bandwidth
utilization due to frame packing in CAN-FD, we propose and
develop a new framework that utilizes a 2-dimensional strip
packing approach for offset assignment. In the new framework
we first propose a transformation function to convert the
offset assignment (OA) instance to a 2-dimensional (2-D) strip
packing (SP) instance. Next, we use an algorithm to solve
the SP problem and then transform the SP solution back to
obtain the OA solution. We show that the new framework
provides a possibly better worst-case approximation ratio as
compared to GAF (Section V). We show the improvement in
bandwidth utilization through experiments, where we observe
an improvement in average bandwidth utilization of up to 2.8%
as compared to GAF. We also apply the new framework to an
automotive case study and obtain a modest improvement of
0.1% in bandwidth utilization.

A. 2-Dimensional Strip Packing Problem

In a 2-D SP problem we are given a set of items I with
k = |I|. Each item 7; € I is a rectangle with width w, and
height g;. We have a strip of width W, i.e., the x-coordinate
is in the range [0, W). The objective of 2-dimensional SP is
to pack all the items {71,72,...,7,} in the strip such that
the height used is minimized. Note that the items cannot be
rotated and no overlap of items is permitted. Also, all numbers
in our 2-D SP problem are non-negative integers.

In the 2-D SP problem, packing an item is defined as
follows: packing 7; at (x;,y;) means that the lower left corner
of the rectangle 7; is placed at (x;, y;). Such a rectangle covers
all the points inside and on the boundary of 7;. In other words,
7; placed at (z;,y;) covers the set of points given by

C(zi,yi) = {(z,y) | v <o <xi+w; and y; <y < yi+9g:}-

&)

The goal is to pack all items in a rectangular region (i.e.,

a strip) with width W > max;<;<, w; and minimum height.

More specifically, an optimal solution to the 2-D SP problem
should satisfy:

1) The items are packed within the strip, i.e., each item 7;
is placed at (z;,y;) with 0 < z; < W — w;.

2) No two items overlap; that is, any point (x,y) with
0 <z < W, must satisfy exactly one of the following
conditions: (i) it is not covered by any item, (ii) it is
on the boundary of at least one item, (iii) it is inside
exactly one item.

3) The maximum height is minimized; that is, our objective
is to minimize maxi<i<x (Y + g:)-

As mentioned earlier, in the 2-D SP problem, items cannot

be rotated; that is, for any 7;, g; and w; cannot be interchanged.

Two additional terms are used throughout this section: 1)

fully empty space and 2) fully occupied space. We say that a

2-D space is “fully occupied” if every point inside the space is
covered by a packed item. Similarly, we say that a 2-D space
is “fully empty” when none of the points inside the space
is covered by a packed item. Note that these concepts are
defined on the interior points of the space; they don’t concern
its boundaries.

B. Problem Transformations

We convert the OA problem into the 2-D SP problem and
vice versa using two transformation functions. The transforma-
tion from OA to SP (OA — S P) converts each signal into a 2-
D rectangle. For the SP to OA transformation (SP — OA), it
is valid when (a) the signals have periods that form a geometric
series with the common ratio being a positive integer n > 2;
(b) in the solution to the 2-D SP problem, the x-coordinate of
the lower left corner (x;,y;) of 7; must be x; = m;-w;, where
m; 1S some positive integer and w; is the width of 7,. With
Theorem 2 in Section VI-C, we show that given condition
(a), the solution returned by Bottom Left Fill [26] satisfies
condition (b). Hence, condition (a) is a constraint on applying
the 2-D SP approach to solve SOAP. In practice, this constraint
may not hold, and in Section VI-D we discuss how we handle
such a situation.

We now define the transformations, under the assumption
that the periods of the signals are in a geometric series and
their common ratio is a positive integer n > 2. Consider the
set of signals S(v) packed to the same frame 7. Let t; <
ta < ... < tx denote the periods of signals in S(v), where
K is the number of distinct signal periods. Hence, ¢, = t1,
tn = tx. Since these periods form a geometric series with a
common factor 7, we have V1 < k < K, t;, = t; X n?% where
gr 1s a non-negative integer. For the forward transformation,
Toa—sp, we convert each signal in the OA to an item in SP
as follows:

1) Each signal o; corresponds to an item (rectangle) ;.
Since S(7) is the set of signals in frame -, let I(y)
denote the set of items in frame . Thus, |S(v)| = [I(7)].

2) The width w; of item 7; € I(y) is given by the total
number of instances of the corresponding signal o; €
S(v) in the hyperperiod. Thus

w; = th/t(O'i) = 'I]qK_qi.

3) The height g; of item 7, € I(7y) is the payload p(c;) of
signal o; € S(7).
4) The maximum width W of the SP instance is

W = th/tb = an.

Note that T is also the number of frame instances in ~.

The backward transformation Tsp_,o4 is defined as
follows. In order to transform an SP instance to an OA
instance, we map each integer « € {0,1,..., /W' — 1} in the SP
instance to a unique slot in the OA instance which corresponds
to the activation time of the frame instance in OA. Specifically,
we write x as a base-n number

qr —1

x= Y bjx1, where b € {0,1,...,n—1}  (6)
j=0
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We then reverse the digits in x to get a new base-n number

x/

g —1

e’ =) byerg X ™
j=0

Finally, the activation time of the frame instance that corre-
sponds to x is
ty X 2’ ()

Hence, for an item 7; that is placed at (x;,y;) in the
solution to the 2-D SP problem, the OA instance transmits
the corresponding signal o; in all the frame instances F}, with
activation times as

A(Fn) € {tb x ' | r;, <x<x; eri} ©))

The frame payload is chosen as the maximum payload among
all frame instances (as described in Section IV).

To illustrate the transformation of OA to SP and vice versa,
consider Figure 4. The list of signals and their parameters is
given in the table on the top left corner in Figure 4. For this
example the value of n = 2 and W = 4. Figure 4(a) presents
an offset assignment for the given signals. Signal o; has a
period of 1ms and it is assigned an offset of Oms. Signals o2
and o3 have a period of 2ms and they are assigned offsets Oms
and 1ms respectively. Signals o4 and o5 have period of 4ms
and they are assigned offsets of 1ms and 3ms respectively.
The maximum size of all the frame instances is 7.

01

02
o3

Oy

N AN W R
A A NN R

Os

7 7 7 7

- > < > < > o« >

3
2
a [« AL - B

01|Uz| 01|Uz|

t t t > t t t >

[,
N
w

0 1 2 3 0

v v v v

0o 2 1 3

(a) Offset Assignment Solution (b) Strip Packing Solution

Fig. 4. Example to illustrate transformation function

The forward transformation (T 4 sp) is straightforward as
each signal is converted to a 2-D rectangular item, as shown
in Figure 4(b). For example, the item corresponding to o; has
a width of 4 and height of 1. The colors used for the signals
and their corresponding items in Figure 4 are the same.

In this work we use an existing approximation algorithm
called Bottom Left Fill (BLF) [26] for 2-D strip packing.
The BLF algorithm first sorts the items in decreasing order of
width. The algorithm iterates over the items in sorted order,
and places each item at the bottom-most and left-most position
available. Once an item is placed, its position is not changed
during any subsequent iteration.

The 2-D strip packing solution produced by BLF is pre-
sented in Figure 4(b). The maximum height is 7 in this solution

as well. For the backward transformation, Tsp_.0a, We use
the function defined in Equations (6)—(9). The transformed
instances corresponding to each z, k € {0, 1,2, 3} are shown
in Figure 4(b) in red numbers (which denote the activation
times of the instances in OA) below the 2-D strip packing
solution. We can observe that both Figure 4(a) and 4(b)
give the same offset assignment solution. Thus this example
illustrates how it is possible to use the 2-D strip packing
approach for solving the offset assignment problem.

C. Correctness and Performance Bound of BLF

We now prove the correctness of the BLF algorithm in that
combined with the transformation defined in Section VI-B,
it generates a valid solution to OA. We also study its per-
formance guarantee. The BLF algorithm has been shown to
have an approximation ratio of 3 for a generic 2-D strip
packing problem [26]. However, for the signal offset assign-
ment problem, we show that by using BLF we obtain a
performance bound of 2 when the signals have periods that
form a geometric series. In order to prove the bound of 2, we
show that BLF obtains a packing solution with no holes, by
placing each item at the current minimum height (in the 2-D
instance).

In the following we first introduce a definition of the profile
of a 2-D rectangle packing. Throughout this section, the reader
should bear in mind that the widths of the rectangles to be
packed form a geometric series with a ratio n > 2 and that
BLF considers the rectangles in non-increasing order of width.
Thus, the width of the first rectangle packed is the maximum
width W of the packing. Recall that when BLF places a
rectangle 7; at (x;,y;), the lower left corner of 7; is assigned
the coordinates (z;, y;).

Definition 2 (Profile). The profile of a packing of 2-D
rectangles is defined as the function f(x) over the interval
0 <z < W. For any x € [0, W), the value of f(x) is defined
as the largest y such that there is an item (rectangle) whose
horizontal edge contains the coordinate (x,y).

Ty
T2

T3

Ts

71

Fig. 5. Example to illustrate the definition of profile

We illustrate the definition of profile using the packing
example introduced by Fig. 5, where dotted red lines show
the profile of the current packing solution.

It is clear that the profile function before placing any item
is given by,

fl) = 0 forallz, 0<z<W.
After placing the first item, the profile is given by,
flx) = g1 forallz, 0<z<W,
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where g; is the height of the first item.

As BLF packs the items one by one, the profile gets
modified. However, we can prove that BLF always obtains
a packing solution where the space below the profile is fully
occupied while the space above the profile is fully empty,
implying that no hole exists in the packing produced by BLF.

For some ¢ > 2, suppose BLF places item 7; at (x;,y;) after
placing items 7y, ..., ;1. Specifically, suppose (z’,y’) is a
feasible point for placing 7;; that is, the space {(z,y) : 2’ <
x<a'+w; <W-=1,y <y <y +g;} is fully empty, where
w; and g; are respectively the width and height of 7;. Further,
suppose F; is the set containing all feasible points for placing
7;. Then (z;,y;) obtained by BLF to pack 7; must satisfy:

)y <y, forall(z,y) € F; and

2) x; <z, forall (z,y;) € Fi.

In the following lemma, we prove that BLF always places an
item at the current minimum height, and no hole is created in
the packing. As mentioned earlier, we assume the widths of
items are in non-increasing geometric order; that is,

1) w,; = Wi+ Nij, MNgj €Z+, Vi,j,l <1< j<k,and

2) W = ws.
where Z™ is the set of positive integers.

Lemma 2. Let L = (11,72, ..., Ts) be a list of items such that
the widths are in non-increasing order and form a geometric
series. Let W denote the width of item Ty, that is also the
maximum width of the packing. Suppose BLF packs the items
one at a time in the order specified by L, and suppose (z;,y;)
is the packing coordinate of the item T;. For 1 < i < &, let
L; = (m,...,7) and let f; be the profile after packing all
the items in L;. Then, for each i, 1 < i < &, the following
conditions hold.
1) The region on or below the profile is fully occupied by
the items in L;; i.e., each point in the region I'; defined
by

I = {(z,9):

is in the interior or boundary of an item in L;.
2) The region above the profile is fully empty; i.e., no point
in the region I defined by

{(z,y): 0<z<Wandy> fi(zx)}
is in the interior or boundary of an item in L;.
3) The y-coordinate of the point (x;,y;) for packing T; is

on the minimum height with respect to the packed items
in L;_1; that is,

0<z<Wand0<y< fi(x)}

min f;_1(x).

bi = 0<z<W

4) The x-coordinate of the point (x;,y;) for packing T; is
a multiple of the width w;; that is,

r; = m;-w; where m; € Z* U{0}.
Proof. Please refer to Appendix C. O

The following theorem formally states the correctness of
BLEF, in that it generates a solution to 2-D SP problem that
can be transformed to a valid signal offset assignment.

Theorem 2. Combined with the transformation Tsp_,0a
defined in Equations (6)—(9), BLF correctly produces a valid
solution for SOAP.

Proof. Please refer to Appendix D. O

We now study the performance guarantee of BLF. A direct
consequence of Lemma 2 is that BLF algorithm places each
item at the minimum height of the 2-D strip at that instant and
that the packing does not produce any holes. (Conditions (1)
and (2) of the lemma imply that no holes are created below
the profile while condition (3) shows that the placement is at
the minimum height). We first present two lemmas which are
straightforward and are used later to prove the approximation
ratio of BLF for the packing that arises in the context of SOAP.

Lemma 3. Suppose BLF packs the k items given by the list
of L = (11,72,...,7x). Let fq.(x) denote the profile after
packing L. Then, the height H* of the optimal solution to
problem SP is at least the minimum height of L, that is,
H* > i .
=z min fi(2)
Proof. This is a simple consequence of Lemma 2 since the
space below the minimum height is fully occupied by packed
items with no holes. O

The next lemma points out the simple fact that the optimal
height of the packing must be at least as large as the height
of each item to be packed.

Lemma 4. The height H* of the optimal solution to problem
SP is no smaller than the height of any item, namely

H* > g;, foralli: 1 < i < k.

Now, using the above lemmas, we can prove the approxi-
mation ratio of BLF.

Theorem 3. BLF provides a performance bound of 2 for
SOAP.

Proof. Please refer to Appendix E.

D. SOAP Using 2D Strip Packing Framework (2DSPF)

As discussed in Section VI-B, in order to apply SP for offset

assignment, the periods of the signals must form a geometric
series with the common ratio being an integer > 2. However,
in practice, this may not always be the case. Therefore, in our
proposed framework for OAP using BLF (Figure 6), we first
partition the signal periods in the frame such that each group
in the partition contains elements that form a geometric series.
We call such a partition a valid partition for SP.
Example of a valid partition: Given a set of signals
with periods {1,2,5,10}, some valid partitions are: (i)
{1,2},{5,10} and (i1){1, 5}, {2, 10}. Note that partitions such
as {1,10},{2,5} or {1,2,5}, {10} are not valid with respect
to SP.
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For each group
of signals

Convert the problem to an
instance of Strip Packing

Apply Bottom Left Fill algorithm to
solve for the Strip Packing problem
i

Convert the Strip Packing solution to
Offset Assignment

Merge the corresponding solutions

Fig. 6. Framework for Offset Assignment using 2D Strip Packing

Since there can be several ways of partitioning the signal
periods, we consider all possible partitions of the given periods
in a frame. Note that enumeration of all possible partitions
is not trivial. In this work, we have used a straightforward
iterative approach to enumerate all possible partitions of signal
periods, thus, our approach is an exponential one and it would
not scale for large number of periods. We discard the ones that
are not valid. For each group in a (valid) partition we first
transform the OA instance to an SP instance. Next we use the
BLF algorithm for SP and apply the backward transformation
to obtain a solution to the OA instance. For each partition we
merge the solutions corresponding to all the groups (of that
partition). Finally we find solutions of all partitions and choose
the minimum solution (corresponding to the frame payload
size) from all the partitions. If there are G groups, then by
using the 2DSPF we can get a performance bound of 2G.

This framework is then used in the greedy frame packing
algorithm proposed in our prior work [13]. In the decision
making step, when the assignment of a signal to an existing
frame or a new frame is made, we apply the offset assignment
scheme using an SP approach.

VII. APPLICATION OF SOAP TO FRAME PACKING

In order to show the efficacy of our proposed framework
for SOAP, we apply it to a frame packing algorithm from
the literature. We choose the greedy algorithm discussed in
[13], since the offset assignment step can be directly plugged
into the bandwidth computation step (see Figure 7). In this
algorithm, the frame payload is not fixed and it is computed
on the basis of the frame packing. Using our offset assignment
scheme, we try to minimize the frame payload by assigning
suitable offsets to signals.

Specifically, as observed in [13], the frame packing part
of the algorithm gives the best performance in terms of
bandwidth utilization when signals are sorted in increasing
order of signal period; hence, we use the same ordering in our
implementation. However, we modify the algorithm to embed
our offset assignment algorithm. In Figure 7 the frame packing
approach (in [13]) is given on the left and our proposed SOAP
frameworks are shown as a black box on the right. In each

Sort signals and
initialize first frame

Add o; to new frame or
to an existing frame

Frame with
mixed period
signals?

Y| | GAF or
2DSPF

Compute BW utilization

v
Add signal to the frame
that minimizes total BW —
utilization

Fig. 7. Flowchart describing the application of SOAP to a frame packing
approach in CAN-FD

iteration of frame packing, the algorithm tries to add a signal o
to an existing frame or create a new frame (containing only o).
The bandwidth of each of these alternatives is evaluated after
assigning the signal offsets (by calling the SOAP framework,
GAF or 2DSPF). If all the signals in a frame have same period,
the bandwidth computation is straightforward since the offset
for all the signals is 0. If the signals in a frame have two
or more periods, we apply our proposed SOAP approaches to
improve the bandwidth utilization.

After obtaining a frame packing solution using offset assign-
ment, we analyze the schedulability of the generated frames
over the CAN-FD system. The schedulability analysis of
CAN-FD system used by us follows that of CAN [2], and
it is described in our prior work [10].

VIII. EXPERIMENTAL RESULTS

In this section, we describe the experimental results obtained
by applying our proposed frameworks for SOAP: 1) GAF
(with algorithms A;, A2 and A3 for MMP as detailed in
Section V) and 2) 2DSPF with BLF. We use synthetic systems
as well as an industrial case study for the evaluation.

The synthetic systems are generated according to the guide-
lines for real-world automotive benchmarks [31], with minor
modifications. Specifically, we redistribute the share of signals
with size larger than 64 bytes to the bin “33-64 bytes”. (In this
work, we only consider signals with size up to 64 bytes as the
CAN-FD frame payload size is limited to 64 bytes.) Further,
we also redistribute the share of signals sent by engine control
tasks (triggered by rotational events) to those with periods
between 1 and 20 ms (as we do not consider the signals with
angle-synchronous periods). The distribution of signal periods
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[ Period (ms) [ Share [ Size (Bytes) [ Share |

1 4% 1 35%

2 3% 2 49%

5 3% 4 13%

10 31% 5-8 0.8%

20 31% 9-16 1.3%

50 3% 17-32 0.5%

100 20% 33-64 0.4%
200 1%
1000 4%

TABLE 1

SIGNAL PARAMETERS AND THEIR DISTRIBUTION

and payload sizes is given in Table I. In all our systems, the
deadline of any signal is equal to its period. We generate 1000
systems for each experiment and average the performance
parameters over all the systems. All systems contain a single
CAN-FD bus that connects 3 ECUs, and the number of signals
are as follows: 50, 80, 100, 120, 150 and 200. The arbitration
and data bit rates are set to 500 kbit/sec and 2 Mbit/sec,
respectively. We use CPLEX as the ILP solver [32].

Since there is no prior work on offset assignment for CAN-
FD frame packing, we compare our proposed frameworks
(the 2DSPF framework with BLF, the GAF framework with
A1, As, As respectively) against a baseline frame packing
algorithm in [13] which does not perform offset assignment.

A. Comparison on Bus Utilization

Bandwidth Utilization Comparison
90

80

70

Average Bandwidth Utilization (%)
=
]

LI77777 77774

5o
o 5 8
]
Ll 77777

«
S
o
S

Number of Signals

OBLF @A3 A2 EAl B No Offset

Fig. 8. Average bandwidth utilization comparison using offset assignment
versus no offset assignment.

Figure 8 presents the comparison on bandwidth utilization.
As in the figure, offset assignment (BLF, A;, A; and As)
provides a steadily increasing improvement in bus utilization.
In the case of 300 signals the improvement is about 10.83%
over the No Offset case. We also observe that the bandwidth
utilization observed with the offset assignment approaches (in
Ai, Ay and Aj3) is almost similar. This shows that in terms of
bandwidth utilization, the performance of the GAF framework
with polynomial time heuristics .4; and A, is nearly the same
as with Az (ILP). By using BLF we further improve the
offset assignment and obtain a reduction in average bandwidth
utilization of upto 0.55% (in the case of 150 signals) as
compared to GAF.

B. Comparison on System Schedulability

Schedulability: Offset Assignment vs No Offset Assignment
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Fig. 9. Comparison on system schedulability.

In addition to bandwidth utilization, we also analyze the
schedulability of the packed CAN-FD frames as described in
Section VII. In Figure 9 we plot the percentage of schedulable
and unchedulable systems for each signal size using BLF, A,
As, and As, and compare them against the baseline packing
(i.e., no offset assignment). We observe that for small numbers
of signals, the performance of the offset assignment schemes
with respect to schedulability is similar to the one without
offset assignment. However, for larger numbers of signals, the
GAF (A;, As, A3) scheme is able to increase the number
of schedulable systems by 5.4%. The 2DSPF theme further
increases the number of schedulable systems (as compared to
GAF) by about 1.1%. This shows that as a side effect, the
decrease in frame payload size also reduces the response time
of the frame and thus improves schedulability.

C. An Automotive Case Study

We also applied the aforementioned frame packing algo-
rithms on a real automotive case study, containing 3429 signals
over a CAN-FD bus shared by 17 ECUs. It involves systems
which are broadly in the domains of chassis electronics, body
control, adaptive cruise control, and active safety.

Figure 10 shows the bandwidth utilization for this case
study with and without offset assignment. As in the figure,
GAF reduces the bandwidth utilization from 29% to about
26.7% and 2DSPF reduces it further to 26.6%. There are
several reasons why we see only a modest improvement
in bandwidth utilization in this case study. First, the CAN
bus is under-utilized, since the simple frame packing scheme
(without offset assignment) itself provides a low bandwidth
utilization of about 29%. Even so, our offset assignment
further reduces the bandwidth utilization by about 2.4%, which
is a relative improvement of about 8% considering the original
low bandwidth utilization of 29%. In the automotive domain
this could enable a potential extension of the architecture’s
lifetime by several product cycles. Second, the signal set in the
case study has a large share (about 69%) with the same period
(1000 ms). Therefore, the application of SOAP is restricted in
this case. Finally, about 60% of the signals are of size 2 bits
or less. As a result, the reduction in the occupancy of a frame
resulting from offset assignment is rather small, and due to
the discontinuity in CAN-FD frame sizes, a small change in
occupancy has very little effect on the size of a frame.
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Automotive Case-Study: Bandwidth Utilization
Comparison for Offset Assignment vs No Offset
Assignment
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Fig. 10. Bandwidth utilization comparison for frame packing for the real
automotive case study with and without offset assignment.

[ Generation Scheme [ ECUs [ Improvement in BU |

Automotive Benchmark [31] 3 0.54%

Automotive Benchmark [31] 5 0.77%

Automotive Benchmark [31] 10 1.66%

Random Systems [33] 10 2.83%

Random Systems (Periods in GP) 10 0.35%
TABLE 11

BANDWIDTH UTILIZATION IMPROVEMENT OF BLF OVER GAF

D. Comparison on Bus Utilization: Different Random Systems

In order to test the performance (in terms of bandwidth
utilization) of the proposed framework 2DSPF, we perform
experiments with different systems as summarized in Table II.
We generate synthetic systems using three different rules,
and the number of signals range over the set {50, 80, 100,
120, 150, 180, 200, 300}. The first three entries in Table II
are results of experiments performed using synthetic systems
generated using the automotive benchmark rules in [31]. For
each synthetic system, we considered 3, 5 and 10 ECUs per
system. We compare the average bandwidth utilization for all
the systems corresponding to the BLF and GAF with A43. We
observe about 0.54%, 0.77% and 1.66% bandwidth utilization
improvement from BLF in the three experiments.

For the next experiment (Random Systems), we generate
systems in a different way compared to previous experiments.
We follow the generation scheme used in [33]. In these
systems the periods of the signals are generated by the product
of one to three factors, each randomly drawn from three
harmonic sets (2, 4), (6, 12), (5,10). The number of signals
range from 50 to 300 and the number of ECUs per system is
10. We observe an improvement of about 2.83% in bandwidth
utilization by using BLF as compared to GAF. We also conduct
an experiment on a set of systems that follow [33] but signal
periods are in a geometric series. We observe an improvement
of about 0.35% in bandwidth utilization by using BLF as
compared to Aj.

IX. CONCLUSION AND FUTURE WORK

The problem of optimizing bandwidth utilization in CAN
and CAN-FD is important for better extensibility and cost

reduction. The wastage of bandwidth in frame-packing for
CAN-FD occurs mainly from the variable periods and sizes of
signals. In this work, we have approached the frame packing
problem in CAN-FD systems in a novel way by systematically
assigning offsets to signals in a frame and thus distributing the
load over the frame instances more evenly. We have shown that
this strategy is effective in reducing the bandwidth utilization
of the CAN-FD system and improving the schedulability. We
presented experimental results using synthetic systems and an
automotive case-study.

As our future work, we plan to improve our approximation
bound for GAF. We also intend to investigate the applicability
of our offset assignment framework to other frame-packing
algorithms in the literature (such as [3]). In this paper, our
focus was on SOAP for a single domain. In the future, we
plan to extend this approach to multi-domain systems.
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APPENDIX
A. Proof of Lemma 1

For any ¢ > 1, we prove by contradiction that
OPT; < OPT. Suppose for some i, OPT; > OPT.
Consider any optimal solution for set S and remove from
that solution all the signals except those from S;. The result
is a solution for S;. Note that the removal procedure does
not increase the occupancy of any frame. Therefore, we have
a solution for S; where the maximum occupancy is less
than OPT;. This contradicts the assumption that OPT; is an
optimal solution value for S;, and the lemma follows. O

B. Proof of Theorem 1

For the set S, let OPT and APPROX denote the maximum

occupancy of frames in an optimal solution and that produced
by GAF respectively. Similarly, for set S;, let APPROX;
denote the maximum occupancy of a frame produced by
GAF, 1 <17 < K. We divide our analysis into two cases: (1)
when signals with base period are present and (2) when there
are no signals with base period.
Case 1: Signals with base period are present. In this case,
ty = tp and for the signal set S; (consisting of all signals
with period 1), the offset assignment produced by an optimal
solution and that by GAF are the same: each signal in S;
appears at all the IV possible offset values. Therefore,

APPROX; = OPT; < OPT,

where the last step is a consequence of Lemma 1. For signal
sets So through Sk, Step 2.b) of GAF (Figure 3) uses
Algorithm A which provides a performance guarantee of p.
Using this fact and Lemma 1, we have for 2 <1 < K,

APPROX; < px OPT; < px OPT.
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Adding the inequalities for APPROX;, 1 <i < K, we get
K
> APPROX; < OPT x [1 4 p(K —1)].
i=1
Because of the merging procedure used in the algorithm
(Step 3 of Figure 3), we have

K
APPROX < ) APPROX; < OPT x [1+ p(K —1)].
i=1

Case 2: Signals with base period are absent. When there are
no signals with period equal to the base period (i.e., t1 # tp),
then the offset assignment for the set of signals S; may not be
optimal; however, the maximum occupancy is still within the
factor p of the optimal value. Hence using the same argument
as in Case 1, we have for 1 <i < K,

APPROX; < px OPT; < px OPT.
Adding the inequalities for APPROX;, 1 <i < K, we get

K
APPROX < ZAPPROXZ» < OPT x pK.
i=1

This completes the proof of Theorem 1. (]

C. Proof of Lemma 2

We prove by induction.
Base Case. Consider the base case of ¢ = 1. It is straightfor-
ward to see that (x1,y1) = (0,0), and

filx) = g1, Ve:0<az<W

meets all conditions.

Inductive Step. We assume that Conditions (1) through (4)
are always satisfied after packing any of the previous items
T1,...,T;, and prove that all conditions hold after BLF packs
the item 7;41.

In order to pack 7;41, we first find the left-most coordinate
that is on the lowest edge of the profile f; (if there are multiple
of such edges, pick the left-most one). The coordinates (z, )
of such a point are

min_fi(z), Z=min{z | fi(z) =y} (10

v= 0<z<W
In the profile f;, the length of the (horizontal) edge starting
from (Z,§) is denoted as d, which must satisfy

d=max{d | V2’ : 2 <2’ <z+d, fi(z')=9} (A1)

We first prove that if d > w;y1, all four conditions are sat-
isfied after BLF places 7,1 at the point (Z,7). Subsequently,
we will prove that d > w;41. Hence, (Z,y) will be the point
(zi41,Yyi+1) at which BLF places 7;1.

Now assume that d > w;41. Using the assumption that all
conditions hold after packing all items in L, it is easy to verify
that Conditions (1) and (2) are satisfied after BLF places 7,11
at (Z,y) when d > w;q1. Also, because of Equality (10),
Condition (3) holds when d > w; 1.

Now consider Condition (4), which is trivially true when
T = 0. Otherwise, we know there exists an item 7, : r < ¢

which has been placed at (z,y.) = (T — wy, y,). Therefore,
it holds that

(@)

=z, +w, = (Mmy+1) w, © My - Wig1 (12)

where m;; € Z* U {0}. Here Equality (a) comes from
the induction hypothesis and Equality (b) holds due to the
non-increasing geometric order of widths of items. Hence,
Condition (4) is always satisfied.

Now we prove that d > w;4; is true. We consider two
cases. In the case where T + d = W, since both  and W are
different integer multiples of w;+1, d =W —Z > 0 is also an
integer multiple of w;;. Hence, d must be no smaller than
Wi41-

When z +d < W, there must exist an item 7, t < ¢, which
has been placed at (Z + d, y,). Therefore, it holds that

T+d=m w=m- wiy, meZTU{0}. (13)

Comparing (12) with (13), it is clear that m > m;,1 since

T + d > x. Therefore, we have
@]
d = (m—mi11) wip1 > Wi,

where the inequality (c) comes from that m > m;4; and both
m and m;, are integers.

Thus, all the four conditions hold after BLF packs 7;4; at
(Ti+1,Yi+1) = (Z,7), i.e., after BLF packs all the items in
L; . This completes the proof of Lemma 2. ]

D. Proof of Theorem 2

Consider any item 7; packed at (x;,y;). By Condition (3)
in Lemma 2, z; = m; - w; where m; is a non-negative integer
and w; is the width of 7;. For any x that is covered by 7, i.e.,
z; <z < x; +w; — 1, by Equation (6), its most significant
q; digits remain the same as those of x; where w; = n9x %,
By Equation (7), their reversed numbers z’ and z; must have
the same least significant g; digits, or equivalently

=2, modn® = t,xz' =t, xz, modt.

where t; =t - n?.

This effectively means that the activation time of the frame
instance corresponding to x must be equivalent to that of the
one corresponding to x; (modulo ¢;). Given that we have in
total w; = t5/t; such instances, they must form the set of
all frame instances in a hyperperiod (i.e., of length ¢;) with
the same offset (¢, x ;) mod t,. Hence, it is a valid offset
assignment to the corresponding signal o;. (]

E. Proof of Theorem 3

Let H £ maxi<z<w fx(z) denote the height of the
solution for the list L, given by BLF, and suppose the height
H is achieved by packing the item 7. at (x,,y,); that is,

fol) = H =y + gr, Vr:z, <z <0+ W,

According to the condition (3) of Lemma 2, because BLF is
always able to pack 7, on the minimum height, we have

—g, = i < i )
H - g, Ogglw.ﬂ'fl(x) < Ogrr;glwfn(x) (14)
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From Lemma 3 and Lemma 4, we get

H = (H_gr)+gr < 2x H* (15)

which means that the performance bound of BLF is at most

2.
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