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Abstract

We show thatitis possible to construct a preparation non-contextual ontological
model that does not exhibit ‘transformation contextuality’ for single qubits
in the stabilizer subtheory. In particular, we consider the ‘blowtorch’ map
and show that it does not exhibit transformation contextuality under the
Grassmann Wigner—Weyl-Moyal (WWM) qubit formalism. Furthermore, the
transformation in this formalism can be fully expressed at order 7%, where
it satisfies all of Kolmogorov’s axioms of classical probability theory, and
so does not qualify as a candidate quantum phenomenon. In particular, we
find that the Grassmann WWM formalism at order A’ corresponds to an
ontological model governed by an additional set of constraints arising from
the relations defining the Grassmann algebra. Due to this additional set of
constraints, the allowed probability distributions in this model do not form
a single convex set when expressed in terms of disjoint ontic states and so
cannot be mapped to models whose states form a single convex set over
disjoint ontic states. However, expressing the Grassmann WWM ontological
model in terms of non-disjoint ontic states corresponding to the monomials
of the Grassmann algebra results in a single convex set. We further show that
a recent result by Lillystone et al that proves a broad class of preparation and
measurement non-contextual ontological models must exhibit transformation
contextuality lacks the generality to include the ontological model considered
here; Lillystone et al’s result is appropriately limited to ontological models
whose states produce a single convex set when expressed in terms of disjoint
ontic states. Therefore, we prove that for the qubit stabilizer subtheory to be
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captured by a preparation, transformation and measurement non-contextual
ontological theory, it must be expressed in terms of non-disjoint ontic states,
unlike the case for the odd-dimensional single-qudit stabilizer subtheory.

Keywords: Wigner—Weyl-Moyal, ontological, non-disjoint, Grassmann,
contextuality

(Some figures may appear in colour only in the online journal)

1. Introduction

There has been much interest recently in the study of contextuality by those pursuing the
classical simulation of near-term quantum computation. This is because of its central role in
the extension of many efficiently simulatable systems to quantum universality. Contextuality
has been shown to be the salient ingredient introduced in the magic state injection of Clifford
circuits [1, 2], measurement-based quantum computation [3, 4], and the T gate extension of
the Clifford gateset [5-9].

Contextuality can be present in the operational forms of preparation contextuality, trans-
formation contextuality and measurement contextuality [10]. Measurement contextuality is
perhaps the oldest and best-known form of contextuality, and is the inability to pre-assign out-
comes to a set of observables without prior knowledge of the ‘context’ that they will be taken
in [10-13]. In general, contextuality is believed to be a non-classical property of quantum
mechanics and has been shown to require higher than order i terms in the Wigner—Weyl—
Moyal (WWM) representation of the observables [8, 9, 14]. It is most frequently described
in the ontological models formalism, wherein measurement contextuality is responsible for
multiple possible outcomes in an ontological model (defined in the next section) where a sin-
gle outcome is expected [10].

One of the simplest quantum subtheories is the single-qubit stabilizer subtheory, which has
long been thought to be completely non-contextual [9, 15, 16]. However, recently, Lillystone
et al proved that for a single qubit, a broad class of ontological models that are preparation and
measurement non-contextual still exhibit transformation contextuality under the ‘blowtorch’
map [17]. Such a result contradicts the association of the presence of contextuality with the
presence of non-classical properties.

In this paper we relate the Grassmann WWM formalism at order A° to an ontological
model—a preparation and measurement non-contextual ¢/-epistemic ontological model for a
single qubit—and perform Lillystone er al’s calculations. We find that the Grassmann WWM
ontological model does not exhibit transformation contextuality under the ‘blowtorch’ map or
any other map consisting of convex combination of one-qubit stabilizer states.

This suggests that there must be some aspect of the Grassmann WWM ontological model
that is neither captured by Lillystone et al’s proof nor by many prior ontological models stud-
ied in the literature. We find that at order 2° the ontological model described by the Grassmann
WWM formalism differs from these others in that it must be defined over non-disjoint ontic
states to form a single convex set of probability distributions associated with the single-qubit
stabilizer subtheory. We find that such an ontological model possesses unique properties that
are not captured by restricting study to ontological models defined only over disjoint ontic
states, as in past studies [10, 15, 18]. The ontological model corresponding to the Grassmann
WWM formalism appears to be an example of a novel subclass of ontological models that
seem to have been overlooked in the literature.
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We show that despite its novelty, the Grassmann WWM ontological model still corresponds
to a fully valid classical probability theory as it satisfies all of the (Kolmogorov’s) axioms that
define a classical probability theory. Therefore, the introduction of such an ontological model
with ontic states based on Grassmann variables does not ‘hide’ contextuality or quantumness
within its framework, as such an effort would have to, by definition, violate at least one of
Kolmogorov’s axioms.

We begin with a review of the results of Lillystone ef al [17] in section 2 where we also
introduce transformation contextuality in ontological models with disjoint ontic states. In sec-
tion 3 we introduce the Grassmann WWM formalism and demonstrate that it does not exhibit
transformation contextuality at order /°. In section 4 we introduce a simple ontological model
over non-disjoint states and show how re-expressing it over disjoint ontic states produces more
than one convex subset. This motivates why such ontological models cannot be represented
by models with disjoint states. We then demonstrate in section 5 that the Grassmann WWM
formalism is such an ontological model with non-disjoint states and establish more of its prop-
erties in section 6. We prove that it is inequivalent to Lillystone et al’s representative disjoint
eight-state model in section 7. We conclude in section 8.

2. Review

We define ontological models according to [19]: an ontological model is defined by a measur-
able space A of possible physical states, with an associated o-algebra ¥, and sets of measures
or measurable functions P4 : 3 — [0, 1] are used to represent preparations, transformations
and measurements in the ontological model. A is called the ontic space and elements A € A
are called ontic states.

An ontological model is a classical probability theory and so must satisfy Kolmogorov’s
three axioms:

1. non-negativity: P(A) € Rand P(\) > 0V )\ € A,

2. P(A) =1,

3. o-additivitiy: P(U;\;) = >, P(\;) if {\;} are disjoint (i.e. correspond to mutually exclu-
sive events).

From these axioms follow [20]: for any two subsets A, B € A,

4. probability of an empty set: P()) = 0,
5. the sum rule: P(AUB) = P(A) + P(B) — P(AN B), and,
6. monotonicity: if B C A, then P(A) < P(B) and P(A\ B) = P(A) — P(B).

A and B are disjoint if P(A N B) = () and non-disjoint otherwise. It should be noted that
ontological models can be defined over both disjoint and non-disjoint ontic states and some
past work has been careful to include both cases [19]. Non-disjoint ontological models are
often treated as a ‘coarse-graining’ of a disjoint ontological model. We will show that in some
cases, they must be treated in terms of non-disjoint states in order that their states form a single
convex set.

Furthermore, we can distinguish between two different types of ontological models. From
Harrigan et al [21]:

Definition 1. An ontological model is y-ontic if for any pair of preparation procedures, Py,
and P, associated with distinct quantum states ¥ and ¢, we have p(A|Py) p(A|Pg) = 0 for
all .
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Definition 2. If an ontological model fails to be -ontic, then it is said to be -epistemic.

1-ontic and 1-epistemic ontological models are both also called ‘hidden variable theories’.
Colloquially, 1-ontic ontological models can be thought of as hidden variable theories where
the ‘hidden’ variables are not really hidden (because distinct wavefunctions correspond to
distinct subsets of A) while )-epistemic models are models with truly hidden variables.

Lillystone et al introduce an eight-state ontological model for one qubit [17], originally
developed in [15], which consists of an ontic space A = {£1}? that can be indexed by
A= (x,y,z) € A forx,y, z € £1—the eigenvalues of the Pauli matrices X s Yand Z , respec-
tively. This model is preparation and measurement non-contextual [15]. Ontic states evolve
under the maps corresponding to X, ¥ and Z as

Ty : (x,y,2) = (x,—y,—2), (1)

Ty: (xy,z2) = (—xy,—2), ()
and

Iz:(xy,2) = (=x,—y,2), (3)

respectively. They evolve under the Hadamard gate H as
Lu o (x,y,2) = (2, =Y. %). 4)

Since x, y, and z are each in {£1}, these maps are not continuous; they are permutations on
{£1}? defined by equations (1)—(4).

Lillystone et al then consider evolution of an input state p under the two operationally
equivalent implementations of the following map:

1
Ti(p) = 7 (p+XpX +YpY + ZpZ), 5)
and
Tx(p) = HT\(p)H. (©)

Ty(p) = T»(p) = I/2 and so this is often called the ‘blowtorch’ map since it is akin to ‘taking
a blowtorch’ to the state p and heating it up to become the maximally mixed state (a Gibbs
distribution at infinite temperature) [22]. Though T (p) = T»(p) = I/2, the authors point out
that under their eight-state model these two transformations are non-equivalent as they pro-
duce different outcomes and thus illustrate ‘transformation contextuality’. Specifically,

(AT 4 (0.2 + (5. —2)
(=2 —2) + (% -v.2). @

Thus 7'} maps ontic states with even (odd) sign parity to ontic states with even (odd) sign par-
ity. On the other hand

-1
(0y.2) T2 5 [(=x, =y, =2) + (—x,y,2)

+(x, =y,2) + (%3, —2)]. (®)

T, maps ontic states with even (odd) sign parity to ontic states with odd (even) sign parity.
These two sets of four points are different and therefore the two maps can produce different
probability distributions, as shown in figure 1.
As a result, this model produces different probability distributions over the ontic states
depending on whether 7' or 75 is taken. However, since both maps result in the same result—the
4
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(_,+7+)

Figure 1. The eight-state ontic space from [17] showing the simplices of the even-
(dark grey) and odd- (light grey) parity ontic states. 7 maps ontic states in a tetrahedron
to another ontic state in the same color tetrahedron. 7> maps ontic states between the
two tetrahedral regions even though it is operationally equivalent.

maximally mixed state—the resultant probability distribution should be the same. Thus, the
eight-state model exhibits transformation contextuality. Lillystone ef al then prove that every
one-qubit non-preparation contextual ontological model can be mapped to the eight-state
model and so all such models exhibit transformation contextuality. This includes both 1-epis-
temic and -ontic ontological models. We examine their proof carefully in section 7.

3. The blowtorch map in the Grassmann WWM formalism

The qubit Wigner—Weyl-Moyal (WWM) formalism was originally introduced by Berezin [23]
and fully developed in [9]. The Grassmann model at O(A°) provides a classical Hamiltonian
system that yields spin—% under canonical quantization. It makes use of &,, &, and &, three real
generators of a Grassmann algebra G3 which obey the anticommutation relation:

§& +&& =1{8,6%3 =0, forj,ke{p,q.r}. 9

Any element g € G3 may be represented as a finite sum of homogeneous monomials of the
Grassmann elements and g is called a Weyl symbol.

In an effort to examine the 77 and 7, maps in this qubit WWM hidden variable theory, we
consider the Weyl symbol of a single qubit pure state j:

p = % (1 + Oligrgq + 615175‘1 + ”ﬂfpﬁr) ’ (10)

where o? + 3% + 42 = 1, for a, 3, v € R. The i’s make the Weyl symbol p real, under a
generalized conjugation operation [9].

Transformations 1pI, XpX, YpY, ZpZ, and HpH are all Clifford transformations and so
can be captured in the Wigner—Weyl-Moyal formalism at order 1° by solving the following
classical equations of motion:

d d

—& ={H, =iH_—— 11

g = (H.&lrp =1 96 (11)
where the right derivative % is as d@ﬁned in [9], Hy=1, Hx = —i§&,, Hy = —i&,&,,
H; = —i§,¢, fort = w/2and Hy, = —%(é}gq + &y fort = m.For h > 0, these equations of
motion are deformed to the Weyl algebra [9] for non-Clifford unitaries. They are then described
by a Weyl bracket instead of a Poisson bracket and the Grassmann elements become the usual

5
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Pauli matrices in quantum mechanics. However, since this is unnecessary for Clifford trans-
formations, we will not need to explore this regime.

Clifford transformations take stabilizer states to stabilizer states. Solving the equations of
motion for transformations 7, X, Y, Z, and H, can be written in the same way as the (x,y, z)
transformations in [17] by using three-tuples (x,y,z) € A, forx, y, z € {£§,, &, £ &1

(s €0 &) = (62 €00 60)s (12)

(&0 &) 7 (& =& =E1)s (13)

(s €as &) - (=602 &op =E0), (14)

(20 6r) 2 (=6 =& &) (15)
and

(s €0 &) = (&9 &ps &) (16)

Substjtuting in the maps given by equations (12)—(16), we find that 1 pi R X ﬁf( s f’ﬁf’, Z/SZ s
and HpH are

1
Pr=rs5 (1 + i, + Bi&péy + 7iEEr) - (an
1
px = 5 (L+ai& &y — gy — 1i&6) - )
1
pr =5 (1= al&&y + A, —1i6E). "
1
Pz=75 (1 = ai&;y — Bi&€, + 7ipé,) G0
and
1
PH = 5 (1 +7i&&, — Bigp&, + aifyy), .
respectively.

Thus, we see that under the 7 transformation,

1[1
=15 (1 + qi&.&, + Bi& &, + 76,6

1

+ E (1 + O‘igrgq - Bigpgq - ’Yiépér)
1

+ 5 (1 - Oéigrgq + Bigpgq - ’Yigpgr)
1

+5 (1 — &€y — Bi&&y +7i6Er)

1

= 4(PI+Px+PY+PZ)

(22)

1
2
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This is the Weyl symbol for I /2. The simplification of the convex combination above is
accomplished by the Weyl algebra of Gs. Such a simplification is not possible under {41},
which lacks such algebraic operations.

On the other hand, acting on this evolution with the Hadamard gate to effect transformation
T, produces:

L 1 rige, — Bigyg, + aits,)

N -

P74
+ (1 + 'Yifrgq + Bifpfq - aiépgr)

+ 5 (1 =7i&&, — Bi&,€, — aidyér)

=N =N =

+5 (1 = 7i&&, + BipE, + aidyé;)

2

(pu + paxH + prYH + PHZH)
(23)

N = =

Again, this is the Weyl symbol for 1 /2. Both of these results are obtained without quantizing
the Weyl symbols and so this result is possible all while working at order A°.

This result raises an interesting question when compared to the result obtained using
Lillystone et al’s eight-state ontological model: since the WWM formalism is able to obtain
the maximally mixed state at order 7’ regardless of whether map T} or T is taken, does
this suggest that there exists an analogous classical probability theory (a preparation non-
contextual ontological model) that similarly does not depend on whether transformation 7'
or T, is taken? If so, how can this be reconciled with Lillystone et al’s proof that every such
ontological model can be mapped to their eight-state ontological model, which does exhibit
dependence on whether T} or T is taken?

We investigate these questions in the following sections by first defining a simple three-state
ontological model example in section 4, which introduces the key element that the eight-state
ontological model does not possess: non-disjoint ontic states. This then leads us to develop a
larger ontological model equivalent to the Grassmann WWM formalism in sections 5 and 6.

4. Example of a simple ontological model with non-disjoint ontic states

The eight-state model is an example of an ontological model with disjoint ontic states. This
means that for any two ontic states A and B, P(A U B) = P(A) + P(B). By contradistinction,
non-disjoint ontic states have non-zero overlaps (A N B # ()) and so satisfy the classical rela-
tion: P(ANB) = P(A) + P(B) — P(A U B). This can be derived directly from Kolmogorov’s
three axioms as we noted in section 2.

Here we introduce a simple example of a classical probability theory that is defined over
only three ontic states, two of which are non-disjoint due to an additional set of relations that
satisfies Kolmogorov’s axioms. Within this simple model, we show how re-expressing the
ontic states in terms of only disjoint states does not produce a convex set of probability distri-
butions due to this additional set of constraints.
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Consider a probability space with three elements, A = {A, B, C}. We wish to deal with a
proper classical probability space, and so must satisfy all of Kolmogorov’s axioms given in
section 2.

We specify additional constraints on our probability space that we will show are compat-
ible with these axioms:

P(C) =1, (24)
P(A) + P(B) = 1, (25)
P(AUB) = max{P(A),P(B)}, (26)
and
P(ANB) = min{P(A), P(B)}. 27)

These additional constraints impose that our ontic states A and B are disjoint.
Axiom 1 is satisfied since A = C and P(C) = 1 and axiom 2 can be imposed.
Axiom 3 is satisfied since A and B are not disjoint and so satisfy the sum rule:

P(AUB) = P(A)+ P(B) — P(ANB). (28)

Since P(C) = 1, all probability distributions only cover a part of our ontic space. We show
three example probability distributions in figure 2 that satisfy the additional constraints given
by equations (24)—(27).

It is of course perfectly acceptable to split up our ontic space into four ‘finer’ disjoint ontic
states [15, 17, 18], which we label W, X, Y and Z as in figure 3.

However, while with the ‘coarse-grained’ non-disjoint states (A, B and C) the probability
distributions form a single convex set, with the ‘atomic’ or ‘finer’ disjoint states (W, X, ¥ and
Z), the additional set of constraints splits this convex set into more than one subset.

To see this, note that for the probability space labelled by the disjoint ontic states W, X, Y,
and Z, incorporating the additional system of equations given by equations (24)—(27) produces:

P(W) + P(X) + P(Y) + P(Z) = 1, (29)
P(W)+ P(X)+2P(Y) =1, (30)
P(W) + P(X) + P(Y) = max{P(W) + P(Y), P(X) + P(Y)}, 3D
P(Y) = min{P(W) + P(Y), P(X) + P(Y)}, (32)

respectively.
Allowed probability distributions are points in the three-simplex defined by equation (31)
that also satisfy equations (29), (30) and (32). There are only two cases of solutions:

1. P(W) =0,
2. P(X) = 0.

Let the tuple (w,x,y,z) € Asrefer to the probability on W, X, Y, and Z, respectively. In cases 1
and 2 we can choose o = P(W) or v = P(X) respectively, and define a one-parameter family
of probability distributions (w, x, y, z):

1 1
Lo (00,5 (1= a). 5(1 —a)). (33)
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(a) (b) (c)

Figure 2. Probability distributions where P(C) =1 and (a) P(A) =1, P(B) =0,
(b) P(A) =0, P(B) = 1and (c) P(A) = 3, P(B) = j that are supported on the the non-
disjoint states A and B and so satisfy equations (24)—(27).

Z

Figure 3. Same ontic space as in figure 5 but now labelled by a ‘finer’ set of disjoint
ontic states W, X, Y and Z.

1 1
2. (0,a, 5(1 - a),i(l —a)), (34)

respectively, for 0 < a < 1. a = 0 corresponds to the only probability distribution that lies in
both cases and is the one indicated by figure 2(c). These two cases correspond to two convex
subsets of the original single convex set.

Convex combination of probability distributions from these two convex sets do not satisfy
the constraints given by equations (29)—(32) (unless o = 0). For instance, consider the convex
combination of the probability distributions in figures 2(a) and (b) corresponding to the fol-
lowing tuples in Aj:

1 1
-11,0,0,0 =(0,1,0,0).
2<>+2<) (35)

For the probability space labelled by disjoint ontic states W, X, Y, and Z, since the two terms
in the convex combination given by equation (35) correspond to two different cases (1 and
2) with a # 0, it follows that their result cannot satisfy equations (29)—(32). The only way to
obtain a convex combination is to convert the disjoint ontic states W, X, Y, and Z, back into
the non-disjoint ontic states A, B and C, perform the convex combination that satisfies the old
equations (24)—(27), and then convert back to the disjoint ontic states.

Doing so, we can find that the convex combination given by equation (35), when converted to
be in terms of non-disjoint states A and B, produces P(A = WU Y) = P(B = X UY) = 1.From
equations (26) and (27), this means that P(A N B) = P(A U B) = 1. Moreover, by equation (24),
the resultant probability distribution must have zero support on A \ B and B\ A. Converting
back to the disjoint states W, X, Y, Z, this means that P(W = A\ B) = P(X =B\ A) =0 and
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P(Y =ANB) = P(Z=AUB) = . This is represented by the tuple (0,0, 5, 1) € A3, which
is the probability distribution in figure 2(c).

In other words, given the information that there is a probability % of being found in A and
a probability % of being found in B, this model enforces that A and B are non-disjoint and so
produces the physically intuitive result that the probability of being found in A or B is % (and so
the probability of being found in neither A or B is % too). This is a very different outcome from
the one obtained if A and B are assumed to be disjoint, which given the information that there
is a probability % of being found in A and a probability % instead implies that the probability of
being foundin A or Bis 1.

Though the constraints given by equations (24)—(27) produce a single convex set with the
‘coarse’ set of non-disjoint states A, B, and C, the ‘finer’ disjoint set W, X, Y, and Z, cannot
satisfy them with a single convex set.

Indeed, additional relations can only non-trivially supplement Kolmogorov’s axioms if
they produce two or more convex subsets when the ontic states are expressed disjointly (with
no overlaps). This is because additional relations that satisfy o-additivity for all ontic states
(i.e. all ontic states are disjoint) add nothing new to the probability theory unless they produce
more than one convex subset. However, for the theory to still describe the subtheory of inter-
est, i.e. for the additional relations not to be too constraining, there must exist some other set
of (non-disjoint) ontic states with respect to which all the probability distributions fall into
the same convex set. This example demonstrates that such a middle ground between ‘uncon-
strained’ ontological models, which produce one convex set regardless of which set of disjoint
or non-disjoint ontic states they are expressed with, and ‘overconstrained’ ontological mod-
els, which produce more than one convex set regardless of which set of ontic states they are
expressed with, exists. This middle ground consists of constrained ontological models, which
produce one convex set with respect to a particular set of non-disjoint ontic states and more
than one for all other sets. This possibility appears to have been overlooked in the literature.

5. Grassmann WWM as an ontological model

In our prior work [9] we showed that it is possible to construct a local hidden variable theory
(an ontological model) from the Grassmann WWM formalism to describe qubit stabilizer
propagation using a non-negative probability distribution defined over states corresponding to
the Grassmann monomials §;&;. We now re-present these results with respect to the nomencla-
ture used to examine the simple ontological model in section 4.

A measure on the Gz algebra can be defined for any state p = |¢) (¢,

1p(A7) = / p(A(EE, (36)

where A(€) is the dual (odd) Weyl symbol of A(£) [9]. When A(£) = A;(€) is the Weyl symbol
of an element of a positive-operator valued measure (POVM) A;, then p,, (A;)is a non-negative
measure (a probability distribution) over outcomes A; of state p:

P (p) = pp(Ai). (37)

However, we cannot rely on the measure /1,(A) as a probability measure over ontic states
&:&; since it can be negative for A € {£;&;} as they are not elements of POVMs. Nevertheless,
we can define a one-to-one map between 1, (&;&x) and a bone fide probability measure that
also preserves convex combination if we consider the Weyl algebra that the &;&; satisfy.

10
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For the ontic state &&,

1 1 1
Eh 1o (&) = /5]51«5(5)(135 =5 > el + B+ ) < > (38)
1
for all one-qubit states p.
We note that
1o (§6k) = 1o(—&&j) = —1p (&), (39)

and so 1, (&&;) < 0is the same statement as 11, (£;¢x) > 0. We choose to interpret 11, (&&x) > 0
as proportional to the non-negative measure of ontic state §;¢&; \ &:¢; (and vice versa).

Given a probability P(&& \ &&j) o< p(&€) > 0, we further choose the probability of
the other ontic state, P(&&; \ &&k). to be zero under the heuristic motivation that 41, does not
need to track something if it is zero. Thus, given an ontic state A € {g,-gk}, we define the non-
negative probability of stabilizer state p in ontic state A \ —\ to be

Pp(A\ —A) = max{24,(}), 0}, (40)

where the factor of 2 allows the probability to saturate an upper bound of 1. We note that this
is perhaps an arbitrary definition, we shall see that it is an acceptable one as it produces a
theory consistent with Kolmogorov’s axioms once unions and intersections are included, and
reproduces the Grassmann WWM formalism for the stabilizer subtheory.

Any single qubit state’s Weyl symbol p is represented by a linear combination of Grassmann
monomials as in equation (10). Thus, our choice of definition for P, equates the ‘addition’
operator in the Weyl algebra to a ‘convex addition’ operator since it treats any linear com-
bination involving negative coefficients in front of Grassmann monomials as a unique non-
negative convex combination, making use of the Grassmann anticommutation relations.

A stabilizer state has the Weyl symbol

1
Pik = 5(1 +1&i&k). 41)

We now consider a convex combination of the two distinct stabilizer states pj and pi; under
the Weyl algebra:

p = apj + Bpi

1 .
=5+ (a — B)i&i&k,

for a, > 0 such that o + 5 = 1. Note that (a — 8)i&& = (8 — a)i&;.

WLOG, let us assume that & > 3. Equation (40) for P,(A \ —\) means that the probability
of being in ontic state §;&; \ &&; after this convex combination is two times the coefficient in
front of the resultant Weyl symbol’s &€, term, o« — 3, and the probability of being in ontic
state &&; \ ;& is 0. Before we simplified the convex combination, P(§;&x) = o and so

(42)

Pp(§& N &) = Pp(§&) — Pp(&e \ &) = B = min{a, f}. (43)
This further agrees with
P (&6 N k&) = Pp(&k&) — P&k \ §k) = B = min{a, B}, (44)

since P,(&&;) = (. In other words, the convex combination takes a probability density of
min{a, f} from ontic state && \ &&; to the intersection between the two ontic states. This
means that

1
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P& U &&5) = Po(&i&k \ &&) + P& \ §&) = a = max{a, B}, (45)

Therefore, for a map between p and the probabilities to preserve p’s convex combinations
under its Weyl algebra, it follows that

P(&& U &&5) = max{P(§6), P(&&) } (46)

and

P(&& N &) = min{P(§&), P(&&) - 47)

As a result, we have the same probability space as that considered in the simple example
of section 4, except that instead of one independent pair A and B, we have three independent
pairs. Moreover, we accomplished this via a one-to-one mapping between our probabilities
and our measure p in Gs such that the set of probability distributions, when considered over the
non-disjoint ;& ontic states, is a convex set. Most importantly, as we showed in the previous
section, these additional constraints satisfy Kolmogorov’s axioms and so form a valid classi-
cal probability theory or ontological model.

Using non-disjoint ontic states, we can set A; = &4, B1 = &,p, and then add two additional
pairs: {As = &y, By = &} and {A3 = &, B3 = £} so that:

P(A) +P(B) =1, (48)
P(A; U B;) = max{P(A;), P(B;)}, (49)
and

C = A now, and P(A) = 1is enforced by Kolmogorov’s first axiom.

The allowed probability distributions all belong in the same family and for
(a1,a2,a3,b1,by,b3) € Ay, where a; is the probability to be in A; and so on, they take the
form:

(a’ﬁ”y’l_a’l_ﬁ’l_’y)’ (51)

where 0 < o, B,v < 1.

Since there are no relations that govern the probabilities between the different pairs, these
three sets of ontic states (1, 2, and 3) are independent of each other. Convex combinations of
any probability distribution defined on these disjoint ontic states produce another probability
distribution on the disjoint ontic states that satisfies the constraints given by equations (48)—
(50); there is only one convex set of probability distributions.

On the other hand, using disjoint ontic states, we can set Wi =&y, \ &
Xi =84\ &g i =64 NEy, and Z) = (§4 U &), and then add two additional pairs:
{W2 = &g \ Egpr X2 = Egp \ &pg} and {W3 = & \ §p. X5 = & \ §r ), where we define Y3, Zs,
Y4, and Z, in a similar manner.

W, Xi, Y;, and Z; satisfy all the constraints that W, X, Y, and Z did:

P(W;) + P(X;) + P(Y;) = max{P(W;) + P(Y;), P(X;) + P(Y})}, (52)
P(Y;) = min{P(W;) + P(Y;), P(X;) + P(Y;)}, (53)
P(W;) + P(X;) + P(Y;) + P(Z;) = 1, (54)

12
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P(W)) + P(X;) +2P(Y;) = 1. (55)

Now there are 23 = 8 families of solutions that satisfy equations (52)—(55). As before in
equations (33) and (34), we can find that P(Z;) = P(Y;) and so we discard P(Z;) when listing
these eight cases (w1, wy, w3, X1, X2, X3, V1, ¥2,¥3) € As, where w is the probability of being in
W, and so on. The set of solutions corresponds to all possible permutations of the two solu-
tions given in equations (33) and (34) extended to three independent pairs:

1 1

1
L. (Q’B”y’O’O’O’ 5(1 - a)’ E(l - B)’ 5(1 - 7))’ (56)

1 1 1
2‘ (a’/B’O’O’O”YaE(l_a)’i(l_ﬁ)’i(l_v))’ (57)
3 0,7,0,8,0 ! 1 ! 1 ! 1 58
- (2,0,7,0,5,0, 5(1 — ), 5 (1 = §), 5 (1 =), (58)
4 0,0,0 : 1 ! 1 ! 1 59
. (Oé, PAVD) ’65755( _a)9§( _/8>5E( _7))’ ( )
5. (0 0,0 ! 1 ! 1 ! 1 60
. (’/8’77057 5 55( _a)’i( _/8)’5( _FY))’ ( )
6. (0,6,0,a,0 ! 1 ! 1 ! 1 61
(0.8.0.0,0.7, (1~ a). 31~ ). 2 (1) 1)
7. (0,0 0 : 1 : 1 : 1 62
. (3 5’Ysas/35 55( _a)3§( _/8>5§( _’7))’ ( )
8. (0,0,0 ! 1 ! 1 ! 1 63
. (’ s ’a’/B”YaE( _a)’i( _/8)’5( _FY))’ ( )

where 0 < «, 3,7 < 1. These cases only contain one common probability distribution: the
distribution (0, 0, %, 0,0, %, 0,0, %) € Aswhena=p=~v=0.

Again, these are eight convex subsets of the 8-simplex of all distributions over eight
ontic states; convex combinations of the probability distributions above do not satisfy equa-
tions (52)—(55) (unless « = 8 = v = 0).

We have thus established that the Grassmann WWM formalism is equivalent to an onto-
logical model defined by three pairs of non-disjoint ontic states for the stabilizer subtheory
and produces eight convex subsets when expressed in terms of disjoint ontic states. In the
subsequent section 4, we develop more of its properties.

6. Properties of the Grassmann WWM ontological model

In the eight-state model, the ontic space is partitioned into eight disjoint states that are indexed
by the eight three-tuples in Ay:

A={(+++). (4 ). (.= +). (= +. +),

(= =) (o (o) (= ),

Convex combinations of these eight tuples defines any valid probability distribution in the
eight-state model.

(64)

13
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These three-tuples can be converted into equivalent six-tuples by defining the six-tuples
to be (X4,Y4,24,X—,¥—,2—) € Ag, where x; = 1 and x_ = 0 if the first entry of the corre-
sponding three-tuple is ‘4’ and x; = 0 and x_ = 1 if it the first entry is ‘— and so on. This
produces a partition of the ontic space into eight six-tuples

A ={(1,1,1,0,0,0),(1,1,0,0,0,1),
(1,0,1,0,1,0),(1,0,0,0,1,1),(0,1,1,1,0,0),
(0,1,0,1,0,1),(0,0,1,1,1,0),(0,0,0, 1,1, 1)}. (65)

Using six-tuples (Ag) instead of three-tuples (A;) simplifies the resultant probability distribu-
tion of convex combinations because they can now be represented by a single six-tuple. For
instance, the probability distribution %(—i—, +.+)+ %(—i—, —,—) € Ay cannot be simplified any
further but %(1, 1,1,0,0,0) + %(1,0, 0,0,1,1) = (1, %, %,O, %, %) € Ag. For general probabil-
ity distributions, the equation for component-wise convex addition is

A, Y4 24 Xoyyos o) + B YL Al ) = (e + B)
(ep +xXyp Yz + 2o Xy +y e+ 7). (66)

The six-tuple notation is still useful in simplifying convex combinations of ontic states into
a single tuple when applied to the Grassmann WWM ontological model’s probability dis-
tributions, defined to be (wy, wp, w3, X1, X2, x3) € Ag. However, now convex combinations of
probability distributions must additionally satisfy equations (48)—(50) and so the same simple
component-wise addition rule of equation (66) does not hold.

Nevertheless, the six-tuple is useful in another way for the Grassmann WWM ontological
model because for probability distributions that correspond to quantum states p, its entries
correspond to the coefficients in front of the ontic states in the Weyl symbol of the state when
it is written with the minimal number of terms such that all coefficients are non-negative (a
unique form) [9]:

8= (8> & 8q> &-p> 8-+ 8-¢) € N, (67)

where 8 = Pp(frfq \ fqér) = maX{O, zﬂg(gr‘fq)}v 8—p = Pp(fq‘fr \ frfq) = max{O, Zﬂg(qur)h
etc. Since a stabilizer state py, is given by equation (41), and the entries in a six-tuple in Ag
correspond to P, (& \ &), the six stabilizer states correspond to the probability distributions,

psab €{(1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0)
(0,0.,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0, 1)}. (68)

Therefore, for stabilizer states the entries in the six-tuple are five Os and a single 1. This
leads to a generalized discrete notion of conserved area or symplecticity for Clifford gates on
stabilizer states [9]. For all these reasons, we will proceed to use this six-tuple notation from
this point onwards.

Note that (wy,ws, w3, X1,X2,%3) € Ag uniquely identifies any probability distribution in
the Grassmann WWM ontological model since y; and z; can be determined from w; and x;
(yi=z= %(1 — max{w;, x;})) as we showed in the last section and equations (56)—(63).

The eight ontic states of the eight-state model given by equation (65) in the six-tuple
notation, also serve as a valid basis for the convex combination (vector space) operation in
the Grassmann WWM ontological model with the six-tuple appropriately redefined to be
(w1, wa, w3, X1, %2, x3). This can be shown by noting that the three sets of ontic states W;, X,
Y; and Z; (or A; and B;) are independent and that, for (w;, x;), convex combinations of (1,0)
and (0, 1) determine all the possible probability distributions given by equations (33) and (34)

14
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(after they are converting back to their non-disjoint counterparts, convex added according to
the constraints given by equations (24)—(27), and the converted back to the disjoint w; and x;).
Thus, convex combinations of the Cartesian product {(1,0),(0,1 )}3 must determine all the pos-
sible probability distributions given by the larger set of three pairs of independent ontic states.
This Cartesian product corresponds to the eight states given by the six-tuples in equation (65).

To find the overlap between a probability distribution p = (wf, w5, w4, x7, x5, x5) and one
of the eight ontic states A = (w}, w3, w3,x7,x3,x3) € A’ of equation (65), one must be care-
ful to include their probability densities in the intersections y; and complements z;, which as
we pointed out, are uniquely determined by w; and x;. In particular, the eight ontic states \ in
equation (65) have support of 1 on three w; and/or x;s, and 0 on all the others. Hence they must
have support of 0 on all y;s and z;s (since y; = z; = 3 (1 — max{w;,x;})).

We have shown that every stabilizer state probability distribution has support of 1 on one
w; or x; and O on all the other w;s and x;s. This means that each stabilizer state distribution has
support of % on two pairs of y; and z;. Therefore, stabilizer state probability distributions have
non-zero overlap with the four ontic states in equation (65) that also have a ‘1’ in the same
entry of their six-tuple. For instance,

1
(1,0,0,0,0,0) = 7 [(1.1,1,0,0,0) + (1,1,0,0.0,1)

+(1,0,1,0,1,0) + (1,0,0,0,1,1)]. (69)

These actually (superficially) correspond to the same convex combinations as in the eight-
state model—as we have seen, the reasoning in the Grassmann WWM ontological involves
tallying up additional y; and z; regions that do not exist in the eight-state model.

According to definition 2, the fact that stabilizer states have support on more than one ontic
state means that the Grassmann model is a ¥-epistemic ontological model for the stabilizer
state subtheory; the probability distributions of different (but non-orthogonal) stabilizer states
overlap.

In summary, even with disjoint ontic states that must be converted to non-disjoint states
when taking convex combinations to account for the constraints given by equations (48)—(50),
component-wise addition of support on the eight ontic states A € A’ given by equation (65),
which are equivalent to the eight-state model’s, still holds as a way to determine probability
distribution overlap.

The Grassmann WWM ontological model is preparation non-contextual for the stabilizer
subtheory. Any convex combination of stabilizer state probability distributions produces a
unique probability distribution. If two probability distributions are not the same, they do not
correspond to the same state since they directly one-to-one map to the Weyl symbol of the
state.

The model is also measurement non-contextual for the stabilizer subtheory since the sta-
bilizer state probability functions given by equation (68) correspond to the conditional prob-
ability functions £ : A’ — [0, 1] of Pauli measurement M, where the probability of outcome
k given measurement M,

Pr(kIM) = > &' (M)p(N). (70)
AEN

This is only the same as the probability of outcome k under another measurement M’ for
all stabilizer states p if the two are equivalent measurements (£ = &M & (k, M) = (k, M"))
because no two stabilizer states probability distributions produce the same overlaps with all
other stabilizer state probability distributions.
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We also demonstrated in our prior work that the Grassmann WWM formalism, and there-
fore the Grassmann ontological model, exhibits measurement and preparation non-contextu-
ality for one qubit [9].

There are a few different ways of illustrating the unions and intersections of the eight
ontic states A given by equation (65) in a Venn diagram. We choose to use the Edwards—Venn
diagram approach, which takes a hemispheric approach to illustrating overlapping regions
between ontic states [24]; every additional ontic state added to the Venn diagram has more
‘leafs’ or hemispheres that overlap with all previous ontic states thereby capturing all possi-
ble combinations of intersections with them. We show our ontic space in the Edwards—Venn
diagram of figures 4 and 5.

We can use the properties introduced in this section, along with the eight-state Edwards—
Venn diagram, to show that the Grassmann WWM ontological model does not exhibit trans-
formation contextuality under the ‘blowtorch’ map. By using the tuples in A¢ (the same as
the set g used in [9] and defined by equation (67)) to organize the probability distributions of
states p, we can make use of the fact that their entries correspond to the coefficients in front of
the monomials of a state’s corresponding Weyl symbol, and thereby rely on equations (17)—
(21) to see how the states evolve under the Clifford gates X, Y, Z and the Hadamard H. In this
way, we see that under the 7 transformation,

(Wl,Wz,W3,X1,x2,x3)

?]> Z[(WI,WZ,W3,x1’x27x3) (71)

+ (1, x2, w3, Wi, wo, x3)
+ (w1, x2,x3,x1, W2, w3)

+ (x1, wa, X3, Wi, X2, w3)] (72)

= (0,0,0,0,0,0). (73)

This is the probability distribution for 1 /2 and is illustrated in figure 6(a). The final simplifica-
tion exhibited in equation (73) can be calculated in at least two ways:

1. Convert from disjoint (W; and X;) to non-disjoint (A; and B;) ontic states, employ equa-
tions (48)—(50) to simplify, and then convert back to disjoint states, or

2. Find the Weyl symbol p’ = Tp and then use equation (40) to obtain the probabilities
P,/ () that make up the entries of the resultant six-tuple 3.

These two methods are equivalent because, as discussed, by construction, equations (48)—(50)
are a probability theory that captures the Weyl algebra.

Notice that it is not possible to obtain this solution without appealing to the ‘coarse’ ontic
states A; and B; either through method 1 or 2. Otherwise, a convex combination of four prob-
ability distributions from four different classes of solutions cannot be evaluated while satisfy-
ing the constraints given by equations (52)—(55).

On the other hand, acting on line (72) subsequently with the Hadamard gate to effect trans-
formation 7, produces:

(W1, w2, w3, X1,X2,%3)
1

7; Z[(W3,X2,W17x3,wz,x1) (74)
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Figure 4. An Edwards—Venn diagram of the ontic space of the Grassmann WWM
model that is able to illustrate all the possible overlaps between the non-disjoint ontic
states.

+ (w3, wa, X1, X3, X2, W)
+ (3, w2, wi, w3, X2, %1) (75)

+ (3, x2, X1, w3, wa, wy )]

= (0,0,0,0,0,0). (76)

Again, this is the probability distribution for 1 /2 and the final simplification exhibited in
equation (76) is the unique g, tuple for the final state. This can be seen in figure 6(b). Notably,
figure 6 also shows that ignoring the additional constraints given by equations (48)—(50) leads
to the inequivalent parity simplices in probability space that are found when T and T, are
implemented in the eight-state model.

Therefore, the resultant probability distribution (0, 0, 0,0, 0, 0) is attained no matter whether
transformation 7 or 75 is taken in the Grassmann ontological model and so no transformation
contextuality is present. The final solution is very similar to the one found in section 4’s equa-
tion (35) when using the ‘coarse’ ontic states A, B and C. On the other hand, if the additional
constraints are ignored and so a single convex set under the disjoint ontic states is assumed to
exist, then different probability distributions are obtained under 77 and 7.

We further note that any map consisting of convex combinations of states within the sta-
bilizer subtheory will necessarily produce a unique probability distribution for every unique
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Figure 5. The eight ontic states A € A’ of the Grassmann WWM ontological model
given by equation (65). Though these disjoint ontic states do not appear to cover all
of ontic space, since they satisfy the additional equations given by equations (48)—
(50) when expressed as non-disjoint states, knowledge of the support of a probability
distribution on these eight states is sufficient to determine it everywhere else in ontic

space.

quantum state expected, since every Weyl symbol and one-qubit operator is bijectively repre-
sented by a probability distribution by the definition of g [9] and we have shown that one-qubit
convex combination is fully treated at order A° in section 5. So this result of no transformation
contextuality generalizes to all one-qubit maps within the one-qubit stabilizer subtheory.

We proceed to now show why the proof used by Lillystone et al explicitly excludes classi-
cal probability distributions defined over non-disjoint elements, such as those satisfying addi-
tional constraints like those given by equations (48)—(50). We then argue that the Grassmann
WWM ontological model is proof that single qubit non-contextuality can be handled by onto-

logical models with non-disjoint ontic states.
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7. Inequivalence between ontological models with disjoint ontic states
and non-disjoint ontic states

Lillystone et al consider an arbitrary preparation non-contextual ontological model of a single
qubit stabilizer subtheory. The WWM formalism for a single qubit is such a theory at i = 0.
They then consider A, to be the support of the quantum state p in the ontological model,

A, = {App(A) >0, € A} (77)

The proof then proceeds to delete any state A € A such that P;/,(\) = 0 and partition the
remaining set into eight disjoint spanning sets. Since P;(A\ —\) =0 for all A € A, it fol-
lows by equations (48)—(50) that P1(A N —\) = % for all A € A. Therefore, none of the eight
Grassmann WWM ontic states given in equation (65) are disqualified.

Lillystone et al then proceed to produce a disjoint partition into eight sets. In particular,
they rely on repeated application of the following feature of both -ontic and v -epistemic
ontologicla models: given

oMy (A) =0 VA € A, (78)
this implies that

supp(tt,) N supp(ay) = 0, (79)

if p # p' [10].

Since this is true for three pairs of basis states [17], argues that, given preparation non-con-
textuality, the ontic space can therefore be organized into 2° = 8 disjoint states. The argument
is more clearly laid out in [15] and follows the reasoning that since six non-negative states
have full support on only one unique basis element of one pair and the same partial support on
all the other pairs, it must be possible to partition the space into eight disjoint sets.

For instance, in the eight-state model, the ontic states x = + and x = — are disjoint and
so are y = + and y = —. Hence, the ontic space can be partitioned into the four disjoint sets
{xd=+y=4),x=+,y=—-),(x=—,y=+), (x = —,y = —)}. The partition into eight
disjoint sets follows from then considering the disjoint sets z = 4 and z = —.

In the Grassmann WWM qubit model, the ontic states &, \ £, and £,¢, \ &, corre-
spond to the eight-state model’s x = + and x = — respectively, and &,§, \ §,&, and £,&, \ £p¢,
correspond to the eight-state model’s y = 4 and y = — respectively. They can certainly be
divided into the disjoint subsets by Lillystone ef al’s argument and, along with the states
xipé \ €& and £, \ £p€, that are analogous to the states z = + and z = — respectively, pro-
duce the eight disjoint ontic states given by equation (65).

But for the Grassmann WWM model, though equation (79) still holds (disjointness) and
reexpressing ontic states in terms of disjoint ontic states produces bipartitions of the ontic
space, it does not preserve convex combination of single-qubit state probability distributions.
This is because the Weyl algebra over anti-commuting elements is equivalent to imposing
additional constraints on top of Kolmogorov’s axioms, as we have seen, which have more than
one family of solutions when reexpressed in terms of disjoint ontic states and convex combi-
nations between families of solutions is not preserved. This is true even though the model is
preparation and measurement non-contextual for one qubit.

Lillystone et al complete the proof by directly relying on convex linearity to argue that
there exists an implementation of 7} and 7, that has the same contextual implementation as
theirs, when defined over the eight disjoint sets; they assume that the states in their convex
sum fall into the same convex set when considered in terms of disjoint ontic states. They
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Figure 6. The convex combinations produced by (a) 7} and (b) 7, in the ontological
model defined over disjoint ontic states. Note that the resultant probability distribution
from the convex combination is the same for (a) and (b) when the ontic states are
converted to their non-disjoint counterparts and equations (48)—(50) are used. On the
other hand, if this additional system of equations is ignored then the resultant probability
distributions are different for 7', and 7. In fact, the two different resultant probability
distributions correspond to the light and dark grey regions of the eight-state model’s
ontic space indicated in figure 1.

thus implicitly neglect the possibility of an additional set of constraints, commensurate with
Kolmogorov’s axioms, that does not result in a single convex set that contains all the prob-
ability distributions they consider when their ontic states are expressed as disjoint ontic states.
Therefore, the Grassmann WWM ontological model lies outside the scope of their argument.

8. Conclusion

This paper answers the question of how to interpret the Grassmann WWM formalism at
order i in the framework of ontological models established by Leifer [19]. We show that
the Grassmann WWM ontological model is ¥-epistemic, that it is most simply expressed in
terms of overlapping or non-disjoint ontic states due to an additional set of constraints it must
satisfy, that this additional set of constraints only serve to restrict the model which remains a
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classical probability model, and that the probability distributions over these ontic states form
a single convex set, but that probability distributions over disjoint ontic states do not.

If the additional set of constraints is ignored (i.e. explicitly not satisfied), convex com-
binations of probability distributions from different families of solutions produce different
results when only one is expected. This is the origin of transformation contextuality under the
‘blowtorch’ map in Lillystone et al’s ontological eight-state model over disjoint ontic states.
We showed that transformation contextuality is not present in the Grassmann WWM classi-
cal probability theory at order A%—an ontological model defined over non-disjoint states with
such an additional set of constraints.

The Grassmann model offers a case where Lillystone et al’s proof—that preparation non-
contextual qubit ontological models exhibit transformation contextuality in the one-qubit sta-
bilizer subtheory—does not hold. Indeed, we have shown that ontological models defined over
non-disjoint ontic states appear to be able to treat single-qubit noncontextuality properly, and
so not exhibit transformation contextuality in the one-qubit stabilizer subtheory. We therefore
contest Lillystone et al’s conclusion that ‘the single-qubit stabilizer subtheory, a very simple
subtheory of the smallest quantum system, exhibits generalized contextuality (and) demon-
strates that generalized contextuality is so prevalent that even an essentially trivial quantum
subtheory is classified as contextual, and therefore non-classical’ [17].

In summary, we have shown that for the qubit stabilizer subtheory to be captured by a
preparation, transformation and measurement non-contextual ontological theory, it must be
handled in terms of non-disjoint ontic states, unlike the case for the odd-dimensional single-
qudit stabilizer subtheory.

As a final point, one can ask more precisely why supplementation of Kolmogorov’s axioms
by an additional set of constraints does not seem to be present in the literature on ontological
models so far. We point out that such an additional set of constraints can always be formulated
for any ontological model after it is reexpressed in terms of non-disjoint ontic states. However,
prior work has almost always considered ontological models where such an additional set
of constraints is trivial because they are too weak; it only produces one family of solutions
when the model is reexpressed in term of its original disjoint ontic states. And therefore it is
natural that such constraints have not been discussed. Nevertheless, this ability to include an
additional set of constraints, available due to the freedom provided by the sum rule (a conse-
quence of o-additivity), has always been there. In a way, this is an unused ‘degree of freedom’
of classical probability theories that has been hidden in plain sight all along, or at least since
the introduction of the Grassmann algebra in physics.
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