
Query Evaluation in Election Databases
Benny Kimelfeld

Technion

Haifa, Israel

bennyk@cs.technion.ac.il

Phokion G. Kolaitis

UC Santa Cruz

and IBM Research-Almaden

California, USA

kolaitis@soe.ucsc.edu

Muhammad Tibi

Technion

Haifa, Israel

m7mdtb@cs.technion.ac.il

ABSTRACT

Election databases are the main elements of a recently in-

troduced framework that aims to create bridges between

the computational social choice and the data management

communities. An election database consists of incomplete

information about the preferences of voters, in the form of

partial orders, alongside with standard database relations

that provide contextual information. Earlier work in compu-

tational social choice focused on the computation of possible

winners and necessary winners that are determined by the

available incomplete information and the voting rule at hand.

The presence of the relational context, however, permits the

formulation of sophisticated queries about voting rules, can-

didates, potential winners, issues, and positions on issues.

Such queries can be given possible answer semantics and

necessary answer semantics on an election database, where

the former means that the query is true on some completion

of the given partial orders and the latter means that the query

is true on every such completion.

We carry out a systematic investigation of query evalua-

tion on election databases by analyzing how the interaction

between the partial preferences, the voting rules and the

relational context impacts on the complexity of query eval-

uation. To this effect, we focus on positional scoring rules

and unions of conjunctive queries. We establish a number of

results that delineate the complexity of the possible answers

and of the necessary answers for different positional scor-

ing rules and for various classes of unions of conjunctive

queries. Furthermore, we show that query evaluation is fixed-

parameter tractable, where the parameter is the number of

candidates in the election.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PODS’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6227-6/19/06. . . $15.00

CCS CONCEPTS

• Theory of computation → Incomplete, inconsistent,

anduncertain databases;Database query languages (prin-

ciples); • Applied computing→ Voting / election tech-

nologies;

KEYWORDS

Necessary and Possible Answers; Computational Social Choice;

Positional Scoring Rules.

1 INTRODUCTION

During the past two decades, computational social choice has

emerged as an interdisciplinary area between social choice

theory, economics, mathematics, logic, and computer sci-

ence. Social choice theory studies how votes or, more broadly,

preferences of individual members of a society can be aggre-

gated in such a way that the society arrives at a collective

decision. Social choice theory has a long history that spans

several centuries, from the analysis of voting manipulation

by Pliny the Younger in Ancient Rome to the study of par-

ticular voting rules by Jean-Charles de Borda and Marquis

de Condorcet in the 18th Century (now known as the Borda

rule and the Condorcet method, respectively), to, more re-

cently, the ground-breaking work on dictatorial aggregation

by Kenneth Arrow in the 1950s. (See [8] for a brief history

of social choice theory.)

Computational social choice infuses an algorithmic per-

spective into social choice theory. In particular, the computa-

tional aspects of preference aggregation in an election have

been a focal point of research in this area. It is often the case,

however, that preferences are only partial, since, for example,

a voter may be undecided between two candidates, or our

knowledge of the voter’s preference is incomplete. For this

reason, Konczak and Lang [21] introduced the notions of

necessary winners and possible winners as those candidates
who win in every completion, and at least one completion,

respectively, of the given partial preferences. This work even-

tually led to a classification of the computational complexity

of the necessary and possible winners for a variety of voting

rules [3, 4, 27].

Arguably, the positional scoring rules form the most ex-

tensively studied class of voting rules. Under such a rule,

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

32

every candidate receives from every voter a score that is de-

termined only by the position of the candidate in the voter’s

ranking. Hence, a positional scoring rule is defined by a

sequence of scoring vectors that specify the score for each

position (there is a scoring vector of lengthm, for eachm ≥ 1,

wherem stands for the number of candidates). A winner in
an election is a candidate who achieves the highest total

score from the voters. Thus, in general, there may be several

winners in an election, in which case they are also referred

to as co-winners. It is conceivable, however, that only one

candidate achieves the highest total score from the voters,

in which case that candidate is a unique winner. The plural-
ity rule and the veto rule are two well known examples of

positional scoring rules. The scoring vectors of the plurality

rule are of the form (1, 0, . . . , 0), while the scoring vectors

of the veto rule are of the form (1, 1, . . . , 1, 0). Thus, under
the plurality rule, the winners are the candidates who are

at top of the ranking of as many voters as possible, while,

under the veto rule, the winners are the candidates who are

the bottom of the ranking of as few voters as possible.

We focus on positional scoring rules whose scoring vec-

tors are computable in polynomial time in the number of

candidates. Under such rules, the necessary winners can be

computed in polynomial time [21, 27]. The possible answers

can be computed in polynomial time under the plurality

and veto rules, but their computation is NP-complete for

any other pure rule, as established in a sequence of stud-

ies [3, 4, 21, 27]. A positional scoring rule is pure if, for all
m > 1, the scoring vector form candidates is obtained from

the scoring vector form − 1 candidates by inserting a new

score into the vector.

Elections or polls do not take place in a vacuum; instead,

they take place in a context in which an abundance of ad-

ditional information may be available, including informa-

tion about the candidates (gender, age, education, wealth),

information about issues and positions of candidates on is-

sues, and information about campaign contributions (donors,

amounts, recipients). Thus, one may be interested in formu-

lating and answering queries that take into account both

the given partial preferences and the contextual information

available.

The preceding considerations motivated Kimelfeld, Ko-

laitis, and Stoyanovich [20] to introduce a new framework

that aims to create, for the first time, bridges between the

computational social choice and the database management

communities.

The main conceptual contribution of [20] is the devel-

opment of rigorous semantics of queries that involve both

partial preferences and contextual information about candi-

dates, issues, positions, and so on. To this effect, the notions

of necessary answers and possible answers to queries were in-

troduced as an extension of the notions of necessary winners

and possible winners. To appreciate the difference between,

say, necessary winners and necessary answers, consider the

Boolean query q that asks whether or not there is a winner

who is Republican. Given a set P of partial orders represent-

ing the (partial) preferences of voters, it is conceivable that

no single candidate is a winner in every completion T of P,
which implies that the set of necessary winners is the empty

set. Yet, it is also conceivable that in every completion T of

P one of the winners is a Republican, hence the necessary

answers of the query q is “yes.” In particular, this example

shows that the necessary answers to queries cannot always

be obtained from the necessary winners.

As regards technical contributions, a study of the neces-

sary answers of conjunctive queries was initiated in [20]

and some preliminary complexity results were obtained. In

particular, it was shown that there are natural conjunctive

queries involving winners and database relations such that

computing the necessary answers of these queries under the

plurality rule is coNP-complete. This contrasts sharply with

earlier results in computational social choice to the effect

that, as previously mentioned, there is a polynomial-time

algorithm for computing the necessary winners under every

positional scoring rule, including the plurality rule [21, 27].

Summary of results. We carry out a systematic investiga-

tion of the algorithmic aspects of query evaluation on election
databases, that is, databases that consist of standard database

relations and a set of partial orders representing the pref-

erences of voters. We analyze how the interaction between

the partial preferences, the voting rules and the relational

context impacts on the computational complexity of query

evaluation. We establish a number of results that delineate

the complexity of the possible answers and of the necessary

answers for various classes of unions of conjunctive queries

and under different positional scoring rules.

The scope of our investigation is broader than that in [20]

along several different dimensions. First, while only the nec-

essary answers to queries were investigated in [20], here we

investigate both the necessary answers and the possible an-

swers to queries. Second, most of our results cover arbitrary

pure positional scoring rules, thus they go well beyond the

plurality rule and a few other voting rules studied in [20].

Third, we consider queries that involve not only winners, but

also unique winners, while only queries involving winners

(but not unique winners) were considered in [20].

To give a taste of our findings, we state here a few of the

results obtained in this paper. For the possible answers, we

show that if q is an arbitrary union of Boolean conjunctive

queries that may involve winners and unique winners, then

there are polynomial-time algorithms for computing the pos-

sible answers to q under the plurality rule or under the veto

rule. This gives a fairly complete picture for the class of

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

33

pure positional scoring rules, because the aforementioned

NP-hardness results for the possible winners [3, 4, 27] imply

the NP-hardness of the possible answers of unions of con-

junctive queries under pure positional scoring rules other

than plurality and veto.

As for the necessary answers, we consider the Boolean

conjunctive query qkwr () for every k ≥ 1, where

qkwr () :− Winner(x1), . . . ,Winner(xk),R (x1, . . . ,xk) .

We show that there are polynomial-time algorithms for com-

puting the necessary answers of q1

wr under the plurality rule

or the veto rule, but computing the necessary answers of q1

wr
is coNP-complete under every other pure positional scoring

rule. We further show how the tractable cases generalize

from q1

wr to a wide class of unions of conjunctive queries

where, in each disjunct, the Winner atoms are disconnected.

In contrast, we prove that for everyk > 1, computing the nec-

essary answers of qkwr is coNP-complete under every pure

positional scoring rule (including plurality and veto). For

k > 2, this hardness applies to every positional scoring rule,

pure or not.

Finally, we examine query evaluation using the lens of

parameterized complexity and we show that evaluation of

unions of conjunctive queries is fixed-parameter tractable,

where the parameter is the number of candidates in the

election.

Organization. The rest of the paper is structured as follows.
In Section 2, we give the basic definition and terminology,

and in particular, describe briefly the framework of election

databases in [20]. In Sections 4 and 5, we study the possibility

and necessity problems, respectively, for queries that involve

winners but not unique winners. In Section 6, we extend our

study to queries that involve unique winners. In Section 7,

we study the parameterized complexity of the possibility and

necessity problems, and then conclude in Section 8.

2 PRELIMINARIES

This section contains the definitions of the main concepts

and background material.

2.1 Databases and Queries

A (relational) schema S is a collection of relation symbols
with each relation symbol R in S having an associated arity

that we denote by ar (R). We assume a countably infinite set

of constants that are used as database values. A relation is a

set of tuples of constants, each having the same arity (length)

that we denote by ar (T). A database D (over the schemaS) is

a collection of relations such that for each relation symbol R,
the database D contains a relation RD with ar (R) = ar (RD).
The active domain of D, denoted by adom(D), is the set of
all constants occurring in relations in D.

A query is a function that maps databases to relations.

Formally, a query q of arity ar (q) is a function that maps

every database over S to a finite relation q(D) of arity ar (q)
on the active domain adom(D). We say that each tuple in

q(D) is an answer to q on D. If the arity of q is zero, then we

say that q is a Boolean query; in this case, D |= q denotes that

q(D) consists of the empty tuple (), while D ̸ |= q denotes

that q(D) is empty.

A conjunctive query (CQ) q over the schema S is a query

definable by a first-order formula of the form

∃y1 · · · ∃ymθ (x, y1, . . . , ym),

where θ is a conjunction of atomic formulas with variables

among those in x, y1, . . . , ym . In the sequel, conjunctive

queries will be written as logic rules, i.e., as expressions

of the form

q(x) :- R1 (t1), . . . ,Rn (tm)

where each Ri is a relation symbol of S, each ti is a tuple of
variables and constants with the same arity as Ri , and x is

a tuple of k variables from t1, . . . , tm . We call q(x) the head
of q, and R1 (t1), . . . ,Rn (tm) the body of q; each Ri (ti) is an
atom of q. The variables occurring in the body but not in

the head are existentially quantified. The answers to q on a

database D are the projections to x of all homomorphisms

from q to D.
A union of conjunctive queries (UCQ) is an expression q of

the form q1 ∪ · · · ∪ qℓ , where each qi is a conjunctive query
and all qi s have the same arity (i.e., the arity ar (q) of q). If D
is a database, then q(D) = q1 (D) ∪ · · · ∪ qℓ (D).

2.2 Voting Profiles and Voting Rules

We now recall the basic terminology of voting theory in com-

putational social choice. For additional background material,

we refer the reader to the handbook of computational social

choice [7] and, in particular, to the chapter on incomplete

information in voting [6]. Let C = {c1, . . . , cm } be a set of
candidates, and letV = {v1, . . . ,vn } be a set of voters. A com-
plete voting profile is a tuple T = (T1, . . . ,Tn), where each Ti
is a total order over C , representing the ranking (preference)

of votervj of the candidates inC . A voting rule r is a function
that maps every complete profile T into a setW(r ,T) ⊆ C of

winners. We say that a candidate c is a winner if c ∈W(r ,T);
we also say that c is a unique winner if W(r ,T) = {c}. We

write U(r ,T) to denote the set of unique winners; note that

U(r ,T) is either a singleton or the empty set. On occasion,

we will use the term “co-winner” to emphasize that we refer

to a winner who is not necessarily unique.

In this paper, we focus on the class of positional scoring
rules, which is arguably the most extensively studied class

of voting rules in computational social choice.

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

34

T1

T1 D T H B
T2 H T B D
T3 D H B T
T4 D B H T
T5 B H T D

r (m, ·) 1 1 0 0

Winner

Hillary
Donald

UWinner

T2

T1 D T B H
T2 H D T B
T3 D H T B
T4 D B T H
T5 B H T D

r (m, ·) 1 1 0 0

Winner

Donald

UWinner

Donald

(a) Complete voting profiles T1 = (T 1

1
, . . . ,T 1

5
), T2 = (T 2

1
, . . . ,T 2

5
)

over the candidates Bernie, Donald, Hillary and Ted, together

with corresponding sets of winners and unique winners. Can-

didates are denoted by the first letter of their name (e.g., D for

Donald); the order is from left to right, the leftmost being the

most preferred.

P5P4P3P2P1

D

T

B D

H T

B D

H T

BDB

TH

D

H T

B

H

(b) A partial voting profile P = (P1, . . . , P5); an edge c → d de-

notes that c is preferred to d .

Cand
name party birth
Bernie D 1941
Donald D 1947
Hillary R 1946

Ted R 1970

Donate
donor type cand
Soros indv Hillary
Trump indv Donald
UAPE PAC Hillary
UAPE PAC Ted
Wilks indv Ted

Position
cand issue pos

Hillary TPP yes
Donald TPP no
Bernie TPP no
Ted TPP no

Hillary PPACA yes
Donald PPACA no
Bernie PPACA yes
Ted PPACA no

(c) A database D over a schema S

Figure 1: Examples of profiles, a partial profile, and

a database. Viewed bottom up, this an example of an

election database (D, P) and two expansions D⊔T1
and

D ⊔ T2
.

A positional scoring rule r is a function that maps every

numberm to a scoring vector (r (m, 1), . . . , r (m,m)) of nat-
ural numbers, called the score values, such that r (m, 1) ≥

r (m, 2) . . . ≥ r (m,m). Here,m is the number of candidates

and r (m, j) is the score that a candidate is awarded whenever
she is at the jth position of a voter. We denote by r (·,m) the
vector (r (1,m), . . . , r (m,m)). Suppose that T = (T1, . . . ,Tn)
is a complete voting profile. The score s (Ti , c) of a candidate
c on Ti is the value r (m, j) where j is the position of candi-

date c in Ti . When the positional scoring rule r is applied
to T = (T1, . . . ,Tn), it assigns to each candidate c the sum∑n

i=1
s (Ti , c) as the score of c . A candidate is a winner if her

score is greater or equal to the score of all candidates. Conse-

quently, a candidate is a unique winner if her score is strictly
greater than that of all other candidates. We now give several

examples of well known positional scoring rules.

• The plurality rule (1, 0, . . . , 0), where the winners are
the candidates that voters most frequently rank first.

• The k-approval rule (1, . . . , 1, 0, . . . , 0) that starts with
k ones and then 0’s, where the winners are the candi-

dates that voters most frequently rank among the top

k .
• The veto rule (1, . . . , 1, 0), where the winners are the
candidates that voters least frequently rank last.

• The k-veto rule that starts with 1’s and ends with k
zeros, where the winners are the candidates that voters

least frequently rank among the bottom k .
• The Borda rule (m − 1,m − 2, . . . , 0), where the score
of a candidate is the position itself minus 1 in reverse

order.

We assume that the scoring rule r is such that the score

values r (m, i) are computable in polynomial time inm. Hence,

W(r ,T) and U(r ,T) are also computable in polynomial time

in the size of T . To avoid trivialities, we assume that every

r (·,m) contains at least two different score values, that is,

r (m, 1) > r (m,m) holds for allm > 1. It follows thatW(r ,T)
is always nonempty, while U(r ,T) is either a singleton or

the empty set (the latter is the case when |W(r ,T) | > 1). We

also assume that for allm > 1, the score values in r (·,m) are
co-prime numbers (i.e., their biggest common divisor is 1),

since multiplying all score values by the same number has

no impact on the outcome of the rule.

The rule r is pure if for everym ≥ 2, the scoring vector

r (·,m) is obtained from r (·,m − 1) by inserting a score value

at some position. All aforementioned positional scoring rules

(plurality, k-approval, veto, k-veto, and Borda) are pure.

Example 2.1. Our running example is taken from the 2016

US presidential elections. There are four candidates, Bernie,
Donald,Hillary, and Ted, and five voters. Figure 1a shows two
voting profiles T1

and T2
, each consisting of five linear or-

ders (presented as sequences) over the candidates. (The other

parts of Figure 1 will be discussed later on.) The positional

scoring rule is 2-approval (which, in this case, is also 2-veto),

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

35

and it is shown below each profile. The scores of the candi-

dates Bernie, Donald, Hillary, and Ted in T1
are, respectively,

2, 3, 3 and 2. Hence,W(r ,T1) consists of Donald and Hillary,

while U(r ,T1) is empty since there is no unique winner. In

T2
, the scores of these candidates are, respectively, 2, 4, 3

and 1; thus,W(r ,T2) consists of just Donald. Since Donald
is the unique winner, we have that U(t ,T2) also consists of

Donald. □

2.3 Partial Profiles

Often, our knowledge about the voter preference is only

partial. Missing information in preferences is commonly

modeled using a partial order, that is, a relation ⪰ that is

reflexive, (a ⪰ a), transitive, (a ⪰ b and b ⪰ c imply a ⪰ c),
and antisymmetric, (a ⪰ b and b ⪰ a imply a = b), but not
necessarily total (it may be the case that neither a ⪰ b nor

b ⪰ a holds). A completion of a partial order is a total order

that extends that partial order. A partial order may have

exponentially many completions.

A partial voting profile is a tuple P = (P1, . . . , Pn), where
each Pi is a partial order of the set C of candidates, repre-

senting the partial ranking (partial preference) of voter vj
on the candidates. A completion of a partial voting profile

P = (P1, . . . , Pn) is a complete voting profile T = (T1, . . . ,Tn)
such that each Ti is a completion of the partial order Pi . The
notions of possible and necessary winners were introduced

by Konczak and Lang [21].

Let r be a voting rule and P a partial voting profile.

• The set PW(r , P) of the possible winnerswith respect to
(w.r.t.) r and P is the union of the setsW(r ,T), where
T varies over all completions of P.
• The set NW(r , P) of the necessary winners w.r.t. r and
P is the intersection of the setsW(r ,T), where T varies

over all completions of P.
• The set PU(r , P) of the possible unique winners w.r.t. r
and P is the union of the sets U(r ,T), where T varies

over all completions of P.
• The set NU(r , P) of the necessary unique winnersw.r.t. r
and P is the intersection of the sets U(r ,T), where T
varies over all completions of P.

In other words, a candidate c is a possible winner (respec-
tively, a possible unique winner) with respect to r and P if

c is a winner (respectively, a unique winner) in at least one

completion T of P. Also, c is a necessary winner (respectively,
a necessary unique winner) with respect to r and P if c is a
winner (respectively, a unique winner) in every completion

T of P. Observe that NW(r , P), PU(r , P) and NU(r , P) can be

empty, but PW(r , P) is never empty (since every completion

has at least one winner). Moreover, there can be any number

of possible unique winners, but there can be at most one

necessary unique winner.

Example 2.2. Continuing our running example, Figure 1b

depicts a partial voting profile P that consists of five partial

orders of the five voters (represented as directed acyclic

graphs) over the four candidates. It is easy to verify that both

T1
and T2

in Figure 1a are completions of P.
From the discussion in Example 2.1, we conclude that

Donald and Hillary are both possible winners. Note that

there is a completion in which Ted is a winner (e.g., Ted

gets a unit score value from the first four voters), and, in

fact, the unique winner. Bernie, however, cannot win in any

completion. To see this, observe that he must be ranked no

higher than third by the first three voters (so, gets a zero

score from these voters), thus the maximum score he can

get is 2. Among the ten units granted by the five voters, at

least one candidate must get a score of 3, and therefore, will

surpass Bernie. Via a similar reasoning, we conclude that

the maximum score that Hillary can get is 3, and hence, it

is impossible for her to be the single winner (since there is

always another candidate with 3 or more units). Thus, Hillary

is a possible winner, but not a possible unique winner.
Finally, we observe that for every one of the four candi-

dates, there is a completion where the candidate does not

win. (In particular, T2
provides such an example for every

candidate other than Donald, so it remains to find one just

for Donald.) Therefore, no candidate is a necessary winner.

In conclusion, it holds that

• NW(r , P) = NU(r , P) = ∅;
• PW(r , P) = {Donald,Hillary,Ted};
• PU(r , P) = {Donald,Ted}. □

On the face of the definitions, computing possible and

necessary (unique or not) winners requires exponential time

since a partial order may have exponentially many comple-

tions. There is a substantial body of research on the computa-

tional complexity of the necessary and the possible winners

for a variety of voting rules. The following complete classifi-
cation of the complexity for all pure positional scoring rules

was obtained through the work of Konczak and Lang [21],

Xia and Conitzer [27], Betzler and Dorn [4], and Baumeister

and Rothe [3].

Theorem 2.3. [Classification Theorem] Let r be a pure
positional scoring rule.

(1) If r is the plurality rule or the veto rule, then there is a
polynomial-time algorithm for computing PW(r , P) and
PU(r , P), given a partial voting profile P. Otherwise, the
following two problems are NP-complete: given a partial
voting profile P and a candidate c , determine whether
c ∈ PW(r , P), and determine whether c ∈ PU(r , P).

(2) There is a polynomial-time algorithm for computing
both NW(r , P) and NU(r , P), given a partial voting pro-
file P.

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

36

Put Theorem 2.3 differently, it is NP-hard to compute the

possible winners for all pure positional scoring rules, with

the exception of plurality and veto where the possible win-

ners can be found in polynomial time. In contrast, the neces-

sary winners can be computed in polynomial time for every

pure positional scoring rule; in fact, this tractability result

holds for every positional scoring rule (pure or not) [27].

3 ELECTION DATABASES

Here, we review the framework of Kimelfeld, Kolaitis, and

Stoyanovich [20] that brings together computational social

choice and relational databases. The aim is to have a unifying

setting for analyzing partial voting profiles in the context of

a database that holds information about candidates, voters,

and issues.

Informally, an election database consists of a partial pro-
file P and a database D that provides contextual information

about the candidates (and beyond), as illustrated in Figure 1.
1

If r is a voting rule, then each completion T of P gives rise to

an expansion of D obtained by augmenting D with the unary

relationsW(r ,T) and U(r ,T) of the winners and unique win-
ners.

We now give the precise definition of an election database.

Let S be a schema and let Winner and UWinner be

two new unary relation symbols that will be interpreted

by the set of the winners and the set of unique winners,

respectively. Let Se
be the schema obtained by augment-

ing S with these two unary relation symbols, that is, Se =

S ∪ {Winner,UWinner}.

Definition 3.1 (Election Database). An election database
over a schema S is a pair (D, P), where D is a database over

S and P is a partial voting profile. Let r be a voting rule. Each
completion T of P gives rise to an expansion D ⊔ T of (D, P)
under r such that:

• D ⊔ T is a database over the relational schema

Se = S ∪ {Winner,UWinner};

• RD⊔T = RD , for every relation symbol R of S;

• Winner
D⊔T =W(r ,T);

• UWinner
D⊔T = U(r ,T).

Example 3.2. The schema S of our running example con-

sists of the relation symbols Cand, Position and Donate that
are instantiated in the database D of Figure 1c. The Cand re-

lation includes information about the candidates (e.g., Bernie

was born in 1941 and is currently with the Democratic Party),

the Position relation contains the positions of the candidates

on issues (e.g., Hillary supports the Trans-Pacific Partner-
ship (TPP), and Donald opposes the Patient Protection and

1
The information in the figure is taken fromDiffen (https://www.diffen.com)

and The New York Times (https://www.nytimes.com/interactive/2016/us/

elections/top-presidential-donors-campaign-money.html).

Affordable Care Act (PPACA), known as Obamacare), and
the Donate relation contains information about donations

to candidate (e.g., the individual Soros donated to Hillary,

while the political action committee (PAC) UAPE donated to

Ted). Combined with the partial profile P described in the

figure (and discussed in Example 2.2), we get the election

database (D, P).
Recall the completions T1

and T2
of Figure 1a. Shown to

the right of each completion are the Winner and UWinner

relations of the corresponding expansion. InT1
, the UWinner

relation is empty, since the winners are Donald and Hillary.

Yet, in T2
, the Winner and UWinner relations are the same,

since there is a unique winner (namely, Donald). □

3.1 Necessary and Possible Answers

Next, we recall the definitions of the necessary and possible

query answers from [20]. Let S be an schema, (D, P) an
election database, q a query over Se

, and r a voting rule. Let

a be a tuple of constants of arity ar (q).
• We say that a tuple a is a possible answer if a ∈ q(D⊔T)
for some expansion D ⊔ T.
• We say that a tuple a is a necessary answer if a ∈
q(D ⊔ T) for every expansion D ⊔ T.

In terms of data complexity, the problem of computing the

possible and necessary answers of CQs and UCQs amounts

to the evaluation of Boolean queries.

Definition 3.3 (Possibility/Necessity Problem). Let S be a

schema, q a Boolean query over Se
and r a voting rule.

• Possibility(q, r) is the following decision problem: given

(D, P), is q possibly true (i.e., does D ⊔ T |= q for some

expansion D ⊔ T of (D, P))?
• Necessity(q, r) is the following decision problem: given

(D, P), is q necessarily true (i.e., does D ⊔ T |= q for

every expansion D ⊔ T of (D, P))?

Example 3.4. We now illustrate queries. For a candidate c ,
the following query asks whether c is a winner.

qc () :− Winner(c) (1)

In particular,qc is possible if and only if c is a possible winner,
and qc is necessary if and only if c is a necessary winner.

The following queries apply to our running example (Fig-

ure 1). The next one asks whether there is a Republican

winner. (We use the convention of an underscore instead of

a variable with a single occurrence.)

q1 () :− Winner(x) , Cand (x , R, _)

Hence, Possibility(q1, r) asks whether it is possible to have

a Republican winner, and Necessity(q1, r) asks whether we
necessarily have a Republican winner. As explained in Ex-

ample 2.2, in every completion it is the case that either

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

37

https://www.diffen.com
https://www.nytimes.com/interactive/2016/us/elections/top-presidential-donors-campaign-money.html
https://www.nytimes.com/interactive/2016/us/elections/top-presidential-donors-campaign-money.html

Donald or Ted are winners. Hence, in the running exam-

ple, both Possibility(q1, r) and Necessity(q1, r) are true. The
next query asks whether there is a unique winner who is

also a Republican.

q′
1
() :− UWinner(x) , Cand (x , R, _)

As shown in Figure 1a, it Donald is a possible unique winner,

and hence, Possibility(q, r) is true. However, Necessity(q, r)
is false, simply because there is an expansion in which the

UWinner relation is empty (i.e., there are no unique win-

ners).

The following query asks whether there are two winners

who disagree on Obamacare.

q2 () :− Position(x , PPACA, yes) , Position(y, PPACA, no) ,

Winner(x) , Winner(y)

Possibility(q2, r) is true as witnessed by the completion T1

in Figure 1a, while Necessity(q2, r) is false due to T2
.

Finally, the following query asks whether there are two

winners, one Democratic and one Republican, who get do-

nations from the same source.

q3 () :−Cand (x , R, _) , Cand (y, D, _), Winner(x) ,

Winner(y) , Donate(z, _,x) , Donate(z, _,y)

It is possible to build a completion where both Hillary and

Ted (who both receive donations from UAPE) are winners,

hence, Possibility(q3, r) is true; moreover, both completions

of Figure 1a witness that Necessity(q3, r) is false. □

Example 3.5. For every positive integer k , let qkwr be the
following Boolean conjunctive query:

qkwr () :− Winner(x1), . . . ,Winner(xk),R (x1, . . . ,xk) (2)

This query asks whether there is a sequence of k winners

that constitutes a tuple of R.
In the remainder of the paper, we will make repeated use

of the family of the queries qkwr, k ≥ 1. □

Note that a query q overSe
may involve both theWinner

and UWinner relation symbols.Whenq is a UCQ, we use the
terms Winner atoms and UWinner atoms to refer to atoms

that involve, respectively, the Winner and the UWinner

relation symbol. In the sections that follow, we investigate

the complexity of the decision problems Possibility(q, r) and
Necessity(q, r), where q is a Boolean UCQ.

We note that other notions of databases and queries over

partial orders have been studied [1, 14, 18], but none of them

involves elections or social choice.

4 QUERIES WITHWINNER ATOMS:

POSSIBLE ANSWERS

Next, we investigate the complexity of computing the possi-

ble answers for UCQs that involve Winner atoms only (but

no UWinner atoms). Thus, in what follows in this section,

we make the blanket assumption that the term UCQ refers

to a union of conjunctive queries whose atoms are Winner

atoms or atoms with relation symbols from the schema S.

4.1 Tractability

According to Theorem 2.3, the possible winners can be com-

puted in polynomial time when the positional scoring rule is

plurality or veto. In the remainder of this section, we show

that this tractability result extends to the possible answers

of every UCQ (and beyond).

To establish tractability for plurality and veto, we use the

tractability of a polygamous version of the perfect-matching

problem. This problem is a special case of generalizations

of perfect matching that are known to be in polynomial

time [12, 25]. This special case has a simple proof, which we

now give to make the subsequent results as self-contained

as possible.

Definition 4.1 (Polygamous Matching). Polygamous Match-
ing is the following decision problem: Given a bipartite graph

G = (V ·∪U ,E) and natural numbers αu ≤ βu for all u ∈ U ,

is there a subset of E where each v ∈ V is incident to exactly

one edge and every u ∈ U is incident to at least αu edges

and at most βu edges?

Proposition 4.2. Polygamous Matching is solvable in poly-
nomial time.

Proof. We reduce Polygamous Matching to the problem

of determining whether a perfect matching exists (which

is solvable in polynomial time, e.g., via the Hungarian al-

gorithm or maximum network flows). Given an inputG, α ,
β to Polygamous Matching, we construct a bipartite graph

G ′ = (V ′ ·∪ U ′,E ′) as follows. We obtain U ′ from U by re-

placing every node u with βu distinct copies of u. The set
V ′ is the union of V and a set of |U ′ | − |V | of new dummy
nodes. (If |U ′ | < |V |, then no polygamous matching exists.)

Next, we construct E ′ by considering every node u ∈ U and

connecting all its copies inU ′ to the all the neighbors v ∈ V
that u has in д; in addition, we connect βu − αu of the copies

of u to all the dummy nodes in V ′. The reader can verify

that G is a “yes” instance of Polygamous Matching if and

only if G ′ has a perfect matching. In particular, to obtain a

polygamous matching from a perfect matchingM of G ′, we
take all edges (v,u) such that v ∈ V andM connects v to a

copy of u. □

We will also use the following lemma, which we prove

using Proposition 4.2. Hereafter, we will denote by min(v)
the set of candidates c that the voterv does not prefer to any

other candidate (hence, such a c can be last in a completion),

and bymax(v) the set of candidates c that are not preceded by
any other voter (hence, such a c can be first in a completion).

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

38

Lemma 4.3. Let r be the plurality rule or the veto rule. Then
the following problem is solvable in polynomial time: Given
a set C of candidates, a partial profile P over C , and a subset
S ⊆ C , is there a completion T such that S ⊆ W(r ,T)?

Proof. We begin with the plurality rule. We solve the

problem by considering every possible score s = 1, . . . ,n
(where n is the number of voters), and test whether there is

a completion T such that every candidate in S gains precisely
s votes, and every candidate outside of S gains at most s
votes. If the answer is true for at least one s , we return true;

otherwise, we return false.

So, the question at hand is whether we can assign to each

voter one of her top candidates so that every candidate in S
is assigned to precisely s voters, and every candidate outside

of S is assigned to at most s voters. This problem is a special

case of Polygamous Matching (Definition 4.1), where

• V is the set of voters,

• U is the set of candidates,

• E connects c and v , whenever c ∈ max(v),
• αu = βu = s , for every u ∈ S ,
• αu = 0 and βu = s , for every u ∈ C \ S .

We then conclude the proof via Proposition 4.2.

For the veto rule, the proof is analogous. Here, the question

is whether we can assign to each voter one of her bottom can-

didates so that every candidate in S is assigned to precisely

n − s voters, and every candidate outside of S is assigned to

at least n − s voters. In particular, V andU are the same as

in the case of plurality; furthermore,

• E connects c and v whenever c ∈ min(v),
• αu = βu = n − s , for every u ∈ S ,
• αu = n − s and βu = n, for every u ∈ C \ S .

This concludes the proof. □

We can now prove the main result for this section.

Theorem 4.4. Let r be the plurality rule or the veto rule. If
q is a Boolean UCQ, then Possibility(q, r) is solvable in poly-
nomial time.

Proof. Consider an input (D, P) of Possibility(q, r). Then
q is possible for (D, P) if and only if one of its CQs is possible
for (D, P); thus, we can solve the problem separately for each

CQ of q. So, we will assume that q is a CQ (i.e., it has one

disjunct) to begin with.

Let adom(D) be the active domain of D (i.e., the set of

constants that occur in relations in D, let C be the set of

candidates, and let τ (q) be the set of variables and constants

that occur in q. By a potential homomorphism, we refer to a

mapping µ : τ (q) → adom(D)∪C that satisfies the following

conditions:

(1) µ (t) = t , whenever t is a constant;
(2) µ maps every non-Winner fact to a fact of D;

(3) µ (t) ∈ C , whenever t occurs in a Winner atom (i.e.,

the atom Winner(t)) of q.

Then q is possible for (D, P) if and only if there is a potential
homomorphism µ and a completion T of P such that µ (t)
is a winner for every term t of the third condition. More

formally, for a potential homomorphism µ, let us denote by
W (µ) the set of all candidates µ (t) such that t occurs in a

Winner atom. Then, for a completion T of P, we have that
µ is a homomorphism from q to D ⊔ T (hence, D ⊔ T |= q) if
and only ifW (µ) ⊆ W(r ,T).
In view of the above, the algorithm simply constructs all

possible µ (in polynomial time) and, for each µ, tests whether
there exists a completion T such thatW (µ) ⊆ W(r ,T). By
Lemma 4.3, this test can be carried out in polynomial time.

□

We remark that the proof of Theorem 4.4 can be extended

to the generalization of UCQs in which negated atoms are

allowed. For example, if r is the plurality rule or the veto rule,
then Possibility(q, r) is solvable in polynomial time, where

q is the query that tests whether there are a winner and a

loser both of whom are funded by the same PAC, i.e.,

q4 () :−Donate(z, PAC,x) , Donate(z, PAC,y)

Winner(x) , ¬Winner(y)

4.2 Hardness

Let r be a voting rule and let q be a UCQ. To determine

whether Possibility(q, r) is true, we need to, at least, be able

to determine whether a candidate is a possible winner. In-

deed, the possible-winner problem (i.e., determine whether a

given candidate c is a possible winner in a given partial pro-

file) is simply Possibility(qc , r), whereqc is the query defined
in (1). Theorem 2.3 implies that Possibility(qc , r) is NP-hard,
for every pure positional scoring rule other than plurality

and veto (and regardless of the relational schema S). Clearly,

Possibility(qc , r) reduces to the problem Possibility(q, r) for
the query q() :− Winner(x),R (x), which we refer to as

q1

wr in Equation (2). In fact, it is an easy observation that

Possibility(qc , r) reduces to Possibility(qkwr, r) for every k >
0. Thus, Possibility(qkwr, r) is NP-hard, for every k > 0.

5 QUERIES WITHWINNER ATOMS:

NECESSARY ANSWERS

In this section, we analyze the complexity of the necessity

problem for CQs and UCQs that involve Winner atoms (but

no UWinner atoms). Thus, we continue to make the blanket

assumption that the term UCQ refers to a union of conjunc-

tive queries whose atoms are Winner atoms or atoms with

relation symbols from the schema S.

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

39

Table 1: The complexity of Necessity(qkwr, r), where qkwr
is defined in Equation (2) (Example 3.5).

k Complexity Reference
1 P for veto, plurality; coNP-

c. for all other pure pos. rules

Theorem 5.3,

Proposi-

tion 5.4

>1 coNP-c. for all pure pos. rules Theorem 5.6

>2 coNP-c. for all pos. rules Theorem 5.7

Let c be a candidate and let qc be the CQ

qc () :− Winner(c).

Theorem 2.3 implies that Necessity(qc , r) is solvable in poly-

nomial time for every pure positional scoring rule r , Indeed,
Necessity(qc , r) asks whether c is a necessary winner. In this

section, we explore the boundaries of the combinations of

r and q that have a tractable necessity testing. For that, we

will refer to the CQs qkwr defined in Equation (2). Our results

for these queries are summarized in Table 1.

5.1 Tractability

We begin with tractability results. Towards the main result of

this part, we first consider the conjunctive query q1

wr in Equa-

tion (2). Kimelfeld, Kolaitis, and Stoyanovich [20] showed

that if r is the plurality rule, then Necessity(q1

wr, r) is solv-
able in polynomial time. The next lemma shows that this

tractability result also holds true when r is the veto rule.

Lemma 5.1. If r is the veto rule, then Necessity(q1

wr, r) is
solvable in polynomial time.

Proof. Consider an input (D, P) to Necessity(q1

wr, r). We

solve Necessity(q1

wr, r) by searching for a counterexample,

that is, a completion where a candidate outside RD beats

every candidate inside RD . Recall that, in the veto rule, the

score that a candidate c gains is n −k , where n is the number

of voters and k is the number of voters who position c last.
So, we consider every c ∈ C \ RD and k ∈ {0, . . . ,n − 1}, and

search for a completion of P in which c gains a score of at
least n−k and each c ′ ∈ RD gains a score of at most n−k −1;

in other words, at most k voters position c last, and at least

k + 1 voters position c ′ last, for every c ′ ∈ RD .
So, we fix c and k . Recall that, for a voter v , we denote by

min(v) the set of candidates c that v can position last (i.e.,

v does not prefer c to any other candidate). We reduce the

problem to Polygamous Matching (Definition 4.1), which is

solvable in polynomial time (Proposition 4.2). In our con-

struction, V is the set of voters, U is the set of candidates,

and E = {(v,d) | d ∈min(v)}. We set the bounds as follows.

• αc = 0 and βc = k ;
• αc ′ = k + 1 and βc ′ = n, for all c

′ ∈ RD ;

q0

q1

x

q2

x y

q2

wr

x1 x2

q3

x y

z

q3

wr

x1 x2

x3

Figure 2: The Gaifman graphs of the queries from Ex-

amples 3.4 and 3.5. All the variables are Winner vari-

ables, except for the shaded z.

• αc ′′ = 0 and βc ′′ = n, for all other candidates c
′′
.

In the construction, selecting an edge (v,d) means that v
positions d last. Hence, we get a “yes” instance if and only if

there is a completion T of P in which the score of c is at least
n − k and the score of every c ′ ∈ RD is at most n − k − 1. □

The main tractability result of this section is Theorem 5.3

below, which generalizes both Lemma 5.1 and the tractability

results in [20] for the plurality rule and for UCQs in which

every CQ has pairwise disconnected Winner atoms in its

Gaifman graph. As is well known, the notion of the Gaif-

man graph plays an important role in finite model theory

(see [22]). In this graph, the nodes are the variables of the

CQ and the edges consist of pairs of variables occurring in

the same atom. As an example, Figure 2 depicts the Gaif-

man graphs of the specific CQs that we mentioned so far

(Examples 3.4 and 3.5). A variable x that occurs in a Winner

atom Winner(x) is called a Winner variable. We say that

the Winner atoms are pairwise disconnected if every two

distinctWinner variables belong to different connected com-

ponents of the Gaifman graph.

Example 5.2. As can be seen in Figure 2, the Winner

atoms of the queries q0, q1 and q2 from Example 3.4 are

(pairwise) disconnected, but those of q3 are not. In particular,

this property is shared by every CQ with a single Winner

atom, such as q1

wr of Equation 2. In contrast, the property

does not hold for the queries q2

wr and q
3

wr in the figure. □

Theorem 5.3 concerns the class of UCQs such that each

of their CQs has pairwise disconnected Winner atoms. An

example of such a UCQ is the following query that asks

whether there exist two winners who belong to different ma-

jor parties and who disagree on the Trans-Pacific Partnership

issue.

(
Winner(x) , Cand (x , R, _) , Position(x , TPP, yes)

Winner(y) , Cand (y, D, _) , Position(y, TPP, no)
) ⋃

(
Winner(x) , Cand (x , R, _) , Position(x , TPP, no)

Winner(y) , Cand (y, D, _) , Position(y, TPP, yes)
)

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

40

Theorem 5.3. Let q be a UCQ such that theWinner atoms
of each of its CQs are pairwise disconnected. If r is plurality or
veto, then Necessity(q, r) is solvable in polynomial time.

Proof. Let q be q1∪ · · · ∪qℓ , and consider an input (D, P)
to Necessity(q, r). We first make and justify some structural

assumptions about q. For i = 1, . . . , ℓ, if qi does not involve
any Winner atom, then either D |= qi and then q is nec-

essarily true on (D, P), or D ̸ |= qi and then we can remove

qi from q without affecting the truth of q over the expan-

sions. Therefore, we will assume that each qi includes at least
one Winner atom. We also assume that no qi contains two
identical Winner atoms (with the same Winner variable or

constant), since we can clearly remove copies of atoms from

a CQ while preserving equivalence.

With the above assumptions, we will assume that each qi
has the form

qi () :− φ1

i ∧ · · · ∧ φ
ki
i ,

where each φ j
i is a conjunction of atoms that includes pre-

cisely one Winner atom, and no variable is shared among

two φ j
i . We can make this assumption since the Winner

atoms of qi are pairwise disconnected. Hence, an expansion

D ⊔ T satisfies qi if and only if D ⊔ T satisfies each φ j
i inde-

pendently.

It thus follows that a counterexample to Necessity(q, r) is
a completion T of P such that the expansion D ⊔ T violates

at least one φ ji
i , for every i = 1, . . . , ℓ. So, we iterate through

every combination φ j1
1
, . . . ,φ jℓ

ℓ
and test whether there exists

a corresponding counterexample, that is, a completion T
such that D ⊔T violates every φ ji

i . If no such T is found, then

q is necessarily true. So, fix φ j1
1
, . . . ,φ jℓ

ℓ
. Recall that every φ ji

i
contains precisely one Winner atom. For i = 1, . . . , ℓ, letWi

be the set of candidates that satisfy φ ji
i , that is,

Wi
def

== {c ∈ C | D ∪ {Winner(c)} |= φ ji
i }.

LetW = W1 ∪ · · · ∪Wℓ . The question at hand is whether

there exists a completion T such that W(r ,T) is disjoint
from W . This is exactly the complement of the problem

Necessity(q1

wr, r) when the R relation is equal toW . Hence,

the theorem follows from the tractability ofNecessity(q1

wr, r)
when r is the plurality rule [20] and when r is the veto rule

(Lemma 5.1). □

In the next section, we discuss hardness and, in particular,

show that Theorem 5.3 covers all tractable cases of pure

positional scoring rules.

5.2 Hardness

The next result asserts that if r is a pure positional scoring
rule other than plurality and veto, the necessity problem is

already hard for the query q1

wr.

(x—y stands for

the facts R (x ,y)
and R (y,x).)

Graph д

Voter from X1

Database D⟨u1, 2⟩

⟨u1, 3⟩

⟨u2, 1⟩ ⟨u2, 2⟩

⟨u2, 3⟩

⟨u4, 1⟩ ⟨u4, 2⟩

⟨u4, 3⟩

⟨u3, 1⟩ ⟨u3, 2⟩

⟨u3, 3⟩

u1

⟨u1, 3⟩

⟨u3, 3⟩ ⟨u4, 3⟩

⟨u2, 3⟩⟨u1, 1⟩

⟨u3, 1⟩ ⟨u4, 1⟩

u4

⟨u2, 2⟩

⟨u4, 2⟩⟨u3, 2⟩

⟨u1, 2⟩

⟨u2, 1⟩

u2

u3

⟨u1, 1⟩

Figure 3: An illustration of the reduction in the proof

of Lemma 5.5 for k = 2.

Proposition 5.4. Necessity(q1

wr, r) is coNP-complete for
every pure positional scoring rule r other than plurality and
veto.

Proof. We exhibit a reduction from the complement of

the possible unique winner problem: given a partial profile P
and a candidate c , determine whether c is a possible unique
winner. By Theorem 2.3, this problem is NP-complete for

every pure positional scoring rule r other than plurality and

veto. Given P and c , we construct the election database (D, P),
where D consists of a single unary relation RD = C \ {c}. For
a completion T of P, we have that D ⊔ T |= q1

wr if and only

ifW(r ,T) includes a candidate other than c . Consequently,
q1

wr is necessary for (D, P) if and only if c is not a possible
unique winner in P. □

By combining Theorem 5.3 and Proposition 5.4, we con-

clude thatNecessity(q1

wr, r) is tractable when r is plurality or
veto, and intractable for every other pure positional scoring

rule. Next, we show that the query q2

wr is harder than q
1

wr, in

the sense that q2

wr is hard for every pure positional scoring

rule, including plurality and veto. Hardness for plurality has

been shown by Kimelfeld, Kolaitis, and Stoyanovich [20].

The next lemma completes the picture with the veto rule.

Lemma 5.5. If r is the veto rule, then Necessity(q2

wr, r) is
coNP-complete.

Proof. We exhibit a reduction from the complement of

themaximum independent set problem.We are given as input

a graph G = (V ,E) and a natural number k , and the goal

is to determine whether G has an independent set of size

k . We construct an instance (D, P) of Necessity(q2

wr, r), as
illustrated in Figure 3. The partial voting profile P is defined

as follows.

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

41

• The candidate set C consists of all pairs ⟨u, i⟩, where
u is a node of G and 1 ≤ i ≤ k . We partition C into

parties C1, . . . ,Ck such that Ci = {⟨u, i⟩ | u ∈ V }.
• There are k × (|V | − 1) voters. Let X1, . . . ,Xk be a

partitioning of the voters such that every Xi is of size

|V | − 1.

• For 1 ≤ i ≤ k , the voters in Xi have the same partial

preference: they prefer every candidate in C \ Ci to

every candidate in Ci ; there are no preferences within

Xi and no preferences within C \ Xi .

The database D consists of one binary relation RD that

contains all candidate pairs (⟨u, i⟩, ⟨u ′, i ′⟩) such that one of

the following holds:

• u = u ′ and i , i ′;
• u , u ′, but u is a neighbor of u ′ in д.

This concludes the construction. We complete the proof

by proving correctness, that is, Necessity(q2

wr, r) is false for
(D, P) if and only if G has an independent set of size k .
We observe that, in every completion T of P, there are at

least k winners. Indeed, only voters from Ci can veto (i.e.,

position as last) a candidate from Xi , and |Xi | = |Ci | − 1, and

hence at least one candidate fromCi has no vetoes at all in T.
In particular, that candidate gets the highest possible score

(namely, k × (|V | − 1)) and must be a winner. We conclude

that at least one candidates in Ci is a winner in T, which
proves the observation.

IfG has an independent setU = {u ′
1
, . . . ,u ′k } of sizek , then

we construct a completion T of P as follows. For 1 ≤ i ≤ k ,
every voter inXi vetoes a unique candidate fromCi \ {⟨u

′
i , i⟩}.

Then we have that, in T, every candidate ⟨u ′i , i⟩ gains the
maximum score k× (|V | −1), since no candidate vetoes ⟨u ′i , i⟩.
Every other candidate c gains the score of k × (|V | − 1) − 1,

since precisely one voter vetoed c . The winners in T are the

⟨u ′i , i⟩. Since no tuple in RD contains two nodes among the

⟨u ′i , i⟩, we get that D ⊔ T ̸ |= q2

wr.

Next, suppose that T is a completion of P where D ⊔ T ̸ |=
q2

wr. By the way we constructed RD , the winners must corre-

spond to different nodes in д, and no two nodes are neigh-

bours. From the above observation, it follows that д has an

independent set of size at least k . □

We then establish the following result.

Theorem 5.6. If k > 1, then Necessity(qkwr, r) is coNP-
complete, for every pure positional scoring rule r .

Proof. We prove the theorem for k = 2. For k > 2,

coNP-hardness is proved by reducing Necessity(q2

wr, r) to
the problem Necessity(qkwr, r). Kimelfeld, Kolaitis, and Stoy-

anovich [20] showed thatNecessity(q2

wr, r) is coNP-complete

when r is the plurality rule. Lemma 5.5 shows that this is

also the case when r is the veto rule. For the remaining posi-

tional rules, we reduceNecessity(q1

wr, r) to Necessity(q
2

wr, r)

and use Proposition 5.4. The reduction is simple: given an

instance (D, P) of Necessity(q1

wr, r), construct an instance

(D ′, P) of Necessity(q2

wr, r) by setting the relation RD
′

to be

{(c, c) | c ∈ RD }. □

If k > 2, then we can drop the assumption that the rule r
is pure and establish a hardness result that is much stronger

than that of Theorem 5.6. To the best of our knowledge,

this is the first general hardness result that applies to every
positional scoring rule, whether pure or not. The proof of

this result will appear in the full version of this paper.

Theorem 5.7. If k > 2, then Necessity(qkwr, r) is coNP-
complete for every positional scoring rule.

It remains an open problem to determine whether or

not Theorem 5.7 holds true for k = 2, that is, whether

Necessity(q2

wr, r) is coNP-complete for every positional scor-

ing rule, thus extending Theorem 5.6 to arbitrary positional

scoring rules.

6 QUERIES WITHWINNER AND

UNIQUE-WINNER ATOMS

In this section, we discuss the possibility and necessity prob-

lems for UCQs that involve UWinner atoms. Thus, in this

section, the termUCQ refers to a union of conjunctive queries

whose atoms areWinner atoms or UWinner atoms or atoms

with relation symbols from the schema S.

We begin with a simple observation. Consider a CQ q
that contains one or more UWinner atom. For an expan-

sion D ⊔ T to satisfy q, the relation UWinner
D⊔T

should be

nonempty. By the semantics of UWinner it must hold that

UWinner
D⊔T = Winner

D⊔T = {c} for some candidate c .
Moreover, a homomorphism from q to D ⊔ T must assign all

the terms (variables and constants) that occur in UWinner

andWinner atoms the same value (the unique winner). Con-

sequently, we can unify these terms in q. More formally, let

Θq be the set of all the terms in the UWinner and Winner

atoms of q.

• IfΘq contains no constants, we select a variable x ∈ Θq
and replace in q every y ∈ Θq with x .
• IfΘq contains a single constant c , we replace in q every
variable y ∈ Θq with c .
• IfΘq contains two ormore constants,q is not satisfiable
(hence, if q is one of the CQs of a UCQ, then it can be

removed by the UCQ while preserving equivalence.

Therefore, in the remainder of this section, we will assume

that if a CQ q contains at least one UWinner atom, then it

contains a single UWinner atom and noWinner atoms. We

will use this assumption for analyzing the complexity of both

the possibility and the necessity problems.

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

42

6.1 Possible Answers

The following theorem generalizes Theorem 4.4 to allowing

UWinner atoms.

Theorem 6.1. Let q be a Boolean UCQ (that may contain
Winner and UWinner atoms). If r is the plurality rule or the
veto rule, then Possibility(q, r) is solvable in polynomial time.

Proof. Consider an input (D, P) for Possibility(q, r). As
in the proof of Theorem 4.4, we may assume that q is a CQ. In
that proof, we have covered the casewhereq does not contain
UWinner atom, so we assume that q contains UWinner

atoms. In view of the discussion in the beginning of this

section, we may assume that q contains a single UWinner

atom and no Winner atoms.

For a candidate c , we denote by Dc the database over S
e

whereRDc = RD for every relationR ∈ S and UWinner
Dc =

Winner
Dc = {c}. We have that a candidate c is a possible

unique winner if and only if there is a completion T of P such

that D ⊔ T = Dc . Then, Possibility(q, r) is true on (D, P) if
and only ifq evaluates to true onDc for some possible unique

winner c . From Theorem 2.3, it follows that computing the set

of possible unique winners, PU, can be done in polynomial

time if r is the plurality rule or the veto rule. □

For the remaining pure positional scoring rules, the hard-

ness of Possibility(qc , r) and Possibility(qkwr, r) that we dis-
cussed in Section 4.2 continues to hold if we replace the

Winner relation symbol with UWinner; this is because de-

termining whether a candidate is a possible unique winner
is also NP-hard (Theorem 2.3). On the other hand, consider

the following query, which asks whether a winner exists.

q∃w () :− Winner(x)

The possibility (as well as necessity) of this query is trivial,

as it is always true. Yet, as we show next, it becomes NP-hard

for some voting rules if Winner is replaced with UWinner:

q∃uw () :− UWinner(x)

The problem Possibility(q∃uw, r) asks whether there is a

completion with a unique winner, which is now nontriv-

ial. We can show NP-hardness for the case where r is the
k-approval rule, for k > 1, by adapting the proof of Xia and

Conitzer [27, Theorem 2] for the NP-hardness of the possible

unique-winner problem.

Theorem 6.2. For every k > 1, if r is the k-approval rule,
then Possibility(q∃uw, r) is NP-complete.

Proof. Xia and Conitzer [27] prove that the problem of

determining whether a candidate is a possible unique winner

is NP-complete for k-approval, for every k > 1. They do so

by building a reduction from 3-satisfiability. In more detail,

given a propositional formula φ, they construct an instance

(P, c) whereφ is satisfiable if and only if c is a possible unique

winner. In this construction, c is a necessary winner in P.
Hence, if there is any unique winner in a completion T, then
this unique winner must be c . Therefore, their reduction is

also a reduction to the problem of whether a possible unique

winner exists, that is, Possibility(q∃uw, r). □

Recall that, by Theorem 6.1, we have a polynomial-time al-

gorithm for Possibility(q∃uw, r) when r is the plurality rule,

i.e., when r is k-approval with k = 1; thus, the case of k-
approval is settled for every k ≥ 1. Nevertheless, the com-

plexity of Possibility(q∃uw, r) remains an open problem for

every positional scoring rule other than k-approval and veto.

6.2 Necessary Answers

We now consider the necessity problem for UCQs that in-

volve the UWinner relation symbol. Our result here is the

tractability for the plurality and veto rules, where we gener-

alize Theorem 5.3 to allow for arbitrary disjuncts (CQs) with

UWinner atoms.

So, suppose that r is the plurality rule or the veto rule. Let

us start with a conjunctive query q that contains a UWinner

atom. As mentioned in the beginning of the section, we

may assume that q contains a single UWinner atom and

no Winner atoms. Given an input (D, P), let U be the set

of all candidates c such that D ⊔ T |= q, whenever c is a

unique winner. Then Necessity(q, r) is true if and only if

Possibility(q′, r) is false for (D ′, P) where q′ is defined by

q′() :−
(
Winner(x) , Winner(y) , R, (x ,y)

)
∪(

Winner(z) , RŪ (z)
)

andD ′ consists of the fact R, (c1, c2) for all candidates c1 and

c2 such that c1 , c2, and the fact RŪ (c) for all candidates c
that are not inU . Note that q′ states that either there are two
distinct winners (hence, UWinner is empty) or there is a win-

ner that violates q. Theorem 6.1 implies that Possibility(q′, r)
is solvable in polynomial time, thus Necessity(q, r) is solv-
able in polynomial time. In fact, the following generalization

of Theorem 5.3 shows a stronger result, the proof will appear

in the full version of this paper.

Theorem 6.3. Let q be a UCQ where in each CQ q′, either
q′ contains a UWinner atom or the Winner atoms are pair-
wise disconnected. If r is the plurality or the veto rule, then
Necessity(q, r) is solvable in polynomial time.

For other positional scoring rules, the complexity remains

unresolved, even for the query q∃uw, where the goal is to

determine whether there is always a single winner (whose
identity may differ from one completion to another).

7 FIXED PARAMETER TRACTABLE

Here, we investigate the possibility and necessity problems

through the lens of parameterized complexity. We show that,

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

43

Table 2: Complexity of UCQs for positional scoring rules. Each row applies to every rule in the list. A lower bound

for answers refers to the existence of a UCQ with the corresponding complexity. “U” stands for “Unique” and

refers to UCQs with UWinner atoms and noWinner atoms, “D/U” stands for “Disconnected/Unique” and refers

to the condition of Theorem 6.3, and “?” means that no complete classification is known.

Rule
Possible
Winners

Possible
Answers

Necessary
Winners

Necessary
Answers

U
Necessary
Answers

D/U Necessary
Answers

plurality, veto P P (Thm 4.4, 6.1) P coNP-c. (Thm 5.6) P (6.3) P (Thm 5.3, 6.3)

pure \ {plurality, veto} NP-c. NP-c. P coNP-c. (Prop 5.4) ? coNP-c. (Prop 5.4)

non-pure ? ? P coNP-c. (Thm. 5.7) ? ?

taking the number of candidates as a parameter, it is Fixed
Parameter Tractable (FPT) to compute the possible and nec-

essary answers to every fixed UCQ. Thus, we generalize

the result by Betzler et al. [5] asserting that the possible-

winner problem is FPT, where the parameter is the number

of candidates. Towards this goal, we first prove the following

generalization, which implies that, under fixed parameter

tractability, we can actually produce all possible winner sets.

Theorem 7.1. Let r be a positional scoring rule. The fol-
lowing decision problem is FPT with parameter the number
|C | of candidates : given a partial profile P over the set C of
candidates, and a subset S ⊆ C , is there a completion T such
thatW(r ,T) = S?

Proof. We adopt the approach that has been used for de-

signing FPT algorithms for computational social choice [5,

28], namely, an FPT reduction to the feasibility of an Integer

Linear Program (ILP), where the parameter is the number

of variables. This problem is known to be FPT via an al-

gorithm designed by Lenstra [15] (and later improved by

Kannan [16]).

We need some notation. We denote the partial profile P
by (P1, . . . , Pn). For a partial order P over C , let VP be the

set {i | Pi = P } (thus, VP represents the set of voters that

have the partial preference P) and let LP be the set of all

linear extensions of P (thus, LP consists of total orders over

C). Note that the VP ’s form a partition of the set of voters.

Recall that for a total order T over C and for a candidate

c , we denote by s (T , c) the score value that T assigns to c
according to r ; in other words, if c is the jth element ofT , then
s (T , c) = r (m, j). We assume that C is nonempty (otherwise,

the answer is trivially false), and we fix a candidate c0 ∈ C .
Our ILP uses a variable XP,T for each partial order P and

linear extension T ∈ LP . An assignment to XP,T represents

a (feasible) number of voters i in VP that have their partial

order (i.e., Pi , which is equal to P) completed intoT . Our ILP
specifies constraints that assert the feasibility of the XP,T .

For every P and T : XP,T ∈ N

For every P :

∑
T ∈LP

XP,T = |VP |.

To simplify the presentation, we also use a variable Yc ,
for every candidate c , that holds the total score gained by c .
Hence, theYc are realized via the following set of constraints.

For every c ∈ C : Yc =
∑
P

∑
T ∈LP

s (T , c) · XP,T .

In addition, the ILP contains constraints that assert that

the score of c0 is the same as that of every c ∈ S .

For every c ∈ S : Yc0
= Yc .

Moreover, the ILP contains constraints that assert that the

score of c0 is strictly larger than that of every candidate who

is not in S .

For every c ∈ C \ S : Yc0
> Yc .

This completes the description of the ILP. To complete the

proof, observe that the ILP has a solution if and only if there

is a completion T of P such thatW(r ,T) = S . Also, observe
that the number of variablesXP,T andYc depends (in a single-
exponential manner) only on the number of candidates. In

fact, the same holds for the number of constraints. The only

components of the program that depend on the number of

voters are the constants |VP |. □

From Theorem 7.1, we derive the following fixed parame-

ter tractability result.

Corollary 7.2. Let S be a schema and let q be a UCQ over
Se. There is an FPT algorithm for computing the possible and
necessary answers to q, where the parameter is the number of
candidates.

Proof. From Theorem 7.1 it follows that we can material-

ize all expansions D ⊔T for the input (D, P), by constructing
every feasible relation Winner

D⊔T
and its corresponding

UWinner
D⊔T

. Then, by definition, the possible answers are

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

44

the union of the q(D ⊔ T), and the necessary answers are

the intersection of the q(D ⊔ T). □

A perusal of the proof of Theorem 7.1 reveals that Corol-

lary 7.2 holds even for queries richer than UCQs. In fact, the

corollary is true for every query q with a polynomial-time

data complexity over ordinary databases (e.g., every safe

query in relational calculus).

8 CONCLUDING REMARKS

We investigated the complexity of evaluating queries over

election databases. We focused on the possibility and ne-

cessity problems for Boolean UCQs and positional scoring

rules. The state of affairs is summarized in Table 2. While

our study unveiled that these problems are often intractable,

we have also established several different tractability results.

In particular, the tractability side of the classification for the

possible-winner problem [3, 4, 21, 27] generalizes to the pos-

sibility problem for UCQs under the plurality rule and the

veto rule. In contrast, the tractability of the necessary-winner

problem under every positional scoring rule [27] does not

generalize to the necessity problem for Boolean UCQs; this

reveals a fundamental difference between computational so-

cial choice and election databases. Finally, we showed that

the possibility and necessity problems are fixed-parameter

tractable when the parameter is the number of candidates;

this is an appropriate parameter in such situations as politi-

cal elections, where there are many voters but only a handful

of candidates.

We have already listed several different open problems.

We conclude the paper with additional open problems and

directions for future investigation. First, as we mentioned in

the body of the paper, some of our results go beyond the class

of UCQs; nonetheless, very little is known at present about

more expressive classes of queries. Furthermore, we have not

considered voting rules that fall outside the class of positional

scoring rules, such as Copeland’s method, Simpson’s rule,

and Bucklin voting
2
. Future research also includes queries

that involve multiple elections and multiple voting rules [20].

Another direction for future research is that of probabilis-

tic voters, adopting statistical models of preferences, such

as the uniform distribution over the linear extensions, Mal-

lows [24] and the Repeated Insertion Model (RIM) [11]. The

analog of computing necessary/possible winners is to com-

pute the probability that a candidate wins [2, 13, 17, 23]. In

the framework of election databases, the analog is proba-
bilistic query answering, where the goal is to compute the

marginal probability of query answers [10, 26]. The evalua-

tion of CQs over databases with RIM preferences has been

2
See, e.g., [27] for a description of these and other voting rules.

studied in past research [9, 19], but without the angle of

elections and social choice.

ACKNOWLEDGMENTS

This work was supported by NSF Grant 1814152 and BSF

Grant 2017753. The work of Kimelfeld and Tibi was also

supported by ISF Grant 1295/15.

REFERENCES

[1] Antoine Amarilli, Mouhamadou Lamine Ba, Daniel Deutch, and Pierre

Senellart. 2017. Possible and Certain Answers for Queries over Order-

Incomplete Data. In TIME (LIPIcs), Vol. 90. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 4:1–4:19.

[2] Yoram Bachrach, Nadja Betzler, and Piotr Faliszewski. 2010. Proba-

bilistic Possible Winner Determination. In AAAI. AAAI Press.
[3] Dorothea Baumeister and Jörg Rothe. 2012. Taking the final step to a

full dichotomy of the possible winner problem in pure scoring rules.

Inf. Process. Lett. 112, 5 (2012), 186–190.
[4] Nadja Betzler and Britta Dorn. 2010. Towards a dichotomy for the

PossibleWinner problem in elections based on scoring rules. J. Comput.
Syst. Sci. 76, 8 (2010), 812–836.

[5] Nadja Betzler, Susanne Hemmann, and Rolf Niedermeier. 2009. A

Multivariate Complexity Analysis of Determining Possible Winners

Given Incomplete Votes. In IJCAI. 53–58.
[6] Craig Boutilier and Jeffrey S. Rosenschein. 2016. Incomplete Informa-

tion and Communication in Voting. In Handbook of Computational
Social Choice. 223–258.

[7] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.

Procaccia (Eds.). 2016. Handbook of Computational Social Choice. Cam-

bridge University Press. https://doi.org/10.1017/CBO9781107446984

[8] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.

Procaccia. 2016. Introduction to Computational Social Choice. In

Handbook of Computational Social Choice. 1–20.
[9] Uzi Cohen, Batya Kenig, Haoyue Ping, Benny Kimelfeld, and Julia

Stoyanovich. 2018. A Query Engine for Probabilistic Preferences. In

SIGMOD Conference. ACM, 1509–1524.

[10] Nilesh N. Dalvi and Dan Suciu. 2004. Efficient Query Evaluation on

Probabilistic Databases. In VLDB. Morgan Kaufmann, 864–875.

[11] Jean-Paul Doignon, Aleksandar Pekec, and Michel Regenwetter. 2004.

The repeated insertion model for rankings: Missing link between two

subset choice models. Psychometrika 69, 1 (2004), 33–54.
[12] Jack Edmonds and Ellis L. Johnson. 2001. Matching: A Well-Solved

Class of Integer Linear Programs. In Combinatorial Optimization -
Eureka, You Shrink!, Papers Dedicated to Jack Edmonds (Lecture Notes
in Computer Science), Vol. 2570. Springer, 27–30.

[13] Noam Hazon, Yonatan Aumann, Sarit Kraus, and Michael Wooldridge.

2012. On the evaluation of election outcomes under uncertainty. Arti-
ficial Intelligence 189 (2012), 1 – 18.

[14] Marie Jacob, Benny Kimelfeld, and Julia Stoyanovich. 2014. A System

for Management and Analysis of Preference Data. PVLDB 7, 12 (2014),

1255–1258.

[15] Hendrik W. Lenstra Jr. 1983. Integer Programming with a Fixed Num-

ber of Variables. Math. Oper. Res. 8, 4 (1983), 538–548.
[16] Ravi Kannan. 1987. Minkowski’s Convex Body Theorem and Integer

Programming. Math. Oper. Res. 12, 3 (1987), 415–440.
[17] Batya Kenig and Benny Kimelfeld. 2019. Approximate Inference of

Outcomes in Probabilistic Elections. To appear in AAAI.

[18] Batya Kenig, Benny Kimelfeld, Haoyue Ping, and Julia Stoyanovich.

2017. Querying Probabilistic Preferences in Databases. In PODS (PODS
’17). ACM, New York, NY, USA, 21–36.

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

45

https://doi.org/10.1017/CBO9781107446984

[19] Batya Kenig, Benny Kimelfeld, Haoyue Ping, and Julia Stoyanovich.

2017. Querying Probabilistic Preferences in Databases. In PODS. 21–36.
[20] Benny Kimelfeld, Phokion G. Kolaitis, and Julia Stoyanovich. 2018.

Computational Social Choice Meets Databases. In IJCAI. ijcai.org, 317–
323.

[21] Kathrin Konczak and Jérôme Lang. 2005. Voting procedures with

incomplete preferences. In Proc. IJCAI-05 Multidisciplinary Workshop
on Advances in Preference Handling, Vol. 20.

[22] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.
[23] Tyler Lu and Craig Boutilier. 2011. Vote Elicitation with Probabilistic

Preference Models: Empirical Estimation and Cost Tradeoffs. In ADT
(Lecture Notes in Computer Science), Vol. 6992. Springer, 135–149.

[24] C. L. Mallows. 1957. Non-Null Ranking Models. I. Biometrika 44, 1-2
(1 June 1957), 114–130.

[25] Yossi Shiloach. 1981. Another Look at the Degree Constrained Sub-

graph Problem. Inf. Process. Lett. 12, 2 (1981), 89–92.
[26] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011.

Probabilistic Databases. Morgan & Claypool Publishers.

[27] Lirong Xia and Vincent Conitzer. 2011. Determining Possible and

Necessary Winners Given Partial Orders. J. Artif. Intell. Res. 41 (2011),
25–67.

[28] Yongjie Yang. 2014. Election Attacks with Few Candidates. In ECAI
(Frontiers in Artificial Intelligence and Applications), Vol. 263. IOS Press,
1131–1132.

Session 1: Incomplete Information PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

46

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Databases and Queries
	2.2 Voting Profiles and Voting Rules
	2.3 Partial Profiles

	3 Election Databases
	3.1 Necessary and Possible Answers

	4 Queries with Winner Atoms: Possible Answers
	4.1 Tractability
	4.2 Hardness

	5 Queries with Winner Atoms: Necessary Answers
	5.1 Tractability
	5.2 Hardness

	6 Queries with Winner and Unique-Winner Atoms
	6.1 Possible Answers
	6.2 Necessary Answers

	7 Fixed Parameter Tractable
	8 Concluding Remarks
	Acknowledgments
	References

