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Abstract

We show that, for any ε > 0, there is a deterministic em-

bedding of edge-weighted planar graphs of diameter D into

bounded-treewidth graphs. The embedding has additive er-

ror εD. We use this construction to obtain the first efficient

bicriteria approximation schemes for weighted planar graphs

addressing k-Center (equivalently d-Domination), and a

metric generalization of independent set, d-independent

set. The approximation schemes employ a metric general-

ization of Baker’s framework that is based on our embedding

result.

1 Introduction

An approximation scheme for an optimization problem
is a family of algorithms {Aε : ε > 0} such that
algorithm Aε returns a solution that is within a factor
1 + ε of optimal. It is a polynomial-time approximation
scheme (PTAS) if each algorithm in the family runs
in polynomial time, and an efficient PTAS (EPTAS)
if there is a fixed degree d such that every algorithm in
the scheme has running time O(nd).

In 1983, Baker [1] introduced a framework for
obtaining very efficient (linear time) approximation
schemes for certain optimization problems in planar
graphs. Her framework gave rise to linear-time ap-
proximation schemes for minimum-weight dominating
set, maximum-weight independent set, minimum vertex
cover, maximum triangle matching, and several others.

Baker’s approach can handle only problems charac-
terized by very local properties. A dominating set in a
graph is a set S of vertices such that every vertex in
the graph is within one hop of a vertex in S. An in-
dependent set is a set of vertices no two of which are
within one hop. These are the two problems that best
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illustrate the ideas underlying Baker’s framework.
The key to Baker’s results, is a property now known

as bounded local treewidth (a.k.a. the diameter-treewidth
property [8]). Treewidth is a measure of the structural
complexity of a graph and many problems can be solved
in polynomial time on graphs of bounded treewidth.1

A family of graphs has bounded local treewidth if
the treewidth of every graph in the family is upper-
bounded by a function of the graph’s diameter. In
particular, a graph whose diameter is no more than a
constant has treewidth no more than a constant. In
modern parlance, Baker showed that planar graphs have
bounded local treewidth, and used this result to reduce
the approximation of local optimization problems to
exact solution of these problems on bounded-treewidth
graphs.

The reduction works for problems characterized
by local properties—properties involving only vertices
separated by a constant number of hops—because the
structures in question can be in a sense isolated to
subgraphs of constant diameter.

In this paper, we seek to extend Baker’s framework
to handle problems characterized by properties involv-
ing vertices separated by a given distance in an edge-
weighted graph. We call these the metric generaliza-
tions of the problems addressed by Baker. Our goal is
to give efficient PTASs for such metric generalizations.

Consider the two most representative problems ad-
dressed by Baker: Minimum-Weight Dominating
Set and Maximum-Weight Independent Set. The
metric generalization of the first is: given a graph G
with vertex weights and edge lengths, and given a num-
ber d > 0, find a minimum-weight set S of vertices such
that every vertex of G is within distance d of some ver-
tex in S. Such a set S is said to be an d-dominating
set. The d-Domination problem models a scenario in
which one must select locations for facilities, e.g. clin-
ics or firehouses, so that every client (vertex) is within
a prescribed travel time from some facility. A closely

1Due to space limits, we omit the formal definitions of
treewidth and of branchwidth, a measure that is within a con-
stant factor of treewidth.
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related problem is k-Center, in which the goal is to
minimize d such that there exist k vertices such that
every vertex is within distance d of one of these k ver-
tices.

The second problem to generalize is Maximum-
Weight Independent Set. Its metric generalization
is Maximum-Weight d-Independent Set: given a
graph G with vertex weights and edge lengths, and
given a number d > 0, find a maximum-weight set S
of vertices such that every pair of vertices in S are a
distance greater than d from each other.2

For unweighted planar graphs and constant d,
Baker’s approach can be generalized to obtain linear-
time approximation algorithms for these generaliza-
tions. Indeed, such approximation schemes have been
given [6, 9]. The challenge we address is to obtain ef-
ficient approximation schemes for the case of arbitrary
edge lengths and arbitrary d.

Evidence (see Section 1.1) indicates that such effi-
cient approximation schemes do not exist, so we slightly
lower our sights: we give bicriteria approximation
schemes, where both the weight of the solution and the
distance d are approximated to within a 1 + ε factor.

Theorem 1.1. There is an efficient bicriteria PTAS for
d-Domination in planar graphs with vertex weights and
edge lengths. That is, there is a fixed c such that for any
ε > 0 there is an O(nc) algorithm that, given a planar
graph with vertex weights and edge-lengths, and given a
distance d, returns a set S of vertices such that
• every vertex is within distance (1 + ε)d of S, and
• the weight of S is at most 1 + ε times the minimum

weight of an d-dominating set.

The problem d-Domination can be generalized by
specifying a subset of vertices to be clients (so not
every vertex needs to be near a facility) and further
generalized by assigning a mass to each vertex and
requiring only that, say, 80% of the client mass is
required to be near a facility. Our efficient bicriteria
PTAS can handle this generalization.

A bicriteria PTAS was previously given [7]; the
same paper introduced the notion of a metric general-
ization of Baker’s framework. However, the PTAS was
not an efficient PTAS: the degree of the polynomial in-
creased with 1/ε.

Our bicriteria EPTAS can also be interpreted as
addressing k-Center, in which the input specifies a
number k, and the goal is to minimize d such that there

2One might call this the franchise problem. It is said that
Colonel Sanders promised the early franchisees for Kentucky Fried
Chicken that no franchisees would be within a given distance of
each other. It is called the d-scattered set in [15].

is a set of k vertices that d-dominate all vertices. Our
EPTAS can find d such that there is a set of (1 + ε)k
vertices that d-dominate all vertices, and such that no
set of k vertices can (1− ε)d-dominate all vertices.

Theorem 1.2. There is an efficient bicriteria PTAS for
d-independent set problem in planar graphs with vertex
weights and edge lengths. That is, there is a fixed c such
that for any ε > 0, there is an O(nc) algorithm that, given
a planar graph with vertex weights and edge-lengths, and
given a distance d, returns a set S of vertices such that
• every pair of vertices in S are at a distance greater

than (1− ε)d, and
• the weight of S is at least 1− ε times the maximum

weight of a set Ŝ of vertices every pair of which are
at distance at least d.

We can similarly obtain efficient bicriteria approxi-
mation schemes for metric generalizations of other prob-
lems addressed by Baker, e.g. maximum triangle match-
ing. All these new schemes follow from our main result,
an embedding of planar graphs into bounded-treewidth
graphs with additive error a bounded fraction of the
input graph’s radius.

Theorem 1.3. There is a polynomial-time algorithm
that, given an edge-weighted planar graph and given a
number ε > 0, outputs an embedding of the graph into
a planar graph of treewidth poly(1/ε) with additive error
ε D, where D is the diameter of the input graph.

This theorem represents our attempt to generalize the
notion of bounded local treewidth to graphs with edge
lengths.3 Each of our approximation schemes consists
in
• using a variant of Baker’s approach, metric shift-

ing (from [7]) to reduce the problem to several in-
stances in bounded-diameter planar graphs,

• using the embedding of Theorem 1.3 to further
reduce each instance to one in a bounded-treewidth
graph, and

• using dynamic programming to obtain an approxi-
mately optimal solution for each instance.

The running time of Step 1 is linear. The running
time of Step 2 is polynomial with some fixed degree.
(We have not tried to optimize this running time.)
For Step 3, in the case of (k, r)-center, Katsikarelis

3Admittedly, in our current proof, the treewidth is bounded by
a polynomial of very high degree in 1/ε. There is some irony in
the fact that our approach to achieving an efficient PTAS yields
an algorithm that is inefficient in the constant’s dependence on
ε. However, with this paper we are introducing the problem and
some fundamental techniques. Although the result presented here
is highly theoretical, it could illuminate the path towards a more
practical result.
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et al. [14] gave a fixed-parameter tractable bicriteria
approximation scheme, parameterized by the treewidth
of the input graph. The running time is a fixed
polynomial in the graph size times (tw/ε)O(tw) where tw
is the treewidth. It is not hard to obtain a similar result
for d-independent set. (We will describe such algorithms
in the full version.)

In Section 2.1, we illustrate the metric Baker
framework by reducing bicriteria approximation of d-
domination and d-independent set in planar graphs with
edge-lengths to approximation in such graphs but where
the radius is O(dε−1). Most of the paper is devoted to
proving Theorem 1.3.

1.1 Related work
Embeddings Metric embeddings of bounded di-

mensional metric spaces have been of great recent in-
terest. Talwar [17] showed that a metric of bounded
doubling dimension and aspect ratio ∆ can be proba-
bilistically approximated with 1 + ε error by a family of
treewidth-κ metrics, where κ is bounded by a function
that is polylogarithmic in ∆. Feldmann et al. [10] build
on this result to obtain a similar embedding theorem
for graphs of bounded highway dimension. Chan and
Gupta [5] showed a similar result for graphs of bounded
correlation dimension, though the treewidth of the ap-
proximating graphs is Õ(

√
n). These results can be

used to obtain (superpolynomial-time) approximation
algorithms for NP-complete problems like the traveling
salesman problem.

Unfortunately, planar graphs neither have low dou-
bling dimension nor low highway dimension. Indeed, re-
sults as strong as those of Talwar [17] and Feldmann et
al. [10] are not possible for planar graphs: Chakrabarti
et al. [4] showed a result that implies that unit-weight
planar graphs cannot be embedded into distributions
over o(

√
n)-treewidth graphs with better than O(log n)

distortion. (In an earlier result, Carroll and Goel
showed [3] that any embedding of planar graphs into
a distribution over bounded-treewidth graphs has (rel-
ative) distortion Ω(log n).)

As mentioned earlier, Eisenstat et al. [7] introduced
a kind of metric version of Baker’s framework, reducing
bicriteria approximation of k-center in bounded-genus
graphs to approximation in bounded-genus bounded-
radius graphs. However, their method for address-
ing the problem in the latter graphs used shortest-
path separators rather than metric embeddings into
low-treewidth graphs, and the resulting approxima-
tion scheme is inefficient. During this research Eisen-
stat (personal communication) asked whether any pla-
nar graph with diameter D has a minor that has
bounded treewidth and preserves distances up to εD.

 

 Figure 1: Transforming a grid into a graph with low
branchwidth.

It is this question that inspired our work towards our
main result.

More on k-center and d-domination and d-
independent set As mentioned earlier, our bicriteria
EPTAS can be used to address k-center. For this
problem, Hochbaum and Shmoys [13] and Gonzalez [11]
gave a 2-approximation algorithm for arbitrary graphs.
This is best possible; for any ε > 0, 2− ε-approximation
is NP-hard [12], even for planar graphs [16]. We
therefore cannot expect a PTAS for k-center in planar
graphs, so are willing to settle for a bicriteria EPTAS.

Assuming the Exponential-Time Hypothesis

(ETH), there is no f(k)no(
√
k) algorithm to find a

solution of size k (when one exists) to d-Dominating
Set or d-Independent Set (see [15]). Suppose there
were a (single-criteria) EPTAS for d-Domination
or d-Independent Set in planar graphs, and that
its running time was O(nc) where c is a constant
independent of ε. For k ≤ c3, one can choose ε small
enough so that the EPTAS would find the optimal

solution. This would be an f(k)no(
√
k) algorithm,

refuting ETH. Thus we do not expect a single-criteria
EPTAS for either of these problems.

Prior to the work of Katsikarelis et al. [14], there
was other work on dynamic programs for k-center and
d-domination for unweighted graphs and fixed k or fixed
d in graphs of bounded treewidth: Demaine et al. [6],
and Borradaile and Le [2].

Marx and Pilipczuk [15] have given algorithms that

run in nO(
√
k) for finding the optimal solution to d-

dominating set and d-independent set in planar graphs
with edge-lengths when the vertices are unweighted and
the size of the optimal solution is at most k.

1.2 Informal discussion of the embedding tech-
niques Why try to embed a planar graph into a
bounded-treewidth graph with additive error bounded
by ε times the diameter of the input graph? Consider a
regular

√
n×
√
n grid, which has diameter O(

√
n).

For each column, cut along the column, turning a
single path into two parallel paths. Each vertex of the
original column now corresponds to two copies. Think
of the space between these paths as a channel filled
with water. A boat could efficiently move up and
down the channels to reach any vertex. So far it is
impossible to travel between the left and the right of
each column, so the new metric is far from the old
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Figure 2: Channelizing the bars of the cage, and
then adding links to approximately preserve bar-to-bar
distances.

one. In order to partially restore the metric, at rows
1,
√
nε + 1, 2

√
nε + 1, 3

√
nε + 1, . . . add artificial edges

between the two copies of each vertex. Think of these
artificial edges as drawbridges. Each drawbridge slightly
impedes the movement of the boat. However, each
channel only has 1/ε drawbridges so every vertex is still
just a small number of drawbridges away from every
other. At the same time, the addition of the artificial
edges makes the new metric much closer to the original
one; relative to the original, distances have increased by
at most ε times the diameter.

Our approach to the embedding makes use of four
basic techniques. The first, which has been used
in many approximation algorithms, is the notion of
portalization or, equivalently, ε-nets.

The other three techniques are new. One cages,
addresses the grid-like structure of planar graphs One
technique addresses the recursive-nesting structure of
planar graphs. One technique helps achieve bounded
treewidth despite the recursion.

Cages The first technique involves a subgraph we call
a cage, depicted in Figure 2. Between the bars of
the cage the graph can be arbitrarily complicated. In
order to reduce the treewidth, the algorithm turns bars
of the cage into channels. Using a result of Tamaki
(Theorem 3.1), we can show that the channels enable
us to bound the treewidth of the cage. However, the
channels alone would destroy the metric. The algorithm
also uses a procedure Bars2Bars to select a subset of
shortest paths between bars in order to approximately
preserve all bar-to-bar shortest paths. Each channel is
intersected by a constant number (depending on ε) of
selected paths, which only increases the treewidth by a
constant factor.

Recursive nesting and detour cost bump The
algorithm must recursively operate on the subgraphs
embedded between bars of a cage. However, the
nesting could be arbitrarily deep, and we can only
afford a constant depth of nesting for two reasons: each
level of nesting increases the approximation error, and
each level of nesting increases the branchwidth of the
resulting graph.

To bound the effective nesting, we use a measure we

call detour cost. Consider two paths P1 and P2. Under
certain conditions, if P2’s detour cost is not much more
than P1’s then P2 can be approximated using a subpath
of P1. Therefore the algorithm needs to worry about P2

only if its detour cost exceeds that of P1 by at least ε.
This increase in detour cost allows us to show limited
recursion depth because we show that no path has very
large detour cost.

2 Applications of our embedding result

In this section, we illustrate the use of the embedding in
obtaining approximation schemes using a metric version
of Baker’s framework.

2.1 Metric adaptation of Baker’s framework
We outline how bicriteria approximation for d-
domination and d-independence in a graph G can be
reduced to the same problems in a graph (obtained from
G by edge deletions and contractions) whose radius is
O(ε−1).

We closely follow the treatment in [7], which de-
scribed this reduction for d-domination. Assume for
simplicity of presentation that ε−1 is an integer and that
d = 1.

For each of the two problems, we define families of
intervals. Let σ be a value in {0, 1, 2, . . . , ε−1 − 1}. For
j = 0, 1, . . ., we define intervals Ij,σ and I+j,σ:

• For 1-domination, Ij,σ = [2jε−1−2σ, 2(j+1)ε−1−
2σ) and I+j,σ = [2jε−1−1−2σ, 2(j+1)ε−1+1−2σ).

• For 1-independence, Ij,σ = [jε−1+1−σ, (j+1)ε−1−
σ) and I+j,σ = [jε−1 − σ, (j + 1)ε−1 + 1− σ).

We now describe the two reduction algorithms. Com-
pute shortest-path distances rooted at a vertex s. De-
fine Uσj to be the set of vertices whose distances from
s lie in Ij,σ, and define V σj to be the set of vertices

whose distances from s lie in I+j,σ. Let Gσj to be
the subgraph of G induced by V σj , with extra edges
{sv : v’s parent in shortest-path tree is not in V σj } as-

signed length 1. The radius of Gσj is at most 2ε−1 + 3

in case of d-domination and at most ε−1 + 2 in case of
d-independence.

For each σ ∈ {0, 1, . . . , ε−1 − 1}, the algorithm
uses a subroutine to compute an approximation to
the appropriate problem for each of the instances
(Gσ0 , U

σ
0 ), (Gσ1 , U

σ
1 ), . . . then finds the union of the so-

lutions to these instances, and returns whichever union
is the best.

For the analysis, we assume that the subroutine has
the following guarantee:

• (Generalized 1-domination) The subroutine returns
a set that (1 + ε)-dominates all vertices of U and
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has weight at most the minimum weight of a set of
vertices that 1-dominates all vertices of U .

• (Generalized 1-independendence) The subroutine
returns a (1−ε)-independent set whose weight is at
least the maximum weight of a 1-independent set.

Let Wσ
j = V σj ∩V σj+1 for σ ∈ {0, 1, . . . , ε−1− 1} and

j = 0, 1, . . .. Let Wσ =
⋃
jW

σ
j .

The proofs of the following, like those of Baker, use
average arguments.

Lemma 2.1. Let M∗ be a set of vertices of G that 1-
dominates all vertices in G. The reduction algorithm
returns a set that 1 + ε dominates all vertices in G and
has weight at most 1 + ε times that of M∗.

Lemma 2.2. Let M∗ be a set of 1-independent vertices of
G. The reduction algorithm returns a (1− ε)-independent
set whose weight is at least 1− ε times that of M∗.

3 Preliminaries

For a path P , the first vertex of P is denoted start(P )
and the last vertex is denoted end(P ). The vertices of
P other than start(P ) and end(P ) are internal vertices.
The length of P is denoted length(P ). The reverse path
is denoted PR. The path obtained by concatenating
paths P and Q is denoted PQ. The u-to-v distance in
G is denoted distG(u, v) or just dist(u, v).

The radius of a graph with respect to a vertex r is
the maximum over all vertices v of the v-to-r distance.

We say two intersecting shortest paths P and Q
are uniquely intersecting if their intersection is a single
subpath (possibly consisting of just one vertex) of
each of the paths. More generally, we say a set of
shortest paths satisfies unique intersection if every pair
of intersecting paths are uniquely intersecting. Let S
be such a set. We say a path P is uniquely intersecting
with respect to S if S∪{P} satisfies the property. Given
such a set S and given vertices u and v, there exists a
u-to-v path that is uniquely intersecting with respect to
S.

3.1 Radial radius and branchwidth For any pla-
nar embedded graph, the corresponding radial graph is
an embedded bipartite planar graph whose vertices cor-
respond to the vertices and faces of the original graph;
two vertices of the radial graph are adjacent if they cor-
respond to a vertex and a face of the original graph that
are incident. The lengths of the radial graph’s edges are
all one.

Theorem 3.1. (Tamaki [18]) The branchwidth of a
planar graph is bounded by the radius of its radial graph
with respect to a vertex.

 
Figure 3: Channelizing a shortest path: slicing the
path, duplicating edges and internal vertices; and then
rejoining, adding zero-length artificial edges between
pairs of duplicated vertices. A path Q that crosses
the channelized path corresponds to a path Q̂ after
channelization.

We refer to a path in the radial graph as a radial
path. The size of a radial path is its number of edges.

4 Strategy

In this section, we outline the high-level strategy for
proving Theorem 1.3. To prove this theorem, we must
construct an embedding φ(·) of the input graph Gin into
a bounded-branchwidth graph such that, for every pair
u, v of vertices of Gin,
(4.1)

distG(u, v) ≤ distH(φ(u), φ(v)) ≤ distG(u, v) + εD

where D is the diameter of Gin.
We state lemmas about the algorithm that we only

prove later once we give details of the algorithm. We
show that, once those lemmas are proved, the theorem
follows.

4.1 Root and radius of the input graph The
algorithm designates an arbitrary vertex r of the input
graph, which we call the root. The algorithm then scales
the edge-lengths so that the farthest vertex from r is
at distance 1. As a result, the diameter is between 1
and 2. It therefore suffices to establish Inequality 4.1
with εD replaced by ε. For notational convenience, our
proof establishes the inequality with εD replaced by a
quantity that is at most cε for some constant c. To
obtain the desired quantity, it suffices to provide the
algorithm with a parameter ε′ = ε/c.

Using a simple transformation, we assume that
there is a zero-length self-loop that encloses all of the
graph except r. We also assume that every edge is a
shortest path between its endpoints; other edges can be
removed.

4.2 Channelizing The algorithm for Theorem 1.3
maintains a planar embedded graph G and a set Links
of shortest paths, called links. Initially G is the input
graph Gin. The algorithm repeatedly modifies the
graph by performing an operation we call channelizing.
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Given a shortest path P , channelizing P consists of the
following steps:

Slice Replace P with two paths P+ and P− that are
internally disjoint. Each edge e of P is replaced with two
copies, e+ and e−, which are each assigned the length
of the original edge e. Each internal vertex v of P is
replaced with two copies, v+ and v−. Every edge in the
unmodified graph that is not in P but is incident to an
internal vertex v of P remains incident to one of the
two copies of v in the modified graph. In the modified
graph, the two paths P+ and P− form the boundary for
a new face. The face is called a channel (the channel of
P ), and the paths P+ and P− are called the the banks
of the channel. The vertices of the banks are called bank
vertices of the channel.
Rejoin Add zero-length artificial edges. For each vertex
v that is replaced with copies v+ and v−, an artificial
edge is added with endpoints v+ and v−. These are the
artificial edges of the channel.

Each path Q in G before channelization of P cor-
responds to an equal-length path Q̂ after, one possibly
using an artificial edge of the channel.

Note that if some of the endpoints of Q are internal
vertices of P then Q corresponds to two or even four
paths after channelization, because those endpoints are
duplicated.

We will generally avoid further discussion of the dis-
tinction between Q and Q̂. In particular, the description
of the algorithm will not explicitly include updating of
the paths in Links.

4.3 Drawbridges and travel by channel The ar-
tificial edges of a channel that also belong to Links are
called drawbridges of the channel. The cost of a channel
is its number of drawbridges.

Theorem 4.1. (Channel Cost Theorem) There is
a constant c such that every channel has cost O(ε−c).

A concatenation of channels of size k is a sequence
C1e1C2e2 · · · ek−1Ck of alternating channels Ci and
artificial edges ei such that, for i = 1, . . . , k − 1, ei is
incident to bank vertices of Ci and Ci+1.

Channel Global Travel Theorem. There is a
constant d such that, for every channel C, there is a
concatenation of channels of size O(ε−d) in which the first
channel is C and the last channel ends at r.

At any time in the algorithm’s execution, we define
G[Links] to be the subgraph of G consisting of (i)
banks of all channels in G, together with (ii) all edges
belonging to links, i.e. paths in Links. Note in

particular that the only artificial edges in G[Links] are
those in Links.

Let Ĝ and L̂inks denote respectively the graph G
and the set Links when the algorithm finishes.

Lemma 4.1. In Ĝ, every vertex is on the bank of some
channel.

It follows from the Channel Cost Theorem and
the Channel Global Travel Theorem combined with
Lemma 4.1 that the radius of the radial graph of

Ĝ[L̂inks] is O(ε−c−d) where c and d are the constants
in those theorems. By Theorem 3.1, we obtain

Corollary 4.1. The branchwidth of Ĝ[L̂inks] is
O(ε−c−d).

Each vertex v of Gin (called an original vertex)
maps to at least one vertex v̂ in G. It is clear that
channelization does not change distances, and therefore
that, for any original vertices u and v, the û-to-v̂

distance in Ĝ[L̂inks] is at least the u-to-v distance in
Gin. We will show an approximate converse.

Theorem 4.2. For each pair u, v of original vertices, the

û-to-v̂ distance in Ĝ[L̂inks] exceeds the u-to-v distance
in Gin by O(ε).

This shows that the mapping v 7→ v̂ is a metric

embedding of Gin into Ĝ[L̂inks] with an additive error
of O(ε). This together with Corollary 4.1 will prove
Theorem 1.3.

4.4 r-path A rootward r-rooted shortest-path tree is
maintained throughout the algorithm. For each vertex
v, the v-to-r path in the r-rooted shortest-path tree is
called the r-path of v, and is denoted rpath(v).

The algorithm ensures that the set P of r-paths
of vertices together with the set of banks satisfies the
unique intersection property. Just as with links, in
describing the algorithms we do not explicitly describe
updating the r-paths after a channelization.

In a slight abuse of terminology, if P is a subpath
of the r-path of v, we refer to P as an r-path. If a path
that is channelized is an r-path, the resulting channel
is said to be an r-path channel, and its banks are called
r-path banks. The other channels and banks are called
non-r-path channels and banks.

At any given time in the algorithm’s execution, the
r-path prefix of a vertex v is the minimal prefix of v’s
r-path whose end is a vertex of a non-r-path bank, and
that non-r-path bank is called the crossroad of v.
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Figure 4: The blue lines are banks of channels. The top
and bottom channels are non-r-path channels. The left
and right channels are r-path channels. The red lines
form a territory. Note that the territory includes the
adjacent bank of each of the r-path channels, continuing
down to where the r-paths meet the bottom channel
(which is a crossroad).

4.5 Territories and operations and crossroads
Consider some moment in the execution of the algo-
rithm. Let G be the current graph. Let H be the sub-
graph of G consisting of the banks and artificial edges
of all channels. A face of G − H is called a region. A
connected component K of G−H is said to be the in-
terior of a territory of G, and its vertices are internal
vertices of the territory. Let f be the region in which
K is embedded; the boundary of f consists of maximal
subpaths of banks, and each such maximal subpath is
called a side of the territory.

The territory itself is the subgraph obtained from
K by adding
• edges of G incident to K and vertices adjacent to
K, and
• r-path prefixes of all the internal vertices and all

the vertices adjacent to them.
The vertices of the territory that are not internal
vertices are called external vertices of the territory.

Suppose uv is an edge that does not belong to a
bank and is not artificial, such that u and v belong to
banks. Then uv and the r-path prefixes of u and v form
a degenerate territory. It has no internal vertices.

The algorithm proceeds by divide-and-conquer on
territories. Channelizing a path in τ adds to the sub-
graph of H and thereby gives rise to smaller territories
(called subterritories of τ). We identify τ with the cor-
responding subgraph in the modified graph.

Applying an operation to τ consists of performing
certain channelizations and also adding paths in τ to
Links, thereby designating them aslinks. We say the
channels created in the operation are owned by τ .

The subterritories resulting from applying an opera-
tion to τ are considered the children of τ . The algorithm

then applies operations to these child territories, and so
on. The execution of the algorithm defines a rooted
tree, the territory tree, in which the nonroot nodes are
the territories resulting from operations.

To start the process, we define the initial territory
to be the whole graph and define the initial operation
to be a special operation that channelizes the self-loop
enclosing the whole graph except r (see Figure ??). We
refer to the resulting channel as the root channel. It is
a non-r-path channel. Of its two banks, we refer to the
inner bank and the outer bank. The outer bank is part
of the boundary of the face of G containing r. The inner
bank is the crossroad of the territories that are children
of the root territory.

The process ends when there are no territories
remaining. At this point, there are no interior vertices,
which proves Lemma 4.1.

Recall that we defined the crossroad of a vertex v to
be the first non-r-path bank encountered by the r-path
of v. The following definitions reflect the fact that this
changes over time as new paths are channelized. If v is a
vertex of a territory τ , we define the crossroad of v with
respect to τ to be the first non-r-path bank encountered
by rpath(v) that existed before the operation on τ .
Similarly, we define the r-path prefix of v with respect
to τ to be the prefix of v’s r-path that ends at the
intersection of that r-path with the crossroad of v with
respect to τ .

The crossroads of a territory are the crossroads of
all vertices of the territory with respect to the territory.
The set of crossroads of a vertex v is

{crossroad of v with respect to τ : τ a territory contain-
ing v that is in territory tree}
and the set of r-path prefixes of v is

{r-path prefix of v with respect to τ : τ a territory
containing v that is in the territory tree}

4.6 Approximation and admissibility For an er-
ror parameter δ > 0, we say a shortest path P in G
is δ-approximated by a path P ′ in G[Links] if P ′ and
P have the same start and end, and the length of P ′

exceeds the length of P by at most δ. We say more
briefly that P is δ-approximated in G[Links] if P is
δ-approximated by some path in G[Links]. We leave
out the parameter δ and say approximated for the case
where δ = O(ε), where ε is the error parameter provided
as input to the algorithm. We say that a path P ′ is an
approximation of P if P is approximated by P ′.

We also introduce a weaker notion of approxima-
tion. We say P is near-approximated in G[Links] if P
is approximated in the graph obtained fromG[Links] by
adding approximations to the r-path prefixes of P ’s end-
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points. We say P is near-approximated with respect to
a territory τ that contains P if P is near-approximated
in the graph G[Links] that exists just before the oper-
ation on τ .

Near-Approximation Lemma. Let u, v be vertices.
Then in Ĝ there is a shortest u-to-v path P and a
decomposition of P into a constant number of subpaths
joined by artificial edges P = P1e1P2e2 · · · ek−1Pk such

that each subpath Pi is near-approximated in Ĝ[L̂inks].

The artificial edges e1, . . . , ek−1 in the decomposi-

tion might not be in L̂inks. However, the following
lemma ensures this is not a problem.

Lemma 4.2. (Nearby-Drawbridge Lemma) For
any vertex u on the bank of a channel, there is a vertex v
on the same bank such that the u-to-v distance is O(ε2)
and there is a link crossing the channel at v.

Lemma 4.3. At the end of the algorithm, each r-path
prefix is approximated.

We can now prove Theorem 4.2, which shows that
every shortest path P is approximated. Consider the de-
composition of the Near-Approximation Lemma. Each

subpath Pi is near-approximated in Ĝ[L̂inks], which
means that it is approximated in the graph obtained
by adding approximations to the r-path prefixes of the
endpoints of Pi. By Lemma 4.3, such approximations

exist in Ĝ[L̂inks], so each subpath Pi is approximated
by some path P ′i . By the Nearby-Drawbridge Lemma
(Lemma 4.2), each artificial edge ei in the decomposi-
tion of the Near-Approximation Lemma can be replaced
by a path Qi with the same endpoints that is of length
O(ε2). We obtain a path P ′ = P ′1Q1P

′
2Q2 · · ·Qk−1P ′k

that approximates P . This completes the proof of The-
orem 4.2.

We say a path is admissible with respect to a
territory τ if (a) it is an r-path or (b) it is a subpath of
a path in τ that is not near-approximated in the graph
G[Links] that exists just before the operation on τ .

Lemma 4.4. If a path P is first added to Links or is
channelized in the operation on territory τ then P is
admissible with respect to τ .

Lemma 4.5. If P is added to Links by an operation on
τ and is subsequently channelized by an operation on τ ′

then τ is τ ′ or its parent or grandparent.

4.7 Detour cost Let P be a u-to-v shortest path.
An alternative u-to-v route takes a shortest path from
u to the root r, then a shortest path from r to v.

The difference between the length of this route and the
length of the shortest path P is called the detour cost of
P , written detour(P ). Because the graph G has radius
at most one with respect to r, the detour cost is at most
two.

Proposition 4.1. Let P be a shortest path. Let R1

and R2 be prefixes of rpath(start(P )) and rpath(end(P )),
respectively, and let S be a shortest end(R1)-to-end(R2)
path. If detour(P ) ≤ detour(S) + ε then length(R1 ◦ S ◦
Rrev

2 ) ≤ length(P ) + ε

Using the triangle inequality, we can show

Proposition 4.2. The detour cost of P is no more than
the detour cost of any subpath of P .

4.8 Using detour cost to show limited nesting
Define the level of a path P to be ddetour(P )/εe. (The
level of a channel is defined to be the level of the path
channelized to form it.) Because detour cost is at most
two, we obtain:

Corollary 4.2. No level is greater than 2/ε.

We say a territory is simple if it has only one
crossroad and is adjacent to at most two r-path banks.

Proposition 4.3. The children of the root territory are
simple.

The proposition shows that every nonroot territory has
a simple ancestor.

Corollary 4.3. Let P be a non-r-path that is admissi-
ble with respect to a simple territory τ . Then P ’s level is
greater than that of the common crossroad of τ .

Proof. P is a subpath of a path P ′ in τ that is not near-
approximated in G−τ . By Proposition 4.1, the detour
cost of P ′ exceeds that of the common crossroad of τ
by more than ε. By Proposition 4.2, the detour cost of
P is at least that of P .

Suppose non-r-path P is first added to Links or
channelized during the operation on nonroot territory
τ̂ . The predecessor territory of P is defined to be the
closest simple ancestor of τ̂ , and the predecessor of P
is defined to be the crossroad of that closest simple
ancestor. These notions are extended in a natural way
to the case where P is a channel or the bank of a channel.

Corollary 4.4. For non-r-path bank P , the level of P
is greater than that of its predecessor.
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Proof. By Lemma 4.4, the path channelized to form
the channel of P was admissible with respect to the
territory τ whose operation first added it to Links or
channelized it, and therefore admissible with respect to
the leafmost simple ancestor of τ . The corollary then
follows by Corollary 4.3.

Lemma 4.6. (Simplicity Lemma) For any territory τ ,
τ or its parent or grandparent is simple.

Corollary 4.5. Let P be a non-r-path bank, let τ be
the owner of the channel of P , and let τ ′ be the predecessor
territory of P . Then τ ′ is among the five closest ancestors
of τ .

Proof. Let τ̂ be the ancestor of τ in which C is first
added to Links or channelized. By Lemma 4.5, τ̂ is
τ or its parent or grandparent. Let τ ′ be the leafmost
simple ancestor of τ̂ . By Lemma 4.6, τ ′ is τ̂ or its parent
or grandparent.

Corollary 4.6. Each vertex has O(ε−1) distinct cross-
roads.

Proof. Let P1, . . . , Pk be the crossroads of v in the order
in which they became banks. For each crossroad Pi, let
τi be the rootmost territory such that Pi is v’s crossroad
with respect to τi. It follows that the parent of τi is
the owner of Pi’s channel. Let τ̂i be the predecessor
territory of Pi, and let P̂i be the predecessor of Pi. Then
P̂i is Pj for some j < i. By Corollary 4.5, i ≤ j + 5. By
Corollary 4.4, it follows by induction that, for each i,
the level of Pi is at least i/5. By Corollary 4.2, no level
is greater than 2/ε, so this completes the proof.

4.9 Approximation of r-path prefixes

The following result is proven in the full version of
the paper.
r-Path Subpath Approximation Lemma. Let v be a
vertex, and let P1 and P2 be two distinct r-path prefixes
of v that are consecutive (i.e. one operation changed the
prefix from P1 to P2). Write P1 = P2Q. When the
algorithm ends, Q is O(ε2)-approximated.

We can now prove Lemma 4.3, which states that
every r-path prefix is approximated. Let v be a vertex.
Let P1, . . . , Pk be v’s crossroads in the order in which
they appeared. For i = 1, . . . , k− 1, write Pi = Pi+1Qi.
The r-Path Subpath Approximation Lemma implies,
via an induction on i−j that QIQi−1 · · ·Qj is cε2(i−j)-
approximated for some constant c. Consider finally
Pk. Lemma 4.1 ensures that v is on a bank when the
algorithm terminates. If this is a non-r-path bank then
Pk is trivial. If it is an r-path bank then Pk is a subpath

of this bank. In either case, Pk is 0-approximated. It
follows that, for i = 1, . . . , k, PkQk−1Qk−2 · · ·Qi, which
is Pi, is cε2(i − j)-approximated, and is therefore, by
Corollary 4.6, O(ε)-approximated.

4.10 Channel Global Travel Recall The Channel
Global Travel Theorem. It suffices to bound the size
of the concatenation when C is a non-r-path channel
because each r-path channel ends on a non-r-path
channel. The idea of the proof is to use induction
on the level of C. In each operation that channelizes
a non-r-path C, we will observe that there is a small
concatenation of channels starting at C and leading to
a channel of smaller level. This gives us the induction
step.

4.11 Channel Cost Define the level of a territory τ
to be the minimum over all interior vertices v of τ of
the level of v’s crossroad.

Lemma 4.7. (Isolation Lemma) For any territory τ ,
there are O(1) proper ancestors of τ that have the same
level as τ and create links that overlap τ .

Lemma 4.8. (Sparsity Lemma) There is a constant c
such that, for any nonroot territory τ , the operation on
the parent of τ creates O(ε−c+1) links that overlap τ .

We can now prove the Channel Cost Theorem
(Theorem 4.1). An induction on level using Lemmas 4.7
and 4.8 shows that, for any territory τ , if the level of τ
is k then O(ε−c+1k) links overlapping τ were created by
operations on proper ancestors of τ . By Corollary 4.2,
the total number of links created by operations on
proper ancestors of τ that overlap τ is O(ε−c).

5 High-level algorithm

In this section, we state lemmas concerning the opera-
tions, and we show, based on the lemmas, that paths
are approximated. We also start to prove some of the
lemmas stated in Section 4.

5.1 Non-r-path boundary segments Let τ be a
territory. Consider the state of the graph G just
before the operation on τ . Consider the subgraph of G
consisting of the inner bank of the root channel, together
with banks of non-r-path channels. The territory τ is
embedded in one face of this subgraph, called the non-
r-path boundary face of τ . The face’s boundary is called
the non-r-path boundary of τ . Each maximal subpath
of the boundary that is a subpath of a single crossroad
is called a boundary segment of τ .
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5.2 Age of crossroads and messiness Let τ be a
territory and let τ̂ be an ancestor of τ . We say τ̂ is
a pre-simple ancestor of τ if τ has an ancestor that is
simple and is a child of τ̂ . Note in particular that τ
cannot be its own pre-simple ancestor.

Let τ be a territory. We say a crossroad of τ is
mature with respect to τ if it is a crossroad of a pre-
simple ancestor of τ . We say it is aged if it is a crossroad
of a pre-simple ancestor of a pre-simple ancestor of τ .
Note that an aged crossroad is mature.

Lemma 5.1. Each territory has at most one mature cross-
road.

Proof. Let τ∗ be the closest simple ancestor of τ . Then
τ∗ has one crossroad, so any descendant of τ∗ has at
most one crossroad that was a crossroad of the parent
of τ∗.

We say τ is messy with respect to τ̂ if

• τ has an aged crossroad and

• operations on some descendants of τ̂ ’s closest pre-
simple ancestor designated links that intersect τ .

We say that τ is messy if τ is messy with respect to
itself.

Lemma 5.2. If τ is not messy with respect to its parent,
it is not messy.

Proof. Let τ̂ be the parent of τ . Suppose τ is not messy
with respect to τ̂ . Case 1: τ has no aged crossroad. In
this case, τ is not messy with respect to any ancestor,
including itself.

Case 2: τ ′ has an aged crossroad but does not inter-
sect any links designated by operations on descendants
of the closest pre-simple ancestor of τ̂ . This implies that
τ does not intersect any links designated by operations
on descendants of the closest pre-simple ancestor of τ
itself.

5.2.1 To-boundary near-approximation We say
a side of τ is to-boundary near-approximated in
G[Links] if every shortest path in τ from an internal
vertex to that side is near-approximated in G[Links].
We say a territory is to-boundary near-approximated if
every side is to-boundary near-approximated.

5.3 Operations Given a degenerate territory (one
consisting of a single edge and no internal vertices), the
operation channelizes the edge. The operation yields
no children. For nondegenerate territories, there are
three operations: Simplify, Connect2Boundary,
and Isolate. The algorithm follows the following
rules. Let τ be a nondegenerate territory τ , and let τ ′

be its parent.

if τ ′ was operated on by then the operation on τ is
special operation Simplify

Connect2Boundary Isolate if τ is messy
else Simplify

Isolate Simplify
Simplify Connect2Boundary

The following lemma therefore implies the Simplicity
Lemma (Lemma 4.6).

Lemma 5.3. Every child resulting from a Simplify op-
eration is simple.

Lemma 5.4. Every child resulting from an Isolate op-
eration is not messy.

Lemma 5.5. Simplify only channelizes r-paths.

The proofs of Lemmas 5.3, 5.4, and 5.5 will be apparent
when the operations are described.

The only operation that channelizes a path pre-
viously added to Links is Isolate, and only if
that path was added to Links during the previ-
ous Connect2Boundary or Simplify, which proves
Lemma 4.5.

5.4 Proof of Isolation Lemma (Lemma 4.7) Let
τ0 be a territory. For i = 1, 2, . . ., let τi be a child of
τi−1 with the same level as τ0. We prove by induction
on i that operations on at most four territories among
τ0, . . . , τi−2 designate links that intersect τi. This
holds trivially if i ≤ 5. Otherwise, by Lemma 4.6,
there exists j ∈ {i − 3, i − 2, i − 1} such that τj is
τi−1’s closest simple ancestor, and there exists k ∈
j − 3, j − 2, j − 1 such that τk is τj−1’s closest simple
ancestor. The number of territories among τ0, . . . , τj−2
whose operations designate links intersecting τi is at
most the number that designate links intersecting τj ,
which is at most four by the inductive hypothesis.
Consider the links designated by the operations on
τj−1, . . . , τi−2. If none intersect τi−1 then none intersect
τi, and we are done. If some intersect τi−1 then τi−1 is
messy, so Isolate is applied to τi−1, so τi is not messy
with respect to τi−1, so none intersect τi, and again we
are done.

5.5 Approximation In this section, we address the
near-approximation and approximation of paths. Let
P be a shortest path, chosen to minimize the number
of crossings of channels in the output graph among all
shortest paths with the same start and end. Let τ be a
territory that includes P .
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Lemma 5.6. If the operation on τ is Isolate then P
is divided into at most three subpaths by the paths
channelized in the operation.

Lemma 5.7. Suppose P is admissible with respect to τ ,
and let v1 and v2 be the first and last vertices of P that
are on paths channelized in the operation on τ . If τ is
operated on by Simplify or Connect2Boundary then
the v1-to-v2 subpath of P is O(ε2)-approximated after the
operation.

Lemma 5.8. Suppose P starts at an internal vertex of
τ and ends at a side of τ . If the operation on τ is
Connect2Boundary then P is near-approximated after
the operation.

Lemma 5.9. Let v be an internal vertex of τ and an
internal vertex of a child τ ′ of τ . Let P be v’s r-path
prefix with respect to τ , let P ′ be v’s r-path prefix with
respect to τ ′, and write P = P ′Q. If the operation on τ
is Connect2Boundary then Q is O(ε2)-approximated
after the operation.

Lemma 5.10. Suppose P is a subpath of an r-path and
P starts and ends at external vertices. If the operation
on τ is Simplify then P is a subpath of the bank of a
channel after the operation.

5.6 Proof of the Near-Approximation Lemma
Let P be a u-to-v path that is uniquely intersecting with
respect to all banks. We show in the full version that P
can be decomposed as P = P1e1P2e2 · · · ek−1Pk where
k is O(1) so that there are corresponding territories
τ1, . . . , τk such that, for i = 1, . . . , k, Pi is in τi and
one of the following holds:

1. The operation on τi is Simplify or Con-
nect2Boundary and each endpoint of Pi is on
a path channelized in that operation; or

2. the operation on τi is Connect2Boundary and
one endpoint of Pi is an endpoint of P and the
other is an external vertex of τi.

The near-approximations of the subpaths Pi then follow
from Lemmas 5.7 and 5.8.

6 The operations

A key part of the analysis is showing that the operations
preserve the following invariants:
• Boundary Segment Invariant: Each territory

is adjacent to at most g(ε−1) boundary segments.
• Mature Boundary Segment Invariant: Each

territory has at most one boundary segment that is
a subpath of a mature crossroad.
• Single-Bank Invariant: Each territory is adja-

cent to at most one bank of each channel.

The key contributor to the number of boundary seg-
ments is the Isolate operation. This operation chan-
nelizes paths that were previously designated as links
by Simplify and Connect2Boundary. However, the
Isolate operation only operates on a territory if it has
an aged crossroad. Therefore Simplify is designed to
ensure that few links are designated near a mature cross-
road.

6.1 Cages and Bars2Bars Two noncrossing short-
est paths P1 and P2 form a bar if their starting vertices
are the same vertex or are the two endpoints of an edge.
In accordance with the tradition in graph theory of mix-
ing metaphors, we refer to the two paths as the arms of
the bar, and to the shared edge or vertex as the bar’s
center. The ends of a bar are defined to be the ends of
the two arms. To channelize a bar is to channelize each
of the two arms (and, if the center is an edge, that edge).
For vertices u and v, we say the bar is a (u, v)-bar if one
arm is a subpath of a shortest path to u and the other
arm is a subpath of a shortest path to v. A degenerate
bar is one in which one of the arms is degenerate (i.e.
consists of a single vertex).

Note that a bar naturally defines a path, the
concatenation of: the reverse of P1, the edge if it exists,
and P2. For notational convenience we sometimes
identify the path with the bar. Every subpath of a bar
(called a subbar) is a (possibly degenerate) bar.

Let D1D2 be a non-self-crossing cycle, and let u, v
be vertices. A (u, v)-cage with respect to (D1, D2) is a
family B of uniquely intersecting, mutually noncrossing
(u, v)-bars that are enclosed by D1D2 such that
• each bar has an end on D1 and an end on D2,
• if each of two bars has the same vertex v as its two

ends (and therefore forms a cycle) then one of the
bars encloses the other.
A family P of shortest paths is said to be a set of

bar-to-bar paths with respect to B if
• each path in P starts and ends at a bar of B, and
• the union of P with the arms of the bars satisfies

the unique intersection property.

Lemma 6.1. (Bars2Bars Lemma) There is a
polynomial-time algorithm Bars2Bars that, given
a cage B, a set P of bar-to-bar paths, and an error
parameter δ ∈ (0, 1), channelizes the bars of the cage and
adds to Links some subpaths of paths belonging to P
such that
• (Nearby Drawbridge) Each vertex on the bank of a

channel is with distance δ of a drawbridge.
• (Approximation) All paths P ∈ P are δ-approximated

after applying Bars2Bars.
• (Sparsity) For each bar B ∈ B, Bars2Bars adds at

most h(1/δ) paths to Links that intersect B.
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Here h(·) is a polynomial to be determined. Most
of the channelizations are done by calls to Bars2Bars;
for these, the lemma’s Nearby Drawbrige part supports
the Nearby-Drawbridge Lemma (Lemma 4.2). Other
channelizations are done in Isolate.

The bound on the number of links intersecting each
new channel implies a bound on the number of links
intersecting each resulting new territory. Note also
that, when the bars of a cage are channelized, each
resulting territory is adjacent to at most two banks
arising from channelization of those bars, and that these
banks preserve the Single-Bank Invariant.

6.2 δ-Crossbars Let τ be a territory. Adding a δ-
crossbar to τ to connect a given set of sides of τ is as
follows: for each of those sides, select a δ-net of vertices
to designate as portals. For each pair u, v of portals, let
P be a u-to-v shortest path that is uniquely intersecting
with respect to banks and links. If P is admissible, add
it to Links (designate P as a link).

Suppose in a territory τ the algorithm applies
Bars2Bars to a set of cages. If a resulting subterritory
connects banks resulting from channelizing bars from
two different cages, we say those cages are adjacent.
Joining two adjacent cages with a δ-crossbar means
adding a crossbar connecting portals from each of those
two banks.

Similarly, if a side of τ is connected via a resulting
subterritory to a bank resulting from channelizing a bar,
we say the side is adjacent to the bar. Joining that bar
to that side means adding a crossbar connecting the two
banks. Joining a cage to the sides of τ means joining
each bar of the cage to each of the adjacent sides.

In all the operations, paths are added to Links
by invoking Bars2Bars or by creating crossbars. In
either case, the paths added are admissible, supporting
Lemma 4.4.

6.3 Simplify The purpose of Simplify is to produce
territories that are simple.

Applying Simplify to a simple territory First
suppose the input territory τ is already simple. In
this case, the operation selects an internal vertex v
and channelizes its r-path prefix. In each resulting
subterritory τ ′, the new channel C might violate the
Single-Bank Invariant; if so, the operation re-establishes
the invariant in τ ′ as follows.

Because τ is simple, it has one crossroad D. Con-
sider the non-r-path boundary of τ . It includes a sub-
path of D. We write it as D1D2D3 where D1D2 is the
subpath of D, and the end of D1 coincides with the end
of channel C.

Let uv be an edge whose vertices are internal to
τ ′. Because the r-path prefixes of u and v end on B,
these prefixes, together with the edge uv and a subpath
of B, form a cycle. We say uv is bichromatic if that
cycle encloses the channel C. The corresponding bar is
formed by uv together with those r-path prefixes. Let B
be the set of bars corresponding to bichromatic edges.
Because the bars are built from r-path prefixes, they
are mutually noncrossing. These bars form an (r, r)
cage with respect to (D1, D2D3).

The operation calls Bars2Bars on this cage with
δ = ε. Lemma 6.1 implies that Lemma 5.7 is satis-
fied. No non-r-path channels are formed (supporting
Lemma 5.5), and channelization of the bars correspond-
ing to bichromatic edges implies that each child τ ′′ of τ ′

lacks bichromatic edges, which shows that τ ′′ is simple.
The channelizations done by Bars2Bars are of r-path
subpaths and the links added by Bars2Bars are all ad-
missible, so the operation is consistent with Lemma 4.4.
The number of links formed is h(1/ε).

Applying Simplify to a nonsimple territory Now
suppose τ is not simple. Again, let uv be an edge
whose vertices are internal to τ . Now we say uv is
bichromatic if the r-path prefixes of u and v end on
distinct boundary segments. The bar corresponding to
a bichromatic edge uv consists of the edge and those
two prefixes. If u is itself on a boundary segment, the
bar is degenerate. As before, the bars corresponding to
bichromatic edges are mutually noncrossing.

Overview Unlike the case when τ starts out simple,
in this case we need multiple cages to account for all
the bichromatic edges. In particular, there is a cage for
each boundary segment, and a call to Bars2Bars for
each cage, resulting in channelization of the bars of that
cage and the designation of links. Because each bar is
channelized, no child territory contains a bichromatic
edge, which implies that each child territory is simple.

We use the invariant to bound the number of cages
by g(ε−1). The operation also must add δ-crossbars
between cages in order to approximate paths that cross
multiple cages. Furthermore, the error parameter δ
(also passed to Bars2Bars) must be set so that a path
crossing multiple cages is approximated with a total
error of O(ε). We therefore set the error parameter δ
to ε/g(ε−1). Finally, as mentioned at the beginning of
Section 6, care is needed to ensure that not too many
links be introduced in the vicinity of a mature crossroad.

Part 1 Say an arm of a bar and the bar itself are mature
if the arm ends at a mature crossroad.

Part 1 of the operation is as follows. Initialize
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R with the set of bars corresponding to bichromatic
edges. Consider the boundary segments of τ , starting
with the mature crossroad if τ has one (here we use
the Mature Boundary Segment Invariant). For each
boundary segment S in turn, assign to BS the set of bars
in R with ends in S, and remove these bars from R. The
bars in BS form a cage with respect to (D1, D2) where
D1 = S and D1D2 is τ ’s entire non-r-path boundary.
The cage BS corresponding to the mature crossroad S,
if it exists, is called the mature cage.

Part 2 Before describing Part 2, we explain the moti-
vation behind it. Let P be any shortest path in τ that
starts and ends at bars and that is not approximated
with respect to τ . Let P0 be the maximal prefix of P
that ends at a bar of the same cage at which it starts.
For i = 1, 2, . . ., let Qi be the minimal subpath of P
that starts at the end of Pi−1 and stops at a vertex be-
longing to a different cage (Qi might be a trivial path)
and let Pi be the maximal subpath of P that starts at
the end of Qi and ends at a bar of the same cage. This
process stops at i = k when no such Qk exists.

Then the decomposition P = P0Q1 · · ·Qk−1Pk has
the following properties:
• No internal vertex of Qi belongs to any cage.
• No bichromatic edge belongs to Qi and therefore

the endpoints of Qi are on arms that end at the
same boundary segment.
• k + 1 is at most the number of cages.
• Every Pi and every Qi is a subpath of non-near-

approximated path P and is therefore admissible.
In Part 2, if the mature cage exists, the Sim-

plify operation first invokes Bars2Bars on the ma-
ture cage to ε-approximate all admissible paths between
mature bars. Then, for each remaining cage, the op-
eration invokes Bars2Bars on that cage to ε/g(ε−1)-
approximate all admissible paths between the bars of
that cage.

As a consequence, by Lemma 6.1, the bars are
channelized and each path Pi is ε/g(ε−1)-approximated
in G[Links], or is ε-approximated if Pi starts and ends
at bars of the mature cage. It is still necessary that each
Qi be ε/g(ε−1)-approximated. This is the job of Part 3.

Part 3 Part 3 is as follows. Consider each pair of cages
for which there exists a cage-to-cage path that has no
internal vertices belonging to cages. Every bichromatic
edge belongs to a bar, so such a path must connect two
bars whose ends lie on a common boundary segment. By
planarity, there are only two bars B1 and B2, one from
each of the two cages, such that such a path connects B1

and B2. Add a δ-crossbar joining B1 and B2 where δ is
ε if one of the cages is mature and is ε/g(ε−1) otherwise.

Channel-to-channel approximation Now we com-
plete the proof that P is near-approximated. The cross-
bars ensure that each Qi is ε/g(ε)-approximated (or ε-
approximated, if an endpoint of Qi belongs to a ma-
ture cage). This shows that Simplify is consistent with
Lemma 5.7.

The links added by Bars2Bars and the crossbar
links are all admissible, so the operation is consistent
with Lemma 4.4.

Link sparsity We must bound the number of links
intersecting each child τ ′. By Lemma 6.1, each call
to Bars2Bars designates at most h(ε/g(ε)) links that
intersect τ ′, for a total of at most g(ε) · h(ε/g(ε)). Each
portal-to-portal link passes through a single child (and
touches the boundaries of at most two others), and each
bar has length at most two so the number of portals
on each bar is at most 2ε/g(ε). Therefore each child
τ ′ is intersected by at most (2ε/g(ε))2 portal-to-portal
links. Thus in total each child is intersected by at most
g(ε) · h(1, ε/g(ε)) + g(ε) · h(ε/g(ε)) links. Since h(·) and
g(·) are polynomials, this gives the bound in the Sparsity
Lemma (Lemma 4.8).

Link sparsity for children with aged crossroads
The following will help us in showing the Boundary
Segment Invariant is preserved:

Lemma 6.2. Let τ ′ be a child of a territory τ operated
on by Simplify. If τ ′ has an aged crossroad then the
operation introduced at most h(ε) links intersecting τ ′.

Proof. If τ ′ included a path to an immature arm then
that path would contain a bichromatic edge, a contra-
diction. Thus no path between immature bars intersects
τ ′. This shows that only the first call to Bars2Bars
could have introduced links that intersect τ ′, and by
Lemma 6.1 and the choice of error parameter used in
that call, at most h(1, ε) links resulting from that call
intersect τ ′. Moreover, no crossbar path from Part 3
intersects τ ′.

Channel travel Because Simplify creates only r-path
channels, it is not relevant to the inductive proof of the
Channel Global Travel Theorem (Theorem ??), except
to note that each channel created ends at a crossroad.

Other properties The Mature Boundary Segment In-
variant is preserved because Simplify only channel-
izes r-paths. Channelization of degenerate bars (cor-
responding to an edge uv where u is on a non-r-path
boundary segment) implies Lemma 5.10.

6.4 Connect2Boundary

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1081

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 7

3.
16

2.
10

6.
33

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



The crossing semiorder and crossing-net Con-
sider a graph. Fix vertices r and s. We define a re-
lation on other vertices. For notational convenience, for
this section we assume shortest paths are unique, and
we represent the unique u-to-v shortest path by P (u, v).
We say that u ≤χrs v iff P (v, r) intersects P (u, s). The
next two propositions show that ≤χrs

is a semiorder.

Proposition 6.1. If u ≤χrs v, then detour(P (u, s)) ≤
detour(P (v, s)).

Proposition 6.2. If u ≤χrs
v and detour(P (u, s)) =

detour(P (v, s) then v ≤χrs u

Proposition 6.3. Given a graph, two vertices r and s,
and a subset A of the other vertices, there is an algorithm
to select a subset X of A such that

1. Vertices of X are pairwise incomparable with respect
to ≤χrs

, and

2. for any vertex v in A but not in X, there is a vertex
u in X such that u ≤χrs v.

Proof. The algorithm is a simple greedy covering algo-
rithm. Initialize X to the empty set. Then repeat the
following step: among all vertices v ∈ A for which there
is no vertex u ∈ X for which u ≤χrs v, choose v to min-
imize detour(P (u, s)). The algorithm terminates when
no candidate vertices v remain.

The termination condition proves Property 2. We
prove Property 1 by contradiction. Suppose u, v ∈ X
are comparable. Assume without loss of generality
that u was the first of the two to be added to X.
Because v was a candidate for addition, u 6≤χrs

v.
Since u and v are comparable, therefore, v ≤χrs

u.
By Proposition 6.1, detour(P (v, s)) ≤ detour(P (u, s)).
Because u was chosen by the algorithm before v, it
must be that detour(P (v, s)) = detour(P (u, s)). By
Proposition 6.2, therefore u ≤χrs v, a contradiction.

Part 1 of Connect2Boundary Let τ0 be the ter-
ritory to which the operation is applied. Part 1 of
the Connect2Boundary operation is to select por-
tals from among the external vertices. The set of por-
tals should consist of an ε2-net on each adjacent r-path
bank, and also, if the crossroad is immature, an ε2-net
on the crossroad. Because τ0 is simple, it is adjacent to
at most three banks, so the number of portals is O(ε−2).

Part 2 For each portal s, and for each interval I among
the intervals [0, ε), [ε, 2ε), . . . , [2 − ε, 2], the operation
defines AIs to be the set of vertices v of τ0 such that
detour(P (v, s)) ∈ I and P (v, s) is admissible. The
operation then uses the algorithm of Proposition 6.3 to
select a subset XIs of AIs .

Consider the pairs (s, I) in some arbitrary order.
Let k be the number of pairs, and note k = O(ε−3).
For i = 1, 2, . . . , k, let (s, I) be the ith pair, and let
Bi be the set of bars whose arms are the shortest v-
to-s path and v’s r-path prefix, chosen to preserve the
unique intersection property. We claim that the arms
in Bi are mutually noncrossing. Certainly the r-paths
do not cross and the shortest paths to s can be chosen
so as not to cross. Because each pair u, v ∈ XIs are
incomparable with respect to ≤χrs , the path heading to
r does not cross the path heading to s.

For any i, consider a component K obtained from
the interior of τ0 by deleting vertices of Bi. Then K is
adjacent to at most two bars of Bi. We call this the
single-cage limited-adjacency property. Next, consider
the graph consisting of bars in B1,B2, . . . ,Bi. Each bar
consists of two shortest paths; let P be the set of all
these shortest paths, and note that |P| = 2i. Say a
vertex v of this graph is special if there exist P,Q ∈ P
such that v is the first or last vertex of P that is also
on Q. By the unique intersection property, the number
of special vertices is at most 4i2.

Combining this bound with the single-cage limited-
adjacency property (and the fact that τ0 is simple),
it follows that if the Connect2Boundary operation
were to channelize the bars in B1,B2, . . . ,Bi, each
resulting territory would have O(i2) adjacent sides.
We call this the multi-cage limited-adjacency property.
The operation cannot channelize all those bars at once
because the arms cross each other. Instead, in the next
section we describe how to iteratively do the equivalent.

Part 3 Part 3 consists of a sequence of iterations, each
of which consists of some channelizations and designa-
tion of links, dividing territories into subterritories. For
iteration i = 1, 2, . . . , k, we proceed as follows:

Consider each territory τ resulting from the previ-
ous iterations. Let Bτi be the set of intersections of the
bars of Bi with τ . For each adjacent side S of τ , form
a cage Bτ,Si consisting of those bars in Bτi that have
ends on S and that have not already been assigned to a
cage. (The fact that these bars all have ends on S en-
sures that they indeed form a cage.) Call Bars2Bars
on each cage in turn to ε2/k3-approximate all admissi-
ble bar-to-bar paths. The multi-cage limited-adjacency
property ensures that the number of adjacent sides of τ
(and therefore the number of cages) is O(k2).

Next, δ-crossbars are added for δ = O(ε2/k3) to
connect between adjacent pairs of cages and between
each cage and immature adjacent sides. This completes
the description of an iteration of Part 3.

Note: only the final territories are considered the
children of τ for the purpose of defining the territory
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tree.

Number of adjacent boundary segments Initially,
the territory τ0 has at most adjacent sides. Each
iteration adds O(k2) sides, and there are k iterations,
so the number of sides of each territory resulting from
Connect2Boundary is O(k3), which is O(ε−9).

Channel-to-channel approximation

Lemma 6.3. For any vertex u on a bank of a bar from Bi
and any vertex v on a bank of a bar from Bj , if the shortest
u-to-v path in τ was admissible before the operation then
it is O((i + j)ε2/k)-approximated in G[Links] after the
operation.

The proof is a straightforward induction on i + j,
using the δ-approximation guarantee of the Bars2Bars
Lemma (Lemma 6.1), the O(k2) bound on the number
of cages for a territory τ , and the crossbar construction.

Lemma 6.3 in turn proves Lemma 5.9 and
shows that Connect2Boundary is consistent with
Lemma 5.7.

To-boundary near-approximation We show that τ
is to-boundary near-approximated after the operation,
proving Lemma 5.8. First, note that if τ has a mature
crossroad, then that crossroad is already to-boundary
near-approximated before the operation. Consider an
adjacent side that is not a mature crossroad, and let x
be a vertex on that side.

By the choice of portals in Part 1, there is a portal
s on that side such that the x-to-s distance along the
side is at most ε2. Let v be an internal vertex. If the
shortest v-to-s path in τ is near-approximated before
the operation, we are done, so assume it is not. By the
claim from Part 2, one of the cages contains a bar with
an arm P (u, s) such that a prefix of v’s r-path together
with a suffix of P (u, s) form a v-to-s path whose length
exceeds P (v, s) by at most ε.

Let w be the first vertex on v’s r-path that be-
longs to a bank of a new channel. Note that w
comes no later in v’s r-path than the intersection with
P (u, s). Therefore, the v-to-s path consisting of the
shortest v-to-w path followed by the shortest w-to-s
path has length exceeding dist(v, s) by at most ε. By
Lemma 6.3, the shortest w-to-s path is in turn O(ε2)-
approximated in G[Links]. We conclude that P (v, s) is
near-approximated in G[Links].

Channel travel Connect2Boundary is applied to a
simple territory τ0. By an induction, for each channel
C introduced in iteration i, there is a concatentation
of O(i) channels where the first channel is C and the

last channel ends at the common crossroad of τ0. By
Corollary 4.3, any path admissible with respect to τ0
has level greater than the common crossroad of τ0.
This supports using induction on level to prove the
Channel Global Travel Theorem (Theorem ??). The
proof must also take into account the channelizations
done by Isolate, discussed later.

Link sparsity Consider Iteration i of Part 3. It in-
cludes O(k2) calls to Bars2Bars applied to a territory
τ . Each call designates h(1/δ) links, where δ = ε2/k3.
There are k iterations. Therefore the total number of
links designated by all these calls is k · h(k3/ε2), which
is O(ε−3h(ε−11)).

We must also account for the links contributed by
crossbars. There are O(k2) cages and O(k2) sides, so the
number of portals is O(k2/δ), so the number of links is
O(k4/δ2), which is O(ε−16). This is consistent with the
Sparsity Lemma (Lemma 4.8).

Other properties Because in Part 1 no portals are
selected for a mature side, no non-r-path bar ends at a
point on the interior of the mature side. This shows that
the operation preserves the Mature Boundary Segment
invariant.

A path is channelized only if admissible, and all
paths included in crossbars or designated as links calls to
Bars2Bars are admissible, as required by Lemma 4.4.

6.5 Isolate Let τ be a territory. Let L be the set of
links designated by descendants of τ ’s closest pre-simple
ancestor. Recall that Isolate is only applicable to τ if
τ is messy, i.e. if τ has an aged crossroad C and if L
intersects τ .

Say an internal vertex v of τ is aged if the crossroad
of v is C and the r-path prefix of v does not go through a
vertex of L. Let τ̂ be the interior of τ . Say a connected
component of τ̂−L is aged if it contains an aged vertex.
Let H be the planar embedded subgraph of G consisting
of banks of channels and paths in L. Each component
of τ̂−L is embedded in some face of H. We say a face is
aged if an aged component of τ̂ −L is embedded in that
face. The boundary of such a face consists of subpaths
of banks of channels and subpaths of paths in L. The
Isolate operation channelizes each subpath of a path
in L that is part of the boundary of an aged face, and
designates as links an ε-net of artificial edges belonging
to each of the resulting channels in order to satisfy the
Nearby Drawbridge Lemma (Lemma 4.2).

Properties Note that, as a consequence,
• each aged component becomes the interior of a

single child territory,
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• only these child territories have an aged crossroad,
and

• each such child territory intersects no links (be-
cause no link is embedded in an aged face).

Therefore no child territory is messy, proving
Lemma 5.4. Because every link is admissible, the paths
channelized are admissible, satisfying Lemma 4.4.

We observed that each territory resulting from
Connect2Boundary has O(ε−9) sides. Due to Iso-
late, the number of sides could increase by at most
the number of links intersecting a territory, which we
saw is O(ε−3h(ε−11) + ε−16). This is an upper bound
on the number of adjacent boundary segments because
each r-path side connects to a single boundary segment.
Thus we can preserve the Boundary Segment Invariant
by choosing the function g(·) to be at least this quan-
tity. Moreover, the upper bound on the number of new
channels shows that this operation obeys the Channel
Global Travel Theorem (Theorem ??).

We prove Lemma 5.6. We denote by L1, . . . , Lk
the subpaths of paths in L that were channelized by
the Isolate operation. For i = 1, . . . , k, if P crosses
Li then write P = PiQiRi or P = RiQiPi where Qi
is a subpath of Li and Pi includes some aged vertices.
Let P̂ be the intersection

⋂
i Pi. It is connected and is

therefore a subpath of P . We write P = QP̂R, which
proves Lemma 5.6.

7 The Bars2Bars algorithm

7.1 Preliminaries for the subroutines

7.1.1 Linear Nesting First, we state some straight-
forward properties of this ordering that encapsulate our
use of planarity in constructing the subroutines. We
defer the proofs of Propositions 7.1,7.2, and 7.3 to the
full version. A cage B has a natural ordering of bars
B1, B2, . . . , Bk of bars induced by enclosure with respect
to the cycle D1D2. Let BP denote the subset of bars
that a bar-to-bar path P intersects. We start by show-
ing that a bar-to-bar path intersects an interval of bars.

Proposition 7.1. For a cage B = {B1, B2, . . . , Bk}
and bar-to-bar x-to-y path P with vertices v1, v2, . . . , vt,
BP = {Bi, Bi+1, . . . , Bj} for some i ≤ j.

We use this proposition to prove a more general
result that also reasons about the order of intersection.
For a cage B with bar-to-bar path P with vertices
v0, v1, . . . , vt in order, call a bar assignment a list of
pairs (vi0 , Bi0), (vi1 , Bi1), . . . , (vis , Bis) in which vi0 =
v0, vis = vt, and for which either vij = vij+1

or
vij+1

= vij+1 for all j ∈ {0, 1, . . . , s − 1}. Notice that
a bar assignment may assign vertices to multiple bars:

P

p

q

u

v

v0
u0

Q

Q

Figure 5: Depiction of Proposition 7.3, with both
possibilities for Q drawn in green.

this is because bars may share vertices. We now show
that a “continuous” bar assignment exists:

Proposition 7.2. For a cage B = {B0, . . . , Bk}, any
bar-to-bar path P has a bar assignment {(vij , Bij+1

)}s−1j=0

in which Bij and Bij+1
are equal or consecutive for all j;

i.e. Bij+1
∈ {Bij−1, Bij , Bij+1}.

In Bars2Bars, we divide paths up into ones that
cross each bar at most once, as such paths are easier to
approximate. We say that P is B-increasing (resp. B-
decreasing) if P has a bar assignment in which Bij+1

∈
{Bij+1, Bij} for all j (resp. Bij+1

∈ {Bij−1, Bij}).
P is B-monotone if it is B-increasing or B-decreasing.
Notice that subpaths of B-monotone paths are also B-
monotone. Paths constrain one another topologically:

Proposition 7.3. Let B be an s-t-cage. Consider two
shortest paths P and Q for which the arms of B, P , and
Q together form a uniquely intersecting set of shortest
paths. Suppose that both endpoints u and v of P are on
the p ∈ {s, t} arm of a bar in B and that P intersects the
q 6= p ∈ {s, t} side of some bar. Let u0 and v0 denote the
closest vertices to u and v on P respectively that are on
q-arms of bars.

Suppose that Q does not intersect P and that Q
intersects bars containing u0, v0, u, and v. Then at
least one of the following occurs: (1) Q intersects an arm
containing u0 and an arm containing v0, or (2) Q intersects
an arm containing u and an arm containing v.

Furthermore, any shortest path P can be split into
a small number of monotone segments. This does not
require planarity directly; it only requires Proposition
7.2 and for P to uniquely intersect each bar.

Proposition 7.4. Let B be a cage and let P be a
shortest path that uniquely intersects the bars of B. Then,
there exists a decomposition of P into O(1) edge-disjoint
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subpaths {Pi}i ← MonotoneSplit(P,B) for which
each Pi is B-monotone.

7.1.2 Bucketing All of the subroutines start by
bucketing the input set of shortest paths P with respect
to their lengths and the distance to endpoints of two
cages. Given a set of paths P with start and end cho-
sen, four vertices s0,t0,s1, and t1, and an error parame-
ter δ ∈ (0, 1), Buckets(P, s0, t0, s1, t1, δ) returns a parti-
tion of P into δ−5 sets {Pa,b,c,d,e}a,b,c,d,e∈{0,1,...,dδ−1e−1},
where each Pa,b,c,d,e is the set of shortest paths P ∈ P
with start point x and end point y and the following
properties:
• (Length bucketing) dist(x, y) ∈ (aδ, (a+ 1)δ]
• (s endpoint distance bucketing) dist(s0, x) ∈

(bδ, (b+ 1)δ] and dist(s1, y) ∈ (cδ, (c+ 1)δ]
• (t endpoint distance bucketing) dist(t0, x) ∈

(dδ, (d+ 1)δ] and dist(t1, y) ∈ (eδ, (e+ 1)δ]
The subscripts in the partition can be abstracted

away due to the following proposition, which says that
cage-to-cage shortest paths within a bucket approx-
imate one another. Fix an (s0, t0)-cage B0 and an
(s1, t1)-cage B1. For a δ > 0, a B0-to-B1-path P , and
a set of B0-to-B1 paths P, let Pδ(P ) denote the union
of the buckets B ∈ Buckets(P, s0, t0, s1, t1) that contain
a subpath of P . We now show that any path in Pδ(P )
can be used to approximate P :

Proposition 7.5. Let B0 and B1 be s0− t0 and s1− t1-
cages respectively, P be a set of B0-to-B1-paths, δ > 0, P
be an x-y B0-to-B1 path, Px be an arm in B0 containing
x, and Py be an arm in B1 containing y. Then

Px ∪ Py ∪Q

contains a path that 3δ-approximates P for any Q ∈
Pδ(P ).

We only apply the above proposition in two cases:
1. B0 = B1. We use this case to approximate bar-to-

bar paths in a cage.
2. B1 is a single shortest path B with endpoints s0

and t0. We use this case to approximate shortest
paths from bars in a cage B0 to vertices on B.

Proof. Let w and z be arbitrary vertices in the sets
Px ∩ Q and Py ∩ Q respectively. Let Q0, Q1, and Q2

be the x − w subpath of Px, the w − z subpath of Q,
and the z − y subpath of Py respectively. To prove the
proposition, it suffices to show that the concatenation
of Q0, Q1, and Q2 3δ-approximates P .

Let p be the endpoint of Px and q be the endpoint
of Py. Let σp ∈ {−1, 1} be 1 if x is between w and p
along Px and −1 otherwise. Similarly, let σq ∈ {−1, 1}

be 1 if y is between z and q along Py and −1 otherwise.
Consider the detour cost-related quantity

detour′(a, b) := σpdist(a, p) + σqdist(b, q) + dist(a, b)

defined for any pair of vertices a, b with a on a bar
in B0 and b on a bar in B1. For a path R with
start point a0 and end point b0, define detour′(R) :=
detour(a0, b0). For any two vertices c, d on a shortest
path between a and b in the order a − c − d − b, note
that detour′(a, b) is σpdist(a, p)+σqdist(b, q)+dist(a, b),
which is (σpdist(a, p) + dist(a, c)) + (σqdist(b, q) +
dist(d, b)) + dist(c, d).

For each u ∈ {p, q} and all vertices v, v′,
σudist(v, u) + dist(v, v′) ≤ σudist(v′, u) by the trian-
gle inequality. Therefore, detour′(a, b) ≥ σpdist(c, p) +
σqdist(d, q) + dist(c, d) = detour′(c, d).

Furthermore, since detour′ is a sum of three signed
path lengths, detour′ differs by at most 3δ for endpoint
pairs of paths in the same bucket. Therefore, since Q
is in a bucket for a subpath R of P , detour′(w, z) ≤
detour′(Q) ≤ detour′(R) + 3δ ≤ detour′(x, y) + 3δ.
Therefore, the length of the detour path Q0Q1Q2 is

dist(x,w) + dist(w, z) + dist(z, y)

= (−σpdist(p, w) + dist(x,w))

+(dist(w, z) + σpdist(p, w) + σqdist(q, z))

+(−σqdist(q, z) + dist(y, z))

= −σpdist(p, x) + detour′(w, z)− σqdist(q, y)

≤ −σpdist(p, x) + detour′(x, y) + 3δ − σqdist(q, y)

= dist(x, y) + 3δ

7.1.3 Sparse Covers To exploit Proposition 7.5, it
helps to add a subset of each bucket that “sparsely”
intersects the bars.

Proposition 7.6. Given an cage B and a set of bar-to-
bar paths P, there is a subset Q such that
• (Coverage) Each bar intersected by some path in P is

intersected by some path in Q
• (Sparsity) For each P ∈ P, the bars BP intersected by
P are intersected by O(1) paths in Q.

There is a greedy set-cover algorithm to find Q:
each path in P stands for the set of bars that it
intersects:
• SparseCover(P,B):
• Q ← ∅
• While there exists a path in P that intersects an bar

in B that does not intersect any path in Q
– B′ ← the set of bars intersected by paths in Q
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– P ← the path in P that intersects the most bars
in B − B′

– Add P to Q
The algorithm terminates because Q increases in size
in each iteration. The while loop condition ensures
the Coverage condition upon termination. To establish
the Sparsity condition, focus on a path P ∈ P. Any
path added to Q that intersects BP must intersect an
endpoint bar of P ; otherwise P would have been a better
choice. The first two paths added that intersect BP
must intersect both endpoint bars of P ; also by the
greedy condition. BQ 6⊆ BQ′ and BQ′ 6⊆ BQ for any
Q 6= Q′ ∈ Q by the greedy condition. Therefore, P
is a better choice than any other third path that could
intersect P , so BP is covered after adding three paths
to Q that intersect BP .

7.1.4 Crossbars Let P be a set of shortest paths
between pairs of bars in a set B. Let δ(0, 1).
Crossbars(P,B, δ) goes through each pair of adjacent
bars Bi, Bi+1 and arbitrarily chooses subpaths of paths
in P that only intersect the face between Bi and Bi+1

that are not yet δ-approximated to add to a set Q un-
til all such paths are δ-approximated. Q contains at
most 16δ−2 paths that intersect any given bank for a
channelized cage B, as any two paths with endpoints
within distance δ/2 of one another must 2(δ/2) = δ-
approximate one another. Each path has two endpoints
chosen from a set of size 2/(δ/2) = 4/δ, leading to at
most (4/δ)2 = 16/δ2 possible paths intersecting any
given bank.

7.2 Bars to P0 Now we approximate all bar-to-P0

paths for an arbitrary shortest path P0. In particular,
P0 may or may not be the bank of a channel.

Proposition 7.7. There is a polynomial time algorithm
Bars2Path(P0,B,P, δ) that, when given a path P0, a
channelized cage B, a set of shortest paths P closed under
taking subpaths, and an error parameter δ ∈ (0, 1), adds
paths to Links with the following properties:
• (Subpaths) Bars2Path only adds subpaths of paths in P

to Links.
• (Approximation) All bar-to-P0 shortest paths P ∈ P are
δ-approximated after applying Bars2Path.

• (Sparsity) For each bar B ∈ B, Bars2Path adds at most
O(δ−5) paths to Links that intersect B.

The algorithm Bars2Path approximates bar-to-P0

paths in two stages. In the first stage, Bars2Path
approximates paths in each bucket from one arm of each
bar to P0. However, the algorithm has little control over
which arm is dealt with. To handle the remaining paths,
Bars2Path makes an “unapproximated prefix” for each

r s

v0

Figure 6: Processing of one bucket of paths during Stage
1 of Bars2Path. The boldest red path is the one path
added from the bucket during Stage 1. The other solid
red paths are the subpaths that Stage 2 processes.

vertex v. Bars2Path then adds a sparse cover for each
bucket of prefixes and crossbars to get from the end of
a prefix to the path approximating it.
• Bars2Path(P0,B,P, δ) for

– a shortest path P0 with endpoints s′ and t′

– an s− t cage B
– a set of shortest paths P closed under taking

subpaths
– and a parameter δ ∈ (0, 1):
• (Stage 1:)
• {Pi}i ← Buckets(P, s, t, s′, t′δ/100).
• For each i,

– Add SparseCover(Pi,B) to Links.
• Add Crossbars(P,B, δ/100) to Links.
• (Stage 2:)
• For each path Pvv′ ∈ P for v on a bar in B and v′ ∈ P0

– Let x be first vertex on the v−v′ path Pvv′ for which
the x− v′ subpath of Pvv′ is δ/20-approximated.

– Let Qvv′ be the v − x subpath of Pvv′ .
• For each i,

– Let Qi be the set of nonempty (edge-containing)
paths Qvv′ for vertices v that are starting points of
paths in Pi and v′ ∈ P0.

– Add SparseCover(Qi,B) to Links.
Now we analyze this algorithm. The sparsity

of Links follows from the number of buckets and
from the sparsity guarantee of SparseCover. For the
approximation guarantee, consider vertices v on a bar
B and v′ ∈ P0 for which Pvv′ ∈ Pi. Pvv′ is δ/100-
approximated if v happens to be on the arm of the
bar that SparseCover(Pi,B) intersects. Otherwise, by
the coverage guarantee of SparseCover(Qi,B), there is
some Quu′ ∈ SparseCover(Qi,B) that intersects a bar
containing v. The core of the proof is in showing that
Quu′ intersects the arm containing v. If Quu′ does
not intersect the arm containing v, we show that Quu′
contains a non-endpoint vertex y whose y − u′ path is
δ/20-approximated by Stage 1 paths, a contradiction.
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7.3 Bars To Bars Now we prove Lemma 6.1. The
algorithm Bars2Bars still uses SparseCover and Buckets,
but also uses Bars2Path in order to topologically con-
strain the paths that Proposition 7.5 is applied to:

• Bars2Bars(B,P, δ) for
– an s− t cage B
– a set of bar-to-bar shortest paths P closed under

taking bar-to-bar subpaths
– and a parameter δ ∈ (0, 1):

• Channelize each bar in B and delete all but O(1/δ)
evenly-spaced drawbridges.

• R ← ∅
• For each P ∈ P,

– Add MonotoneSplit(P,B) to R.
• Reset P to R.
• Add Crossbars(P,B, δ/100) to Links.
• For each p ∈ {s, t},

– Let Pp be the set of subpaths of paths in P with
both endpoints on p-arms.

– Let Qp be the set of subpaths P of paths P of
paths in P with the property that P only intersects
p-arms of a bar.

– {Ppi}i ← Buckets(Pp, s, t, δ/100)
– {Qpi}i ← Buckets(Qp, s, t, δ/100)
– For each bucket L ∈ {Ppi}i ∪ {Qpi}i
∗ K ← SparseCover(L,B)
∗ Add K to Links
∗ For each path P ∈ K
· Let Ba and Bb be bars containing the end-

points of P .
· For each j ∈ {a, b}, let Ajs and Ajt be the s

and t-side arms respectively of Bj .
· Let B0 denote the bars that P intersects.
· Let L0 be the set of paths in L that intersect

a bar in B0.
· Let B1 be the set of bars in B that intersect a

path in L0 and the two adjacent bars.
· Let P ′ be the set of paths in P that only

intersect bars in B1.
· For each arm A ∈ {Aas, Aat, Abs, Abt}, run

Bars2Path(A,B,P ′, δ/100).
· Run Bars2Path(P,B,P ′, δ/100).

Now we give an overview of the analysis. Note that
the four places that add Links only add subpaths of
P to Links by Proposition 7.6 and the definition of
Crossbars. This completes the Subpaths guarantee of
Proposition 6.1. To show the Sparsity guarantee, we
just need to bound the number of different B′s that
contain a bar. This can be bounded using the Sparsity
guarantee of Proposition 7.6 applied to K.

For the Approximation guarantee, we start by ar-
guing that paths Q ∈ Qp for p ∈ {s, t} are δ/20-
approximated. We break this analysis up into two

s-side

t-side

u v

v0
u0

P

Q2ba

A

B

Q2a
Q2c

Q2bb

y

Figure 7: The paths in Case 1.

s-side

t-side

u v

v0
u0

Q2a
Q2c

Q2ba

y

Q2bb

P

Figure 8: The paths in Case 2.

cases. Let L be the bucket in Buckets(Qp, s, t, δ/100)
containing Q. If Q intersects an arm A of a bar B con-
taining an endpoint of a path P ∈ SparseCover(L,B),
then break Q up into two segments at some intersection
point with B and notice that Bars2Path(A,B,P ′, δ/100)
δ/100-approximates each of those segments, for a total
of δ/50 error. Otherwise, Q does not intersect a bar
containing an endpoint of a path in SparseCover(L,B).
In particular, the Coverage property ensures that some
path P ∈ SparseCover(L,B) intersects bars containing
the endpoints of Q. Since L ⊆ Qp, it only contains
paths that intersect p-arms of bars. Therefore, Propo-
sition 7.5 implies that P ∪ B 3δ/100-approximates Q.

Now we argue that any path Q ∈ P is δ-
approximated after applying Bars2Bars. Q can be bro-
ken up into three segments Q0, Q1, and Q2, where Q1 is
δ/100-approximated by a crossbar, Q0 ∈ Qs ∪ Qt, and
Q2 ∈ Ps ∪ Pt. By the previous paragraph, Q0 is δ/20-
approximated. Therefore, we just need to focus on Q2.
Divide Q2 up into three segments Q2a, Q2b, and Q2c,
where Q2a and Q2c only consist of vertices on p-arms
and the endpoints of Q2b are on q ∈ ({s, t} − p)-arms.
The following cases are illustrated in figures.

Case 1: K contains a path P with an endpoint
bar B that contains an arm A for which (1) B in-
tersects Q2 and (2) P intersects a bar that Q2b in-
tersects. In this case, split Q2 into two segments us-
ing a vertex y ∈ A ∩ Q2. By construction of P ′,
subsegments Q2ba and Q2bb of these segments that to-
gether contain Q2b are each δ/100-approximated using
Bars2Path(A,B,P ′, δ/100), leaving two subsegments of
Q2a and Q2c to approximate. By the previous para-
graph, these subsegments are both δ/20-approximated.
Therefore Q2 is approximated.

Case 2: K contains a path P that (1) intersects
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s-side

t-side

u v

v0
u0

P

Figure 9: The paths in Case 3. The green path
approximates a segment containing Q2b.

s-side

t-side

u v

v0
u0

P

Figure 10: The paths in Case 4. The green path
approximates Q2.

Q2 and (2) intersects a bar that Q2b intersects. In
this case, split Q2 into two segments using a vertex
y ∈ P ∩ Q2. Subsegments of both of these segments
that together contain Q2b are each δ/100-approximated
using Bars2Path(P,B,P ′, δ/100). The remaining two
segments of Q2 are subsegments of Q2a and Q2c and
are therefore δ/20-approximated.

If neither of these cases holds, Proposition 7.2
implies that a single path P ∈ K intersects all bars
that Q2 intersects; in particular both endpoint bars of
Q2b and Q2. Furthermore, Proposition 7.3 applies with
the parameter settings P ← Q2 and Q ← P and splits
the remaining proof into two more cases:

Case 3: P intersects both endpoint arms for
Q2b. In this case, P and bars 3δ/100-approximate Q2b

because P and Q2b are in the same bucket (Proposition
7.5). Therefore, Q2 is also approximated.

Case 4: P intersects both endpoint arms for Q2. In
this case, P and bars 3δ/100-approximate Q2 because
P is in a bucket for a subpath of Q2 (Proposition 7.5).

Thus, Q2 and in turn Q are δ-approximated.
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