
Optimal Implementation of Simulink Models on
Multicore Architectures with Partitioned Fixed

Priority Scheduling

Shamit Bansal†∗, Yecheng Zhao†∗, Haibo Zeng†, and Kehua Yang‡
†Virginia Tech, USA. Email: {shamitb,zyecheng,hbzeng}@vt.edu

‡Hunan University, China. Email: khyang@hnu.edu.cn
∗The first two authors contributed equally to this work.

Abstract—Model-based design using the Simulink modeling
formalism and associated toolchain has gained popularity in
the development of real-time embedded systems. However, the
current research on software synthesis for Simulink models has
a critical gap for providing a deterministic, semantics-preserving
implementation on multicore architectures with partitioned fixed-
priority scheduling. In this paper, we consider a semantics-
preservation mechanism that combines (1) the RT blocks from
Simulink, and (2) task offset assignment to separate the time
windows to access shared buffers by communicating tasks. We
study the software synthesis problem that optimizes control
performance by judiciously assigning task offsets, task priorities,
and task communication mechanisms. We develop a problem-
specific exact algorithm that uses an abstraction layer to hide
the complexity of timing analysis. Experimental results show
that it may run a few orders of magnitude faster than a direct
formulation in integer linear programming.

I. INTRODUCTION

In the development of control-centric real-time embed-
ded systems, the use of the Simulink formalism and as-
sociated toolchain is becoming widespread, largely because
of the possibility to validate/verify the correctness of the
Simulink model. To reduce implementation errors and shorten
turnaround times, code generators such as Simulink Coder
are provided to automatically generate software implementa-
tions on single-core architectures. Simulink Coder adds Rate
Transition (RT) blocks between communicating functional
blocks with different rates [25], to ensure semantics-preserving
software implementations (i.e., those matching the logical-time
semantics in the model).

With the single-core processors reaching their limit, mod-
ern embedded systems are now moving towards multicore
architectures for higher efficiency and performance. In this
paper, we consider the problem of optimizing the software
implementation of Simulink models, under partitioned pre-
emptive fixed priority scheduling on multicore platforms.
Such a scheduling policy is adopted by industrial standards
like AUTOSAR, by commercial real-time operating systems
(e.g., VxWorks, LynxOS, and ThreadX), and in particular, by
Simulink Coder [25].

The current solutions for semantics-preserving implemen-
tation for Simulink models, including those provided by the
commercial code generators, do not scale to multicore archi-
tectures. For example, the Simulink toolchain from MathWorks
relies on users to specify the data communication mechanisms,

and the generated code may have non-deterministic behavior
and cannot guarantee to be semantics-preserving [25]. Briefly
speaking, RT blocks alone only work for communicating
functional blocks on the same core, since they leverage pri-
ority orders between blocks to ensure deterministic execution
orders. But for multicore with partitioned scheduling, they are
obviously insufficient since blocks on different cores are now
scheduled separately.

To fulfill this critical need, we provide a mechanism
that leverages RT blocks and additionally allocates offsets to
blocks, to enforce a deterministic execution order that matches
the model semantics. Such a mechanism additionally benefits
system timing predictability, as tasks on different cores do not
simultaneously access the same global variables in the shared
memory, alleviating the difficulties to analyze task worst case
execution times on multicore [4], [2].

The RT blocks, however, come with a cost on additional
memory requirements. Moreover, they may introduce addi-
tional functional delays in the control loop, causing control
performance degradation and even system instability [10].
On the other hand, the functional delay can also relax the
input/output dependency and increase system schedulability.
Hence, we consider the problem of software synthesis for
Simulink, that preserves the logical-time execution semantics
and optimizes a weighted sum of the functional delays in the
Simulink model to approximate their impact on control quality.

A. Contributions and Paper Organization.

In this paper, we make the following contributions.

• We leverage a mechanism for ensuring semantics-
preserving software implementation of Simulink models on
multicore with partitioned fixed-priority scheduling. The idea
is to separate their time windows of accessing the shared
memory buffer, by assigning appropriate activation offset to
software tasks.

• We propose to optimize the software implementation
of Simulink models by judicious task priority assignment,
task offset assignment, and addition of RT blocks and their
functional delays on communication links.

• We design a new, problem-specific exact algorithm that
is substantially faster than integer linear programming (ILP)
while preserving the optimality of the solution, demonstrated
by randomly generated systems and an industrial case study.

242

2018 IEEE Real-Time Systems Symposium

2576-3172/18/$31.00 ©2018 IEEE
DOI 10.1109/RTSS.2018.00041

The rest of the paper is organized as follows. Section II
summarizes the related work. Section III provides the prelimi-
nary knowledge on Simulink model semantics, and Section IV
presents the mechanism for semantics preservation on multi-
core platforms. Section V defines the optimization problem.
Section VI proposes the problem specific exact algorithm.
Section VII shows the experimental results. Finally, Section
VIII concludes the paper.

II. RELATED WORK

Although our focus is on Simulink, we discuss the related
work in the broader context of Synchronous Reactive (SR)
model of computation, as it is the underlying modeling for-
malism for Simulink [25]. SR is supported in several other
languages and tools such as Esterel [3], Lustre [15], and
Prelude [13], [19].

On single-core platforms, the research has been fairly
advanced, and we provide a selective review below. Esterel
or Lustre models are typically implemented as a single ex-
ecutable that runs according to an event server model [22].
The longest chain of reactions to any event shall be completed
within the system base period (the greatest common divisor
of all periods in the system). For multi-rate systems, this
imposes a very strong condition on real-time schedulability
that is typically infeasible in cost-sensitive application domains
such as automotive [10]. The commercial code generators
for Simulink models (e.g., Simulink Coder from MathWorks)
provide two options. The first is a single-task executing at the
base period, which is essentially the same approach as [22].
The second is a fixed-priority multitask implementation, where
one task is generated for each period in the model, and
tasks are scheduled by rate monotonic policy. Caspi et al. [6]
provide the conditions of semantics-preservation in a multitask
implementation. Di Natale et al. [11] propose to optimize the
multitask implementation of multi-rate Simulink models with
respect to the control performance and the required memory,
and develop a branch-and-bound algorithm. Later in [10], an
ILP formulation is provided. The task implementation and
schedulability analysis for SR models containing finite state
machines (FSMs) are studied in [18] and [29] respectively.
Zhao et al. [30] develop a set of optimization techniques
to efficiently optimize the real-time software implementing
systems with FSMs.

Comparably, the research on the implementation of SR
models on multicore and distributed systems is rather limited.
Prelude [13], [19] provides rules and operators for the selection
of a mapping onto platforms with Earliest Deadline First (EDF)
scheduling, including multicore architectures [23], [20]. The
enforcement of the partial execution order required by the
SR model semantics is obtained in Prelude by a deadline
modification algorithm. The communication mechanisms on
multicore platforms including those for semantics preserva-
tion are discussed in [28]. Pagetti et al. [20] provide design
experiences for an avionics case study modeled in Simulink
and implemented on a many-core platform. This case study
is also used to develop a tool that generates code, where
task scheduling is time-triggered and the functional delays
are presumed to be given [14]. Puffitsch et al. present ap-
proaches to automatically map tasks to cores on a many-
core architecture with EDF [23] or tick-based scheduling [24].

The commercial Simulink tool requires the user to specify
if a delay block shall be added on a communication link
and ensure the associated deadlines are met [25], but this
is very difficult without automated tool support. [27] studies
the problem of mapping multi-rate synchronous blocks onto
multicore architectures with partitioned fixed-priority schedul-
ing. However, it assumes the task execution order and task
priority assignment are given. In addition, it only considers the
limited case where communication is restricted among blocks
with the same period. Our focus is different from [27] in that
we assume block to core mapping is given, and we aim to
optimize task execution order (and consequently delay block
assignment) w.r.t. control performance. Overall, our paper is
the first to automate and optimize delay block assignment in
the synthesis of semantics-preserving software for Simulink
models on multicore with fixed-priority scheduling.

On distributed architectures, the implementation of SR
models has been discussed in several papers such as [7], [21],
[5], [26]. Specifically, techniques for generating semantics-
preserving implementations of SR models on Time-Triggered
Architecture (TTA) are presented in [7]. Methods for desyn-
chronization in distributed implementations are discussed
in [5], [21]. A general mapping framework from SR models
to unsynchronized architecture platforms is presented in [26],
where the mapping uses intermediate layers with queues and
then back-pressure communication channels.

III. SIMULINK MODEL SEMANTICS

A Simulink model is represented as a Directed Graph
Γ = {N , E}, where N = {N1, . . . , N|N |} is the set of nodes
representing the functional blocks, and L = {L1, . . . , L|L|} is
the set of edges representing the communication links between
the blocks.

In Simulink, each implementable functional block Ni is
triggered periodically, and is associated with a period Ti. That
is, the k-th instance of Ni is triggered at time ri(k) = k · Ti.
Blocks interface with other blocks using a set of input ports
and a set of output ports. Input ports carry signals sampled
with the period Ti. The output signals are produced with the
same period on the output ports.

Each link 〈Ni, Nj〉 in E connects the output port of block
Ni (the writer) to an input port of block Nj (the reader).
Simulink assumes that for each writer-reader relation, the
periods of the reader and writer are harmonic. If the output of
Nj is directly dependent on its input from Ni, then there is
a precedence constraint associated with the link. We refer to
this precedence as direct feedthrough dependency and denote
it as Ni → Nj . Let ij(k) be the input to the k-th instance of
Nj . The SR semantics specifies that ij(k) equals the output
of the last instance of Ni, denoted by oi(m), that is triggered
no later than the k-th instance of Nj :

ij(k) = oi(m), where m = max{n|ri(n) ≤ rj(k)}. (1)

The SR semantics also allows for delayed communication,
where the delay is limited to one unit in Simulink. If the
communication is delayed, Nj does not depend on the output
of the most recently triggered instance of Ni; instead the
previous value is read. That is,

ij(k) = oi(m− 1), where m = max{n|ri(n) ≤ rj(k)}. (2)

243

We refer to this scenario as unit delay communication, and

denote it as Ni
−1→ Nj .

(m+2)(k)r j (k+1)rr i (m−1) r i (m) r i (m+1)

oi (m−1)=
j (k)i

iN jN

oi (m+1)=
j (k+1)i

r ij

Fig. 1: Input/output relation with unit delay on the communi-
cation link.

Figure 1 shows the effect of adding a unit delay on the
communication link. We can see that there is more time be-
tween the writer instance from which the data is produced and
the reader instance by which it is consumed. This gives more
flexibility in scheduling the reader/writer blocks. However, this
delay requires additional storage in memory for buffering the
variables during the time interval between the data production
and consumption. Furthermore, the added delay increases end-
to-end latency which might cause performance degradation
especially for control algorithms.

In summary, in Simulink semantics the data exchanged by
two communicating blocks are clearly defined by the model.
With direct feedthrough dependencies, the reader reads the data
produced by the most recently triggered instance of the writer.
For communication with unit delay, data from the previous
instance is used. In both cases, there should be no confusion
and the writer instance of each data item consumed by a reader
is explicitly defined by the model.

IV. SEMANTICS-PRESERVING IMPLEMENTATION ON

MULTICORE

In this paper, we consider the problem where the commu-
nication mode (direct feedthrough or unit delay) for each link
is part of the decision variables. When generating software
code for Simulink models, the implementation shall behave
identically to the model, in the sense that the input/output data
flows of the model with the selected modes are preserved in
the implementation. We focus on multicore architectures with
partitioned fixed-priority preemptive scheduling. We assume
that each block Ni is implemented by a dedicated real-time
software task τi, and use the terms block and task interchange-
ably. Thus the number of tasks equals the number of nodes
in the directed graph Γ. In the implementation, each task τi
is statically allocated to a core Ei, and is assigned with a
fixed priority pi, where pi > pj represents that τi has a higher
priority than τj . Ci denotes the Worst Case Execution Time
(WCET) of τi. Also, Simulink assumes that each task τi has
an implicit deadline, meaning any instance of τi shall finish
before the trigger time of the next instance.

We consider a semantics-preservation mechanism that com-
bines the RT blocks from Simulink and task offset assign-
ment [28]. RT blocks are a specialization of the more general
category of wait-free buffers [8]. They require that the sender
and receiver have harmonic periods (one period must be an
integer multiple of the other). These blocks are placed between
the writer and the reader, to forward appropriate data from the

writer to the reader and to provide initial data values when
necessary. Specifically, an RT block consists of a shared buffer
and an update function that writes the data by the writer to the
shared buffer. It executes within the context of the writer at
the end of its execution. Correspondingly, the reader reads the
data from the shared buffer at the beginning of its execution.

Offset assignment intends to separate the access to shared
memory from the communicating blocks on different cores and
enforce a global execution order. Specifically, for each block
τi, we assign an activation offset Oi that is smaller than its
period Ti. Whenever τi is triggered, it will wait until Oi time
unit later to be ready for execution. Hence, the activation time
(the time it is ready for execution) of the k-th instance of τi
becomes ri(k) +Oi (but the deadline is still ri(k) + Ti). The
worst-case response time (WCRT) of task τi, denoted as Ri,
is the maximum delay from its activation to its finish. It is
computed as the least fixed point of the following equation

Ri = Ci +
∑

j∈hp(i)

⌈Ri

Tj

⌉
· Cj (3)

where hp(i) is the set of tasks that have higher priority than
τi and are allocated to the same core.

We now discuss the requirements of semantics preservation
and how the proposed mechanism works. A general rule is that
the execution orders among blocks must be properly enforced,
as defined below.

Definition 1. An execution order fi,j denotes the constraint
that τi must execute before τj whenever they are triggered
together. Equivalently, whenever two tasks τi and τj are
triggered at the same time, τi must complete before τj starts.

A. Intra-core Communication

For intra-core communication, i.e., when the reader and
writer are assigned to the same core, the fact that these blocks
are on the same core and the priority order is well defined helps
ensure proper operation of RT blocks and hence semantics
preservation.

For a direct feedthrough link τi → τj , fi,j shall be enforced
to ensure τi executes before τj . This requires to assign τi
with a higher priority than τj . Additionally, since blocks have
activation offset, τi shall be activated before τj . The RT
block behaves like a Zero-Order Hold block. Its output update
function executes at the slower rate of the two, but within (and
at the priority of) the writer.

The scheduling diagram is depicted in Figure 2. Specifi-
cally, the offset and priority assignments ensure that the writer
τi executes first, followed by the RT block’s output update
function (denoted as striped boxes in the figure). Afterward,
the reader τj reads data from the RT block. The data will be
held by the RT block and read by all instances of the reader
until it is updated again.

This rule is formally summarized as follows.

Rule 1. Enforcing execution order fi,j for intra-core commu-
nication from τi to τj implies the following constraints

∀〈τi, τj〉 with Ei = Ej : fi,j ⇒ (Oi ≤ Oj) ∧ (pi > pj) (4)

244

Ni

Nj

Oi

Oj ≥ Oi

hold

read

write

trigger
time

activation
time

Fig. 2: Enforcing execution order fi,j for intra-core
feedthrough communication 〈τi, τj〉.

Nj

Ni

Oj

Oi ≥ Oj

read

hold

readread read

write

Fig. 3: Enforcing execution order fj,i for intra-core unit delay
communication 〈τi, τj〉.

When a low rate writer τi communicates to a high rate
reader τi, enforcing execution order fi,j typically worsens
schedulability since it violates the rate-monotonic policy. One
alternative is to add a unit delay to relax the direct feedthrough
dependency.

For a unit delay communication τi
−1→ τj , the reader τj

should be assigned with a higher priority, and the offset of
the writer τi shall be no smaller than that of τj . The purpose
of the assignment is to prevent race condition caused by τj
preempting τi while τi is updating the shared buffer. In this
case, the RT block behaves like a Unit Delay block plus a Hold
block (Sample and Hold). It supplies an initial value for the
data and holds the delayed data values for the necessary time
period. As illustrated in Figure 3, the RT block state update
function (the gridded box) executes in the context (and at the
rate) of the lower priority writer. The RT block output update
function (the striped box) runs in the context of the higher
priority reader, but at the rate of the slower block.

The design rule is formally summarized as follows. In fact,
it is symmetric to Rule 1.

Rule 2. For intra-core communication from τi to τj , adding
a unit delay between τi and τj requires to enforce execution
order fj,i that implies the following constraints

∀〈τi, τj〉 with Ei = Ej : fj,i ⇒ (Oi ≥ Oj) ∧ (pi < pj) (5)

B. Inter-core Communication

When the reader and writer blocks are assigned to different
cores with partitioned scheduling, preserving the Simulink
semantics is more challenging since there is no notion of global
priority. Hence, we shall rely on offset assignment to enforce a

Ni

Nj

Oi

Oj ≥ Oi+Ri

hold

read

write

trigger
time

activation
time

Ri

Fig. 4: Enforcing execution order fi,j for inter-core
feedthrough communication 〈τi, τj〉.

global execution order and avoid simultaneous access to shared
memory from the communicating blocks on different cores.

The implementation of the RT blocks themselves remains
the same as the single-core case. Feedthrough RT blocks
consist of an output update function executing within the
context of the writer but at the rate of the slower block.
The global shared variable is the output variable of the RT
block. Unit delay RT blocks consist of a state update function
executing along with the writer, and an output update function
executing in the context of the reader but at the rate of the
slower block. The global shared variable is the state variable
of the RT block.

For direct feedthrough communication τi → τj , to ensure
that τi executes before τj , it suffices to assign τj with an
activation offset no smaller than the offset of τi plus the
WCRT of τi, such that τj can only start after the finish of the
instance of τi that feeds it. Formally, the design rule is stated in
Rule 3. The corresponding scheduling diagram is illustrated in
Figure 4. As in the figure, the global variable shared between
cores, the output variable of the RT block, is never accessed
simultaneously from different cores: the RT block updates it
before the reader’s activation time.

Rule 3. Enforcing execution order fi,j for a writer τi and
reader τj allocated on different cores requires the following
constraint

∀〈τi, τj〉 with Ei
= Ej : fi,j ⇒ Ri +Oi ≤ Oj (6)

For a unit delay communication τi
−1→ τj , we assign τi with

an offset no smaller than the offset of τj plus the delay caused
by performing the RT block output update (denoted as RRT

i,j).

Since this update is performed in the context of τj , RRT
i,j can

be computed as the WCRT of τj assuming its WCET is that
of the RT block output update function CRT . That is,

RRT
i,j = CRT +

∑
k∈hp(j)

⌈
RRT

i,j

Tk

⌉
· Ck (7)

As shown in Figure 5, the writer τi may not start until
the RT block output update has finished execution to allow
the RT block copies from its state variable (and consequently
the data generated by the previous instance of τi). Implicitly, a
partial execution order fj,i is enforced. Also, the global shared
variable, the state variable of the RT block, is never accessed
simultaneously by tasks on the two cores: the RT block state

245

Nj

Ni

Oj

read

hold

readread read

write

Oi ≥ Oj+ܴ݅,݆ܴܶ

ܴ݅,݆ܴܶ

Fig. 5: Enforcing execution order fj,i for writer τi and reader
τj on different cores.

update function (gridded box in the figure) is guaranteed to
execute after the previous RT block output update (striped box)
is finished and before the next one starts. The rule can be stated
as follows.

Rule 4. For inter-core communication from τi to τj , adding
a unit delay between τi and τj requires to enforce execution
order fj,i that implies the following constraints

∀〈τi, τj〉 with Ei
= Ej : fj,i ⇒ RRT
i,j +Oj ≤ Oi (8)

V. PROBLEM DEFINITION

The previous section shows that different priority assign-
ments and execution orders require different numbers of unit
delay RT blocks. The use of unit delay RT blocks comes at
the cost of introducing additional functional delay, which may
worsen the control performance. In this paper, we consider the
problem of optimizing semantics-preserving implementation of
Simulink models such that the weighted sum of added unit
delay blocks is minimized, where the weight for each link
is determined by the designer, based on the effect of added
unit delay on the control performance. The decision variables
are the task execution order (and consequently the addition
of unit delay), priority assignment, and offset assignment. The
constraints include system schedulability and those implied by
the execution order enforcement. Task periods, WCETs, and
allocation to cores are assumed to be given.

By Rules 1–4, a unit delay RT block is introduced when-
ever an execution order fj,i for a writer τi and reader τj
is enforced. Thus the objective is equivalent to minimizing
the weighted cost of enforcing fj,i for all writer-reader pairs
〈τi, τj〉. We introduce a set of binary variables ti,j defined as

ti,j =

{
1, fi,j is enforced

0, otherwise
(9)

Each link 〈τi, τj〉 introduces two binary variables ti,j and tj,i
corresponding to two possible execution orders. The optimiza-
tion problem can then be formally expressed as

min
∀P,O,t

∑
∀〈τi,τj〉

wi,j · tj,i

s.t. Schedulability

ti,j = 1 =⇒ implied design contraint by fi,j , ∀ti,j
ti,j + tj,i = 1, ∀i
= j

ti,j ≥ ti,k + tk,j − 1, ∀i
= j
= k
(10)

where P = [p1, ...pn] and O = [O1, ...On] represent the
vectors of priority and offset assignment respectively, t =
[ti,j , tj,i|〈τi, τj〉] is the set of execution order variables, and
wi,j is the cost on adding a unit delay to the link 〈τi, τj〉. The
last two sets of constraints correspond to anti-symmetry and
transitivity of execution orders. The former means that if τi
has a higher order than τj (ti,j = 1), then τj must have a
lower order than τi (tj,i = 0). The later enforces that if τi has
a higher order than τk (ti,k = 1) and τk has a higher order
than τj (tk,j = 1), then τi must have a higher order than τj
(ti,j = 1).

In (10), the (rather simplified) objective function approx-
imates the impact of unit delays on control performance. It
assumes that unit delay blocks are independent from each
other in causing control degradation. The cost of a unit delay
block can be computed following the procedure in e.g., [16].
Specifically, it first simulates the control model configured with
a set of (selected) scenarios of unit delay addition, to get the
control error (the difference between the control output and
the reference) corresponding to each scenario. It then uses a
linear function to approximate the dependency of the control
performance (in terms of control error) on the added delay.

VI. CUSTOMIZED OPTIMIZATION ALGORITHM

A direct ILP formulation of the problem (as detailed in
Appendix A) is inherently complex, mainly caused by the
formulation of priority assignment and response time analysis,
which introduces O(n2) number of integer variables. In addi-
tion, the extensive use of big-M method in the formulation also
increases numerical difficulty. As a result, this approach, even
solved with commercial ILP solvers such as CPLEX, does not
scale well to large systems.

In this paper, we propose an alternative technique that is
exact but runs much faster than ILP. Our main idea is to use
a simple, abstract form of feasibility constraints to hide the
details of response time analysis, schedulability constraints,
and execution order implied constraints from Problem (10).
These constraints are handled using a dedicated procedure that
is much more efficient than formulating them in ILP. Central to
our abstraction technique is the concept of Minimal Infeasible
partial eXecution Orders (MIXO), which represents a minimal
set of execution orders that is sufficient to cause infeasibility.
We first give its definition and study its property.

A. The concept of MIXO

Definition 2. For task system Γ, we define a partial execution
order set F = {fi1,j1 , .., fim,jm} as a collection of execution
orders. The number of elements in F is denoted as |F |.
Definition 3. A task system Γ is said to be F -feasible for a
given partial execution order set F , or informally F is feasible,
if and only if there exists a priority and offset assignment such
that (i) all tasks are schedulable; and (ii) the implied constraints
by each execution order fi,j ∈ F are satisfied. Formally, this
is described by the following constraint satisfiability problem

min 0

s.t. Schedulability

Constraint implied by fi,j , ∀fi,j ∈ F

(11)

246

τi Ti Ci Ei

0 100 20 0
1 100 40 0
2 20 10 1
3 200 96 1

Core 0

Core 1

0

1
3

1

2

Fig. 6: An illustrative system Γe on a dual-core processor. All
weights on the links are assumed to be 1.

Example 1. Considering the example Γe in Figure 6 and a
partial execution order set F = {f0,1, f3,2, f1,2, f0,3}. Γe is
F -feasible if and only if the following problem is feasible

min 0

s.t. Formulation of Ri as in Appendix A1, ∀i
Ri +Oi ≤ Ti, ∀i
f0,1 : O1 ≥ O0 ∧ p0 > p1
f3,2 : O2 ≥ O3 ∧ p3 > p2
f1,2 : O2 ≥ R1 +O1

f0,3 : O3 ≥ R0 +O0

(12)

F is obviously infeasible since given that C3 > T2, any
priority assignment that schedules τ3 at higher priority than τ2
would cause τ2 to miss its deadline.

We now reformulate problem (10) using the concept of F -
feasibility. Specifically, we re-interpret the original problem
(10) as a problem of finding the optimal feasible partial
execution order set F , which specifies one execution order,
fi,j or fj,i, for each communication link 〈τi, τj〉.

min
∀F

∑
∀〈τi,τj〉

wi,j · tj,i

s.t. Γ is F -feasible

ti,j + tj,i = 1, ∀i
= j

ti,j ≥ ti,k + tk,j − 1, ∀i
= j
= k

(13)

In the following, we introduce our abstraction technique for
formulating the constraints of F -feasibility.

Theorem 1. Let F and F ′ be two partial execution order sets
such that F ′ ⊆ F . It is

Γ is F -feasible ⇒ Γ is F ′-feasible (14)

Proof: Since F ′ will impose constraints that are a subset
of those from F , if a feasible priority and offset assignment
exists for F , it must be a feasible assignment for F

′
too.

Corollary 1. By contrapositive law, for two partial execution
order sets F ′ ⊆ F , there is

Γ is not F ′-feasible ⇒ Γ is not F -feasible (15)

From the perspective of the reformulated problem (13),
Corollary 1 suggests that if a partial execution order set F ′ is
known to be infeasible, then the search for the optimal feasible
F shall avoid any superset of F ′. Thus an infeasible partial
execution order set F ′ provides a clue for performing search
space reduction. Intuitively, the smaller the F ′, the greater

the number of infeasible partial execution order sets it can
capture. In the following, we introduce a special type of partial
execution order set that is minimal and infeasible.

Definition 4. A partial execution order set U is a Minimal
Infeasible partial eXecution Order set (MIXO) if and only if

• Γ is not U -feasible

• ∀F ⊂ U , Γ is F -feasible

Example 2. Consider two partial execution order sets F1 =
{f0,1, f3,2} and F2 = {f3,2} for the example system in
Figure 6. Though both are infeasible, F1 is not a MIXO since
F2 ⊂ F1 and F2 is infeasible. F2 is a MIXO however, as
its only proper subset F = ∅ ⊂ F2 is feasible. Intuitively,
F1 is redundant in the presence of F2 in the sense that the
infeasibility of F1 is implied by that of F2.

A MIXO U implies the following constraint∑
∀fi,j∈U

ti,j ≤ |U | − 1 (16)

since we cannot simultaneously satisfy all the execution orders
in U due to its infeasibility. We call (16) the implied feasibility
constraint by U . Our main idea is to use the above constraint as
an alternative for modeling F -feasibility. Comparing with the
ILP formulation in Section A, (16) abstracts away the details
of priority assignment, response time analysis, and the implied
constraints by the execution orders in U .

In the following we first discuss algorithms for calculating
MIXO, then introduce an iterative optimization procedure that
selectively adds MIXO implied constraints.

B. MIXO Calculation

Given an infeasible partial execution order set F , Algo-
rithm 1 computes a MIXO. Specifically, the algorithm iter-
atively visits each execution order fi,j in F and attempts to
remove it. If removing fi,j allows F to be feasible, then fi,j is
added back to F . Intuitively, this suggests that fi,j is part of the
reason for causing F -infeasibility. Otherwise fi,j is removed.
At the end of the algorithm, F is maintained to be infeasible
and has a property that removing any element from it causes it
to be feasible. Thus the resulting F satisfies the two conditions
in Definition 4, and it is a MIXO.

Note that an infeasible set F may contain multiple MIXOs.
To compute a different MIXO U ′ from F , one way is to first
perturb F into a different infeasible F ′ such that F ′ � U
(i.e., by removing an element fi,j ∈ U from F), then apply
Algorithm 1 on F ′. Since F ′ � U , it is guaranteed that the
newly computed MIXO U ′ will be different from U .

The key of Algorithm 1 is a procedure for testing F -
feasibility (Line 4). The procedure needs to be efficient since
it is invoked |F | times for each run of Algorithm 1. In the
following, we first introduce an exact analysis of F -feasibility
and then a necessary-only but much faster analysis.

1) Exact Analysis: The exact analysis of F -feasibility
requires to accurately solve the constraint satisfiability problem
(11). A straightforward solution is to use an ILP formulation
similar to the one introduced in Appendix A. However, this is

247

Algorithm 1 Algorithm for computing MIXO

1: function MIXOCOMPUTATION(Infeasible execution order
set F , Task Set Γ)

2: for each fi,j ∈ F do
3: F = F\{fi,j}
4: if F becomes feasible then
5: F = F ∪ {fi,j}
6: end if
7: end for
8: return F
9: end function

very slow due to similar complexity issues to those discussed
at the beginning of this section. In this paper, we leverage
the MUDA (Maximal Unschedulable Deadline Assignment)-
guided priority assignment optimization framework [31]. It
can solve the following problem highly efficiently, where the
decision space consists of priority assignment, and G(X) ≤ 0
represents additional linear constraints on task WCRTs

min 0

s.t. Schedulability

G(X) ≤ 0

(17)

The main idea of the MUDA-guided framework is to avoid
formulating task WCRT calculation and view (17) as a problem
of finding a schedulable deadline assignment that satisfies
G(X) ≤ 0. For instance, consider Example 1, MUDA-guided
framework re-interprets the F -feasibility problem in (12) as
the following deadline assignment problem

min 0

s.t. di +Oi ≤ Ti, ∀i
f0,1 : O1 ≥ O0 ∧ p0 > p1
f3,2 : O2 ≥ O3 ∧ p3 > p2
f1,2 : O2 ≥ d1 +O1

f0,3 : O3 ≥ d0 +O0

deadline assignment d1, ...dn is schedulable

(18)

where variable di represents the (virtual) deadline of τi.

The MUDA-guided framework consists of two main com-
ponents: (i) an ILP that only tries to find a deadline assignment
satisfying G(X) ≤ 0; and (ii) a revised Audsley’s algorithm [1]
that calculates task WCRTs and checks whether the deadline
assignment returned from solving the ILP allows a schedulable
priority assignment. If not, it generalizes the solution to a
MUDA, converts to an abstract form of constraints and adds
back to the ILP for refinement.

We now look closer on how F -feasibility analysis can be
casted as a MUDA-guided optimization problem. Consider the
example in (12). The constraints can be divided into two parts:

Offset constraints: Partial priority order constraints:
O1 ≥ O0 p0 > p1
O2 ≥ O3 p3 > p2

O2 ≥ R1 +O1 Ri calculation, ∀i
O3 ≥ R0 +O0

Ri +Oi ≤ Ti, ∀i
(19)

Algorithm 2 Algorithm for computing Ři

1: function RMIN(Task τi, Partial priority order constraints
PPO)

2: if Unschedulable w.r.t PPO then
3: return Di + 1
4: end if
5: Use binary search to find the smallest di ∈ [Ci, Di]

that makes the system schedulable w.r.t. PPO
6: return di
7: end function

The offset constraints can be included in G(X) ≤ 0 in
(17). The partial priority order constraints can be enforced
in the second component of the framework, namely, the
revised Audsley’s algorithm for checking schedulability and
computing MUDAs. Specifically, like Audsley’s algorithm, it
tries to find a task that can be assigned at a particular priority
level starting from the lowest priority. However, when choosing
the candidate task at the current priority level, it shall guarantee
that no given partial priority order (PPO) constraint is violated.

We now present a necessary only analysis that runs much
faster, hence can quickly find MIXOs.

2) Necessary Only Analysis: Given a partial execution
order set F and consequently a set of partial priority order
constraints, the necessary only analysis for F -feasibility uses
a quick procedure (Algorithm 2) to derive the smallest WCRT
for each task τi (denoted as Ři) as well as that of the RT
block update function (denoted as ŘRT

i,j), among all priority
assignments that meet the partial priority order constraints. If
the offset constraints (the left-hand side of Equation (19)) are
satisfiable assuming Ri = Ři and RRT

i,j = ŘRT
i,j , then F is

definitely infeasible.

Algorithm 2 gives a procedure for computing Ři. It takes
as input the set of partial priority order constraints implied
by F . The observation is that computing Ři is equivalent to
finding the minimum deadline for τi while maintaining system
schedulability (i.e., all tasks are schedulable), which can be
done using a simple binary search procedure. ŘRT

i,j is computed
similarly. The schedulability w.r.t. the PPO constraints at Line
2 and Line 5 can be tested using a similar revised Audsley’s
algorithm as in Section VI-B1.

The accuracy of the analysis can be further improved by
finding a lower bound Ǒi on each task offset Oi. Given all
Ři and ŘRT

i,j , the offset constraints as those in (19) enforce a
lower bound on the task offsets. Using (19) as an example, we
can derive Ǒ3 = Ř0, and Ǒ2 = max{Ř0, Ř1}.

Since each task τi needs to be schedulable, Ǒi suggests
that any priority assignment needs to additionally satisfy Ri ≤
Ti−Ǒi. Equivalently, this sets a stricter deadline Ďi = Ti−Ǒi

for τi, which can be used to refine the schedulability analysis
at Lines 2 and 5 of Algorithm 2. Specifically, the new stricter
deadline setting may cause Ři to further increase, which again
increases Ǒi. We propose an iterative procedure for the above
analysis until the fixed point is reached (i.e., none of Ǒi, Ři

or ŘRT
i,j of any task changes), as detailed in Algorithm 3.

Example 3. Consider a partial execution order set F = {f0,3}.
We now show how the necessary only analysis in Algorithm 3

248

Algorithm 3 Necessary only analysis for F -feasibility

1: function F-FEASIBILITY(Partial execution order set
F)

2: Extract offset constraints OFF from F
3: Extract partial priority order constraint PPO from F
4: while Ǒi, Ři or ŘRT

i,j of any τi changes do
5: Compute all Ři, Ř

RT
i,j using Algorithm 2

6: if Unsatisfiable w.r.t OFF then return false
7: end if
8: Compute Ǒi according to OFF
9: Update Ďi = Ti − Ǒi for all τi

10: end while
11: return true
12: end function

reasons its infeasibility. By Rule 3, F imposes the following
constraint

O3 ≥ O0 +R0 (20)

At Line 4, Algorithm 3 computes Ř0 = 20 and Ř3 =
196. Assuming R0 = Ř0 and R3 = Ř3, the following offset
constraints are obviously unsatisfiable.

O3 ≥ O0 +R0

R3 +O3 ≤ T3
(21)

Thus the algorithm returns false at Line 6.

Now consider another partial execution order set F =
{f3,0}. By Rule 4, it imposes the following constraint

O0 ≥ O3 +RRT
0,3 (22)

At Line 4, Algorithm 3 computes ŘRT
0,3 = 10 and Ř0 = 20.

All the offset constraints are satisfied at Line 5. Thus the
algorithm proceeds to compute all Ǒi, to obtain Ǒ0 = 10
and Ǒ3 = 0 according to (22). At Line 9, the deadline of
τ0 is updated to Ď0 = T0 − Ǒ0 = 100 − 10 = 90. In the
second iteration of the while loop, Algorithm 3 recomputes
all Ři, ŘRT

i,j and Ǒi, and finds them to be the same as the
previous iteration, suggesting that a fixed point is reached.
Thus the algorithm exits the while loop and returns true (i.e.,
F = {f3,0} is feasible) at Line 11.

Though Algorithm 3 is a necessary only F -feasibility
analysis, it is quite useful for quickly identifying obviously in-
feasible F s. Next, we present the overall customized algorithm
that combines the use of necessary only and exact analyses to
greatly improve the algorithm efficiency.

C. MIXO-guided Framework

One issue of designing a framework based on MIXO-
implied constraint (16) for modeling the feasibility regions
is that the total number of MIXOs grows exponentially w.r.t.
the size of the system. For example, for a system with m
communication links, there are 2m partial execution order
variables, and the total number of MIXOs can be Cm

2m (a
MIXO cannot contains another MIXO). Modeling the entire
feasibility region would need to enumerate all MIXOs and their
implied constraints, which is obviously impractical for large

Solve ILP formulation ∏
with CPLEX

Feasible?
No

Yes

Start with ILP formulation ∏ without
any constraint on F-feasibility

Use necessary analysis for F-feasibility Step 3

Feasible?
No

Yes

Partial execution
order set F*

 Add MIXO-implied
constraints to ∏

Report optimal priority
assignment

Step 2

Step 1

Use exact analysis for F-feasibility Step 4

 Compute k MIXOs using
Algorithm 1

 Compute k MIXOs using
Algorithm 1

Feasible?

Yes

No
Report infeasibility

Step 5

Fig. 7: MIXO-guided optimization algorithm.

systems. However, this is rarely necessary. In our evaluation on
randomly generated systems, we observe that in most cases, the
optimal solution can be defined by a relatively small number
of MIXOs. Thus, we propose an iterative refinement procedure
that selectively explores and adds MIXO-implied constraints
guided by the optimization objective. That is, we derive and
enforce MIXO-implied constraints only when the optimization
algorithm returns infeasible solutions (i.e., the returned partial
execution order set is infeasible).

We now present the algorithm in a stepwise manner. Also,
Figure 7 summarizes the algorithm flow chart.

Initially, the algorithm takes as input a Simulink model
specified in a Directed Graph Γ and with given information
on periods, WCETs and core allocation for each functional
block.

Step 1. The algorithm starts with an initial problem for-
mulation Π as follows

min
∀F

∑
∀〈τi,τj〉

wi,j · tj,i

s.t. ti,j + tj,i = 1, ∀i
= j

ti,j ≥ ti,k + tk,j − 1, ∀i
= j
= k

(23)

249

Compared with the full problem (13), the constraint on F -
feasibility is initially left out.

Step 2. Solve problem Π using integer linear programming
solvers (e.g., CPLEX). If Π is infeasible, then the original
problem is infeasible and the algorithm terminates (see Re-
mark 1). Otherwise, from the valuation on {ti,j}, construct
the partial execution order set F ∗ as F ∗ = {fi,j |ti,j = 1}.

Step 3. Apply the necessary only feasibility analysis in
Algorithm 3 to test the feasibility of F ∗. If F ∗ is deemed fea-
sible, go to Step 4 (and apply the exact analysis). Otherwise,
apply Algorithm 1 using the necessary analysis to compute k
MIXOs where k is a predefined parameter. Go to Step 5.

Step 4. Apply the exact feasibility analysis introduced in
Section VI-B1 on F ∗. If F ∗ is feasible, then terminate and
return the optimal F ∗. The returned F ∗ specifies the set of
execution orders that shall be enforced and thus the set of
required unit delay RT blocks. The corresponding priority and
offset assignments are derived from the feasibility check of
F ∗. They can then be used in the actual implementation of
the Simulink model. If F ∗ is not feasible, apply Algorithm 1
using the exact analysis to compute k MIXOs. Go to Step 5.

Step 5. Add the MIXO-implied feasibility constraints of
the k computed MIXOs to problem Π. Return to Step 2.

Remark 1. In Step 2, it is possible that problem Π becomes
infeasible at some point. This happens for example, when the
utilization of the system is so high that no priority assignment
can schedule it. In this case, given any partial execution
order set F , Algorithm 1 always returns an empty set as the
calculated MIXO. The MIXO-implied constraint by an empty
set, as defined in (16), would be 0 ≤ −1, which causes Π to
be infeasible.

The algorithm is also guaranteed to terminate. This is
because the number of MIXOs is finite, and during each
iteration between Steps 2–5, the algorithm will find new
MIXOs that are different from known ones.

Finally, if a solution is deemed feasible at Step 4, it must be
optimal with respect to the original problem, as it is optimal to
a relaxed problem Π: Π only includes the implied constraints
of a subset of all MIXOs.

The worst case complexity of the MIXO-guided algorithm
may be the same as that of the ILP. Its efficiency mainly
comes from exploiting a small number of constraints in simple
forms to find the optimal solution, which is often sufficient in
practice.

In the following, we demonstrate the proposed framework
using the example system in Figure 6.

Example 4. The algorithm starts with the initial problem Π
as follows, since all weights are assumed to be 1

min t1,0 + t3,0 + t2,1 + t2,3 (24)

Π also includes the anti-symmetry and transitivity constraints
of ti,j variables, and we omit them for ease of presentation.

Iteration 1: Solving Π returns the partial execution order
set.

F ∗ = {f0,1, f0,3, f1,2, f3,2} (25)

The system Γe is not F -feasible due to the existence of partial
execution order p3 > p2 (as explained in Example 1). The
algorithm then computes the following MIXO

U1 = {f3,2} (26)

The following MIXO-implied constraint is added to Π.

t3,2 ≤ 0 (27)

Iteration 2: Solving the updated problem Π returns the
following partial execution order set

F ∗ = {f0,1, f0,3, f1,2, f2,3} (28)

F ∗ is not feasible and the algorithm computes the following
MIXOs

U2 = {f1,2}, U3 = {f0,3} (29)

The following MIXO-implied constraints are added to Π.

t1,2 ≤ 0 ∧ t0,3 ≤ 0 (30)

Iteration 3: Solving Π returns the following partial
execution order set

F ∗ = {f0,1, f3,0, f2,1, f2,3} (31)

F is now feasible. The optimal solution uses unit delay
blocks for communication link 〈τ3, τ2〉, 〈τ0, τ3〉 and 〈τ1, τ2〉.
The corresponding priority assignments for the two cores are
τ0 � τ1 and τ2 � τ3.

VII. EXPERIMENTAL RESULTS

In this section, we present the results of our experimental
evaluation. We compare the proposed MIXO-guided optimiza-
tion framework (denoted as MIXO-guided) and the direct
ILP formulation (denoted as ILP), using randomly generated
systems with different settings, as well as an industrial case
study of automotive fuel injection system. Since both are exact
algorithms, we compare them only in terms of their runtimes.

A. Experiments on Random Systems

We first evaluate the performance of MIXO-guided and
ILP on random systems across a wide range of settings.
We use the tool Task Graphs For Free (TGFF) [12] for
generating random directed graphs as the Simulink model.
The maximum number of writers to each task is limited to
3 and the maximum number of readers is 2. We consider a
dual-core platform. The total number of tasks is varied from
10 to 70, which are then randomly and evenly distributed
to the two cores. The system total utilization is randomly
selected from the interval [1.4, 1.8]. The utilization of each task
is then generated using the UUnifast-Discard algorithm [9].
Task periods are randomly chosen from a predefined set
{1, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000}ms, which con-
tains all the periods from the automotive benchmark [17]. To
avoid excessive waiting time on difficult problem instances,
we set a time limit of 30min for both techniques.

The average runtime by the two techniques is summarized
in Figure 8. Each data point in the figure represents the average
out of 1000 randomly generated systems. For systems with
up to 40 tasks, MIXO-guided and ILP have comparable

250

10 20 30 40 50 60 70
Number of Tasks

0

100

200

300

400

500

600

Ti
m

e
(s

)

ILP
MIXO-guided

Fig. 8: Run Time vs Number of Tasks

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Utilization

0

10

20

30

40

50

60

Ti
m

e
(s

)

ILP
MIXO-guided

Fig. 9: Run Time vs Utilization

runtimes. However, for larger systems of 60 or more tasks, the
runtime of ILP drastically increases. MIXO-guided becomes
10× to 100× faster than ILP for systems above 50 tasks.

We then fix the total number of tasks to be 50, and check
how the runtimes of the algorithms vary with respect to a
given system utilization. Hence, we fix the system utilization
to be some value between 1.2 and 1.8, and collect the average
runtime of both algorithms. Figure 9 illustrates the results. As
in the figure, MIXO-guided always runs faster than ILP, and
the gap in their algorithm efficiency becomes larger for higher
utilization: at 180% system utilization (averagely 90% on each
core), MIXO-guided is about 1 to 2 orders of magnitudes
faster than ILP.

B. Automotive Fuel Injection System

Our second experiment evaluates on an industrial case
study of a simplified fuel-injection system [10]. The system

Tasks Runtime
Objective Util

E0 E1 ILP MIXO-guided

90 0 39197 sec 0.33 sec 21 94%

80 10 13967 sec 1.36 sec 21 190%

70 20 8866 sec 10.47 sec 21 190%

60 30 2325 sec 9.22 sec 21 190%

45 45 1219 sec 5.46 sec 21 190%

TABLE I: Results for the fuel-injection system

contains 90 blocks executing at 7 different periods: 4, 5, 8, 12,
50, 100, and 1000 ms. There are in total 106 communication
links among the blocks, 37 of which are from high rate to
low rate blocks, and 31 are from low rate to high rate. The
communication graph and the task period and WCET can
be found in [10]. The case study was originally configured
to run on a single-core platform, with a total utilization of
94%. In this paper, we modify the case study for use on a
dual-core processor. Specifically, we scale the WCET of each
task to reach a total utilization of 190% (on average 95%
for each core). We consider various task partition schemes on
the two cores, as well as the original system on a single-core
architecture.

The results are summarized in Table I, where the first two
columns are the number of tasks allocated to each of the
two cores. As in the table, while both are capable of finding
the same optimal solution, the MIXO-guided optimization
technique is 2 to 5 orders of magnitude faster than ILP. It
is also interesting to note that although the size of the fuel
injection case study is larger than the randomly generated
systems in the previous experiment, the performance of MIXO-
guided algorithm is sometimes better.

This is mainly due to the following characteristics of the
case study: (i) The total utilization of the case study is very
high, almost approaching the limit that allows schedulability;
(ii) For many of the low rate to high rate communication links
〈τi, τj〉, the periods of the reader and writer are drastically
different (e.g., a 1Hz block communicating to a 250Hz block).
Since the WCETs of blocks are roughly proportional to their
periods, enforcing an execution order for these links where
the lower rate task executes first would easily cause system
unschedulability. As a result, for many of the low rate to high
rate communication links, there is only one possible partial
execution order that may be feasible. For other high rate to
low rate communications 〈τi, τj〉, enforcing fi,j is typically
the optimal decision as it mostly helps schedulability without
having to introduce unit delay blocks.

The proposed MIXO-guided optimization technique readily
exploits such characteristics. Specifically, since it starts with
an over-approximation of the feasibility region (the constraints
on F -feasibility is initially omitted), it naturally attempts to
enforce fi,j for all communication 〈τi, τj〉, which is typically
optimal for high rate to low rate communication. For low
rate to high rate communication 〈τi, τj〉, the fact that many
of them have only one feasible execution order would lead
the algorithm to compute lots of MIXOs that contain only one
element (i.e., U = {fi,j}). The implied constraints of such
one-element MIXOs essentially fix the value on the variable
ti,j . This quickly leads the algorithm to reduce the search
space and identify the optimal solution. Such problem-specific

251

optimization structure appears to be more difficult to exploit
in standard ILP.

VIII. CONCLUSIONS

In this paper, we study the problem of software synthesis
for Simulink models on multicore architectures with parti-
tioned fixed-priority scheduling. We consider a mechanism
for semantics preservation on such platforms, that judiciously
assigns task offsets and leverages the Simulink RT blocks. This
avoids accessing the global shared variables at the same time
from the writer and reader on different cores, and enforces a
proper execution order between them. We propose to optimize
the cost associated to the unit delay RT blocks, and present
two approaches. One is a direct ILP formulation, the other is
a customized exact procedure. Our evaluation on random sys-
tems and on an industrial case study shows that the customized
optimization procedure may run several orders of magnitude
faster than ILP.

For future work, we plan to include task-to-core allocation
into the design space to further improve the solution quality.
In addition, the problem can be enhanced by taking into
consideration the memory overhead introduced by RT blocks.
This may require to impose a constraint on the memory cost
from RT blocks, introduced by the limited memory resources
on the embedded platform.

ACKNOWLEDGMENTS

This paper is partially supported by NSF Grant No.
1739318 and NSFC Grant No. 61471165.

REFERENCES

[1] N. C. Audsley. On priority asignment in fixed priority scheduling. Inf.
Process. Lett., 79(1):39–44, May 2001.

[2] P. Axer et al. Building timing predictable embedded systems. ACM
Trans. Embed. Comput. Syst., 13(4):82:1–82:37, March 2014.

[3] G. Berry and G. Gonthier. The esterel synchronous programming
language: Design, semantics, implementation. Sci. Comput. Program.,
19(2):87–152, 1992.

[4] D. Bui, E. Lee, I. Liu, H. Patel, and J. Reineke. Temporal isolation on
multiprocessing architectures. In Design Automation Conference, 2011.

[5] P. Caspi and A. Benveniste. Time-robust discrete control over networked
loosely time-triggered architectures. In IEEE Conf. Decision & Control,
2008.

[6] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis. Semantics-preserving
multitask implementation of synchronous programs. ACM Trans.
Embed. Comput. Syst., 7(2):1–40, 2008.

[7] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros
Tripakis, and Peter Niebert. From simulink to scade/lustre to tta:
A layered approach for distributed embedded applications. In Conf.
Language, Compiler, and Tool for Embedded Systems, 2003.

[8] J. Chen and A. Burns. Loop-free asynchronous data sharing in
multiprocessor real-time systems based on timing properties. In IEEE
Conference on Real-Time Computing Systems and Applications, 1999.

[9] R. Davis and A. Burns. Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. In IEEE
Real-Time Systems Symposium, 2009.

[10] M. Di Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli. Syn-
thesis of multitask implementations of simulink models with minimum
delays. IEEE Trans. Industrial Informatics, 6(4):637–651, 2010.

[11] M. Di Natale and V. Pappalardo. Buffer optimization in multitask im-
plementations of simulink models. ACM Trans. Embedded Computing
Systems, 7(3):23, 2008.

[12] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: task graphs for free. In
International Workshop on Hardware/Software Codesign, 1998.

[13] J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A multi-periodic syn-
chronous data-flow language. In High Assurance Systems Engineering
Symposium, 2008.

[14] A. Graillat, M. Moy, P. Raymond, and B. Dupont De Dinechin.
Parallel Code Generation of Synchronous Programs for a Many-core
Architecture. In Design, Automation and Test in Europe, 2018.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language lustre. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[16] Gang Han, Marco Di Natale, Haibo Zeng, Xue Liu, and Wenhua
Dou. Optimizing the implementation of real-time simulink models onto
distributed automotive architectures. Journal of Systems Architecture,
59(10):1115–1127, 2013.

[17] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmarks for free. In Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems, 2015.

[18] M. Di Natale and H. Zeng. Task implementation of synchronous finite
state machines. In Conference on Design, Automation Test in Europe,
2012.

[19] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. Multi-
task implementation of multi-periodic synchronous programs. Discrete
event dynamic systems, 21(3):307–338, 2011.

[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron. The
ROSACE case study: From simulink specification to multi/many-
core execution. In IEEE Real-Time and Embedded Technology and
Applications Symposium, 2014.

[21] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in
synchronous systems. In Int. Conf. Application of Concurrency to
System Design, 2004.

[22] D. Potop-Butucaru, S. Edwards, and G. Berry. Compiling Esterel.
Springer, 2007.

[23] W. Puffitsch, E. Noulard, and C. Pagetti. Mapping a multi-rate
synchronous language to a many-core processor. In IEEE Real-Time
and Embedded Technology and Applications Symposium, April 2013.

[24] W. Puffitsch, E. Noulard, and C. Pagetti. Off-line mapping of multi-
rate dependent task sets to many-core platforms. Real-Time Systems,
51(5):526–565, 2015.

[25] The MathWorks. The mathworks simulink and stateflow user’s manuals.
web page: http://www.mathworks.com.

[26] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincent, P. Caspi,
and M. Di Natale. Implementing synchronous models on loosely time
triggered architectures. IEEE Transactions on Computers, 57(10):1300–
1314, Oct 2008.

[27] C. Tuncali, G. Fainekos, and Y. Lee. Automatic parallelization of
multirate block diagrams of control systems on multicore platforms.
ACM Transactions on Embedded Computing Systems, 16(1):15, 2016.

[28] H. Zeng and M. Di Natale. Mechanisms for guaranteeing data
consistency and flow preservation in autosar software on multi-core
platforms. In IEEE Symposium on Industrial Embedded Systems, 2011.

[29] H. Zeng and M. Di Natale. Schedulability analysis of periodic
tasks implementing synchronous finite state machines. In Euromicro
Conference on Real-Time Systems, 2012.

[30] Y. Zhao, C. Peng, H. Zeng, and Z. Gu. Optimization of real-time
software implementing multi-rate synchronous finite state machines.
ACM Trans. Embed. Comput. Syst., 16(5s):1–21, September 2017.

[31] Y. Zhao and H. Zeng. The virtual deadline based optimization algorithm
for priority assignment in fixed-priority scheduling. In IEEE Real-Time
Systems Symposium, 2017.

APPENDIX

A. ILP Formulation

In this appendix, we detail an integer linear programming
(ILP) formulation of the problem in (10). It is derived by
formulating the first two constraints in (10) as (33) and (35)
–(39) detailed below.

252

1) Schedulability Constraints: We first introduce a binary
variable Pi,j for each pair of blocks τi and τj allocated on the
same core, to define their priority order

Pi,j =

{
1, pi > pj
0, pj > pi

(32)

The priority order shall satisfy the properties of anti-
symmetry and transitivity.

Pi,j + Pj,i = 1, ∀τi
= τj , Ei = Ej

Pi,j ≥ Pi,k + Pk,j − 1, ∀τi
= τj
= τk, Ei = Ej = Ek
(33)

The response time analysis (3) can then be written as

Ri = Ci +
∑

∀τj :Ej=Ei

Pj,i

⌈
Ri

Tj

⌉
· Cj (34)

The product of variable Pj,i and the ceiling operator can be
linearized by introducing an integer variable Πj,i subject to
the following constraint

Πj,i ≥ Ri

Tj
− (1− Pj,i)M (35)

where Πj,i is an integer variable and M is a large enough
constant (e.g., Ti/Tj). Intuitively, when τi has a higher priority
than τj (i.e., Pj,i = 0), the above constraint becomes trivially
true. Otherwise, Πj,i is enforced to be at least Ri

Tj
. The response

time analysis can then be formulated as the following linear
constraint

Ri = Ci +
∑

∀τj :Ej=Ei

Πj,i · Cj (36)

The schedulability of τi requires that it finishes before its
deadline

Oi +Ri ≤ Ti (37)

2) Constraints Implied by Execution Orders: We now show
how the constraints enforced by the execution orders can be
formulated. Four cases are considered, which correspond to
Rules 1–4.

Rule 1 and Rule 2 are symmetric to each other. Thus we
only demonstrate the formulation for Rule 1 as follows

Pi,j ≥ ti,j ∧Oj ≥ Oi − (1− ti,j)M (38)

Intuitively, when ti,j = 1, both Pi,j = 1 and Oj ≥ Oi are
enforced. In the other case where ti,j = 0, both constraints
are trivially true.

In a similar manner, Rules 3–4 can be formulated as
follows

Oj ≥ Ri +Oi − (1− ti,j)M

Oi ≥ RRT
i,j +Oj − (1− tj,i)M

(39)

RRT
i,j is computed according to (7). It can be formulated in

ILP using constraints similar to (35) and (36).

3) Example:

Example 5. We now demonstrate the ILP formulation using
the example system depicted in Figure 6. The system consists
of two cores each of which contains two blocks. We first look
at the response time formulation. Consider τ0 as example. Its
response time R0 is formulated as follows.

R0 = C0 +Π1,0C1

Π1,0 ≥ R0

T1
− (1− P1,0)M

(40)

where R0 is a non-negative real variable representing the
response time of τ0. P1,0 is a binary variable representing the
partial priority order between τ1 and τ0. Π1,0 is a non-negative
integer variable for linearizing the product of partial priority
order variable P1,0 and the ceiling term as in (34).

The delay for the output update function between τ0 and
τ3, namely RRT

0,3 can similarly be formulated as follows.

RRT
0,3 = CRT +Π1,0C1 (41)

Next we look at the execution order implied constraints.
Consider intra-communication 〈τ0, τ1〉, 〈τ3, τ2〉, which corre-
spond to four execution orders: t0,1, t1,0, t3,2 and t2,3. The
corresponding implied constraints are

P0,1 ≥ t0,1 ∧O1 ≥ O0 − (1− t0,1)M

P1,0 ≥ t1,0 ∧O0 ≥ O1 − (1− t1,0)M

P3,2 ≥ t3,2 ∧O2 ≥ O3 − (1− t0,1)M

P2,3 ≥ t2,3 ∧O3 ≥ O2 − (1− t2,3)M

(42)

Similarly, for inter-communication 〈τ0, τ3〉 and 〈τ1, τ2〉.
The corresponding implied constraints are

O3 ≥ R0 +O0 − (1− t0,3)M

O0 ≥ RRT
0,3 +O3 − (1− t3,0)M

O2 ≥ R1 +O1 − (1− t1,2)M

O1 ≥ RRT
1,2 +O2 − (1− t2,1)M

(43)

Finally, execution order shall satisfy anti-symmetry and
transitivity constraints, which amounts to the following

t0,1 + t1,0 = 1

t3,2 + t2,3 = 1

t0,3 + t3,0 = 1

t1,2 + t2,1 = 1

(44)

Transitivity constraints are trivial to consider for the example
here. Consider enforcing execution order t0,1 and t1,2, which
seems to imply that t0,2 is also be enforced. However, since
the example does not have communication 〈τ0, τ2〉, it is not
necessary to consider.

The objective of the optimization is to minimize the use of
unit delay RT block, which can be formulated as follows.

min t1,0 + t2,3 + t3,0 + t2,1 (45)

The final ILP formulation consists of constraints in the
form of (40) for all tasks, constraints in the form of (41) for
RRT

0,3 and RRT
1,2 , (42), (43), (44), and the objective (45) .

253

