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ABSTRACT

Election databases are the main elements of a recently in-
troduced framework that aims to create bridges between
the computational social choice and the data management
communities. An election database consists of incomplete
information about the preferences of voters, in the form of
partial orders, alongside with standard database relations
that provide contextual information. Earlier work in compu-
tational social choice focused on the computation of possible
winners and necessary winners that are determined by the
available incomplete information and the voting rule at hand.
The presence of the relational context, however, permits the
formulation of sophisticated queries about voting rules, can-
didates, potential winners, issues, and positions on issues.
Such queries can be given possible answer semantics and
necessary answer semantics on an election database, where
the former means that the query is true on some completion
of the given partial orders and the latter means that the query
is true on every such completion.

We carry out a systematic investigation of query evalua-
tion on election databases by analyzing how the interaction
between the partial preferences, the voting rules and the
relational context impacts on the complexity of query eval-
uation. To this effect, we focus on positional scoring rules
and unions of conjunctive queries. We establish a number of
results that delineate the complexity of the possible answers
and of the necessary answers for different positional scor-
ing rules and for various classes of unions of conjunctive
queries. Furthermore, we show that query evaluation is fixed-
parameter tractable, where the parameter is the number of
candidates in the election.
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1 INTRODUCTION

During the past two decades, computational social choice has
emerged as an interdisciplinary area between social choice
theory, economics, mathematics, logic, and computer sci-
ence. Social choice theory studies how votes or, more broadly,
preferences of individual members of a society can be aggre-
gated in such a way that the society arrives at a collective
decision. Social choice theory has a long history that spans
several centuries, from the analysis of voting manipulation
by Pliny the Younger in Ancient Rome to the study of par-
ticular voting rules by Jean-Charles de Borda and Marquis
de Condorcet in the 18th Century (now known as the Borda
rule and the Condorcet method, respectively), to, more re-
cently, the ground-breaking work on dictatorial aggregation
by Kenneth Arrow in the 1950s. (See [8] for a brief history
of social choice theory.)

Computational social choice infuses an algorithmic per-
spective into social choice theory. In particular, the computa-
tional aspects of preference aggregation in an election have
been a focal point of research in this area. It is often the case,
however, that preferences are only partial, since, for example,
a voter may be undecided between two candidates, or our
knowledge of the voter’s preference is incomplete. For this
reason, Konczak and Lang [21] introduced the notions of
necessary winners and possible winners as those candidates
who win in every completion, and at least one completion,
respectively, of the given partial preferences. This work even-
tually led to a classification of the computational complexity
of the necessary and possible winners for a variety of voting
rules [3, 4, 27].

Arguably, the positional scoring rules form the most ex-
tensively studied class of voting rules. Under such a rule,
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every candidate receives from every voter a score that is de-
termined only by the position of the candidate in the voter’s
ranking. Hence, a positional scoring rule is defined by a
sequence of scoring vectors that specify the score for each
position (there is a scoring vector of length m, for eachm > 1,
where m stands for the number of candidates). A winner in
an election is a candidate who achieves the highest total
score from the voters. Thus, in general, there may be several
winners in an election, in which case they are also referred
to as co-winners. It is conceivable, however, that only one
candidate achieves the highest total score from the voters,
in which case that candidate is a unique winner. The plural-
ity rule and the veto rule are two well known examples of
positional scoring rules. The scoring vectors of the plurality
rule are of the form (1,0,...,0), while the scoring vectors
of the veto rule are of the form (1, 1,...,1,0). Thus, under
the plurality rule, the winners are the candidates who are
at top of the ranking of as many voters as possible, while,
under the veto rule, the winners are the candidates who are
the bottom of the ranking of as few voters as possible.

We focus on positional scoring rules whose scoring vec-
tors are computable in polynomial time in the number of
candidates. Under such rules, the necessary winners can be
computed in polynomial time [21, 27]. The possible answers
can be computed in polynomial time under the plurality
and veto rules, but their computation is NP-complete for
any other pure rule, as established in a sequence of stud-
ies [3, 4, 21, 27]. A positional scoring rule is pure if, for all
m > 1, the scoring vector for m candidates is obtained from
the scoring vector for m — 1 candidates by inserting a new
score into the vector.

Elections or polls do not take place in a vacuum; instead,
they take place in a context in which an abundance of ad-
ditional information may be available, including informa-
tion about the candidates (gender, age, education, wealth),
information about issues and positions of candidates on is-
sues, and information about campaign contributions (donors,
amounts, recipients). Thus, one may be interested in formu-
lating and answering queries that take into account both
the given partial preferences and the contextual information
available.

The preceding considerations motivated Kimelfeld, Ko-
laitis, and Stoyanovich [20] to introduce a new framework
that aims to create, for the first time, bridges between the
computational social choice and the database management
communities.

The main conceptual contribution of [20] is the devel-
opment of rigorous semantics of queries that involve both
partial preferences and contextual information about candi-
dates, issues, positions, and so on. To this effect, the notions
of necessary answers and possible answers to queries were in-
troduced as an extension of the notions of necessary winners

33

PODS ’19, June 30-July 5, 2019, Amsterdam, Netherlands

and possible winners. To appreciate the difference between,
say, necessary winners and necessary answers, consider the
Boolean query q that asks whether or not there is a winner
who is Republican. Given a set P of partial orders represent-
ing the (partial) preferences of voters, it is conceivable that
no single candidate is a winner in every completion T of P,
which implies that the set of necessary winners is the empty
set. Yet, it is also conceivable that in every completion T of
P one of the winners is a Republican, hence the necessary
answers of the query ¢ is “yes.” In particular, this example
shows that the necessary answers to queries cannot always
be obtained from the necessary winners.

As regards technical contributions, a study of the neces-
sary answers of conjunctive queries was initiated in [20]
and some preliminary complexity results were obtained. In
particular, it was shown that there are natural conjunctive
queries involving winners and database relations such that
computing the necessary answers of these queries under the
plurality rule is coNP-complete. This contrasts sharply with
earlier results in computational social choice to the effect
that, as previously mentioned, there is a polynomial-time
algorithm for computing the necessary winners under every
positional scoring rule, including the plurality rule [21, 27].

Summary of results. We carry out a systematic investiga-
tion of the algorithmic aspects of query evaluation on election
databases, that is, databases that consist of standard database
relations and a set of partial orders representing the pref-
erences of voters. We analyze how the interaction between
the partial preferences, the voting rules and the relational
context impacts on the computational complexity of query
evaluation. We establish a number of results that delineate
the complexity of the possible answers and of the necessary
answers for various classes of unions of conjunctive queries
and under different positional scoring rules.

The scope of our investigation is broader than that in [20]
along several different dimensions. First, while only the nec-
essary answers to queries were investigated in [20], here we
investigate both the necessary answers and the possible an-
swers to queries. Second, most of our results cover arbitrary
pure positional scoring rules, thus they go well beyond the
plurality rule and a few other voting rules studied in [20].
Third, we consider queries that involve not only winners, but
also unique winners, while only queries involving winners
(but not unique winners) were considered in [20].

To give a taste of our findings, we state here a few of the
results obtained in this paper. For the possible answers, we
show that if q is an arbitrary union of Boolean conjunctive
queries that may involve winners and unique winners, then
there are polynomial-time algorithms for computing the pos-
sible answers to g under the plurality rule or under the veto
rule. This gives a fairly complete picture for the class of
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pure positional scoring rules, because the aforementioned
NP-hardness results for the possible winners [3, 4, 27] imply
the NP-hardness of the possible answers of unions of con-
junctive queries under pure positional scoring rules other
than plurality and veto.

As for the necessary answers, we consider the Boolean
conjunctive query g¥, () for every k > 1, where

q\’;r() :— WINNER(X;), ..., WINNER(x), R(x1,...,Xk) .

We show that there are polynomial-time algorithms for com-
puting the necessary answers of g, under the plurality rule
or the veto rule, but computing the necessary answers of g\,
is coNP-complete under every other pure positional scoring
rule. We further show how the tractable cases generalize
from gl to a wide class of unions of conjunctive queries
where, in each disjunct, the WINNER atoms are disconnected.
In contrast, we prove that for every k > 1, computing the nec-
essary answers of gX, is coNP-complete under every pure
positional scoring rule (including plurality and veto). For
k > 2, this hardness applies to every positional scoring rule,
pure or not.

Finally, we examine query evaluation using the lens of
parameterized complexity and we show that evaluation of
unions of conjunctive queries is fixed-parameter tractable,
where the parameter is the number of candidates in the
election.

Organization. The rest of the paper is structured as follows.
In Section 2, we give the basic definition and terminology,
and in particular, describe briefly the framework of election
databases in [20]. In Sections 4 and 5, we study the possibility
and necessity problems, respectively, for queries that involve
winners but not unique winners. In Section 6, we extend our
study to queries that involve unique winners. In Section 7,
we study the parameterized complexity of the possibility and
necessity problems, and then conclude in Section 8.

2 PRELIMINARIES

This section contains the definitions of the main concepts
and background material.

2.1 Databases and Queries

A (relational) schema S is a collection of relation symbols
with each relation symbol R in S having an associated arity
that we denote by ar(R). We assume a countably infinite set
of constants that are used as database values. A relation is a
set of tuples of constants, each having the same arity (length)
that we denote by ar(T). A database D (over the schema S) is
a collection of relations such that for each relation symbol R,
the database D contains a relation RP with ar(R) = ar(RP).
The active domain of D, denoted by adom(D), is the set of
all constants occurring in relations in D.
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A query is a function that maps databases to relations.
Formally, a query q of arity ar(q) is a function that maps
every database over S to a finite relation q(D) of arity ar(q)
on the active domain adom(D). We say that each tuple in
q(D) is an answer to q on D. If the arity of q is zero, then we
say that q is a Boolean query; in this case, D |= ¢ denotes that
q(D) consists of the empty tuple (), while D |£ g denotes
that q(D) is empty.

A conjunctive query (CQ) q over the schema S is a query
definable by a first-order formula of the form

Fy1 - AymO& ¥1, - Ym)s

where 0 is a conjunction of atomic formulas with variables
among those in X,yi,...,y¥n. In the sequel, conjunctive
queries will be written as logic rules, i.e., as expressions
of the form

q(X) - Rl (tl)’ e ’Rn(tm)

where each R; is a relation symbol of S, each t; is a tuple of
variables and constants with the same arity as R;, and x is
a tuple of k variables from ty, . . ., t,,. We call q(x) the head
of ¢, and Ry (t1), ..., R, (ty) the body of ¢; each R;(t;) is an
atom of q. The variables occurring in the body but not in
the head are existentially quantified. The answers to g on a
database D are the projections to x of all homomorphisms
from g to D.

A union of conjunctive queries (UCQ) is an expression g of
the form q; U - - - U q¢, where each ¢; is a conjunctive query
and all ¢;s have the same arity (i.e., the arity ar(q) of ). If D
is a database, then gq(D) = q;(D) U - - - U q¢(D).

2.2 Voting Profiles and Voting Rules

We now recall the basic terminology of voting theory in com-
putational social choice. For additional background material,
we refer the reader to the handbook of computational social
choice [7] and, in particular, to the chapter on incomplete
information in voting [6]. Let C = {cy,...,cm} be a set of
candidates, and let V = {vy, ..., v,} be a set of voters. A com-
plete voting profile is a tuple T = (T3, ..., T,), where each T;
is a total order over C, representing the ranking (preference)
of voter v; of the candidates in C. A voting rule r is a function
that maps every complete profile T into a set W(r, T) C C of
winners. We say that a candidate c is a winner if c € W(r, T);
we also say that c is a unique winner if W(r,T) = {c}. We
write U(r, T) to denote the set of unique winners; note that
U(r, T) is either a singleton or the empty set. On occasion,
we will use the term “co-winner” to emphasize that we refer
to a winner who is not necessarily unique.

In this paper, we focus on the class of positional scoring
rules, which is arguably the most extensively studied class
of voting rules in computational social choice.
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T! WINNER
T D T H B Hillary
T H T B D Donald
T3 D H B T
Ty D B H T
T B H T D UWINNER

r(m,-) 1|1|O|0|

LT
T b T B H WINNER
T2 H D T B Donald
T3 D H T B -
Ty D B T H
Ts B H T D l UWINNER
rm) [1[1]o]o] Donald

(a) Complete voting profiles T! = (Tll, ..

LT, T2 = (T2, T2)

over the candidates Bernie, Donald, Hillary and Ted, together
with corresponding sets of winners and unique winners. Can-
didates are denoted by the first letter of their name (e.g., D for
Donald); the order is from left to right, the leftmost being the

most preferred.

e’v‘o
ED @D O @O @D
Py P, P Py Ps
(b) A partial voting profile P = (P, ..

notes that c is preferred to d.

l Cand l Position
name  party birth cand issue  pos
Bernie D 1941 Hillary TPP yes
Donald D 1947 Donald TPP no
Hillary R 1946 Bernie TPP no
Ted R 1970 Ted TPP no
Hillary PPACA yes
Donate Donald PPACA no
donor  type cand Bernie PPACA yes
Soros indv Hillary Ted PPACA no
Trump indv  Donald
UAPE PAC Hillary
UAPE PAC Ted
Wilks indv Ted

(c) A database D over a schema S

Figure 1: Examples of profiles, a partial profile, and
a database. Viewed bottom up, this an example of an
election database (D, P) and two expansions DLIT! and
DuT2

A positional scoring rule r is a function that maps every
number m to a scoring vector (r(m,1),...,r(m,m)) of nat-
ural numbers, called the score values, such that r(m,1) >

.,P5); an edge ¢ — d de-
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r(m,2)... > r(m,m). Here, m is the number of candidates
and r(m, j) is the score that a candidate is awarded whenever
she is at the jth position of a voter. We denote by r(-, m) the
vector (r(1,m),...,r(m,m)). Suppose that T = (T3, ..., T,)
is a complete voting profile. The score s(Tj;, ¢) of a candidate
c on T; is the value r(m, j) where j is the position of candi-
date c in T;. When the positional scoring rule r is applied
toT = (T1,...,Ty), it assigns to each candidate ¢ the sum
2, s(T;, ¢) as the score of c. A candidate is a winner if her
score is greater or equal to the score of all candidates. Conse-
quently, a candidate is a unique winner if her score is strictly
greater than that of all other candidates. We now give several
examples of well known positional scoring rules.

e The plurality rule (1,0, ...,0), where the winners are
the candidates that voters most frequently rank first.

e The k-approval rule (1,...,1,0,...,0) that starts with
k ones and then 0’s, where the winners are the candi-
dates that voters most frequently rank among the top
k.

e The vetorule (1,...,1,0), where the winners are the
candidates that voters least frequently rank last.

e The k-veto rule that starts with 1’s and ends with k
zeros, where the winners are the candidates that voters
least frequently rank among the bottom k.

e The Bordarule (m—1,m—2,...,0), where the score
of a candidate is the position itself minus 1 in reverse
order.

We assume that the scoring rule r is such that the score
values r(m, i) are computable in polynomial time in m. Hence,
W(r, T) and U(r, T) are also computable in polynomial time
in the size of T. To avoid trivialities, we assume that every
r(-, m) contains at least two different score values, that is,
r(m, 1) > r(m, m) holds for all m > 1. It follows that W(r, T)
is always nonempty, while U(r, T) is either a singleton or
the empty set (the latter is the case when |W(r, T)| > 1). We
also assume that for all m > 1, the score values in r(-, m) are
co-prime numbers (i.e., their biggest common divisor is 1),
since multiplying all score values by the same number has
no impact on the outcome of the rule.

The rule r is pure if for every m > 2, the scoring vector
r(-, m) is obtained from r(-, m — 1) by inserting a score value
at some position. All aforementioned positional scoring rules
(plurality, k-approval, veto, k-veto, and Borda) are pure.

Example 2.1. Our running example is taken from the 2016
US presidential elections. There are four candidates, Bernie,
Donald, Hillary, and Ted, and five voters. Figure 1a shows two
voting profiles T' and T?, each consisting of five linear or-
ders (presented as sequences) over the candidates. (The other
parts of Figure 1 will be discussed later on.) The positional
scoring rule is 2-approval (which, in this case, is also 2-veto),
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and it is shown below each profile. The scores of the candi-
dates Bernie, Donald, Hillary, and Ted in T! are, respectively,
2,3, 3 and 2. Hence, W(r, T!) consists of Donald and Hillary,
while U(r, T!) is empty since there is no unique winner. In
T2, the scores of these candidates are, respectively, 2, 4, 3
and 1; thus, W(r, T?) consists of just Donald. Since Donald
is the unique winner, we have that U(t, T?) also consists of
Donald. |

2.3 Partial Profiles

Often, our knowledge about the voter preference is only
partial. Missing information in preferences is commonly
modeled using a partial order, that is, a relation > that is
reflexive, (a > a), transitive, (a > b and b > ¢ imply a > ¢),
and antisymmetric, (a > b and b > a imply a = b), but not
necessarily total (it may be the case that neither a > b nor
b > a holds). A completion of a partial order is a total order
that extends that partial order. A partial order may have
exponentially many completions.

A partial voting profile is a tuple P = (P4, . .., P,), where
each P; is a partial order of the set C of candidates, repre-
senting the partial ranking (partial preference) of voter v;
on the candidates. A completion of a partial voting profile
P = (Py,...,P,)isacomplete voting profile T = (T4, ..., T,)
such that each T; is a completion of the partial order P;. The
notions of possible and necessary winners were introduced
by Konczak and Lang [21].

Let r be a voting rule and P a partial voting profile.

o The set PW(r, P) of the possible winners with respect to
(w.r.t.) r and P is the union of the sets W(r, T), where
T varies over all completions of P.

e The set NW(r, P) of the necessary winners w.r.t. r and
P is the intersection of the sets W(r, T), where T varies
over all completions of P.

e The set PU(r, P) of the possible unique winners w.r.t. r
and P is the union of the sets U(r, T), where T varies
over all completions of P.

o The set NU(r, P) of the necessary unique winners w.r.t. r
and P is the intersection of the sets U(r, T), where T
varies over all completions of P.

In other words, a candidate c is a possible winner (respec-
tively, a possible unique winner) with respect to r and P if
c is a winner (respectively, a unique winner) in at least one
completion T of P. Also, c is a necessary winner (respectively,
a necessary unique winner) with respect to r and P if c is a
winner (respectively, a unique winner) in every completion
T of P. Observe that NW(r, P), PU(r, P) and NU(r, P) can be
empty, but PW(r, P) is never empty (since every completion
has at least one winner). Moreover, there can be any number
of possible unique winners, but there can be at most one
necessary unique winner.
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Example 2.2. Continuing our running example, Figure 1b
depicts a partial voting profile P that consists of five partial
orders of the five voters (represented as directed acyclic
graphs) over the four candidates. It is easy to verify that both
T! and T? in Figure 1a are completions of P.

From the discussion in Example 2.1, we conclude that
Donald and Hillary are both possible winners. Note that
there is a completion in which Ted is a winner (e.g., Ted
gets a unit score value from the first four voters), and, in
fact, the unique winner. Bernie, however, cannot win in any
completion. To see this, observe that he must be ranked no
higher than third by the first three voters (so, gets a zero
score from these voters), thus the maximum score he can
get is 2. Among the ten units granted by the five voters, at
least one candidate must get a score of 3, and therefore, will
surpass Bernie. Via a similar reasoning, we conclude that
the maximum score that Hillary can get is 3, and hence, it
is impossible for her to be the single winner (since there is
always another candidate with 3 or more units). Thus, Hillary
is a possible winner, but not a possible unique winner.

Finally, we observe that for every one of the four candi-
dates, there is a completion where the candidate does not
win. (In particular, T? provides such an example for every
candidate other than Donald, so it remains to find one just
for Donald.) Therefore, no candidate is a necessary winner.

In conclusion, it holds that

o NW(r, P) = NU(r, P) = Q)’
e PW(r,P) = {Donald, Hillary, Ted};
e PU(r,P) = {Donald, Ted}. o

On the face of the definitions, computing possible and
necessary (unique or not) winners requires exponential time
since a partial order may have exponentially many comple-
tions. There is a substantial body of research on the computa-
tional complexity of the necessary and the possible winners
for a variety of voting rules. The following complete classifi-
cation of the complexity for all pure positional scoring rules
was obtained through the work of Konczak and Lang [21],
Xia and Conitzer [27], Betzler and Dorn [4], and Baumeister
and Rothe [3].

THEOREM 2.3. [Classification Theorem] Let r be a pure
positional scoring rule.

(1) Ifr is the plurality rule or the veto rule, then there is a
polynomial-time algorithm for computing PW (r, P) and
PU(r,P), given a partial voting profile P. Otherwise, the
following two problems are NP-complete: given a partial
voting profile P and a candidate c, determine whether
¢ € PW(r,P), and determine whether ¢ € PU(r, P).

(2) There is a polynomial-time algorithm for computing
both NW(r,P) and NU(r, P), given a partial voting pro-
file P.
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Put Theorem 2.3 differently, it is NP-hard to compute the
possible winners for all pure positional scoring rules, with
the exception of plurality and veto where the possible win-
ners can be found in polynomial time. In contrast, the neces-
sary winners can be computed in polynomial time for every
pure positional scoring rule; in fact, this tractability result
holds for every positional scoring rule (pure or not) [27].

3 ELECTION DATABASES

Here, we review the framework of Kimelfeld, Kolaitis, and
Stoyanovich [20] that brings together computational social
choice and relational databases. The aim is to have a unifying
setting for analyzing partial voting profiles in the context of
a database that holds information about candidates, voters,
and issues.

Informally, an election database consists of a partial pro-
file P and a database D that provides contextual information
about the candidates (and beyond), as illustrated in Figure 1.}
If r is a voting rule, then each completion T of P gives rise to
an expansion of D obtained by augmenting D with the unary
relations W(r, T) and U(r, T) of the winners and unique win-
ners.

We now give the precise definition of an election database.

Let S be a schema and let WINNER and UWINNER be
two new unary relation symbols that will be interpreted
by the set of the winners and the set of unique winners,
respectively. Let 8¢ be the schema obtained by augment-
ing S with these two unary relation symbols, that is, S¢ =
S U {WINNER, UWINNER]}.

Definition 3.1 (Election Database). An election database
over a schema S is a pair (D, P), where D is a database over
S and P is a partial voting profile. Let r be a voting rule. Each
completion T of P gives rise to an expansion D UT of (D, P)
under r such that:

e D UT is a database over the relational schema
S¢ = S U {WINNER, UWINNER};

e RPUT = RP for every relation symbol R of S;

o WiNNErRPYT = W(r, T);

e UWINNERPYT = U(r, T).

Example 3.2. The schema S of our running example con-
sists of the relation symbols Cand, Position and Donate that
are instantiated in the database D of Figure 1c. The Cand re-
lation includes information about the candidates (e.g., Bernie
was born in 1941 and is currently with the Democratic Party),
the Position relation contains the positions of the candidates
on issues (e.g., Hillary supports the Trans-Pacific Partner-
ship (TPP), and Donald opposes the Patient Protection and

!The information in the figure is taken from Diffen (https://www.diffen.com)
and The New York Times (https://www.nytimes.com/interactive/2016/us/
elections/top-presidential-donors-campaign-money.html).
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Affordable Care Act (PPACA), known as Obamacare), and
the Donate relation contains information about donations
to candidate (e.g., the individual Soros donated to Hillary,
while the political action committee (PAC) UAPE donated to
Ted). Combined with the partial profile P described in the
figure (and discussed in Example 2.2), we get the election
database (D, P).

Recall the completions T! and T? of Figure 1a. Shown to
the right of each completion are the WINNER and UWINNER
relations of the corresponding expansion. In T?, the UWINNER
relation is empty, since the winners are Donald and Hillary.
Yet, in T2, the WINNER and UWINNER relations are the same,
since there is a unique winner (namely, Donald). ]

3.1 Necessary and Possible Answers

Next, we recall the definitions of the necessary and possible
query answers from [20]. Let S be an schema, (D,P) an
election database, g a query over S¢, and r a voting rule. Let
a be a tuple of constants of arity ar(q).

o We say that a tuple a is a possible answer ifa € g¢(DUT)
for some expansion D LI T.

e We say that a tuple a is a necessary answer if a €
q(D U T) for every expansion D LI T.

In terms of data complexity, the problem of computing the
possible and necessary answers of CQs and UCQs amounts
to the evaluation of Boolean queries.

Definition 3.3 (Possibility/Necessity Problem). Let S be a
schema, q a Boolean query over 8¢ and r a voting rule.

e Possibility(g, r) is the following decision problem: given
(D, P), is q possibly true (i.e., does DUT |= g for some
expansion D U T of (D, P))?

o Necessity(q, r) is the following decision problem: given
(D, P), is q necessarily true (i.e., does DU T |= ¢ for
every expansion D LI T of (D, P))?

Example 3.4. We now illustrate queries. For a candidate c,
the following query asks whether ¢ is a winner.

(1)

In particular, g, is possible if and only if c is a possible winner,
and g, is necessary if and only if c is a necessary winner.

The following queries apply to our running example (Fig-
ure 1). The next one asks whether there is a Republican
winner. (We use the convention of an underscore instead of
a variable with a single occurrence.)

q1() :— WINNER(x), Cand(x,R,_)

qc() :— WINNER(c)

Hence, Possibility(q:, r) asks whether it is possible to have
a Republican winner, and Necessity(q;, r) asks whether we
necessarily have a Republican winner. As explained in Ex-
ample 2.2, in every completion it is the case that either
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Donald or Ted are winners. Hence, in the running exam-
ple, both Possibility(g;, r) and Necessity(q;, ) are true. The
next query asks whether there is a unique winner who is
also a Republican.

q;() :— UWINNER(x), Cand(x,R,_)

As shown in Figure 1a, it Donald is a possible unique winner,
and hence, Possibility(g, r) is true. However, Necessity(q, r)
is false, simply because there is an expansion in which the
UWINNER relation is empty (i.e., there are no unique win-
ners).

The following query asks whether there are two winners
who disagree on Obamacare.

q2() :— Position(x, PPACA, yes), Position(y, PPACA, no),

WINNER(x) , WINNER(Y)

Possibility(gz, r) is true as witnessed by the completion T"
in Figure 1a, while Necessity(qz, r) is false due to T2,

Finally, the following query asks whether there are two
winners, one Democratic and one Republican, who get do-
nations from the same source.

q3() :— Cand(x,R,_), Cand(y,D, _), WINNER(x),
WINNER(y) , Donate(z, _, x) , Donate(z, _, y)

It is possible to build a completion where both Hillary and
Ted (who both receive donations from UAPE) are winners,
hence, Possibility(gs, r) is true; moreover, both completions
of Figure 1a witness that Necessity(gs, r) is false. O

Example 3.5. For every positive integer k, let g€ be the
following Boolean conjunctive query:

q\]f,r() :— WINNER(X]), ..., WINNER(xg), R(x1,...,xr) (2)

This query asks whether there is a sequence of k winners
that constitutes a tuple of R.

In the remainder of the paper, we will make repeated use
of the family of the queries g%, k > 1. O

Note that a query g over 8¢ may involve both the WINNER
and UWINNER relation symbols. When g is a UCQ, we use the
terms WINNER atoms and UWINNER atoms to refer to atoms
that involve, respectively, the WINNER and the UWINNER
relation symbol. In the sections that follow, we investigate
the complexity of the decision problems Possibility(q, r) and
Necessity(q, r), where g is a Boolean UCQ.

We note that other notions of databases and queries over
partial orders have been studied [1, 14, 18], but none of them
involves elections or social choice.

4 QUERIES WITH WINNER ATOMS:
POSSIBLE ANSWERS

Next, we investigate the complexity of computing the possi-
ble answers for UCQs that involve WINNER atoms only (but
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no UWINNER atoms). Thus, in what follows in this section,
we make the blanket assumption that the term UCQ refers
to a union of conjunctive queries whose atoms are WINNER
atoms or atoms with relation symbols from the schema S.

4.1 Tractability

According to Theorem 2.3, the possible winners can be com-
puted in polynomial time when the positional scoring rule is
plurality or veto. In the remainder of this section, we show
that this tractability result extends to the possible answers
of every UCQ (and beyond).

To establish tractability for plurality and veto, we use the
tractability of a polygamous version of the perfect-matching
problem. This problem is a special case of generalizations
of perfect matching that are known to be in polynomial
time [12, 25]. This special case has a simple proof, which we
now give to make the subsequent results as self-contained
as possible.

Definition 4.1 (Polygamous Matching). Polygamous Match-
ing is the following decision problem: Given a bipartite graph
G = (VU U,E) and natural numbers o, < 5, for allu € U,
is there a subset of E where each v € V is incident to exactly
one edge and every u € U is incident to at least , edges
and at most f, edges?

ProposITION 4.2. Polygamous Matching is solvable in poly-
nomial time.

Proor. We reduce Polygamous Matching to the problem
of determining whether a perfect matching exists (which
is solvable in polynomial time, e.g., via the Hungarian al-
gorithm or maximum network flows). Given an input G, a,
S to Polygamous Matching, we construct a bipartite graph
G’ = (V' U U’,E’) as follows. We obtain U’ from U by re-
placing every node u with f, distinct copies of u. The set
V’ is the union of V and a set of |[U’| — |V| of new dummy
nodes. (If |U’| < |V|, then no polygamous matching exists.)
Next, we construct E’ by considering every node u € U and
connecting all its copies in U’ to the all the neighbors v € V
that u has in g; in addition, we connect 8, — a,, of the copies
of u to all the dummy nodes in V’. The reader can verify
that G is a “yes” instance of Polygamous Matching if and
only if G’ has a perfect matching. In particular, to obtain a
polygamous matching from a perfect matching M of G’, we
take all edges (v, u) such that v € V and M connects v to a
copy of u. ]

We will also use the following lemma, which we prove
using Proposition 4.2. Hereafter, we will denote by min(v)
the set of candidates ¢ that the voter v does not prefer to any
other candidate (hence, such a ¢ can be last in a completion),
and by max(v) the set of candidates c that are not preceded by
any other voter (hence, such a ¢ can be first in a completion).
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LEmMA 4.3. Let r be the plurality rule or the veto rule. Then
the following problem is solvable in polynomial time: Given
a set C of candidates, a partial profile P over C, and a subset
S C C, is there a completion T such that S € W(r, T)?

Proor. We begin with the plurality rule. We solve the
problem by considering every possible score s = 1,...,n
(where n is the number of voters), and test whether there is
a completion T such that every candidate in S gains precisely
s votes, and every candidate outside of S gains at most s
votes. If the answer is true for at least one s, we return true;
otherwise, we return false.

So, the question at hand is whether we can assign to each
voter one of her top candidates so that every candidate in S
is assigned to precisely s voters, and every candidate outside
of S is assigned to at most s voters. This problem is a special
case of Polygamous Matching (Definition 4.1), where

V is the set of voters,

U is the set of candidates,

E connects ¢ and v, whenever ¢ € max(v),
ay, = Py =s, foreveryu €S,

a, =0and f, =s, foreveryu € C\S.

We then conclude the proof via Proposition 4.2.

For the veto rule, the proof is analogous. Here, the question
is whether we can assign to each voter one of her bottom can-
didates so that every candidate in S is assigned to precisely
n — s voters, and every candidate outside of S is assigned to
at least n — s voters. In particular, V and U are the same as
in the case of plurality; furthermore,

e E connects ¢ and v whenever ¢ € min(v),
e a, =pf,=n—s,foreveryu €S,
e o, =n—sand f, =n,foreveryu e C\S.

This concludes the proof. O
We can now prove the main result for this section.

THEOREM 4.4. Let r be the plurality rule or the veto rule. If
q is a Boolean UCQ, then Possibility(q, r) is solvable in poly-
nomial time.

Proor. Consider an input (D, P) of Possibility(g, r). Then
q is possible for (D, P) if and only if one of its CQs is possible
for (D, P); thus, we can solve the problem separately for each
CQ of q. So, we will assume that ¢ is a CQ (i.e., it has one
disjunct) to begin with.

Let adom(D) be the active domain of D (i.e., the set of
constants that occur in relations in D, let C be the set of
candidates, and let 7(g) be the set of variables and constants
that occur in q. By a potential homomorphism, we refer to a
mapping p : 7(q) — adom(D)UC that satisfies the following
conditions:

(1) p(t) = t, whenever ¢ is a constant;
(2) p maps every non-WINNER fact to a fact of D;
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(3) u(t) € C, whenever ¢ occurs in a WINNER atom (i.e.,
the atom WINNER(?)) of g.

Then q is possible for (D, P) if and only if there is a potential
homomorphism g and a completion T of P such that p(t)
is a winner for every term t of the third condition. More
formally, for a potential homomorphism g, let us denote by
W (u) the set of all candidates p(t) such that t occurs in a
WINNER atom. Then, for a completion T of P, we have that
1 is a homomorphism from q to D UT (hence, DU T |= q) if
and only if W(u) € W(r, T).

In view of the above, the algorithm simply constructs all
possible p (in polynomial time) and, for each y, tests whether
there exists a completion T such that W(u) € W(r, T). By
Lemma 4.3, this test can be carried out in polynomial time.

m]

We remark that the proof of Theorem 4.4 can be extended
to the generalization of UCQs in which negated atoms are
allowed. For example, if 7 is the plurality rule or the veto rule,
then Possibility(q, r) is solvable in polynomial time, where
q is the query that tests whether there are a winner and a
loser both of whom are funded by the same PAC, i.e.,

q4() :— Donate(z,PAC, x) , Donate(z, PAC, y)

WINNER(x) , “"WINNER(y)

4.2 Hardness

Let r be a voting rule and let ¢ be a UCQ. To determine
whether Possibility(q, r) is true, we need to, at least, be able
to determine whether a candidate is a possible winner. In-
deed, the possible-winner problem (i.e., determine whether a
given candidate c is a possible winner in a given partial pro-
file) is simply Possibility(q., ), where q. is the query defined
in (1). Theorem 2.3 implies that Possibility(q., r) is NP-hard,
for every pure positional scoring rule other than plurality
and veto (and regardless of the relational schema S). Clearly,
Possibility(q., r) reduces to the problem Possibility(q, r) for
the query q() :— WINNER(x), R(x), which we refer to as
qs, in Equation (2). In fact, it is an easy observation that
Possibility(q., r) reduces to Possibility(¢X ., r) for every k >
0. Thus, Possibility(qX,, r) is NP-hard, for every k > 0.

5 OQUERIES WITH WINNER ATOMS:
NECESSARY ANSWERS

In this section, we analyze the complexity of the necessity
problem for CQs and UCQs that involve WINNER atoms (but
no UWINNER atoms). Thus, we continue to make the blanket
assumption that the term UCQ refers to a union of conjunc-
tive queries whose atoms are WINNER atoms or atoms with
relation symbols from the schema S.
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Table 1: The complexity of Necessity(¢gX ., r), where ¢~
is defined in Equation (2) (Example 3.5).

Complexity Reference
1 | P for veto, plurality; coNP-| Theorem 5.3,
c. for all other pure pos. rules | Proposi-
tion 5.4
>1 | coNP-c. for all pure pos. rules | Theorem 5.6
>2 | coNP-c. for all pos. rules Theorem 5.7

Let ¢ be a candidate and let g, be the CQ
qc() :— WINNER(C).

Theorem 2.3 implies that Necessity(q., r) is solvable in poly-
nomial time for every pure positional scoring rule r, Indeed,
Necessity(q., r) asks whether c is a necessary winner. In this
section, we explore the boundaries of the combinations of
r and q that have a tractable necessity testing. For that, we
will refer to the CQs g%, defined in Equation (2). Our results
for these queries are summarized in Table 1.

5.1 Tractability

We begin with tractability results. Towards the main result of
this part, we first consider the conjunctive query gl in Equa-
tion (2). Kimelfeld, Kolaitis, and Stoyanovich [20] showed
that if r is the plurality rule, then Necessity(q.,, ) is solv-
able in polynomial time. The next lemma shows that this
tractability result also holds true when r is the veto rule.

LEMMA 5.1. Ifr is the veto rule, then Necessity(ql,,,r) is
solvable in polynomial time.

Proor. Consider an input (D, P) to Necessity(q.,, ). We
solve Necessity(ql,,,r) by searching for a counterexample,
that is, a completion where a candidate outside R beats
every candidate inside RD . Recall that, in the veto rule, the
score that a candidate c gains is n — k, where n is the number
of voters and k is the number of voters who position c last.
So, we consider every c € C\RPandk e {0,...,n—1},and
search for a completion of P in which ¢ gains a score of at
least n—k and each ¢’ € RP gains a score of at most n—k — 1;
in other words, at most k voters position c last, and at least
k + 1 voters position ¢’ last, for every ¢’ € RP.

So, we fix ¢ and k. Recall that, for a voter v, we denote by
min(v) the set of candidates c that v can position last (i.e.,
v does not prefer c to any other candidate). We reduce the
problem to Polygamous Matching (Definition 4.1), which is
solvable in polynomial time (Proposition 4.2). In our con-
struction, V is the set of voters, U is the set of candidates,
and E = {(v,d) | d € min(v)}. We set the bounds as follows.

e a.=0and f. =k;
e g =k+1land - =n,forallc¢’ € RD,
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Figure 2: The Gaifman graphs of the queries from Ex-
amples 3.4 and 3.5. All the variables are WINNER vari-
ables, except for the shaded z.

e a.» = 0and f.» = n, for all other candidates c”.

In the construction, selecting an edge (v, d) means that v
positions d last. Hence, we get a “yes” instance if and only if
there is a completion T of P in which the score of ¢ is at least
n — k and the score of every ¢’ € RP isat mostn—k—1. O

The main tractability result of this section is Theorem 5.3
below, which generalizes both Lemma 5.1 and the tractability
results in [20] for the plurality rule and for UCQs in which
every CQ has pairwise disconnected WINNER atoms in its
Gaifman graph. As is well known, the notion of the Gaif-
man graph plays an important role in finite model theory
(see [22]). In this graph, the nodes are the variables of the
CQ and the edges consist of pairs of variables occurring in
the same atom. As an example, Figure 2 depicts the Gaif-
man graphs of the specific CQs that we mentioned so far
(Examples 3.4 and 3.5). A variable x that occurs in a WINNER
atom WINNER(x) is called a WINNER variable. We say that
the WINNER atoms are pairwise disconnected if every two
distinct WINNER variables belong to different connected com-
ponents of the Gaifman graph.

Example 5.2. As can be seen in Figure 2, the WINNER
atoms of the queries qo, q; and g, from Example 3.4 are
(pairwise) disconnected, but those of g3 are not. In particular,
this property is shared by every CQ with a single WINNER
atom, such as gl of Equation 2. In contrast, the property
does not hold for the queries g2, and ¢3, in the figure. O

Theorem 5.3 concerns the class of UCQs such that each
of their CQs has pairwise disconnected WINNER atoms. An
example of such a UCQ is the following query that asks
whether there exist two winners who belong to different ma-
jor parties and who disagree on the Trans-Pacific Partnership
issue.

(WINNER(X) , Cand(x,R,_), Position(x, TPP, yes)
WINNER(y) , Cand(y,D,_), Position(y, TPP, no)) U
(WINNER(X) , Cand(x,R,_), Position(x, TPP, no)
WINNER(y) , Cand(y,D,_), Position(y, TPP, yes))



Session 1: Incomplete Information

THEOREM 5.3. Let q be a UCQ such that the WINNER atoms
of each of its CQs are pairwise disconnected. If r is plurality or
veto, then Necessity(q, r) is solvable in polynomial time.

Proor. Let g be g; U- - - Ugqy, and consider an input (D, P)
to Necessity(q, r). We first make and justify some structural
assumptions about q. For i = 1,...,¢, if q; does not involve
any WINNER atom, then either D |= ¢; and then ¢ is nec-
essarily true on (D, P), or D |~ q; and then we can remove
q; from q without affecting the truth of q over the expan-
sions. Therefore, we will assume that each g; includes at least
one WINNER atom. We also assume that no g; contains two
identical WINNER atoms (with the same WINNER variable or
constant), since we can clearly remove copies of atoms from
a CQ while preserving equivalence.

With the above assumptions, we will assume that each g;
has the form

g0 = gi Ao A g,
where each (pf is a conjunction of atoms that includes pre-
cisely one WINNER atom, and no variable is shared among
two (p]l . We can make this assumption since the WINNER
atoms of g; are pairwise disconnected. Hence, an expansion
D U T satisfies g; if and only if D LI T satisfies each (pi inde-
pendently.

It thus follows that a counterexample to Necessity(q, r) is
a completion T of P such that the expansion D U T violates
at least one qa{’ for every i = 1,...,{. So, we iterate through

every combination ga{‘ e, qaéf and test whether there exists
a corresponding counterexample, that is, a completion T
such that D LI T violates every qa{’ If no such T is found, then
q is necessarily true. So, fix tp{l e, qué‘). Recall that every <p{l
contains precisely one WINNER atom. Fori =1,...,¢,let W;

be the set of candidates that satisfy ¢]', that is,

vi')-

Let W = W; U --- U Wy. The question at hand is whether
there exists a completion T such that W(r,T) is disjoint
from W. This is exactly the complement of the problem
Necessity(ql,,7) when the R relation is equal to W. Hence,
the theorem follows from the tractability of Necessity(ql,, )
when r is the plurality rule [20] and when r is the veto rule
(Lemma 5.1). O

W; def {c € C| DU {WINNER(c)} |=

In the next section, we discuss hardness and, in particular,
show that Theorem 5.3 covers all tractable cases of pure
positional scoring rules.

5.2 Hardness

The next result asserts that if r is a pure positional scoring
rule other than plurality and veto, the necessity problem is
already hard for the query ql,,.
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Figure 3: An illustration of the reduction in the proof
of Lemma 5.5 for k = 2.

PROPOSITION 5.4. Necessity(ql,,r) is coONP-complete for
every pure positional scoring rule r other than plurality and
veto.

Proor. We exhibit a reduction from the complement of
the possible unique winner problem: given a partial profile P
and a candidate c, determine whether c is a possible unique
winner. By Theorem 2.3, this problem is NP-complete for
every pure positional scoring rule r other than plurality and
veto. Given P and ¢, we construct the election database (D, P),
where D consists of a single unary relation RP = C\ {c}. For
a completion T of P, we have that D U T = g}, if and only
if W(r, T) includes a candidate other than c. Consequently,
ql, is necessary for (D, P) if and only if ¢ is not a possible
unique winner in P. O

By combining Theorem 5.3 and Proposition 5.4, we con-
clude that Necessity(ql,, r) is tractable when r is plurality or
veto, and intractable for every other pure positional scoring
rule. Next, we show that the query g2, is harder than ¢;,, in
the sense that g2, is hard for every pure positional scoring
rule, including plurality and veto. Hardness for plurality has
been shown by Kimelfeld, Kolaitis, and Stoyanovich [20].
The next lemma completes the picture with the veto rule.

LEMMA 5.5. If r is the veto rule, then Necessity(q%,,r) is
coNP-complete.

Proor. We exhibit a reduction from the complement of
the maximum independent set problem. We are given as input
a graph G = (V,E) and a natural number k, and the goal
is to determine whether G has an independent set of size
k. We construct an instance (D, P) of Necessity(q\zw, r), as
illustrated in Figure 3. The partial voting profile P is defined
as follows.



Session 1: Incomplete Information

e The candidate set C consists of all pairs (u, i), where
u is anode of G and 1 < i < k. We partition C into
parties Cy, . ..,Ck such that C; = {{u,i) | u € V}.

e There are k X (|[V| — 1) voters. Let Xi,...,X be a
partitioning of the voters such that every X; is of size
V]I -1.

e For 1 < i < k, the voters in X; have the same partial
preference: they prefer every candidate in C \ C; to
every candidate in C;; there are no preferences within
X; and no preferences within C \ Xj.

The database D consists of one binary relation R” that
contains all candidate pairs ({u, i), (u’,i’)) such that one of
the following holds:

eu=u'andi #1i;
e u # u’, but u is a neighbor of u” in g.

This concludes the construction. We complete the proof
by proving correctness, that is, Necessity(gZ,, r) is false for
(D, P) if and only if G has an independent set of size k.

We observe that, in every completion T of P, there are at
least k winners. Indeed, only voters from C; can veto (i.e.,
position as last) a candidate from X;, and |X;| = |C;| — 1, and
hence at least one candidate from C; has no vetoes at all in T.
In particular, that candidate gets the highest possible score
(namely, k X (]V| — 1)) and must be a winner. We conclude
that at least one candidates in C; is a winner in T, which
proves the observation.

If Ghasanindependent set U = {u], ..., u,’c} of size k, then
we construct a completion T of P as follows. For 1 < i < k,
every voter in X; vetoes a unique candidate from C; \ {{u, i)}.
Then we have that, in T, every candidate (u;, i) gains the
maximum score k X (|V|—1), since no candidate vetoes (u;, i).
Every other candidate ¢ gains the score of k X (|V| - 1) — 1,
since precisely one voter vetoed c. The winners in T are the
(u;, i). Since no tuple in RP contains two nodes among the
(ul, i), we get that DUT |~ g2,

Next, suppose that T is a completion of P where DUT |
¢2,. By the way we constructed RP, the winners must corre-
spond to different nodes in g, and no two nodes are neigh-
bours. From the above observation, it follows that g has an
independent set of size at least k. O

We then establish the following result.

THEOREM 5.6. If k > 1, then Necessity(¢X ,r) is coNP-
complete, for every pure positional scoring rule r.

Proor. We prove the theorem for k = 2. For k > 2,
coNP-hardness is proved by reducing Necessity(q2,,r) to
the problem Necessity(qX,, r). Kimelfeld, Kolaitis, and Stoy-
anovich [20] showed that Necessity(qZ,, r) is coNP-complete
when r is the plurality rule. Lemma 5.5 shows that this is
also the case when r is the veto rule. For the remaining posi-
tional rules, we reduce Necessity(q.,, r) to Necessity(qZ,, )
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and use Proposition 5.4. The reduction is simple: given an
instance (D, P) of Necessity(qL,,r), construct an instance
(D’,P) of Necessity(q2,, ) by setting the relation R”" to be
{(c,c) | c € RP}. O

If k > 2, then we can drop the assumption that the rule r
is pure and establish a hardness result that is much stronger
than that of Theorem 5.6. To the best of our knowledge,
this is the first general hardness result that applies to every
positional scoring rule, whether pure or not. The proof of
this result will appear in the full version of this paper.

THEOREM 5.7. If k > 2, then Necessity(gX ,r) is coNP-
complete for every positional scoring rule.

It remains an open problem to determine whether or
not Theorem 5.7 holds true for k = 2, that is, whether
Necessity(q2,, ) is coNP-complete for every positional scor-
ing rule, thus extending Theorem 5.6 to arbitrary positional
scoring rules.

6 QUERIES WITH WINNER AND
UNIQUE-WINNER ATOMS

In this section, we discuss the possibility and necessity prob-
lems for UCQs that involve UWINNER atoms. Thus, in this
section, the term UCQ refers to a union of conjunctive queries
whose atoms are WINNER atoms or UWINNER atoms or atoms
with relation symbols from the schema S.

We begin with a simple observation. Consider a CQ ¢
that contains one or more UWINNER atom. For an expan-
sion D U T to satisfy g, the relation UWINNERPYT should be
nonempty. By the semantics of UWINNER it must hold that
UWINNERPYT = WINNERPYT = {c} for some candidate c.
Moreover, a homomorphism from ¢ to D U T must assign all
the terms (variables and constants) that occur in UWINNER
and WINNER atoms the same value (the unique winner). Con-
sequently, we can unify these terms in q. More formally, let
Oy be the set of all the terms in the UWINNER and WINNER
atoms of g.

e If 6, contains no constants, we select a variable x € 6,
and replace in q every y € 6, with x.

e If ©, contains a single constant c, we replace in g every
variable y € 6, with c.

e If O, contains two or more constants, q is not satisfiable
(hence, if q is one of the CQs of a UCQ, then it can be
removed by the UCQ while preserving equivalence.

Therefore, in the remainder of this section, we will assume
that if a CQ ¢ contains at least one UWINNER atom, then it
contains a single UWINNER atom and no WINNER atoms. We
will use this assumption for analyzing the complexity of both
the possibility and the necessity problems.
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6.1 Possible Answers

The following theorem generalizes Theorem 4.4 to allowing
UWINNER atoms.

THEOREM 6.1. Let q be a Boolean UCQ (that may contain
WINNER and UWINNER atoms). If r is the plurality rule or the
veto rule, then Possibility (g, r) is solvable in polynomial time.

Proor. Consider an input (D, P) for Possibility(g, ). As
in the proof of Theorem 4.4, we may assume that g is a CQ. In
that proof, we have covered the case where q does not contain
UWINNER atom, so we assume that g contains UWINNER
atoms. In view of the discussion in the beginning of this
section, we may assume that g contains a single UWINNER
atom and no WINNER atoms.

For a candidate c, we denote by D, the database over S¢
where RP¢ = RP for every relation R € S and UWINNERD: =
WINNERP: = {c}. We have that a candidate c is a possible
unique winner if and only if there is a completion T of P such
that DU T = D.. Then, Possibility(q, r) is true on (D, P) if
and only if g evaluates to true on D, for some possible unique
winner ¢. From Theorem 2.3, it follows that computing the set
of possible unique winners, PU, can be done in polynomial
time if r is the plurality rule or the veto rule. O

For the remaining pure positional scoring rules, the hard-
ness of Possibility(q.,r) and Possibility(¢~ , ) that we dis-
cussed in Section 4.2 continues to hold if we replace the
WINNER relation symbol with UWINNER,; this is because de-
termining whether a candidate is a possible unique winner
is also NP-hard (Theorem 2.3). On the other hand, consider
the following query, which asks whether a winner exists.

qaw() :— WINNER(x)

The possibility (as well as necessity) of this query is trivial,
as it is always true. Yet, as we show next, it becomes NP-hard
for some voting rules if WINNER is replaced with UWINNER:

qauw() :— UWINNER(x)

The problem Possibility(q3uw, r) asks whether there is a
completion with a unique winner, which is now nontriv-
ial. We can show NP-hardness for the case where r is the
k-approval rule, for k > 1, by adapting the proof of Xia and
Conitzer [27, Theorem 2] for the NP-hardness of the possible
unique-winner problem.

THEOREM 6.2. For every k > 1, if r is the k-approval rule,
then Possibility (qauw, ) is NP-complete.

Proor. Xia and Conitzer [27] prove that the problem of
determining whether a candidate is a possible unique winner
is NP-complete for k-approval, for every k > 1. They do so
by building a reduction from 3-satisfiability. In more detail,
given a propositional formula ¢, they construct an instance
(P, c) where ¢ is satisfiable if and only if ¢ is a possible unique
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winner. In this construction, ¢ is a necessary winner in P.
Hence, if there is any unique winner in a completion T, then
this unique winner must be c. Therefore, their reduction is
also a reduction to the problem of whether a possible unique
winner exists, that is, Possibility (qauw, r)- O

Recall that, by Theorem 6.1, we have a polynomial-time al-
gorithm for Possibility(qauw, r) when r is the plurality rule,
i.e., when r is k-approval with k = 1; thus, the case of k-
approval is settled for every k > 1. Nevertheless, the com-
plexity of Possibility(q3uw, ) remains an open problem for
every positional scoring rule other than k-approval and veto.

6.2 Necessary Answers

We now consider the necessity problem for UCQs that in-
volve the UWINNER relation symbol. Our result here is the
tractability for the plurality and veto rules, where we gener-
alize Theorem 5.3 to allow for arbitrary disjuncts (CQs) with
UWINNER atoms.

So, suppose that r is the plurality rule or the veto rule. Let
us start with a conjunctive query g that contains a UWINNER
atom. As mentioned in the beginning of the section, we
may assume that g contains a single UWINNER atom and
no WINNER atoms. Given an input (D, P), let U be the set
of all candidates ¢ such that D U T |= g, whenever c is a
unique winner. Then Necessity(q, r) is true if and only if
Possibility(q’, r) is false for (D’, P) where ¢’ is defined by

q(0 - (WINNER(x), WINNER(Y) , Rx(x, y)) v
(WINNER(Z) , RU(z))

and D’ consists of the fact R, (cy, ¢;) for all candidates ¢; and
cz such that ¢; # ¢z, and the fact R (c) for all candidates ¢
that are not in U. Note that g’ states that either there are two
distinct winners (hence, UWINNER is empty) or there is a win-
ner that violates q. Theorem 6.1 implies that Possibility(q’, r)
is solvable in polynomial time, thus Necessity(q, r) is solv-
able in polynomial time. In fact, the following generalization
of Theorem 5.3 shows a stronger result, the proof will appear
in the full version of this paper.

THEOREM 6.3. Let q be a UCQ where in each CQ ¢’, either
q’ contains a UWINNER atom or the WINNER atoms are pair-
wise disconnected. If r is the plurality or the veto rule, then
Necessity(q, r) is solvable in polynomial time.

For other positional scoring rules, the complexity remains
unresolved, even for the query ga.w, where the goal is to
determine whether there is always a single winner (whose
identity may differ from one completion to another).

7 FIXED PARAMETER TRACTABLE

Here, we investigate the possibility and necessity problems
through the lens of parameterized complexity. We show that,
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Table 2: Complexity of UCQs for positional scoring rules. Each row applies to every rule in the list. A lower bound
for answers refers to the existence of a UCQ with the corresponding complexity. “U” stands for “Unique” and
refers to UCQs with UWINNER atoms and no WINNER atoms, “D/U” stands for “Disconnected/Unique” and refers

to the condition of Theorem 6.3, and “?”

means that no complete classification is known.

U
Possible Possible Necessary Necessary Necessary ~ D/U Necessary
Rule Winners Answers Winners Answers Answers Answers
plurality, veto P P (Thm 4.4, 6.1) P coNP-c. (Thm 5.6) P (6.3) P (Thm 5.3, 6.3)
pure \ {plurality, veto} | NP-c. NP-c. P coNP-c. (Prop 5.4) ? coNP-c. (Prop 5.4)
non-pure ? ? P coNP-c. (Thm. 5.7) ? ?
taking the number of candidates as a parameter, it is Fixed
Parameter Tractable (FPT) to compute the possible and nec- Forevery Pand T: Xpg € N
essary answers to every fixed UCQ. Thus, we generalize
the result by Betzler et al. [5] asserting that the possible- For every P : Z Xpr = |Vpl.
winner problem is FPT, where the parameter is the number TeLp

of candidates. Towards this goal, we first prove the following
generalization, which implies that, under fixed parameter
tractability, we can actually produce all possible winner sets.

THEOREM 7.1. Let r be a positional scoring rule. The fol-
lowing decision problem is FPT with parameter the number
|C| of candidates : given a partial profile P over the set C of
candidates, and a subset S C C, is there a completion T such
that W(r,T) = S?

Proor. We adopt the approach that has been used for de-
signing FPT algorithms for computational social choice [5,
28], namely, an FPT reduction to the feasibility of an Integer
Linear Program (ILP), where the parameter is the number
of variables. This problem is known to be FPT via an al-
gorithm designed by Lenstra [15] (and later improved by
Kannan [16]).

We need some notation. We denote the partial profile P
by (Pi,...,Py). For a partial order P over C, let Vp be the
set {i | P; = P} (thus, Vp represents the set of voters that
have the partial preference P) and let Lp be the set of all
linear extensions of P (thus, Lp consists of total orders over
C). Note that the Vp’s form a partition of the set of voters.
Recall that for a total order T over C and for a candidate
¢, we denote by s(T, c) the score value that T assigns to ¢
according to r; in other words, if ¢ is the jth element of T, then
s(T,c) = r(m, j). We assume that C is nonempty (otherwise,
the answer is trivially false), and we fix a candidate ¢, € C.

Our ILP uses a variable Xp 7 for each partial order P and
linear extension T € Lp. An assignment to Xp 1 represents
a (feasible) number of voters i in Vp that have their partial
order (i.e., P;, which is equal to P) completed into T. Our ILP
specifies constraints that assert the feasibility of the Xp, 7.
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To simplify the presentation, we also use a variable Y,
for every candidate c, that holds the total score gained by c.
Hence, the Y, are realized via the following set of constraints.

Z S(T, C) 'XP,T-

ForeveryceC: Y, = Z
P TeLp

In addition, the ILP contains constraints that assert that
the score of ¢y is the same as that of every ¢ € S.

ForeveryceS: Y, = Y.

Moreover, the ILP contains constraints that assert that the
score of ¢ is strictly larger than that of every candidate who
is not in S.

Foreveryce C\S: Y, > Y.

This completes the description of the ILP. To complete the
proof, observe that the ILP has a solution if and only if there
is a completion T of P such that W(r, T) = S. Also, observe
that the number of variables Xp 1 and Y, depends (in a single-
exponential manner) only on the number of candidates. In
fact, the same holds for the number of constraints. The only
components of the program that depend on the number of
voters are the constants |Vp|. O

From Theorem 7.1, we derive the following fixed parame-
ter tractability result.

COROLLARY 7.2. Let S be a schema and let g be a UCQ over
S¢€. There is an FPT algorithm for computing the possible and
necessary answers to q, where the parameter is the number of
candidates.

ProoF. From Theorem 7.1 it follows that we can material-
ize all expansions D LT for the input (D, P), by constructing
every feasible relation WiNNERPYT and its corresponding
UWINNERPYT, Then, by definition, the possible answers are
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the union of the g(D U T), and the necessary answers are
the intersection of the g(D U T). O

A perusal of the proof of Theorem 7.1 reveals that Corol-
lary 7.2 holds even for queries richer than UCQs. In fact, the
corollary is true for every query g with a polynomial-time
data complexity over ordinary databases (e.g., every safe
query in relational calculus).

8 CONCLUDING REMARKS

We investigated the complexity of evaluating queries over
election databases. We focused on the possibility and ne-
cessity problems for Boolean UCQs and positional scoring
rules. The state of affairs is summarized in Table 2. While
our study unveiled that these problems are often intractable,
we have also established several different tractability results.
In particular, the tractability side of the classification for the
possible-winner problem [3, 4, 21, 27] generalizes to the pos-
sibility problem for UCQs under the plurality rule and the
veto rule. In contrast, the tractability of the necessary-winner
problem under every positional scoring rule [27] does not
generalize to the necessity problem for Boolean UCQs; this
reveals a fundamental difference between computational so-
cial choice and election databases. Finally, we showed that
the possibility and necessity problems are fixed-parameter
tractable when the parameter is the number of candidates;
this is an appropriate parameter in such situations as politi-
cal elections, where there are many voters but only a handful
of candidates.

We have already listed several different open problems.
We conclude the paper with additional open problems and
directions for future investigation. First, as we mentioned in
the body of the paper, some of our results go beyond the class
of UCQs; nonetheless, very little is known at present about
more expressive classes of queries. Furthermore, we have not
considered voting rules that fall outside the class of positional
scoring rules, such as Copeland’s method, Simpson’s rule,
and Bucklin voting?. Future research also includes queries
that involve multiple elections and multiple voting rules [20].

Another direction for future research is that of probabilis-
tic voters, adopting statistical models of preferences, such
as the uniform distribution over the linear extensions, Mal-
lows [24] and the Repeated Insertion Model (RIM) [11]. The
analog of computing necessary/possible winners is to com-
pute the probability that a candidate wins [2, 13, 17, 23]. In
the framework of election databases, the analog is proba-
bilistic query answering, where the goal is to compute the
marginal probability of query answers [10, 26]. The evalua-
tion of CQs over databases with RIM preferences has been

2See, e.g., [27] for a description of these and other voting rules.
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studied in past research [9, 19], but without the angle of
elections and social choice.
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