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Cooperation is a major factor in the evolution of human societies. The structure of
social networks, which affects the dynamics of cooperation and other interpersonal phe-
nomena, have common structural signatures. One of these signatures is the tendency
to organize as groups. This tendency gives rise to networks with community structure,
which are composed of distinct modules. In this paper, we study analytically the evo-
lutionary game dynamics on large modular networks in the limit of weak selection. We
obtain novel analytical conditions such that natural selection favors cooperation over
defection. We calculate the transition point for each community to favor cooperation.
We find that a critical inter-community link creation probability exists for given group
density, such that the overall network supports cooperation even if individual commu-
nities inhibit it. As a byproduct, we present solutions for the critical benefit-to-cost
ratio which perform with remarkable accuracy for diverse generative network models,
including those with community structure and heavy-tailed degree distributions. We
also demonstrate the generalizability of the results to arbitrary two-player games.

INTRODUCTION

Cooperation is a central tenet of social life of many
species. When individuals cooperate, they pay a cost to
help one another. The dynamics of interpersonal coop-
eration is affected by the structure of social networks,
which characterize patterns of interpersonal interaction
and exchange [1–5]. The problem of cooperation is also
widely studied in mathematical and physical sciences [6].
In this paper, we focus on a particular feature of social
networks, namely, community structure. This structural
feature is ubiquitous in social networks, and is associ-
ated with a tendency of societies to organize as mod-
ules, or communities, with disparate intergroup and in-
tragroup connectivity [7]. Community structure is mea-
sured and studied in many species, such as dolphins [8],
chimpanzees [9], macaques [10], sharks [11], various pol-
linator species [12], and even relatively solitary species
such as desert tortoise [13]. Community structure reg-
ulates the interpersonal connections and thereby affects
the dynamical processes taking place on social networks.
For example, the presence of community structure af-
fects the epidemic spreading of infectious disease for
various animal species [14]. Networks with high mod-
ularity buffer the spread of ecological perturbation im-
pact across the whole population [15]. Also in the social
life of humans, community structure is shown to pro-
mote the spread of health behaviors [16] and the diffu-
sion of information online [17]. The effect of commu-
nity structure on cooperative dynamics has also been

studied under diverse simulation settings and modeling
assumptions[18–21]. Here we aim to provide the first an-
alytical results to study the effect of community struc-
ture on the evolution of cooperation. We first introduce
a potent approximation framework which, as we shall
demonstrate, performs with remarkable accuracy for a
wide array of network models with diverse properties,
including heavy-tailed degree distributions, small-world
properties, varying levels of clustering, and community
structure. We use this framework to put in crisp fo-
cus a standard generative network model, namely, the
Stochastic Block Model (SBM). We provide an explicit
solution for the conditions such that natural selection fa-
vors cooperation, and then generalize the results to any
2× 2 evolutionary game.

MODEL OF SOCIAL INTERACTIONS

We use the framework of evolutionary graph the-
ory [1]. We consider a generic two-player game with two
available strategies, denoted by C and D. Both players
receive R if they mutually choose C, and receive P if
they mutually choose D. If one player chooses C and
the other chooses D, the C-player receives S and the D-
player receives T . The strategy of node x is denoted by
sx ∈ {0, 1}, where 1 corresponds to strategy C and 0 to
strategy D. We denote the set of network neighbors of
node x by Nx. We consider averaged payoffs, where the
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payoff of node x with degree kx is given by

fx =
1

kx

∑
y∈Nx

sx
[
Rsy + S(1− sy)

]
+ (1− sx)

[
Tsy + P (1− sy)

]
.

(1)

At each timestep, a random individual is chosen to up-
date its strategy via copying that of a neighbor. The
probability that neighbor x is copied is proportional to
1+δfx, where fx is the payoff of x and 0 < δ ≪ 1 models
the selection strength, that is, higher δ indicates stronger
social learning via observing the payoff of peers. The
case δ = 0 is equivalent to the voter model [22–24]. The
weak-selection limit considered here can be viewed as
the first-order correction to the voter model. We seek
an analytical condition such that natural selection fa-
vors the fixation of C over fixation of D. According to
the Structure Coefficient Theorem [25], this happens if
(R− P )σ > (T − S), where σ is the structure coefficient,
which is independent of the game and only depends on
the network structure. Thus, it suffices to calculate σ
for the given network. This can be done exactly by con-
sidering a mathematical equivalence between the evolu-
tionary game dynamics and that of coalescing random
walks [26]. Below we highlight the high computational
cost of this method for large networks, propose a mean-
field approximation to ameliorate the situation for large
networks, and use it to obtain remarkably accurate so-
lutions for networks with community structure. We also
explain the referent of the term ‘mean-field’ in the pro-
posed solution.

GENERAL FRAMEWORK

To obtain σ for generic 2 × 2 games, we apply the
methodology of [26] to unweighted undirected graphs.
We analyze the ‘donation game’ version of the Prisoner’s
Dilemma, withR = b− c, S = −c, T = b, and P = 0 and
later discuss how σ can be derived from the results. For
notational brevity, we set c = 1 without loss of gener-
ality. This choice is simply equivalent to a rescaling of
every payoff value. We shall discuss how the results for
generic c can be readily obtained from provided results.
The payoff of node x is:

fx(t) = −sx(t) +
1

kx

∑
y∈Nx

bsy(t). (2)

For the update of node x, we have:

E [sx(t+ 1)] = (1− 1

N
)sx(t)

+
1

N

∑
y∈Nx

1 + δfy(t)∑
z∈Nx

[1 + δfz(t)]
sy(t). (3)

The first term on the right hand side corresponds to the
event that node x is not chosen to update its strategy.
The second term corresponds to the expected value of sx
conditional upon node x having been chosen to update.
In the limit of weak selection, expanding to the first order
of δ after multiplying both sides by kx, we get:

E [kxsx(t+ 1)] =
1

N

[ ∑
y∈Nx

sy(t) + δ
∑
y∈Nx

fy(t)sy(t)

−
∑

y,z∈Nx

δ
sy(t)fz(t)

kx

]
+O(δ2) + (1− 1

N
)kxsx(t). (4)

Now we define ψ(t) :=
∑

x kxsx(t). Summing (4) over
all nodes, we see that in the zeroth-order dynamics of
the system (i.e., δ = 0, corresponding to the voter
model), the expected value of ψ(t) is a conserved quan-
tity [22, 24, 27]. The fixation probability can be obtained
by equating the average value of ψ over every initial mu-
tant placement with its expected value as t → ∞. The
expected first-order change of ψ is

∆ψ(1)(s⃗) =
δ

N

[∑
x

∑
y∈Nx

fysy −
∑
x

∑
y,z∈Nx

syfz
kx

]

=
δ

N

[∑
x

kxfxsx −
∑
x

∑
y,z∈Nx

syfz
kx

]

=
δ

N

∑
x

[
kxsx

(
− sx +

b

kx

∑
y∈Nx

sy

)

−
∑

y,z∈Nx

sy

(
− sz +

b
kz

∑
w∈Nz

sw

)
kx

]
(5)

Exchanging the summation order, denoting the first mo-
ment of the degree distribution (the average degree) by
µ1, we get

∆ψ(1)(s⃗) =
δ

N

[
−

∑
y

kys
2
y + b

∑
x∈Ny

sysx

+
∑
x∈Ny

∑
z∈Nx

sysz
kx

− b
∑
x∈Ny

∑
z∈Nx

∑
w∈Nz

sysw
kxkz

]
.

(6)

We need to sum up these expected increments from t = 0
up to t = ∞. Let ξx denote this expected total change for
given initial condition in which only node x is C and all
other nodes are D . The fixation probability for a given
initial condition will then be (kx+ξx)/(Nµ1). Averaging
over all nodes, this becomes:

ρC =
1

N
+

1

N

∑
x

ξx. (7)
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The sum on the right hand side of (7) requires the cal-
culation of temporal sum of the spin products on the
right hand side of (6). Note that these summations are
to be performed in the voter-model regime. That is, due
to the factor δ, we should only keep the summations in
zeroth order. In [26, 28], it is shown that for any two
nodes i and j, if we find the expected temporal sum of
1/N − sisj from t = 0 to t = ∞ under the voter-model
dynamics and then average this sum over all single-node
initial placements, the result is equal to τij/(2N), where
τij is the expected meeting time of two random walkers
initiated at nodes i and j. These meeting times follow
the following recurrence relation:

τij = τji = (1− δij)

[
1 +

1

2ki

∑
ℓ∈Ni

τℓj +
1

2kj

∑
ℓ∈Nj

τℓi

]
.

(8)

Thus the random walk equivalence relates the fixation
probability to the expected value of the meeting times of
two random walkers initiated one, two, and three steps
away on the network, corresponding to the three last
terms on the right hand side of (6), respectively. Note
that the expression ‘ℓ steps away’ here refers to random-
walk steps, rather than graph distance. So for example,
node y is ℓ steps away from node x if Aℓ

xy > 0, where

Aℓ is the ℓ-th power of the adjacency matrix. Using the
meeting times which are the solutions to the system of
equations (8), we define the quantity τx as the expected
remeeting time of two random walkers both initiated at
node x:

τx = 1 +
1

kx

∑
y∈Nx

τyx. (9)

We also define px =
∑

y∈Nx
1/(kxky). Using these defini-

tions, and after some algebraic simplifications, the fixa-
tion probability can be expressed in the following form:

ρC =
1

N
+

δ

2N

[
b
(∑

x

kx
Nµ1

τx − 2
)

−
(∑

x

kx
Nµ1

τxpx − 2
)]

+O(δ2).

(10)

If we repeat the analysis for the fixation of D, we get the
same result as (10), with the sign of the first-order term
flipped. Setting ρC > ρD, we arrive at the condition
such that natural selection favors the fixation of C over
D. This outcome occurs if we have b > b∗, where b∗ is
the critical benefit-to-cost ratio and is given by:

b∗ =

∑
x τxkx − 2Nµ1∑

x τxkxpx − 2Nµ1
. (11)

The result for generic c is readily obtained by replacing
b in the above equation by (b/c). For any value of b/c
below this value, natural selection favors defection over
cooperation. Moreover, if the value of (b/c)∗ for a given
network turns out to be negative, this means that natu-
ral selection favors defection over cooperation regardless
of b and c. This network version of the tragedy of the
commons would be unsalvageable via modification of the
payoff structure. Below we discuss an example in which
cooperation can be rescued by structural intervention
instead, that is, by bridging individually-uncooperative
networks together.

LARGE NETWORKS: MEAN-FIELD
APPROXIMATION

The drawback of this exact framework is that solv-
ing (8) requires solving a system of N(N − 1)/2 linear
equations, which can be infeasible for large networks.
The conventional Cholesky decomposition methods to
solve this system have the complexity of order N6, and
faster techniques often require sparsity. So for large net-
works in general, obtaining the exact solution is com-
putationally infeasible. To obviate this limitation, here
we seek a mean-field approximation to obtain analytical
results that are computationally feasible for large net-
works. We use the fact that, combining (9) and (8),
the remeeting times of these random walkers satisfy the
following equation:∑

x

k2xτx = N2µ2
1. (12)

Using this equation and assuming a mean-field approxi-
mation in which every τx value is replaced by the average
value over all x, we get:

τx = N
µ2
1

µ2
, (13)

where µ2 is the second moment of the degree distribu-
tion. This substitution of the τx values with their mean is
the rationale behind the term ‘mean-field’ we employed,
which is conventional in the mathematical literature of
evolutionary games [2]. For the mean-field approxima-
tion of the fixation probability, we plug this into (10)
and obtain:

ρ ≈ 1

N
+

δ

2N

[
b
(
N
µ2
1

µ2
− 2

)
−

( µ1

µ2

∑
x

kxpx − 2
)]
(14)

Noting that
∑

x kxpx =
∑

x

∑
y∈Nx

1/ky is equal to N
for any network, we get:

ρ ≈ 1

N
+

δ

2N

[
b
(
N
µ2
1

µ2
− 2

)
−

( Nµ1

µ2
− 2

)]
(15)
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Plugging this result into (11), we arrive at the critical
benefit-to-cost ratio above which natural selection favors
cooperation over defection:

b∗ ≈
N − 2

µ2

µ2
1

N

µ1
− 2

µ2

µ2
1

(16)

Note that the previous approximations in the litera-
ture can be obtained as limiting cases. If the variance
of the degree distribution is small, we can expand Equa-
tion (16) in terms of the degree variance:

b∗ ≈ N − 2

N/µ1 − 2
+

2(1− 1
µ1
)(

1− 2µ1

N

)2 var(k)N
+O

(
var(k)

N

)2

.

(17)

If we assume that the graph is regular with degree µ1

(that is, all nodes have degree µ1), then the first term
on the right hand side of (17) is equivalent to existing
results in the biological literature for the special case of
bi-transitive graphs [29]. This also indicates that the
error of using the result of Ref. [29] for heterogeneous
(i.e., non-regular) graphs increases when network density
is close to 1/2. If in addition to small variance, we take
the limit of large N , the right hand side of Equation (16)
tends to µ1. Thus we recover the well-known b/c > k rule
in the literature for large regular graphs [30].

NETWORKS WITH COMMUNITY STRUCTURE

A common analytical model to generate networks with
community structure and to perform community detec-
tion is the Stochastic Block Model (SBM) [31–33]. Here
we study analytically the evolution of cooperation on
SBM networks, and then extend the results to arbitrary
symmetric 2×2 games.
We consider a stochastic block model [31, 32] with m

equi-probable groups, intra-community link probability
p and inter-community link probability q. In this model,
for each node, the probability of being assigned to either
of the m communities is assumed to be the same. For
node x with degree kx, denote the number of within-
community neighbors by kintrax and denote the number
of its neighbors in other communities by kinterx . For large
N , the average degree µ1, which is the expected value of
kx, is

µ1 = E (kintrax ) + E (kinterx ) = p
N − 1

m
+ q(N − 1)

(
1− 1

m

)
.

(18)

Also because the inter and intra-community degree dis-
tributions are independent, the variance of k is the sum

10 20 30 40 50 60 70 80 90 100

FIG. 1. Accuracy of the proposed mean-field approximation for
b∗ as a function of N . The network generation parameters are
set to the example values of p = 0.7, q = 0.1, and m = 3. The
performance is consistently well for every parameter configuration
tried, which will be demonstrated in Figure 3.

of the variance of kintrax and the variance of kinterx :

var(k) = p(1− p)
N − 1

m
+ q(1− q)(N − 1)

(
1− 1

m

)
.

(19)

Note that in SBM networks, although the assignment
probabilities are uniform, this does not indicate homoge-
nous community size. The expected value of community
sizes are the same, but at each realization of SBM net-
works, the community sizes are not necessarily the same.
The probability of having m communities with identical
size tends to zero as N increases for any m > 1. Com-
bining (18) and (19), we obtain µ2, which we can insert
into (15) to obtain the fixation probability. For the crit-
ical benefit-to-cost ratio, we insert the expression for µ2

and µ1 into (16). Defining α := 1/m and β := 1− 1/m
for brevity, and after algebraic simplifications, we ob-
tain:

b∗SBM ≈
N − 2− 2

N − 1

αp(1− p) + βq(1− q)

(αp + qβ)2

N/(N − 1)

αp + βq
− 2− 2

N − 1

αp(1− p) + βq(1− q)

(αp + βq)2

.

(20)

Figure 1 demonstrates that the approximation (20) has
relative error less than 1% for network size as small as
40. In these network sizes, the exact method can be em-
ployed in reasonable time and thereby we have a bench-
mark to assess the solutions. Figure 1 demonstrates that
for large networks, the error rate is remarkably small. So
for large networks where the exact method become pro-
hibitively costly, the mean-field approximation can be
used to produce accurate results.
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(a) ER network

(b) SBM network

FIG. 2. (a) Accuracy of the proposed mean-field approximation
for b∗ for ER networks as a function of link creation probability p.
As predicted by (21), there is a phase transition at p̂ = 1/2. That
is, above p̂ = 1/2, there is a different cooperative phase: natural
selection does not favor cooperation over defection regardless of the
benefit-to-cost ratio. The mean-field prediction is in agreement
with the exact results. (b) Accuracy of the proposed mean-field
approximation for b∗. The network size is 100. The dashed lines
depict the predicted threshold value q̂ as given by (22), agrees
with the exact results for example parameter settings. For q > q̂,
natural selection promotes fixation of defection over cooperation
regardless of the benefit-to-cost ratio. The intercepts match the
result for lim q → 0+ obtained in (23).

The special case of p = q is equivalent to the Erdős-
Rényi (ER) model [34]. Equivalently, we can set m = 1.
In this special case, Equation (20) simplifies to:

b∗ER ≈ p(N2 − 3N + 4)− 2

(N − 2)(1− 2p)
. (21)

Figure 2a illustrates the accuracy of the proposed mean-
field approximation (21) for ER networks. We plot 1/b∗

instead of b∗ for better visualization. Equation (21) in-
dicates a phase transition at p̂ = 1/2; visible in Fig-
ure 2a. That is, in the ER model, the expected critical

benefit-to-cost ratio becomes negative if p > p̂. In this
regime, natural selection favors fixation of D over C for
any benefit-to-cost ratio.

For the general case of p ̸= q, too, we can find such
a point of transition. We can find q̂ (the critical inter-
community link probability above which natural selec-
tion favors fixation of D over C for any benefit-to-cost
ratio) by setting the denominator of (20) equal to zero
and solving the resulting quadratic equation for q. Ex-
panding the solution for large N , we get:

q̂ =
m− 2p

2(m− 1)
+ 2m

(
1
2 − p

)2
(m− 1)2

1

N
+O

(
1

N2

)
. (22)

This result has an important consequence. Each of the
m communities with intra-community link probability
p, considered separately, is an ER network. So the ex-
pected value of the critical benefit-to-cost ratio for each
of them is given by (21). Suppose the communities have
p > 1/2, which, as discussed above, means that coop-
eration is not favored by natural selection for each indi-
vidual community considered separately. We can then
interconnect these communities under the SBM setting,
with inter-community probability q. For q < q̂, the criti-
cal benefit-to-cost ratio of the overall network is positive,
despite individual communities inhibiting the fixation of
cooperation. This confirms analytically the numerical
observations about conjoining random networks [35].

In Figure 2b, we present the comparison of (20) with
the exact results. The orange markers pertain to the
example case of m = 4 and p = 0.8, for which (22) gives
q̂ ≈ 0.4. The blue markers pertain tom = 2 and p = 0.8,
with q̂ ≈ 0.2. The network size is 100 in both cases. The
approximations are remarkably close to the exact values.

Of particular relevance for actual scenarios is the case
where q ≪ 1, which means that the communities are
sparsely interconnected. In this regime, we can expand
b∗ as follows:

b∗ =
N(N − 2)p− 2m(1− p)

N(m− 2p)− 2m(1− p)
+O(q). (23)

The interesting result here is the existence of the zeroth-
order term. This fact can be seen in Figure 2b as well.
For N = 100, p = 0.8 with m = 2, from (23) we get
b∗ ≈ 200, and with m = 4 we get b∗ ≈ 32.9. The in-
verse of these values are 0.0050 and 0.030, respectively,
which correctly match the intercepts observed in Fig-
ure 2b. This confirms that in the limit as q → 0+, b∗

tends to a positive number. Thus, sparse interconnec-
tion of dense communities rescues cooperation. Note
that this happens as long as the whole network is con-
nected, so that b∗ is well-defined. If q is exactly zero,
the network will be segregated into disjoint components
separated off, where b∗ cannot be defined. So q can
be as small as to ensure graph connectedness, but no
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FIG. 3. (Color Online) The distribution of the ratio of the
proposed mean-field approximation to the true value of b∗. The
true value is obtained by solving the N(N − 1)/2 linear equations
as given by (8), which is infeasible for very large networks, but
feasible for the size ranges of the test networks. The 10 network
generation families are discussed in the text. Two example graphs
with high heterogeneity are depicted to highlight the robustness of
the proposed mean-field approximation to structural heterogeneity.
By ‘heterogeneity’ we mean that the network properties of the
nodes are different, as apposed to a regular network, such as a
ring, in which every node exhibit similar structural properties.

smaller. The minimum value of q such that the whole
network is connected asymptotically approaches zero as
N tends to infinity. These results are conceptually
consistent with the findings in the social sciences which
underscore the important role of structural holes and
boundary spanners [35, 36]. Nodes that function as
network brokers connect the segregated patches of the
network together and thereby facilitate collective coop-
eration. Broker nodes that were previously trapped in
closed circles surrounded by defectors can now connect
to nodes outside this circle, allowing cooperation to flow
between clusters.

EXTENSION OF RESULTS

Extension to any game. Returning to arbitrary
2× 2 games, according to the Structure Coefficient The-
orem, the structure coefficient is defined in terms of b∗

as follows:

σ =
b∗ + 1

b∗ − 1
. (24)

For the special case of SBM or ER networks, σ can be
obtained readily by inserting the corresponding values of
b∗ from Equations (20) and (21) into (24), respectively.
For general networks, we use the mean-field value for b∗

obtained in (16). The result simplifies to:

σ ≈ N(µ1 + 1)− 4µ2/µ1

N(µ1 − 1)
. (25)

Natural selection favors the fixation of C over the fixa-
tion of D if (R− P )σ > (T − S). Thus we have obtained
analytical conditions such that natural selection favors

the fixation of one strategy over the other for any 2× 2
game.

Extension to other network families. We con-
clude by highlighting the accuracy of the proposed mean-
field approximation for b∗ via simulations and numeri-
cal results for other network families besides SBM and
ER. In Figure 3, we plot the histogram of the ratio of
the approximate b∗ to the exact value (computed via
solving the system of N(N − 1)/2 linear equations as
given by (8)) for 10 different network families. Besides
SBM and ER, we consider the Small-world model [37],
and 7 other network generation families, which all gener-
ate networks with heavy-tailed degree distribution. We
use these additional 7 families as pessimistic scenarios
regarding our mean-field approximation, because these
models generate highly-heterogeneous networks. For the
SBM model, we chose m uniformly from {2, 3, 4, 5}, p
uniformly in [0.1, 1], and q uniformly in [.01, p]. For the
small-world model [37], we chose the initial lattice degree
uniformly from ×{4, 8, 12} and the link creation proba-
bility uniformly from [0, 0.1]. For ER networks, we chose
the link formation probability uniformly in [0.2, 1]. For
preferential attachment (PA) with linear kernel [38, 39],
we randomly generate m between 1 and 5, and the ker-
nel bias is generated randomly between 0 and 5. For the
scale-free model of Holme and Kim (HK) [40], we chose
the triad formation probability of the model uniformly
in [0, 1]. For Klemm-Eguiluz (KE) scale-free model [41],
we choose the cross-over probability parameter of the
model uniformly in [0, 1]. For both models, we choose
the number of initial connections of incoming nodes uni-
formly between 1 and 5. For the spatial scale-free model
of Barthelemy [42] (SSL), we generated networks on a
2D lattice with distance decay parameter rc chosen uni-
formly in [0, 0.2]. For the uncorrelated configuration
model (UCM) [43], we chose the minimum number of
connections uniformly between 1 and 5, and the ex-
ponent in the power-law degree distribution is chosen
uniformly in [1, 4]. For super-linear preferential attach-
ment [39] (PA:SL), where the attachment kernel depends
on degrees as kθ, we chose the number of initial connec-
tions of incoming nodes uniformly between 1 and 4, and
the exponent of the kernel uniformly in [0, 3]. Greater ex-
ponents produce networks with higher degree inequality.
We also test the results on the LFR model [44], which
is another conventional generative model for networks
with community structure, besides SBM. Mathematical
and statistical studies of networks involving community
structure, such as those of inference and sampling, pre-
dominantly use the SBM model and its variants for ana-
lytical treatment. The usage of LFR models are compar-
atively more inclined towards simulations and numerical
experiments. So in this section, we have also included
LFR benchmarks in this paper for the sake of complete-
ness and to confirm the reasonable performance of the
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proposed solution on alternative network families with
community structure. The are generated with the mix-
ing parameter chosen uniformly at random in [0, 1]. The
maximum degree kmax was chosen uniformly between 1
and N − 1, the average degree was chosen uniformly be-
tween 1 and kmax, the degree exponent was uniformly
in [0, 3], the exponent for the community size distribu-
tion was chosen uniformly in [0, 2]. We required that no
community has less than 5% of the nodes, which also au-
tomatically introduces the cap N [1−0.05(m−1)] on the
maximum community size. For each family, we gener-
ate 10000 networks. For every generated network, the
size is randomly chosen between 100 and 500, which
is reasonably small so that the exact results could be
feasibly calculated via solving (8). The histograms are
highly concentrated around unity, which confirms the ac-
curacy of the proposed mean-field approximations. In-
terestingly, the proposed approximation works well for
networks with high structural heterogeneity, including
those with heavy-tailed degree distributions.

DISCUSSION

We presented accurate mean-field solutions for 2 × 2
games on heterogeneous networks that determine which
strategy is favored by natural selection. We have con-
sidered the limit of weak selection, which is amenable to
analytical treatment. For general selection strength the
problem is shown to be NP-hard [45]. We have utilized
our solution to study the case of modular networks in
detail, and have uncovered a network-structural phase
transition which pertains to regions in which one of the
strategies will not be favored by natural selection regard-
less of the payoff parameters. We have obtained simi-
lar results for ER networks as a special case. We have
obtained analytical expressions for the inter-connection
of segregated communities, which individually inhibit
cooperation, but after interconnection, can collectively
favor cooperation. This result in agreement with the
previous results in the literature [18, 20], which obtain
qualitatively similar results via various updating schemes
and simulation parameters, and even those that consider
many-player games [19]. Our analytical findings together
with the previous simulation studies consistently high-
light the cooperative advantage of sparsely interconnect-
ing dense communities, and indicate that this advantage
is a robust feature of cooperative dynamics on networks,
which has notable real-world consequences.
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