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Abstract

The ability to classify habitats and movement pathways as sources or sinks is
an important part of the decision making process for the conservation of spa-
tially structured populations. Diverse approaches have been used to quantify
the importance of habitats and pathways in a spatial network; however, these
approaches have been limited by a lack of general applicability across life histo-
ries and movement strategies. In this paper, we develop a generalized per-capita
contribution metric, the C-metric, for quantifying habitat and pathway quality.
This metric is novel in that it can be applied broadly to both metapopulations
and migratory species. It allows for any number of age and sex classes, un-
limited number of seasons or time intervals within the annual cycle, and for
density-dependent parameters. We demonstrate the flexibility of the metric
with four case studies: a hypothetical metapopulation, elk of the Greater Yel-

lowstone Ecosystem, northern pintail ducks in North America, and the eastern
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population of the monarch butterfly. General computer code to calculate the
per-capita contribution metric is provided. We demonstrate that the C-metric
is useful for identifying source and sink habitats in a network and suggest that
the C-metric could be supplemented by some measure of network structure for
a more robust description of habitat or pathway importance.

Keywords: migration, network model, habitat quality, spatial ecology, metric,

ecological traps

1. Introduction

Understanding the movement of individuals across space and time is funda-
mental to making management decisions. Migratory species, and some species
showing metapopulation dynamics, can be difficult to conserve and manage
because they use multiple habitat types across geographies that span political

boundaries (Behrens et al., 2008; Wilcove and Wikelskil, 2008; [Visser et al.| [2009;

Runge et al., |2017; [Tucker et al| [2018)). A crucial part of developing conserva-

tion strategies for such species is assessing the relative importance of the habi-

tats they occupy over the course of their full annual cycle (Martin et al.| [2007;
Kolzsch and Blasius| 2008 [Sawyer and Kauffman| 2011). It is therefore worth

developing metrics that account for both habitat connectivity and demography

(Johnson et al., [2018; [Robertson et al., [2018} |Zamberletti et al.,[2018)). Although

several habitat contribution metrics exist for spatially structured populations

(Nicol et all [2016), these metrics were not designed to account for seasonal

migration. Applying these metrics to a migratory population can therefore be
problematic.
Recently, several approaches have been developed to address the question

of habitat importance for migratory populations. The metric C”, originally

developed by Runge et al.| (2006)) for non-migratory but spatially structured

populations, is the per-capita contribution to the next generation by individuals

that occur in a particular habitat r. Wiederholt et al (2018) adapted this per-

capita contribution metric for migratory species, which accounts for seasonal



25

30

35

40

45

50

movement between multiple breeding and non-breeding habitats and for both
resident and migratory cohorts. This metric, however, is limited to a two-season
population of juveniles and adults. [Erickson et al.| (2018) considered per-capita
contribution metrics for a migratory network but only for the case of a single
class of individuals.

The usefulness of per-capita contribution metrics is that they allow man-
agers to compare habitat (node) and pathway (edge) values and thus compare
locations and routes across an entire migratory network for a species. Nodes and
edges can be classified as sources or sinks (Erickson et al., 2018 and prioritized
for management actions based on their relative values. The relative impor-
tance of different habitats has also been used to spatially allocate the value of
ecosystem services provided by migratory species (Semmens et al., 2011} |2018]).
Although per-capita contribution metrics have been recognized as important
tools for understanding dynamics of spatially structured populations, until now
there has been no generalized method that accounts for the full range of life
history strategies.

In this paper, we generalize an existing per-capita contribution metric (Wieder-
holt et al., |2018), which we will refer to as the C-metric. The C-metric is novel
in that it can be applied to any number of seasons, non-equal season lengths,
varied class structures, and the full range of movement strategies. We illus-
trate the C-metric by applying our model to four example species. The first
is a simple hypothetical metapopulation for demonstrating the calculation and
illustrating that the metric can be applied to non-migratory metapopulations.
We then apply the metric to existing models (Sample et al., [2018) of a partially
migratory population (Cervus canadensis; elk), a complete migratory popula-
tion (Anas acuta; northern pintail), and a population exhibiting a stepping
stone migration strategy (Danaus plexippus; monarch butterflies). These cases
represent a diversity of age and stage structures along with alternate types of
migration. Our generalization, which relies on mathematics from matrix alge-
bra, includes general R code for calculating the C-metric to more easily allow

use by managers and decision makers (Bieri et al., 2019). We draw several new



insights about population dynamics revealed in each of the case studies.

Network Structure and Demographic Parameters and Variables

Symbol  Definition

c number of classes (life stages)

n number of nodes in the network

S number of seasons in the annual cycle

t time variable; one time step, t 4+ 1, represents one season, and t + s represents one
annual cycle

Ny population size of class x in node i at time ¢

Nfot total network population size at time ¢, Nf** = 37" > | N,

fit proportion of individuals in class = that transition to class y at node i and time ¢,
element of F; ;

Pijt proportion of individuals of class x that move from node i to node j at time ¢

Siit proportion of individuals of class x that survive the transition from node i to node
7 at time ¢

Tijt proportion of individuals of class x that move, and survive the movement, from node
i to node j at time ¢, ¢;; , = pj; ;57; are elements of matrix Qy

At annual growth rate of the network at time ¢

Table 1: Symbols used in the paper.




Contribution Metric Variables

Symbol  Definition
ét block vector of per-capita habitat contributions, whose elements are C7;, eq.
ot annual per-capita contribution of an individual of class x starting at node r and

time ¢

Crt class population-weighted average of annual habitat per-capita contribution, eq. @

C, class and seasonal population-weighted average of annual habitat per-capita contri-
bution, eq.

C;fd,t annual per-capita contribution of an individual of class z using pathway rd at time
t

Cra class population-weighted average of annual pathway per-capita contribution, eq.
(12)

Cra class and seasonal population-weighted average of annual pathway per-capita con-

tribution, eq.

Table 2: Symbols used in the paper.




Annual Projection Matrices and Vectors

Symbol  Definition

A, nc X nc projection matrix that contains demographic and movement information,
Ay = QiF,

I, nc X nc block matrix that contains demographic information at the nodes

Fi: ¢ X ¢ demographic projection matrix for node 4

Q; nc X nc block matrix that contains movement and survival probabilities along path-
ways

Q7 n X n movement and pathway survival matrix for class x

A, nc X nc matrix that projects the population over one annual cycle, A, =
Apys—1 - A1 Ay

ﬁi)t ¢ x 1 vector of population size for each class at node i

1<It nc X 1 block vector of population sizes, whose subvectors are ﬁu

Wy 1 x ne vector of population proportions, w, = N7 /Nt

L. nc X nc identity matrix

1, n X n matrix of ones

fnc nc x 1 vector of ones

E, ra n X n matrix of zeros with a 1 at position rd

H., ¢ X ¢ zero matrix with ones in column x

Mathematical Operators

Symbol  Definition

® Kronecker matrix product

o Hadamard (entrywise) matrix product

T as a superscript, the transpose of a vector or matrix

Table 3: Symbols used in the paper.
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2. Materials and Methods

Borrowing from the matrix population models that are used widely to study

age and size-structured populations (Rogers| [1966; [Pascarella and Horvitz, 1998;

[Caswelll, 2001} [Hunter and Caswell, 2005]), we construct a time-dependent pro-

jection matrix, Ay, that contains the demographic and movement information
required to calculate the C-metric. In doing so, we represent the spatial struc-

ture of a population as a network in which habitats are nodes and movement

pathways are edges (Taylor and Norris, 2010; Sample et all |2018). Symbols

used throughout this paper are given in Tables [I] -

We consider a population of ¢ age classes (or life stages) in a network of n
nodes and s seasons. Individuals are classified by both their class and location.
One time step, from ¢ to t+ 1, represents one season in the annual cycle (seasons
do not have to be equal in duration), and s time steps, from ¢ to ¢+ s, represents
one year. We define A; as an nc X nc matrix that projects the population, in all
classes and nodes, from one time step to the next. Each entry in A; gives the
probability that an individual in a given node and class at time ¢ will contribute
to that class or become another class in the same or another node, by time
t+ 1. To ease the construction of this matrix, we write it as the product of two

matrices:

At == Qt]Ft. (1)

The block matrix F; contains demographic update information at the nodes
(such as fecundity, class transition, and survival rates; see egs. and
below), and block matrix Q, contains update information along the pathways
(such as movement and survival probabilities; see egs. and below). Ty is
defined as .
Fy =Y Enu@F, (2)
i=1

where ® represents the Kronecker product, E,, ;; is an n X n zero matrix with
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a 1 at position ¢4, and F;; is a ¢ X ¢ demographic projection matrix for node ¢,

1 12 . fle
it it it
21 422 . g2
it it it

Fi.=1 . ) - (3)
cl L cc
it it

Element ff Y represents individuals transitioning from class x to class y at node i
and time ¢, and [}y represents individuals remaining in class z. These elements
may be given as survival probabilities, and may also include births so their
values may be greater than 1. Matrix Q; is defined as

c

Q=) Q)" @ Ec ra, (4)

=1

where Qf is an n X m movement matrix,

T T T
di1t 912t " Qing
xT T T
" 421¢ 922+ 0 421t
Qi = (5)
xr xr
q’ﬂl,t e oo qnn’t

Elements are of the form ¢j;, = pj;,sj;;, which represents the proportion of

xr
ij,t>

individuals of class z that move, pj;,, and survive, s the transition from
node i to node j at time ¢. Each element is a product of two probabilities and
must therefore be a non-negative number less than or equal to 1.

The population projected over an entire annual cycle, beginning at any time
t, is given by the seasonal product matrix, A, = Atgps—1 - Arp1As. The trans-
pose of this product matrix,

t+s—1
AT = J[ AT —aTal, oA, . (®

T=t
will be used to calculate the per-capita contribution metric.
It is important to note two features of our model. First, we have chosen

in the formulation of A; to apply demographic updates after each dispersal



95

100

105

110

115

event. Switching this order would modify A; (Hunter and Caswell, |2005)). Sec-
ond, our framework is flexible to handle population models that have density-
dependent reproduction, survival, and movement probabilities. For example,
if the survival rates of a migration model are seasonal and density-dependent,
then F;, = F (ﬁt,t)7 Q=0Q (ﬁt,t) and A; = A (ﬁt,t) will be time- and
density-dependent matrices. As such, population abundance at the beginning

of the time-step can be determined by solving the following recurrence relation,
Nt+1 = AtNta (7)

where 1<Tt is an nc x 1 block vector whose ¢ x 1 subvectors ﬁi,t give the class
distribution within each node i at time ¢. Furthermore, Nt+s = Atﬁt will
give the population size after one annual cycle provided Nt, and the annual
population growth rate for anniversary date ¢ can be defined as \; = v_&'ftAtT Toe.
Here, w; = N7 /Nt is the population proportion at time ¢, where Nf°* is the
network population size (summed across all nodes and all classes during time
step t), and fnc is a ne x 1 vector of ones. More details on model construction

can be found in the Supplementary Material.

2.1. Habitat Contribution Metric

Wiederholt et al.| (2018]), following Runge et al.[ (2006), defined the per-capita
contribution, C", of a focal habitat r as the expected number of individuals
generated from an adult individual occupying the focal habitat in a given year.
The value of this metric depends on the anniversary season, which we define
as the season from which C” is calculated. C7 can differ, for example, if it
is calculated from spring to spring vs. fall to fall in the same network. The
C" metric is specific for a system of two classes (adults and juveniles), and
two seasons so that their formulation only considered two time steps in the
annual cycle. This metric assumes juveniles and adults have the same movement
transition probabilities. It also assumes juveniles born in the breeding season

remain juveniles in the subsequent migratory period. Furthermore, although
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the metric accounted for differing survival rates between adults and juveniles,
the per-capita contribution metric was only calculated for adults.

We begin by extending C" in several ways. First, given a focal habitat
and anniversary date, we define a per-capita contribution metric C' that can
be calculated for any class. Our notation of this metric differs from previous
works (Runge et all 2006; Wiederholt et al., [2018) in that the focal node and
time-step are given as subscripts and the class is a superscript. For instance,
C;,{ ; is the number of individuals that are generated after one annual cycle (by
time t+ s), from a single juvenile individual occupying the focal habitat r in the
previous year, with anniversary date t. We also generalize the metric for class-
specific movement transition probabilities, transitions between ages or stages,
and breeding may occur at any time (and possibly multiple times) during the
annual cycle. Furthermore, the C-metric can account for any number of seasons
and any number of classes or stages.

Formally, Cy7, is the expected contribution (of a single individual of class

x and its offspring) starting at node r and time ¢ to the whole population

x

after one annual cycle. C7,

is calculated by summing the contributions from
all possible demographic and movement transitions that may happen to an
individual moving forward through one annual cycle. We will use matrix algebra
to calculate the C-metric for every node, class, and anniversary season.

We define C; as a block vector whose elements are Cry:

S
Cl,t
2

C1,t

C
Ciy

1
C2,t

2
C2,t

Ql
I

c
L~ n,td

The data required to calculate the values of this vector are contained in the

10
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annual projection matrix, defined in egs. - @ We solve for (_j‘t by taking
the product of the transpose of the annual projection matrix and an nc x 1
vector of ones:
t+s—1
Co=| ] A7) T =AlT,.. (8)
T=t
This matrix product sums across possible annual pathways that migrants can
take throughout the annual cycle. If C7; is greater than one, a single individ-
ual of class x starting at time ¢ and node r is expected to replace itself and
add to the size of the population. If C7; is less than one, individuals do not
replace themselves and thus their contribution reduces overall population size.

A diagram of how the C-metric is calculated is given in Figure

Breeding Winter
Season Season End of Year

Figure 1: Conceptual diagram of the habitat C-metric. We use the network of a hypothetical
metapopulation model with one class. In this illustration, a single individual begins at Node 1
during the breeding season and is tracked over the course of one annual cycle. There are a total
of four pathways this individual may take: 111,112,121, and 122. The calculation for the per-
capita habitat contribution is the sum of contributions of all four possible pathways: C1 g =

fi,Bq1,Bfi,wai,w + f1,Bq11,Bfi,waie,w + f1,Bq12,Bf2,wa21,w + f1,Bq12,Bf2,wq22,w -

To use the C-metric for assessing the quality of habitats, regardless of class,

we must average. We use a class population-weighted average to obtain a single

11
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metric for each habitat and anniversary season,

c x
Nr,t T

Cr,t - Z Nr,t it (9)

z=1

where N, is the population size of node r at time ¢ and Nﬂft/Nm is the pro-
portion of individuals of class z at the node. This results in a single per-capita
contribution value for each node r beginning in time step ¢. This metric indi-
cates whether the focal node is a source (C,.; > 1) or a sink (C,; < 1) at time
t. Next, since C,; depends on the anniversary season, to obtain a single node
metric, regardless of anniversary season, we use a seasonal population weighted
average,
t4s—1

Z Nr,‘r Cr,‘r
ai T=t

Cr= (10

> Ner

T=t
This calculation gives more weight to a season in which the node’s population
size is large relative to the other seasons.

Similar to the contribution metrics developed by |[Runge et al. (2006) and
Wiederholt et al.| (2018)), the generalized metric presented here, when weighted
by the fraction of the population they represent, sums to the annual population
growth rate for each anniversary date, Ay = w,Cy, where W, is the population

proportion.

2.2. Pathway Contribution Metric

We extend the work of [Wiederholt et al. (2018) and provide a generalized
formulation of the per-capita contribution of edge, or pathway, transitions. The
annual per-capita contribution of an individual of class = starting at node r and

traveling to node d at time ¢ is

i'T t+s—1 .
Cfd,t = mnc (A? © (En,rd & Hc,m)) H AZ 1, (11)
Pray T=t+1

where o is the Hadamard (entrywise) product, Pra, 18 the proportion of indi-
viduals of class z at node r that will travel to node d at time ¢ (contained in

movement matrix Qf of eq. ), and H,; is a ¢ X ¢ zero matrix with ones in

12
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column z. Recall that E,, ,q is an n X n zero matrix with a 1 at position rd.
If at time ¢ no individuals of class = use edge rd (py;, = 0), then C7,; , = 0.
While the equation for pathway contribution is more cumbersome, the general-
ized calculation remains straightforward for any number of classes (or stages),
a variety of migration strategies, and any number of seasons.

Similar to averaging the metric for habitat contribution given an anniversary
season, we construct a single metric for pathway contribution. We weight each

C%, . by the number of migrants of class = that use edge rd at time ¢ to obtain

C
e T (T
Zl prd,tNr,tCrd,t
=

Crat = (12)

8
-

z z
prd,tN’f‘,t

Then by averaging across classes and seasons, we obtain a single metric for each

edge,

e
bS]

T T T
rd,tNr,TCrd,T

3. Case Studies

In this section, we show that the C-metric can be calculated for populations
representing a diverse range of life histories, movement patterns, and carrying
capacities. We first apply our model to a simple hypothetical metapopulation
to demonstrate matrix construction and illustrate results, and then to three
migratory populations: the simpler example of seasonal partial migration of
elk, the more complicated seasonal complete migration of northern pintails,
and finally the stepping stone migration of monarch butterflies. We note that
the parametrization and modeling of these migratory populations have been
developed previously (Sample et al [2018); the results presented in this paper
are in the application of the C-metric.

For ease of discussion, in each example we simulate population dynamics

until equilibrium, or steady state, is reached; however, the metric does not

13
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require the equilibrium assumption. Variables used in our calculations of the C-
metric are determined by their values at the end of these numerical simulations.
We assume equilibrium has been reached when the population is within +0.01
individuals from one year to the next, comparing like seasons. We note that the
C-metric can be calculated using non-equilibrium parameter values that change
from one annual cycle to the next. This would lead to network growth rates
that are greater or less than one and C-metric values that change from one year
to the next. See the Supplemental Information for details of model setup, and
Bieri et al.| (2019) for parameter values and code developed in R to calculate

these metrics for each example.

3.1. Hypothetical Metapopulation

We begin with a simple hypothetical metapopulation model. In this network
(Figure 7 there are two nodes, two classes, and two seasons. The two classes
are juveniles (J) and adults (A) and the two seasons are breeding (B) and
wintering (W). In one time step (one season), individuals can either remain in
the same node or disperse to the other node by traveling along weighted and
directed edges in the network. In this hypothetical network, node 2 is of lower

quality (e.g. lower carrying capacity) compared to node 1.

Figure 2: Hypothetical metapopulation network diagram. Both nodes have year-round res-
idents, and both have individuals that move to the other node after breeding and after the

winter season.

At the beginning of the breeding season, the population sizes, rounded to
the nearest whole number, of juveniles and adults are Ni],B =115, NfB = 245

at node 1, and NQ{B = 50 and N{}B = 105 at node 2. Juveniles then transition

14
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to adults with some survival probability, adults survive, and surviving adults
produce new juveniles. Survival rates are the same across seasons and are given
by st = 0.9, s{ = 0.8, 55 = 0.7 and sy = 0.6. We assume node 1 is closer
to its carrying capacity than node 2, and set the reproductive rates as r; =
0.6665 and ro = 0.5813. At the end of the breeding season, individuals disperse
within the network. The post-breeding, wintering populations are NlJ’ w = 155,
N. fW =290, NQ{ w = 70 and NQ“}W = 125. Individuals survive the winter season
with the same probabilities as in the breeding season. In our calculations, we
sort by nodes then classes, so that the population vector is given by N} =
[NY, N{t, N, N3]

To formulate A;, we begin by constructing matrices F; and Q;. We create
these matrices for the breeding (¢t = B) and wintering (¢t = W) seasons at steady
state. During the breeding season, the demographic matrix of eq. is

0
F,p=

si|
, nE 1=1,2.
5i

ri
Here, the elements in the top row represent juvenile survival and juvenile tran-
sition to adults, respectively. Note that all surviving juveniles transition to
adults in this season. The bottom row represents reproduction (adults creating
juveniles) and adult survival, respectively. During the wintering season, there

are no class transitions and only survival within the classes:

F S%] 0 1,2
oW = , =1,
0 sA

The demographic block matrices of eq. ([2|) for the breeding and wintering seasons

15



are

]FB = =
0 0 0 0.5813
0 0 06 0.7
08 0 0 O
0 09 0 O
]FW = =

‘We now set up the matrices of eq. . In this hypothetical model, movement
does not depend on class or season and individuals are more likely to remain
residents than disperse to the other node. Individuals have an 80% probability
of remaining at node 1 and a 60% probability of remaining at node 2. Therefore,

the matrices of eq. , which are class- and time-independent in this model, are

0.8 0.2
04 0.6

Q' =Q" =
Thus, the movement block matrices of eq. are
INT 10 ANT
Qs =Qw =(Q") ® 0 0 +(Q%) @

08 0 04 O
0 08 0 04
02 0 06 O
0 02 0 06

From eq. , we have the following projection matrices for the breeding and

16
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wintering seasons,

0 0.5332 0 0.2325
0.6400 0.7200 0.2400 0.2800

Ap =QpFp =
0.1333 0 0.3488
0.1600 0.1800 0.3600 0.4200
0.6400 0 0.2400 0
0 0.7200 0 0.2800
Aw = QwFw =

0.1600 0 0.3600 0
0 0.1800 0 0.4200

We calculated the per-capita contributions for each node, class and anniver-
sary season using the matrix multiplication defined in eq. . At equilibrium,

the per-capita contribution equations for the breeding and wintering seasons are

Cp=A%LA% 1,

Cw = AT, ALT,.

We then use eq. @ to average across classes and eq. to average across
seasons. Adults, who contribute to the population through reproduction, have
higher C-values than juveniles (Table . After averaging across classes, our
results indicate that an individual at node 1 is expected to contribute more
individuals to the network than an individual from node 2. We categorize node
1 as a source (C, > 1) and node 2 as a sink (C, < 1).

The pathway that represents node 1’s resident population (C71) has a higher
contribution value and the pathway representing node 2’s resident population

(C22) has a lower value (Table [5)).

17



Metapopulation Model
Node Breeding Winter Seasonal
Season Season Average
Node 1 juveniles Ci],t 0.6880 0.6080 -
Node 1 adults C’ft 1.2805 1.3585 -
Node 2 juveniles C’Q{t 0.4680 0.4080 -
Node 2 adults Cft 0.9413 0.9768 -
Node 1 (class avg) Ch, 1.0903 1.0981 1.0946
Node 2 (class avg) Ca, 0.7890 0.7736 0.7804

Table 4: Per-capita contribution of each node for the hypothetical metapopulation example.

Metapopulation Model
Pathway Breeding Winter Seasonal
Season Season Average
Edge 1—1 juveniles Cfu 0.5332 0.6400 -
Edge 1—1 adults Ci, 15300 1.4099 -
Edge 1—-2 juveniles Ci]27t 0.3999 0.4800 -
Edge 1—2 adults Cih, 11900 1.1532 -
Edge 2—1 juveniles Csy . 0.4650 0.4800 -
Edge 2—1 adults Cg, 11700 1.0965 -
Edge 2—2 juveniles C"QIM 0.3488 0.3600 -
Edge 2—2 adults Cé%,t 0.9100 0.8969 -
Edge 1—1 (class avg) Ci1  1.2100 1.1428 1.1728
Edge 1—2 (class avg) Ci2;  0.9364 0.9196 0.9271
Edge 2—1 (class avg) Ca1;  0.9432 0.8763 0.9060
Edge 2—2 (class avg) Caz;  0.7294 0.7051 0.7159

Table 5: Per-capita contribution of each pathway for the hypothetical metapopulation exam-

ple.

18
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8.2. Elk in the Greater Yellowstone Ecosystem

We apply our model of habitat and pathway contribution to a population
of elk located in the Greater Yellowstone Ecosystem (henceforth, Yellowstone).

To parameterize the model, we begin with the modeling framework presented in

[Sample et al.| (2018]), with model parameters and density-dependent assumptions
based on the literature (Singer et al., |1997; Taper and Gogan, 2002; Middleton|
2013)). Values of the parameters at equilibrium were used to calculate the

C-metric.

Elk partially migrate among three geographical locations (Figure . One
location (Node 3) is near Cody, Wyoming, where two groups of elk reside, one
that remains resident year-round and another that migrates to Yellowstone.
The elk that remain resident year-round in Node 3 breed there in the summer
season. Yellowstone (Node 1) is the summering location where migrating elk
breed, and the location between Cody and Yellowstone (Node 2) is where mi-

grating elk winter. All elk in this location migrate to Yellowstone during the

summer for breeding (Middleton et al., 2013). One annual cycle comprises two

seasons. Season 1 includes winter and spring migration, and Season 2 includes
summer and fall migration. We modeled female elk of two classes, juveniles (.J)
and adults (A). During Season 1, juveniles and adults survive at class specific
survival rates. During Season 2, all surviving juveniles transition into adults,

surviving adults reproduce and create juveniles, and adults survive.

Node 1
Yellowstone
Breeding

Node 1
Yellowstone
Breeding

Node 2
Nonbreeding

Node 3
Cody, WY
Year-round

Node 2
Nonbreeding

Node 3
Cody, WY
Year-round

Winter through spring migration Summer through fall migration

Figure 3: Network model for elk in the Greater Yellowstone Ecosystem. Nodes that are

occupied at the start of the focal time interval are shaded.

We obtained the per-capita contributions for each class at each node and

average across classes and seasons at equilibrium according to egs. @D and ([10)).

19



The average per-capita contributions were close to 1 for every node (Table @
Node 2 had a slightly higher per-capita contribution than the other nodes.
This indicates that an individual starting in the wintering node is expected,
on average, to contribute more individuals to the population compared to the
breeding and year-round nodes. However, as the per-capita contributions were
near 1 (C, < 0.8% within 1), none of the nodes could be clearly classified as a
source or sink.

Results for the pathway metric, presented in Table [7] demonstrate that the
fall migration paths (from Node 1 to Node 2 and from Node 1 to Node 3)
have the largest per-capita contribution. The other three edges have per-capita
contributions close to 1, with the spring migration route from Node 3 to Node

1 as the only path considered a sink.

Elk Model
Node Winter/ Summer/ Seasonal
Spring Fall Average
Node 1 (Breeding) Ciy 0 1.0000 1.0000
Node 2 (Nonbreeding) Ca, 1.0072 0 1.0072
Node 3 (Year-round) Csy 0.9961 1.0000 0.9978

Table 6: Per-capita contribution of each node for the elk example. The metric C»; equals

zero when no individuals reside in node r during time step ¢.
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Elk Model

Pathway Winter/ Summer/ Seasonal

Spring Fall Average
Fall Edge 1—2 Ci2p O 1.2205 1.2205
Fall Edge 1—3 Cist 0 1.1475 1.1475
Spring Edge 2—1 Co1: 1.0072 0 1.0072
Spring Edge 3—1 Cs1e 0.9522 0 0.9522
Resident Edge 3—3 Cs3;  1.0000 1.1310 1.0580

Table 7: Per-capita contribution of each pathway for the elk example.
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3.3. Northern Pintail

Northern pintail is widely distributed in wetland regions; it breeds in the
northern areas of North America, Europe, and Asia and winters from southern
temperate to tropical regions of the northern hemisphere (BirdLife Interna-
tional, |2019). The population model in [Sample et al.| (2018), which used the
parameter values and model assumptions from [Mattsson et al.| (2012), has four
classes, three seasons and five nodes. The four population classes are adult
males (AM), adult females (AF), juvenile males (JM), and juvenile females
(JF). The annual cycle is divided into three seasons: breeding, wintering and
spring flyover. Nodes 1 through 3 (i.e., Alaska (AK), Prairie Potholes (PR) and
Northwest Unsurveyed (NU)), are breeding habitats whereas Nodes 4 and 5 (i.e.,
California (CA) and Gulf Coast (GC)), are wintering habitats (Figureld)). In the
wintering Season 2, all juveniles transition to adults. No births, deaths or age
transitions occur during the flyover Season 3; rather, migrants decide whether
to stay in PR or continue (flyover) to AK or NU. In the model, proportion of
flyovers is density-dependent and evaluated at population equilibrium.

We calculate the per-capita contributions averaged across classes and seasons
at equilibrium (Table . On average, a single individual starting in nodes 2
(PR) or 5 (GC) is expected to contribute more individuals to the population
than it loses, whereas the opposite is true for an individual starting at nodes 1
(AK), 3 (NU) and 4 (CA). As such, PR and GC are sources and the remaining
habitats are sinks.

The spring migratory paths from the wintering nodes (CA and GC) had the
largest contribution (Table E[) The fall migratory pathways from the breeding
nodes (AK, PR, and NU) to the wintering nodes (CA and GC) had the smallest

contributions.
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Node 3
Northern Un-
surveyed (NU)

Node 3

Node 3
Northern Un-
surveyed (NU)

Northern Un-
surveyed (NU)

Node 1
Alaska (AK)

Node 1
Alaska (AK)

Node 1
Alaska (AK)

Node 2
Prairie Pot-
holes (PR)

Node 2
Prairie Pot-
holes (PR)

Node 2
Prairie Pot-
holes (PR)

Node 4
California
(CA)

Node 4
California
(CA)

Node 4
California
(CA)

Node 5
Gulf Coast
(GC)

Node 5
Gulf Coast
(GC)

Node 5
Gulf Coast
(GC)

Breeding and Fall Migration Winter and Spring Migration Flyover

Figure 4: Network model for the northern pintail. Nodes that are occupied at the start of the

focal season are shaded.

Pintail Model

Node Breeding/  Winter/ Flyover Seasonal

Fall Spring Average
Node 1 (AK) Ci;  0.9916 0 0.9917 0.9917
Node 2 (PR) (s, 1.1347 0 1.0053 1.0479
Node 3 (NU) Cjs, 0.8684 0 0 0.8684
Node 4 (CA) Cuy 0 0.9759 0 0.9759
Node 5 (GC) Cs: 0 1.0493 0 1.0493

Table 8: Per-capita contribution of each node in the pintail migratory network. The metric

Cir¢ equals zero when no individuals reside in node r during time step .
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Pintail Model

Pathway Seasonal

Average
Fall AK—CA Ciar  0.6958
Fall AK—GC Cise 07127
Fall PR—CA Caar  0.6958
Fall PR—GC Cos:  0.7547
Fall NU—-CA Csqr  0.6958
Fall NU—-GC Css5¢  0.7547

Spring CA—AK Cup 1.3593
Spring CAPR Oy,  1.3381
Spring GC—AK Cs1 1.4911
Spring GC—PR Csa.¢ 1.4678
Flyover AK—AK Ci14 0.9917
Flyover PR—AK Ca1 ¢ 0.9913
Flyover PR—PR Caa ¢ 1.1347
Flyover PR—NU Cas+  0.8684

Table 9: Per-capita contribution of each pathway in the pintail migratory network. Each
pathway is used only once during the annual cycle, so each seasonal average is equal to the

one non-zero value of the metric.

24



300

305

310

315

8.4. Monarch Butterfly

Monarch butterfly in eastern North America migrate from breeding areas in

the northern U.S. and southern Canada to a non-breeding area in central Mex-

ico. The population model developed in|[Flockhart et al|(2015) was converted to

a network-based model using the framework presented in [Sample et al. (2018).

There is one class (adult females), seven seasons and four nodes. The seven sea-
sons of the annual cycle are: Winter (October through May), April, May, June,
July, August, and September. Breeding occurs April through September. The
four nodes represent regions of eastern North America: Mexico (M), South (.5),
Central (C), and North (N), enumerated 1 through 4, respectively (Figure [5]).
Mexico is considered a wintering node and the other three nodes are breeding
nodes. Seasonal edge transition and survival probabilities are assumed to be

constant from year to year.

Node 4 Node 4 Node 4
North North North
Node 3

Central

Node 4
North

Node 4
North

Node 3 Node 3 Node 3
Central Central Central
Node 2 Node 2 Node 2
South South South
Node 1 Node 1 Node 1 Node 1 Node 1 Node 1
Mexico Mexico Mexico Mexico Mexico Mexico
May

Winter April

Node 3

Central

Node 3

Central Central

Node 2
South

Node 2
South

Node 2
South

Node 1
Mexico

June July August September

Figure 5: Monarch network model. Nodes that are occupied at the start of the focal season

are shaded.

Based on the C-metric, an individual starting in the North (Node 4) is ex-
pected to contribute the least to the population, whereas an individual starting
in the Central region (Node 3) is expected to contribute the most (Table [L0).
Note that all individuals reside in Mexico (Node 1) and the South (Node 2)
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during Winter and April, respectively. Therefore, the per-capita contributions
of Mexico and South are equivalent to the network growth rate (A = 1) during
these seasons. This is true even when the network is out of equilibrium. Thus,
given a C-metric of 1, each individual wintering in Mexico or residing in the
South in April, is expected to replace itself over the annual cycle. Consider-
ing the per-capita contributions of the pathways, the resident transition in the
Central node contributes the most whereas the spring migration from South to

North contributes the least (Table .
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4. Discussion

We have shown how the demographic contributions of individuals from dis-
crete habitats can be quantified by a generalized C-metric and that this gen-
eralization can describe populations exhibiting a diversity of movement strate-
gies. The metric can be applied to a wide range of spatially structured pop-
ulations with any number of classes, seasons, or types of movement strategies
including simple two-patch systems, complex metapopulations, and complete
seasonal migration. This metric is simple to calculate as long as estimates for
seasonal demographic and movement parameters are available. It does not re-
quire density-dependent functions, although these can be incorporated in the
projection matrix. It also does not require the population to be at equilib-
rium. While the metric is sufficiently general to be applied to metapopulation
networks, as in the simple example we provided and as shown in more complex
examples (e.g.,[Strasser et al.|2012)), we found it particularly useful for gaining a
better understanding about the roles of discrete habitats in migratory networks.

In the elk example, [Middleton et al.| (2013) found that elk migrating each
spring into Yellowstone National Park had declining calf recruitment and preg-
nancy rates. This process was captured through the low pathway contribution
value for the Spring edge from 3 to 1 and with the overall lower node contribu-
tion value for Node 3. These findings indicate that the Year-Round Cody WY
area was potentially a minor sink subpopulation in 2009, given the C,. values
slightly below 1, and that the role of this region in the overall population has
shifted as habitat quality declined from 1989 to 2009.

Results from the pintail example matched some expectations but not others.
The Prairie Pothole region (PR) is recognized as providing crucial breeding
habitat for many migratory waterfowl species, including the pintail (Podruzny
et al., [2002; Doherty et al |2016)). PR had the highest C,. value among regions
and serves as a strong source (C, >5% above 1), in alignment with expectations.
The role of wintering areas has until now been viewed as secondary (Miller

et al.l [2003]), but we found that at equilibrium an individual overwintering in
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the Gulf Coast habitat contributed nearly the same number of individuals to the
population as did an individual that bred in the PR. This contradicts findings of
a perturbation analysis, which showed that increasing reproduction in the PR by
10% had a larger effect on continental-scale carrying capacity than did increasing
habitat area by 10% in the Gulf Coast habitat (Mattsson et al. |2012)). There
was a disparity between the two wintering regions in terms of their per-capita
contributions, which we did not expect. Although the habitat in California
supports more overwintering individuals at carrying capacity, it acts like a weak
sink (C, is <5% below 1) due to most California birds migrating to Alaska
where reproduction is insufficient to maintain a growing population on its own.
We also found that the Northern Unsurveyed habitat serves as a strong sink (C,
is >5% below 1). This is in line with our expectation that this habitat plays
a minor role in continental population dynamics due to having substantially
lower reproduction compared to the other breeding habitats. The Northern
Unsurveyed habitat serves as a spillover habitat when the population nears
carrying capacity in the PR. Comparing C, values among core breeding and
wintering habitats used by pintails provides additional insight and perspectives
on the relative importance of these habitats to the population at a continental
scale.

In the monarch case study, we found that the Central region had the high-
est seasonally averaged C)., and the North had the lowest. This qualitative
prioritization of the Central region matches the sensitivity analyses done by
Flockhart et al. (2015) and |[Oberhauser et al| (2017)). [Flockhart et al.| (2015)
performed an elasticity analysis of demographic and migration parameters in
their matrix model and summed these elasticities across geographic regions to
compare regional contributions to population size. Their analyses showed the
Central region had the highest summed elasticity, followed by the South, then
Mexico, then the North. C) ranked Mexico slightly higher than the South while
elasticities were higher for the South than Mexico. An important area of fu-
ture work would include a more thorough analysis of, and comparison between,

results from elasticity analysis and more direct metrics like the C-metric. Fur-
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thermore, it would be interesting to extend the elasticity analysis of population
abundance (Flockhart et al., 2015)) by examining the sensitivity of C, to uncer-
tainties in the demographic parameters.

The C-metric for edges describes how individuals traveling along an edge
contribute to the population. Insight about the source or sink value of the edge
can be gained when comparing edges within the same season. For example, in
the elk model, individuals traveling along the edge between the breeding and
nonbreeding nodes during fall migration contribute more to the population than
are lost, meaning that the pathway is a source. Individuals choosing to migrate
from Cody (year-round node) to Yellowstone (breeding node) in the spring con-
tribute less to the population than individuals choosing to remain in Cody or to
migrate along a shorter path. Considering the pintail pathway rankings, spring
migration pathways act as sources whereas fall migration pathways serve as
sinks. We see similar results with monarchs—pathways with strong connections
with the Central node (a strong source) have higher C,, values, meaning that
individuals flowing along these paths contribute more to the population than
are lost due to mortality. In general, the pathway metric for fall edges are larger
than for spring edges. This can be accounted for by the census date.

Census dates are an important part of understanding C-metric values. When
calculating C,. at the nodes, the census is taken at the beginning of the season,
which is before reproduction and habitat survival occurs. For the pathway
metric, the census is taken after reproduction and habitat survival occurs (right
before individuals move along the pathway). Thus, direct comparison between
node and edge values is complicated because of this difference in census date.
This discordance means that C-metric values are highly dependent on both the
census date and the focal season and more work is needed to understand the
consequence of these differences on implications for management.

The per-capita contribution metric is useful for identifying source and sink
nodes or pathways (Erickson et al., [2018) and for providing information about
the reproductive potential of an individual at the node or pathway. However,

the C-metric has limitations: it does not include information about network
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structure. For example, a node could be rather unimportant in terms of its
demographic contribution (sink) yet vital to the connectivity of the network.
Given the complexity of spatially structured populations and the numerous
ways by which existence or quality of a node or edge can influence the popu-
lation as a whole, developing a single metric that indicates all dimensions of
importance for population dynamics remains elusive. Using multiple metrics
is, therefore, a more reliable way of assessing quality of nodes and pathways in
a spatially structured population. Furthermore, the calculation of per-capita
contribution metrics requires demographic data (survival rates, transition rates
between nodes, and reproductive rates) and relative distribution of the popu-
lation among its constituent habitats. It can be challenging to parameterize
models with existing monitoring programs that provide access to data, such as
eBird (Sullivan et al. [2009), movebank (Wikelski and Kays, 2019)) and Moni-
toring Avian Productivity and Survival (DeSante et al., [2015)). Reverse-time
multi-state capture-recapture models can be used in combination with per-
capita metrics to estimate the demographic importance of local populations
to metapopulation growth (Sanderlin et all [2011)). But if limited or no demo-
graphic data are available, then graph-based metrics may be more appropriate
(Nicol et al.l 2016} Bieri et al.l |2018]).

To accommodate the full range of life histories expressed by spatially struc-
tured populations, contribution metrics should account for different age and
stage classes and the anniversary season. Thus, the number of per-capita con-
tribution metrics to compute for a given population amounts to the product of
the number of habitats, classes, and seasons. This may be too much information
for managers who wish to have one metric per habitat when assessing habitat
importance. For this reason, we presented a population-weighted average of
the per-capita contributions across classes and seasons for a given habitat or
patch. We caution that this may hide ecologically important disparities, and
the component metrics should be made available in addition to the weighted
averages.

Although it is not required by the formulation, the examples in this paper
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assume equilibrium in calculating the C-metric. As such, these examples do not
represent populations that are increasing or decreasing. Assuming equilibrium is
unrealistic for populations undergoing long-term increases or decreases in abun-
dance. Equilibrium assumptions are, however, commonly used in population
ecology, such as the assumption of a stable age distribution in eigen-analyses
of Leslie/Lefkovitch matrices (Caswell, [2001). As of yet, it is not well under-
stood how equilibrium assumptions might affect the ranking of importance of
habitats as indicated by the C-metric. That is, the habitat with the highest
per-capita contribution at equilibrium could be superseded by another habitat
when the population is growing or declining. This question is worthy of future
exploration. As in spatially unstructured models (Gamelon et al. [2014), we
anticipate that the study of transient dynamics in spatially structured popula-
tions could lead to a rich body of knowledge about how per-capita contributions
shift in response to natural disturbance or management actions, and how these
effects percolate through a network.

A future extension of the generalized C-metric would allow for estimating
the per-capita contribution along a series of pathways (Erickson et all [2018;
Wiederholt et al., 2018) rather than restricting the metric to single intersea-
sonal transitions. For example, waterfowl biologists and managers might be
interested in comparing contributions among flyways that encompass habitats
used during spring and fall along a migratory route (Kirby et al., 2008} |Con-
vention on Migratory Species) 2017)). Considering the pintail case, we could
then compare the per-capita contribution of birds using the Pacific Flyway to
those using the Central Flyway of North America (Buhnerkempe et all 2016).
Under environmental change, we may see shifts in the proportion of the popula-
tion using these pathways that would also affect per-capita contributions among
flyways.

Another important area of future work includes the utility and robustness
of the C-metric. Comparing the C-metric to other approaches that rank im-
portance of habitats, like parameter perturbation and simulation, might give

a better idea of the true management utility of the C-metric. Also, testing

33



480

485

490

495

500

505

the sensitivity of the C-metric to changes in network or parameter assumptions
would give managers a better idea of error tolerance in, and robustness of, the
C-metric ranking.

Generalizing the C-metric opens up diverse research questions. How does
per-capita contribution vary among life history strategies, and can this be used
to understand the evolution of particular movement strategies such as migration
and nomadism? Is C, a good indicator of the effects of perturbing a habitat or
path in a migratory network? Are there ways of using citizen science observa-
tions (e.g., from eBird) to estimate C,? Our generalized modeling framework
and computer code will enable population ecologists to pursue these avenues,
which will lead to a richer understanding of spatially structured populations.
Furthermore, the C-metric, as an estimate of per capita contributions, is an
indicator of individual fitness in an area, and may be useful to researchers
studying eco-evolutionary dynamics in fragmented landscapes (Legrand et al.|
2017)), studies of niches in spatial and temporally varying environments (Holt,

2009), and the evolution of dispersal (Cote et al., [2017)).
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