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Abstract

The ability to classify habitats and movement pathways as sources or sinks is

an important part of the decision making process for the conservation of spa-

tially structured populations. Diverse approaches have been used to quantify

the importance of habitats and pathways in a spatial network; however, these

approaches have been limited by a lack of general applicability across life histo-

ries and movement strategies. In this paper, we develop a generalized per-capita

contribution metric, the C-metric, for quantifying habitat and pathway quality.

This metric is novel in that it can be applied broadly to both metapopulations

and migratory species. It allows for any number of age and sex classes, un-

limited number of seasons or time intervals within the annual cycle, and for

density-dependent parameters. We demonstrate the flexibility of the metric

with four case studies: a hypothetical metapopulation, elk of the Greater Yel-

lowstone Ecosystem, northern pintail ducks in North America, and the eastern
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population of the monarch butterfly. General computer code to calculate the

per-capita contribution metric is provided. We demonstrate that the C-metric

is useful for identifying source and sink habitats in a network and suggest that

the C-metric could be supplemented by some measure of network structure for

a more robust description of habitat or pathway importance.

Keywords: migration, network model, habitat quality, spatial ecology, metric,

ecological traps

1. Introduction

Understanding the movement of individuals across space and time is funda-

mental to making management decisions. Migratory species, and some species

showing metapopulation dynamics, can be difficult to conserve and manage

because they use multiple habitat types across geographies that span political5

boundaries (Behrens et al., 2008; Wilcove and Wikelski, 2008; Visser et al., 2009;

Runge et al., 2017; Tucker et al., 2018). A crucial part of developing conserva-

tion strategies for such species is assessing the relative importance of the habi-

tats they occupy over the course of their full annual cycle (Martin et al., 2007;

Kölzsch and Blasius, 2008; Sawyer and Kauffman, 2011). It is therefore worth10

developing metrics that account for both habitat connectivity and demography

(Johnson et al., 2018; Robertson et al., 2018; Zamberletti et al., 2018). Although

several habitat contribution metrics exist for spatially structured populations

(Nicol et al., 2016), these metrics were not designed to account for seasonal

migration. Applying these metrics to a migratory population can therefore be15

problematic.

Recently, several approaches have been developed to address the question

of habitat importance for migratory populations. The metric Cr, originally

developed by Runge et al. (2006) for non-migratory but spatially structured

populations, is the per-capita contribution to the next generation by individuals20

that occur in a particular habitat r. Wiederholt et al. (2018) adapted this per-

capita contribution metric for migratory species, which accounts for seasonal
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movement between multiple breeding and non-breeding habitats and for both

resident and migratory cohorts. This metric, however, is limited to a two-season

population of juveniles and adults. Erickson et al. (2018) considered per-capita25

contribution metrics for a migratory network but only for the case of a single

class of individuals.

The usefulness of per-capita contribution metrics is that they allow man-

agers to compare habitat (node) and pathway (edge) values and thus compare

locations and routes across an entire migratory network for a species. Nodes and30

edges can be classified as sources or sinks (Erickson et al., 2018) and prioritized

for management actions based on their relative values. The relative impor-

tance of different habitats has also been used to spatially allocate the value of

ecosystem services provided by migratory species (Semmens et al., 2011, 2018).

Although per-capita contribution metrics have been recognized as important35

tools for understanding dynamics of spatially structured populations, until now

there has been no generalized method that accounts for the full range of life

history strategies.

In this paper, we generalize an existing per-capita contribution metric (Wieder-

holt et al., 2018), which we will refer to as the C-metric. The C-metric is novel40

in that it can be applied to any number of seasons, non-equal season lengths,

varied class structures, and the full range of movement strategies. We illus-

trate the C-metric by applying our model to four example species. The first

is a simple hypothetical metapopulation for demonstrating the calculation and

illustrating that the metric can be applied to non-migratory metapopulations.45

We then apply the metric to existing models (Sample et al., 2018) of a partially

migratory population (Cervus canadensis; elk), a complete migratory popula-

tion (Anas acuta; northern pintail), and a population exhibiting a stepping

stone migration strategy (Danaus plexippus; monarch butterflies). These cases

represent a diversity of age and stage structures along with alternate types of50

migration. Our generalization, which relies on mathematics from matrix alge-

bra, includes general R code for calculating the C-metric to more easily allow

use by managers and decision makers (Bieri et al., 2019). We draw several new
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insights about population dynamics revealed in each of the case studies.

Network Structure and Demographic Parameters and Variables

Symbol Definition

c number of classes (life stages)

n number of nodes in the network

s number of seasons in the annual cycle

t time variable; one time step, t + 1, represents one season, and t + s represents one

annual cycle

Nx
i,t population size of class x in node i at time t

N tot
t total network population size at time t, N tot

t =
∑n

i=1

∑c
x=1 N

x
i,t

fxy
i,t proportion of individuals in class x that transition to class y at node i and time t,

element of Fi,t

pxij,t proportion of individuals of class x that move from node i to node j at time t

sxij,t proportion of individuals of class x that survive the transition from node i to node

j at time t

qxij,t proportion of individuals of class x that move, and survive the movement, from node

i to node j at time t, qxij,t = pxij,ts
x
ij,t are elements of matrix Qx

t

λt annual growth rate of the network at time t

Table 1: Symbols used in the paper.
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Contribution Metric Variables

Symbol Definition

C⃗t block vector of per-capita habitat contributions, whose elements are Cx
r,t, eq. (8)

Cx
r,t annual per-capita contribution of an individual of class x starting at node r and

time t

Cr,t class population-weighted average of annual habitat per-capita contribution, eq. (9)

C̄r class and seasonal population-weighted average of annual habitat per-capita contri-

bution, eq. (10)

Cx
rd,t annual per-capita contribution of an individual of class x using pathway rd at time

t

Crd,t class population-weighted average of annual pathway per-capita contribution, eq.

(12)

C̄rd class and seasonal population-weighted average of annual pathway per-capita con-

tribution, eq. (13)

Table 2: Symbols used in the paper.
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Annual Projection Matrices and Vectors

Symbol Definition

At nc × nc projection matrix that contains demographic and movement information,

At = QtFt

Ft nc× nc block matrix that contains demographic information at the nodes

Fi,t c× c demographic projection matrix for node i

Qt nc×nc block matrix that contains movement and survival probabilities along path-

ways

Qx
t n× n movement and pathway survival matrix for class x

Ât nc × nc matrix that projects the population over one annual cycle, Ât =

At+s−1 · · ·At+1At

N⃗i,t c× 1 vector of population size for each class at node i

N⃗t nc× 1 block vector of population sizes, whose subvectors are N⃗i,t

w⃗t 1× nc vector of population proportions, w⃗t = N⃗T
t /N

tot
t

Inc nc× nc identity matrix

1n n× n matrix of ones

1⃗nc nc× 1 vector of ones

En,rd n× n matrix of zeros with a 1 at position rd

Hc,x c× c zero matrix with ones in column x

Mathematical Operators

Symbol Definition

⊗ Kronecker matrix product

◦ Hadamard (entrywise) matrix product

T as a superscript, the transpose of a vector or matrix

Table 3: Symbols used in the paper.
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2. Materials and Methods55

Borrowing from the matrix population models that are used widely to study

age and size-structured populations (Rogers, 1966; Pascarella and Horvitz, 1998;

Caswell, 2001; Hunter and Caswell, 2005), we construct a time-dependent pro-

jection matrix, At, that contains the demographic and movement information

required to calculate the C-metric. In doing so, we represent the spatial struc-60

ture of a population as a network in which habitats are nodes and movement

pathways are edges (Taylor and Norris, 2010; Sample et al., 2018). Symbols

used throughout this paper are given in Tables 1 - 3.

We consider a population of c age classes (or life stages) in a network of n

nodes and s seasons. Individuals are classified by both their class and location.65

One time step, from t to t+1, represents one season in the annual cycle (seasons

do not have to be equal in duration), and s time steps, from t to t+s, represents

one year. We define At as an nc×nc matrix that projects the population, in all

classes and nodes, from one time step to the next. Each entry in At gives the

probability that an individual in a given node and class at time t will contribute70

to that class or become another class in the same or another node, by time

t+1. To ease the construction of this matrix, we write it as the product of two

matrices:

At = QtFt. (1)

The block matrix Ft contains demographic update information at the nodes

(such as fecundity, class transition, and survival rates; see eqs. (2) and (3)75

below), and block matrix Qt contains update information along the pathways

(such as movement and survival probabilities; see eqs. (4) and (5) below). Ft is

defined as

Ft =

n∑
i=1

En,ii ⊗ FT
i,t, (2)

where ⊗ represents the Kronecker product, En,ii is an n × n zero matrix with
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a 1 at position ii, and Fi,t is a c× c demographic projection matrix for node i,80

Fi,t =

⎛⎜⎜⎜⎜⎜⎜⎝
f11
i,t f12

i,t · · · f1c
i,t

f21
i,t f22

i,t · · · f2c
i,t

... · · ·
. . .

...

f c1
i,t · · · · · · f cc

i,t

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

Element fxy
i,t represents individuals transitioning from class x to class y at node i

and time t, and fxx
i,t represents individuals remaining in class x. These elements

may be given as survival probabilities, and may also include births so their

values may be greater than 1. Matrix Qt is defined as

Qt =

c∑
x=1

(Qx
t )

T ⊗Ec,xx, (4)

where Qx
t is an n× n movement matrix,85

Qx
t =

⎛⎜⎜⎜⎜⎜⎜⎝
qx11,t qx12,t · · · qx1n,t

qx21,t qx22,t · · · qx21,t
... · · ·

. . .
...

qxn1,t · · · · · · qxnn,t

⎞⎟⎟⎟⎟⎟⎟⎠ . (5)

Elements are of the form qxij,t = pxij,ts
x
ij,t, which represents the proportion of

individuals of class x that move, pxij,t, and survive, sxij,t, the transition from

node i to node j at time t. Each element is a product of two probabilities and

must therefore be a non-negative number less than or equal to 1.

The population projected over an entire annual cycle, beginning at any time

t, is given by the seasonal product matrix, Ât = At+s−1 · · ·At+1At. The trans-

pose of this product matrix,

ÂT
t =

t+s−1∏
τ=t

AT
τ = AT

t A
T
t+1 · · ·AT

t+s−1, (6)

will be used to calculate the per-capita contribution metric.90

It is important to note two features of our model. First, we have chosen

in the formulation of At to apply demographic updates after each dispersal
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event. Switching this order would modify At (Hunter and Caswell, 2005). Sec-

ond, our framework is flexible to handle population models that have density-

dependent reproduction, survival, and movement probabilities. For example,95

if the survival rates of a migration model are seasonal and density-dependent,

then Ft ≡ F
(
N⃗t, t

)
, Qt ≡ Q

(
N⃗t, t

)
and At ≡ A

(
N⃗t, t

)
will be time- and

density-dependent matrices. As such, population abundance at the beginning

of the time-step can be determined by solving the following recurrence relation,

N⃗t+1 = AtN⃗t, (7)

where N⃗t is an nc × 1 block vector whose c × 1 subvectors N⃗i,t give the class100

distribution within each node i at time t. Furthermore, N⃗t+s = ÂtN⃗t will

give the population size after one annual cycle provided N⃗t, and the annual

population growth rate for anniversary date t can be defined as λt = w⃗tÂ
T
t 1⃗nc.

Here, w⃗t = N⃗T
t /N

tot
t is the population proportion at time t, where N tot

t is the

network population size (summed across all nodes and all classes during time105

step t), and 1⃗nc is a nc× 1 vector of ones. More details on model construction

can be found in the Supplementary Material.

2.1. Habitat Contribution Metric

Wiederholt et al. (2018), following Runge et al. (2006), defined the per-capita

contribution, Cr, of a focal habitat r as the expected number of individuals110

generated from an adult individual occupying the focal habitat in a given year.

The value of this metric depends on the anniversary season, which we define

as the season from which Cr is calculated. Cr can differ, for example, if it

is calculated from spring to spring vs. fall to fall in the same network. The

Cr metric is specific for a system of two classes (adults and juveniles), and115

two seasons so that their formulation only considered two time steps in the

annual cycle. This metric assumes juveniles and adults have the same movement

transition probabilities. It also assumes juveniles born in the breeding season

remain juveniles in the subsequent migratory period. Furthermore, although
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the metric accounted for differing survival rates between adults and juveniles,120

the per-capita contribution metric was only calculated for adults.

We begin by extending Cr in several ways. First, given a focal habitat

and anniversary date, we define a per-capita contribution metric C that can

be calculated for any class. Our notation of this metric differs from previous

works (Runge et al., 2006; Wiederholt et al., 2018) in that the focal node and125

time-step are given as subscripts and the class is a superscript. For instance,

CJ
r,t is the number of individuals that are generated after one annual cycle (by

time t+s), from a single juvenile individual occupying the focal habitat r in the

previous year, with anniversary date t. We also generalize the metric for class-

specific movement transition probabilities, transitions between ages or stages,130

and breeding may occur at any time (and possibly multiple times) during the

annual cycle. Furthermore, the C-metric can account for any number of seasons

and any number of classes or stages.

Formally, Cx
r,t is the expected contribution (of a single individual of class

x and its offspring) starting at node r and time t to the whole population135

after one annual cycle. Cx
r,t is calculated by summing the contributions from

all possible demographic and movement transitions that may happen to an

individual moving forward through one annual cycle. We will use matrix algebra

to calculate the C-metric for every node, class, and anniversary season.

We define C⃗t as a block vector whose elements are Cx
r,t:

C⃗t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1
1,t

C2
1,t

...

Cc
1,t

C1
2,t

C2
2,t

...

Cc
n,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The data required to calculate the values of this vector are contained in the140
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annual projection matrix, defined in eqs. (1) - (6). We solve for C⃗t by taking

the product of the transpose of the annual projection matrix and an nc × 1

vector of ones:

C⃗t =

(
t+s−1∏
τ=t

AT
τ

)
1⃗nc = ÂT

t 1⃗nc. (8)

This matrix product sums across possible annual pathways that migrants can

take throughout the annual cycle. If Cx
r,t is greater than one, a single individ-145

ual of class x starting at time t and node r is expected to replace itself and

add to the size of the population. If Cx
r,t is less than one, individuals do not

replace themselves and thus their contribution reduces overall population size.

A diagram of how the C-metric is calculated is given in Figure 1.

Breeding
Season

Winter
Season End of Year

Node 2

Node 1 Node 1

Node 2 Node 2

Node 1

f2,W

f1,B f1,W

q11,B q11,W

q12,W

q21,W

q22,W

q12,B

Figure 1: Conceptual diagram of the habitat C-metric. We use the network of a hypothetical

metapopulation model with one class. In this illustration, a single individual begins at Node 1

during the breeding season and is tracked over the course of one annual cycle. There are a total

of four pathways this individual may take: 111, 112, 121, and 122. The calculation for the per-

capita habitat contribution is the sum of contributions of all four possible pathways: C1,B =

f1,Bq11,Bf1,W q11,W + f1,Bq11,Bf1,W q12,W + f1,Bq12,Bf2,W q21,W + f1,Bq12,Bf2,W q22,W .

To use the C-metric for assessing the quality of habitats, regardless of class,150

we must average. We use a class population-weighted average to obtain a single
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metric for each habitat and anniversary season,

Cr,t =

c∑
x=1

Nx
r,t

Nr,t
Cx

r,t, (9)

where Nr,t is the population size of node r at time t and Nx
r,t/Nr,t is the pro-

portion of individuals of class x at the node. This results in a single per-capita

contribution value for each node r beginning in time step t. This metric indi-155

cates whether the focal node is a source (Cr,t > 1) or a sink (Cr,t < 1) at time

t. Next, since Cr,t depends on the anniversary season, to obtain a single node

metric, regardless of anniversary season, we use a seasonal population weighted

average,

Cr =

t+s−1∑
τ=t

Nr,τCr,τ

t+s−1∑
τ=t

Nr,τ

. (10)

This calculation gives more weight to a season in which the node’s population160

size is large relative to the other seasons.

Similar to the contribution metrics developed by Runge et al. (2006) and

Wiederholt et al. (2018), the generalized metric presented here, when weighted

by the fraction of the population they represent, sums to the annual population

growth rate for each anniversary date, λt = w⃗tC⃗t, where w⃗t is the population165

proportion.

2.2. Pathway Contribution Metric

We extend the work of Wiederholt et al. (2018) and provide a generalized

formulation of the per-capita contribution of edge, or pathway, transitions. The

annual per-capita contribution of an individual of class x starting at node r and170

traveling to node d at time t is

Cx
rd,t =

1⃗T
nc

pxrd,t

((
AT

t ◦ (En,rd ⊗Hc,x)
) t+s−1∏
τ=t+1

AT
τ

)
1⃗nc, (11)

where ◦ is the Hadamard (entrywise) product, pxrd,t is the proportion of indi-

viduals of class x at node r that will travel to node d at time t (contained in

movement matrix Qx
t of eq. (5)), and Hc,x is a c × c zero matrix with ones in
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column x. Recall that En,rd is an n × n zero matrix with a 1 at position rd.175

If at time t no individuals of class x use edge rd (pxrd,t = 0), then Cx
rd,t = 0.

While the equation for pathway contribution is more cumbersome, the general-

ized calculation remains straightforward for any number of classes (or stages),

a variety of migration strategies, and any number of seasons.

Similar to averaging the metric for habitat contribution given an anniversary180

season, we construct a single metric for pathway contribution. We weight each

Cx
rd,t by the number of migrants of class x that use edge rd at time t to obtain

Crd,t =

c∑
x=1

pxrd,tN
x
r,tC

x
rd,t

c∑
x=1

pxrd,tN
x
r,t

. (12)

Then by averaging across classes and seasons, we obtain a single metric for each

edge,

Crd =

t+s−1∑
τ=t

c∑
x=1

pxrd,tN
x
r,τC

x
rd,τ

t+s−1∑
τ=t

c∑
x=1

pxrd,tN
x
r,τ

. (13)

3. Case Studies185

In this section, we show that the C-metric can be calculated for populations

representing a diverse range of life histories, movement patterns, and carrying

capacities. We first apply our model to a simple hypothetical metapopulation

to demonstrate matrix construction and illustrate results, and then to three

migratory populations: the simpler example of seasonal partial migration of190

elk, the more complicated seasonal complete migration of northern pintails,

and finally the stepping stone migration of monarch butterflies. We note that

the parametrization and modeling of these migratory populations have been

developed previously (Sample et al., 2018); the results presented in this paper

are in the application of the C-metric.195

For ease of discussion, in each example we simulate population dynamics

until equilibrium, or steady state, is reached; however, the metric does not
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require the equilibrium assumption. Variables used in our calculations of the C-

metric are determined by their values at the end of these numerical simulations.

We assume equilibrium has been reached when the population is within ±0.01200

individuals from one year to the next, comparing like seasons. We note that the

C-metric can be calculated using non-equilibrium parameter values that change

from one annual cycle to the next. This would lead to network growth rates

that are greater or less than one and C-metric values that change from one year

to the next. See the Supplemental Information for details of model setup, and205

Bieri et al. (2019) for parameter values and code developed in R to calculate

these metrics for each example.

3.1. Hypothetical Metapopulation

We begin with a simple hypothetical metapopulation model. In this network

(Figure 2), there are two nodes, two classes, and two seasons. The two classes210

are juveniles (J) and adults (A) and the two seasons are breeding (B) and

wintering (W ). In one time step (one season), individuals can either remain in

the same node or disperse to the other node by traveling along weighted and

directed edges in the network. In this hypothetical network, node 2 is of lower

quality (e.g. lower carrying capacity) compared to node 1.215

Node 1 Node 2

Figure 2: Hypothetical metapopulation network diagram. Both nodes have year-round res-

idents, and both have individuals that move to the other node after breeding and after the

winter season.

At the beginning of the breeding season, the population sizes, rounded to

the nearest whole number, of juveniles and adults are NJ
1,B = 115, NA

1,B = 245

at node 1, and NJ
2,B = 50 and NA

2,B = 105 at node 2. Juveniles then transition

14



to adults with some survival probability, adults survive, and surviving adults

produce new juveniles. Survival rates are the same across seasons and are given220

by sA1 = 0.9, sJ1 = 0.8, sA2 = 0.7 and sJ2 = 0.6. We assume node 1 is closer

to its carrying capacity than node 2, and set the reproductive rates as r1 =

0.6665 and r2 = 0.5813. At the end of the breeding season, individuals disperse

within the network. The post-breeding, wintering populations are NJ
1,W = 155,

NA
1,W = 290, NJ

2,W = 70 and NA
2,W = 125. Individuals survive the winter season225

with the same probabilities as in the breeding season. In our calculations, we

sort by nodes then classes, so that the population vector is given by NT
t =[

NJ
1,t N

A
1,t N

J
2,t N

A
2,t

]T
.

To formulate At, we begin by constructing matrices Ft and Qt. We create

these matrices for the breeding (t = B) and wintering (t = W ) seasons at steady

state. During the breeding season, the demographic matrix of eq. (3) is

Fi,B =

⎡⎣0 sJi

ri sAi

⎤⎦ , i = 1, 2.

Here, the elements in the top row represent juvenile survival and juvenile tran-

sition to adults, respectively. Note that all surviving juveniles transition to

adults in this season. The bottom row represents reproduction (adults creating

juveniles) and adult survival, respectively. During the wintering season, there

are no class transitions and only survival within the classes:

Fi,W =

⎡⎣sJi 0

0 sAi

⎤⎦ , i = 1, 2.

The demographic block matrices of eq. (2) for the breeding and wintering seasons

15



are

FB =

⎛⎝ FT
1,B 0

0 FT
2,B

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0.6665 0 0

0.8 0.9 0 0

0 0 0 0.5813

0 0 0.6 0.7

⎞⎟⎟⎟⎟⎟⎟⎠

FW =

⎛⎝ FT
1,W 0

0 FT
2,W

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0.8 0 0 0

0 0.9 0 0

0 0 0.6 0

0 0 0 0.7

⎞⎟⎟⎟⎟⎟⎟⎠
We now set up the matrices of eq. (5). In this hypothetical model, movement

does not depend on class or season and individuals are more likely to remain

residents than disperse to the other node. Individuals have an 80% probability

of remaining at node 1 and a 60% probability of remaining at node 2. Therefore,

the matrices of eq. (5), which are class- and time-independent in this model, are

QJ = QA =

⎡⎣0.8 0.2

0.4 0.6

⎤⎦
Thus, the movement block matrices of eq. (4) are

QB = QW = (QJ)T ⊗

⎡⎣1 0

0 0

⎤⎦+ (QA)T ⊗

⎡⎣0 0

0 1

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
0.8 0 0.4 0

0 0.8 0 0.4

0.2 0 0.6 0

0 0.2 0 0.6

⎤⎥⎥⎥⎥⎥⎥⎦
From eq. (1), we have the following projection matrices for the breeding and
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wintering seasons,

AB = QBFB =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0.5332 0 0.2325

0.6400 0.7200 0.2400 0.2800

0 0.1333 0 0.3488

0.1600 0.1800 0.3600 0.4200

⎤⎥⎥⎥⎥⎥⎥⎦

AW = QWFW =

⎡⎢⎢⎢⎢⎢⎢⎣
0.6400 0 0.2400 0

0 0.7200 0 0.2800

0.1600 0 0.3600 0

0 0.1800 0 0.4200

⎤⎥⎥⎥⎥⎥⎥⎦
We calculated the per-capita contributions for each node, class and anniver-

sary season using the matrix multiplication defined in eq. (8). At equilibrium,

the per-capita contribution equations for the breeding and wintering seasons are

C⃗B = AT
BA

T
W 1⃗4,

C⃗W = AT
WAT

B1⃗4.

We then use eq. (9) to average across classes and eq. (10) to average across

seasons. Adults, who contribute to the population through reproduction, have230

higher C-values than juveniles (Table 4). After averaging across classes, our

results indicate that an individual at node 1 is expected to contribute more

individuals to the network than an individual from node 2. We categorize node

1 as a source (Cr > 1) and node 2 as a sink (Cr < 1).

The pathway that represents node 1’s resident population (C11) has a higher235

contribution value and the pathway representing node 2’s resident population

(C22) has a lower value (Table 5).
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Metapopulation Model

Node Breeding

Season

Winter

Season

Seasonal

Average

Node 1 juveniles CJ
1,t 0.6880 0.6080 -

Node 1 adults CA
1,t 1.2805 1.3585 -

Node 2 juveniles CJ
2,t 0.4680 0.4080 -

Node 2 adults CA
2,t 0.9413 0.9768 -

Node 1 (class avg) C1,t 1.0903 1.0981 1.0946

Node 2 (class avg) C2,t 0.7890 0.7736 0.7804

Table 4: Per-capita contribution of each node for the hypothetical metapopulation example.

Metapopulation Model

Pathway Breeding

Season

Winter

Season

Seasonal

Average

Edge 1→1 juveniles CJ
11,t 0.5332 0.6400 -

Edge 1→1 adults CA
11,t 1.5300 1.4099 -

Edge 1→2 juveniles CJ
12,t 0.3999 0.4800 -

Edge 1→2 adults CA
12,t 1.1900 1.1532 -

Edge 2→1 juveniles CJ
21,t 0.4650 0.4800 -

Edge 2→1 adults CA
21,t 1.1700 1.0965 -

Edge 2→2 juveniles CJ
22,t 0.3488 0.3600 -

Edge 2→2 adults CA
22,t 0.9100 0.8969 -

Edge 1→1 (class avg) C11,t 1.2100 1.1428 1.1728

Edge 1→2 (class avg) C12,t 0.9364 0.9196 0.9271

Edge 2→1 (class avg) C21,t 0.9432 0.8763 0.9060

Edge 2→2 (class avg) C22,t 0.7294 0.7051 0.7159

Table 5: Per-capita contribution of each pathway for the hypothetical metapopulation exam-

ple.
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3.2. Elk in the Greater Yellowstone Ecosystem

We apply our model of habitat and pathway contribution to a population

of elk located in the Greater Yellowstone Ecosystem (henceforth, Yellowstone).240

To parameterize the model, we begin with the modeling framework presented in

Sample et al. (2018), with model parameters and density-dependent assumptions

based on the literature (Singer et al., 1997; Taper and Gogan, 2002; Middleton

et al., 2013). Values of the parameters at equilibrium were used to calculate the

C-metric.245

Elk partially migrate among three geographical locations (Figure 3). One

location (Node 3) is near Cody, Wyoming, where two groups of elk reside, one

that remains resident year-round and another that migrates to Yellowstone.

The elk that remain resident year-round in Node 3 breed there in the summer

season. Yellowstone (Node 1) is the summering location where migrating elk250

breed, and the location between Cody and Yellowstone (Node 2) is where mi-

grating elk winter. All elk in this location migrate to Yellowstone during the

summer for breeding (Middleton et al., 2013). One annual cycle comprises two

seasons. Season 1 includes winter and spring migration, and Season 2 includes

summer and fall migration. We modeled female elk of two classes, juveniles (J)255

and adults (A). During Season 1, juveniles and adults survive at class specific

survival rates. During Season 2, all surviving juveniles transition into adults,

surviving adults reproduce and create juveniles, and adults survive.

Node 1
Yellowstone

Breeding

Node 2
Nonbreeding

Node 3
Cody, WY
Year-round

Node 1
Yellowstone

Breeding

Node 2
Nonbreeding

Node 3
Cody, WY
Year-round

Winter through spring migration Summer through fall migration

Figure 3: Network model for elk in the Greater Yellowstone Ecosystem. Nodes that are

occupied at the start of the focal time interval are shaded.

We obtained the per-capita contributions for each class at each node and

average across classes and seasons at equilibrium according to eqs. (9) and (10).260
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The average per-capita contributions were close to 1 for every node (Table 6).

Node 2 had a slightly higher per-capita contribution than the other nodes.

This indicates that an individual starting in the wintering node is expected,

on average, to contribute more individuals to the population compared to the

breeding and year-round nodes. However, as the per-capita contributions were265

near 1 (Cr < 0.8% within 1), none of the nodes could be clearly classified as a

source or sink.

Results for the pathway metric, presented in Table 7, demonstrate that the

fall migration paths (from Node 1 to Node 2 and from Node 1 to Node 3)

have the largest per-capita contribution. The other three edges have per-capita270

contributions close to 1, with the spring migration route from Node 3 to Node

1 as the only path considered a sink.

Elk Model

Node Winter/

Spring

Summer/

Fall

Seasonal

Average

Node 1 (Breeding) C1,t 0 1.0000 1.0000

Node 2 (Nonbreeding) C2,t 1.0072 0 1.0072

Node 3 (Year-round) C3,t 0.9961 1.0000 0.9978

Table 6: Per-capita contribution of each node for the elk example. The metric Cr,t equals

zero when no individuals reside in node r during time step t.
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Elk Model

Pathway Winter/

Spring

Summer/

Fall

Seasonal

Average

Fall Edge 1→2 C12,t 0 1.2205 1.2205

Fall Edge 1→3 C13,t 0 1.1475 1.1475

Spring Edge 2→1 C21,t 1.0072 0 1.0072

Spring Edge 3→1 C31,t 0.9522 0 0.9522

Resident Edge 3→3 C33,t 1.0000 1.1310 1.0580

Table 7: Per-capita contribution of each pathway for the elk example.
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3.3. Northern Pintail

Northern pintail is widely distributed in wetland regions; it breeds in the

northern areas of North America, Europe, and Asia and winters from southern275

temperate to tropical regions of the northern hemisphere (BirdLife Interna-

tional, 2019). The population model in Sample et al. (2018), which used the

parameter values and model assumptions from Mattsson et al. (2012), has four

classes, three seasons and five nodes. The four population classes are adult

males (AM), adult females (AF ), juvenile males (JM), and juvenile females280

(JF ). The annual cycle is divided into three seasons: breeding, wintering and

spring flyover. Nodes 1 through 3 (i.e., Alaska (AK), Prairie Potholes (PR) and

Northwest Unsurveyed (NU)), are breeding habitats whereas Nodes 4 and 5 (i.e.,

California (CA) and Gulf Coast (GC)), are wintering habitats (Figure 4). In the

wintering Season 2, all juveniles transition to adults. No births, deaths or age285

transitions occur during the flyover Season 3; rather, migrants decide whether

to stay in PR or continue (flyover) to AK or NU. In the model, proportion of

flyovers is density-dependent and evaluated at population equilibrium.

We calculate the per-capita contributions averaged across classes and seasons

at equilibrium (Table 8). On average, a single individual starting in nodes 2290

(PR) or 5 (GC) is expected to contribute more individuals to the population

than it loses, whereas the opposite is true for an individual starting at nodes 1

(AK), 3 (NU) and 4 (CA). As such, PR and GC are sources and the remaining

habitats are sinks.

The spring migratory paths from the wintering nodes (CA and GC) had the295

largest contribution (Table 9). The fall migratory pathways from the breeding

nodes (AK, PR, and NU) to the wintering nodes (CA and GC) had the smallest

contributions.
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Breeding and Fall Migration

Node 4
California

(CA)

Node 5
Gulf Coast

(GC)

Node 3
Northern Un-

surveyed (NU)

Node 2
Prairie Pot-
holes (PR)

Node 1
Alaska (AK)

Node 4
California

(CA)

Node 5
Gulf Coast

(GC)

Node 3
Northern Un-

surveyed (NU)

Node 2
Prairie Pot-
holes (PR)

Node 1
Alaska (AK)

Node 4
California

(CA)

Node 5
Gulf Coast

(GC)

Node 3
Northern Un-

surveyed (NU)

Node 2
Prairie Pot-
holes (PR)

Node 1
Alaska (AK)

Winter and Spring Migration Flyover

Figure 4: Network model for the northern pintail. Nodes that are occupied at the start of the

focal season are shaded.

Pintail Model

Node Breeding/

Fall

Winter/

Spring

Flyover Seasonal

Average

Node 1 (AK) C1,t 0.9916 0 0.9917 0.9917

Node 2 (PR) C2,t 1.1347 0 1.0053 1.0479

Node 3 (NU) C3,t 0.8684 0 0 0.8684

Node 4 (CA) C4,t 0 0.9759 0 0.9759

Node 5 (GC) C5,t 0 1.0493 0 1.0493

Table 8: Per-capita contribution of each node in the pintail migratory network. The metric

Cr,t equals zero when no individuals reside in node r during time step t.
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Pintail Model

Pathway Seasonal

Average

Fall AK→CA C14,t 0.6958

Fall AK→GC C15,t 0.7127

Fall PR→CA C24,t 0.6958

Fall PR→GC C25,t 0.7547

Fall NU→CA C34,t 0.6958

Fall NU→GC C35,t 0.7547

Spring CA→AK C41,t 1.3593

Spring CA→PR C42,t 1.3381

Spring GC→AK C51,t 1.4911

Spring GC→PR C52,t 1.4678

Flyover AK→AK C11,t 0.9917

Flyover PR→AK C21,t 0.9913

Flyover PR→PR C22,t 1.1347

Flyover PR→NU C23,t 0.8684

Table 9: Per-capita contribution of each pathway in the pintail migratory network. Each

pathway is used only once during the annual cycle, so each seasonal average is equal to the

one non-zero value of the metric.
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3.4. Monarch Butterfly

Monarch butterfly in eastern North America migrate from breeding areas in300

the northern U.S. and southern Canada to a non-breeding area in central Mex-

ico. The population model developed in Flockhart et al. (2015) was converted to

a network-based model using the framework presented in Sample et al. (2018).

There is one class (adult females), seven seasons and four nodes. The seven sea-

sons of the annual cycle are: Winter (October through May), April, May, June,305

July, August, and September. Breeding occurs April through September. The

four nodes represent regions of eastern North America: Mexico (M), South (S),

Central (C), and North (N), enumerated 1 through 4, respectively (Figure 5).

Mexico is considered a wintering node and the other three nodes are breeding

nodes. Seasonal edge transition and survival probabilities are assumed to be310

constant from year to year.

Winter April May June July August September

Node 1
Mexico

Node 2
South

Node 3
Central

Node 4
North

Node 1
Mexico

Node 2
South

Node 3
Central

Node 4
North

Node 1
Mexico

Node 2
South

Node 3
Central

Node 4
North

Node 1
Mexico

Node 2
South

Node 3
Central

Node 4
North

Node 1
Mexico

Node 2
South

Node 3
Central

Node 4
North

Node 1
Mexico

Node 2
South

Node 3
Central

Node 4
North

Node 1
Mexico

Node 2
South

Node 3
Central

Node 4
North

Figure 5: Monarch network model. Nodes that are occupied at the start of the focal season

are shaded.

Based on the C-metric, an individual starting in the North (Node 4) is ex-

pected to contribute the least to the population, whereas an individual starting

in the Central region (Node 3) is expected to contribute the most (Table 10).

Note that all individuals reside in Mexico (Node 1) and the South (Node 2)315
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during Winter and April, respectively. Therefore, the per-capita contributions

of Mexico and South are equivalent to the network growth rate (λ = 1) during

these seasons. This is true even when the network is out of equilibrium. Thus,

given a C-metric of 1, each individual wintering in Mexico or residing in the

South in April, is expected to replace itself over the annual cycle. Consider-320

ing the per-capita contributions of the pathways, the resident transition in the

Central node contributes the most whereas the spring migration from South to

North contributes the least (Table 11).
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4. Discussion

We have shown how the demographic contributions of individuals from dis-325

crete habitats can be quantified by a generalized C-metric and that this gen-

eralization can describe populations exhibiting a diversity of movement strate-

gies. The metric can be applied to a wide range of spatially structured pop-

ulations with any number of classes, seasons, or types of movement strategies

including simple two-patch systems, complex metapopulations, and complete330

seasonal migration. This metric is simple to calculate as long as estimates for

seasonal demographic and movement parameters are available. It does not re-

quire density-dependent functions, although these can be incorporated in the

projection matrix. It also does not require the population to be at equilib-

rium. While the metric is sufficiently general to be applied to metapopulation335

networks, as in the simple example we provided and as shown in more complex

examples (e.g., Strasser et al.,2012), we found it particularly useful for gaining a

better understanding about the roles of discrete habitats in migratory networks.

In the elk example, Middleton et al. (2013) found that elk migrating each

spring into Yellowstone National Park had declining calf recruitment and preg-340

nancy rates. This process was captured through the low pathway contribution

value for the Spring edge from 3 to 1 and with the overall lower node contribu-

tion value for Node 3. These findings indicate that the Year-Round Cody WY

area was potentially a minor sink subpopulation in 2009, given the Cr values

slightly below 1, and that the role of this region in the overall population has345

shifted as habitat quality declined from 1989 to 2009.

Results from the pintail example matched some expectations but not others.

The Prairie Pothole region (PR) is recognized as providing crucial breeding

habitat for many migratory waterfowl species, including the pintail (Podruzny

et al., 2002; Doherty et al., 2016). PR had the highest Cr value among regions350

and serves as a strong source (Cr ≥5% above 1), in alignment with expectations.

The role of wintering areas has until now been viewed as secondary (Miller

et al., 2003), but we found that at equilibrium an individual overwintering in
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the Gulf Coast habitat contributed nearly the same number of individuals to the

population as did an individual that bred in the PR. This contradicts findings of355

a perturbation analysis, which showed that increasing reproduction in the PR by

10% had a larger effect on continental-scale carrying capacity than did increasing

habitat area by 10% in the Gulf Coast habitat (Mattsson et al., 2012). There

was a disparity between the two wintering regions in terms of their per-capita

contributions, which we did not expect. Although the habitat in California360

supports more overwintering individuals at carrying capacity, it acts like a weak

sink (Cr is ≤5% below 1) due to most California birds migrating to Alaska

where reproduction is insufficient to maintain a growing population on its own.

We also found that the Northern Unsurveyed habitat serves as a strong sink (Cr

is >5% below 1). This is in line with our expectation that this habitat plays365

a minor role in continental population dynamics due to having substantially

lower reproduction compared to the other breeding habitats. The Northern

Unsurveyed habitat serves as a spillover habitat when the population nears

carrying capacity in the PR. Comparing Cr values among core breeding and

wintering habitats used by pintails provides additional insight and perspectives370

on the relative importance of these habitats to the population at a continental

scale.

In the monarch case study, we found that the Central region had the high-

est seasonally averaged Cr, and the North had the lowest. This qualitative

prioritization of the Central region matches the sensitivity analyses done by375

Flockhart et al. (2015) and Oberhauser et al. (2017). Flockhart et al. (2015)

performed an elasticity analysis of demographic and migration parameters in

their matrix model and summed these elasticities across geographic regions to

compare regional contributions to population size. Their analyses showed the

Central region had the highest summed elasticity, followed by the South, then380

Mexico, then the North. Cr ranked Mexico slightly higher than the South while

elasticities were higher for the South than Mexico. An important area of fu-

ture work would include a more thorough analysis of, and comparison between,

results from elasticity analysis and more direct metrics like the C-metric. Fur-
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thermore, it would be interesting to extend the elasticity analysis of population385

abundance (Flockhart et al., 2015) by examining the sensitivity of Cr to uncer-

tainties in the demographic parameters.

The C-metric for edges describes how individuals traveling along an edge

contribute to the population. Insight about the source or sink value of the edge

can be gained when comparing edges within the same season. For example, in390

the elk model, individuals traveling along the edge between the breeding and

nonbreeding nodes during fall migration contribute more to the population than

are lost, meaning that the pathway is a source. Individuals choosing to migrate

from Cody (year-round node) to Yellowstone (breeding node) in the spring con-

tribute less to the population than individuals choosing to remain in Cody or to395

migrate along a shorter path. Considering the pintail pathway rankings, spring

migration pathways act as sources whereas fall migration pathways serve as

sinks. We see similar results with monarchs—pathways with strong connections

with the Central node (a strong source) have higher Crd values, meaning that

individuals flowing along these paths contribute more to the population than400

are lost due to mortality. In general, the pathway metric for fall edges are larger

than for spring edges. This can be accounted for by the census date.

Census dates are an important part of understanding C-metric values. When

calculating Cr at the nodes, the census is taken at the beginning of the season,

which is before reproduction and habitat survival occurs. For the pathway405

metric, the census is taken after reproduction and habitat survival occurs (right

before individuals move along the pathway). Thus, direct comparison between

node and edge values is complicated because of this difference in census date.

This discordance means that C-metric values are highly dependent on both the

census date and the focal season and more work is needed to understand the410

consequence of these differences on implications for management.

The per-capita contribution metric is useful for identifying source and sink

nodes or pathways (Erickson et al., 2018) and for providing information about

the reproductive potential of an individual at the node or pathway. However,

the C-metric has limitations: it does not include information about network415
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structure. For example, a node could be rather unimportant in terms of its

demographic contribution (sink) yet vital to the connectivity of the network.

Given the complexity of spatially structured populations and the numerous

ways by which existence or quality of a node or edge can influence the popu-

lation as a whole, developing a single metric that indicates all dimensions of420

importance for population dynamics remains elusive. Using multiple metrics

is, therefore, a more reliable way of assessing quality of nodes and pathways in

a spatially structured population. Furthermore, the calculation of per-capita

contribution metrics requires demographic data (survival rates, transition rates

between nodes, and reproductive rates) and relative distribution of the popu-425

lation among its constituent habitats. It can be challenging to parameterize

models with existing monitoring programs that provide access to data, such as

eBird (Sullivan et al., 2009), movebank (Wikelski and Kays, 2019) and Moni-

toring Avian Productivity and Survival (DeSante et al., 2015). Reverse-time

multi-state capture-recapture models can be used in combination with per-430

capita metrics to estimate the demographic importance of local populations

to metapopulation growth (Sanderlin et al., 2011). But if limited or no demo-

graphic data are available, then graph-based metrics may be more appropriate

(Nicol et al., 2016; Bieri et al., 2018).

To accommodate the full range of life histories expressed by spatially struc-435

tured populations, contribution metrics should account for different age and

stage classes and the anniversary season. Thus, the number of per-capita con-

tribution metrics to compute for a given population amounts to the product of

the number of habitats, classes, and seasons. This may be too much information

for managers who wish to have one metric per habitat when assessing habitat440

importance. For this reason, we presented a population-weighted average of

the per-capita contributions across classes and seasons for a given habitat or

patch. We caution that this may hide ecologically important disparities, and

the component metrics should be made available in addition to the weighted

averages.445

Although it is not required by the formulation, the examples in this paper

32



assume equilibrium in calculating the C-metric. As such, these examples do not

represent populations that are increasing or decreasing. Assuming equilibrium is

unrealistic for populations undergoing long-term increases or decreases in abun-

dance. Equilibrium assumptions are, however, commonly used in population450

ecology, such as the assumption of a stable age distribution in eigen-analyses

of Leslie/Lefkovitch matrices (Caswell, 2001). As of yet, it is not well under-

stood how equilibrium assumptions might affect the ranking of importance of

habitats as indicated by the C-metric. That is, the habitat with the highest

per-capita contribution at equilibrium could be superseded by another habitat455

when the population is growing or declining. This question is worthy of future

exploration. As in spatially unstructured models (Gamelon et al., 2014), we

anticipate that the study of transient dynamics in spatially structured popula-

tions could lead to a rich body of knowledge about how per-capita contributions

shift in response to natural disturbance or management actions, and how these460

effects percolate through a network.

A future extension of the generalized C-metric would allow for estimating

the per-capita contribution along a series of pathways (Erickson et al., 2018;

Wiederholt et al., 2018) rather than restricting the metric to single intersea-

sonal transitions. For example, waterfowl biologists and managers might be465

interested in comparing contributions among flyways that encompass habitats

used during spring and fall along a migratory route (Kirby et al., 2008; Con-

vention on Migratory Species, 2017). Considering the pintail case, we could

then compare the per-capita contribution of birds using the Pacific Flyway to

those using the Central Flyway of North America (Buhnerkempe et al., 2016).470

Under environmental change, we may see shifts in the proportion of the popula-

tion using these pathways that would also affect per-capita contributions among

flyways.

Another important area of future work includes the utility and robustness

of the C-metric. Comparing the C-metric to other approaches that rank im-475

portance of habitats, like parameter perturbation and simulation, might give

a better idea of the true management utility of the C-metric. Also, testing
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the sensitivity of the C-metric to changes in network or parameter assumptions

would give managers a better idea of error tolerance in, and robustness of, the

C-metric ranking.480

Generalizing the C-metric opens up diverse research questions. How does

per-capita contribution vary among life history strategies, and can this be used

to understand the evolution of particular movement strategies such as migration

and nomadism? Is Cr a good indicator of the effects of perturbing a habitat or

path in a migratory network? Are there ways of using citizen science observa-485

tions (e.g., from eBird) to estimate Cr? Our generalized modeling framework

and computer code will enable population ecologists to pursue these avenues,

which will lead to a richer understanding of spatially structured populations.

Furthermore, the C-metric, as an estimate of per capita contributions, is an

indicator of individual fitness in an area, and may be useful to researchers490

studying eco-evolutionary dynamics in fragmented landscapes (Legrand et al.,

2017), studies of niches in spatial and temporally varying environments (Holt,

2009), and the evolution of dispersal (Cote et al., 2017).
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