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ABSTRACT

On line analytical processing (OLAP) is an essential element of
decision-support systems. OLAP tools provide insights and un-
derstanding needed for improved decision making. However, the
answers to OLAP queries can be biased and lead to perplexing and
incorrect insights. In this paper, we propose HypDB a system to
detect, explain, and to resolve bias in decision-support queries. We
give a simple definition of a biased query, which performs a set of
independence tests on the data to detect bias. We propose a novel
technique that gives explanations for bias, thus assisting an analyst
in understanding what goes on. Additionally, we develop an auto-
mated method for rewriting a biased query into an unbiased query,
which shows what the analyst intended to examine. In a thorough
evaluation on several real datasets we show both the quality and
the performance of our techniques, including the completely auto-

matic discovery of the revolutionary insights from a famous 1973
discrimination case.
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1 INTRODUCTION

On line analytical processing (OLAP) is an essential element of
decision-support systems. OLAP tools enable complex calculations,
analyses, and sophisticated data modeling; this aims to provide the
insights and understanding needed for improved decision making.
Despite the huge progress OLAP research has made in recent years,
the question of whether these tools are truly suitable for decision
making remains unanswered [4, 10]. The following example shows
how insights obtained from OLAP queries can be perplexing and
lead to poor business decisions.

Example 1.1. Suppose a company wants to choose between the

business travel programs offered by two carriers, American Airlines

(AA) and United Airlines (UA). The company operates at four air-

ports: Rochester (ROC), Montrose (MTJ), McAllen Miller (MFE) and
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Colorado Springs (COS). It wants to choose the carrier with the lowest

rate of delay at these airports. To make this decision, the company’s

data analyst uses FlightData, the historical flight data from the U.S.

Department of Transportation (Sec. 7.1); the analyst runs the group-

by query shown in Fig. 1 to compare the performance of the carriers.

Based on the analysis at the top of Fig. 1, the analyst recommends

choosing AA because it has a lower average flight delay.

Surprisingly, this is a wrong decision. AA has, in fact, a higher

average delay than UA at each of the four airports, Fig. 1(a). This

trend reversal, known as Simpson’s paradox, occurs as a result of

confounding influences. The Airport has a confounding influence

on the distribution of the carriers and departure delays, because its

distribution differs for AA and for UA (Fig. 1 (b) and (c)): AA has many

more flights from airports that have relatively few delays, like COS

and MFE, while UA has more flights from ROC, which has relatively

many delays. Thus, AA seems to have overall lower delay only because

it has many flights from airports that in general have few delays. At

the heart of the issue is an incorrect interpretation of the query; while

the analyst’s goal is to compare the causal effect of the carriers on
delay, the OLAP query measures only their association.

A principled business decision should rely on performing a hy-
pothesis test on the causal effect of choosing between two (or more)
alternatives, T = t0 or T = t1, on some outcome of interest, Y .
Data analysts often reach for a simple OLAP query that computes
the average of Y on the two subgroups T = t0 and T = t1, called
control and treatment subpopulations, but, as exemplified in Fig. 1,
this leads to incorrect decisions. The gold standard for such causal
hypothesis testing is a randomized experiment or an A/B test, called
as such because the treatments are randomly assigned to subjects.
In contrast, business data is observational, defined as data recorded
passively and subject to selection bias. Although causal inference
in observational data has been studied in statistics for decades, no
causal analysis tools exist for OLAP systems. Today, most data
analysts still reach for the simplest group-by queries, potentially
leading to biased business decisions.

In this paper, we propose HypDB, a system to detect, explain,
and resolve bias in decision-support queries. Our first contribu-
tion is a new formal definition of a biased query that enables the
system to detect bias in OLAP queries by performing a set of inde-
pendence tests on the data. Next, we proposed a novel technique
to find explanations for the bias and to rank these explanations,
thus assisting the analyst in understanding what goes on. Third,
we describe a query rewriting technique to eliminate the bias from
queries. To enable HypDB to perform these types of causal analysis
on the data, we develop a novel algorithm to compute covariates
in an efficient way. Finally, we perform extensive experiments on
several real datasets and a set of synthetic datasets, demonstrating
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of the art CDD algorithms, yet it scales well with large and high-
dimensional data, is robust to sparse subpopulations, and can handle
functional dependencies on the fly. Second, we propose a powerful
optimization to significantly speed up theMonte Carlo permutation-

test, which is a robust, but computationally expensive independence
test needed throughoutHypDB (detecting biased queries, explaining
the bias, and resolving it by query rewriting). Our optimization
consists of generating permutation samples without shuffling of
data, by sampling from contingency tables and conditioning groups.

Finally, a key novelty of HypDB is the ability to explain its
findings, and rank the explanations. We introduce novel definitions
for fine-grained and coarse-grained explanations of a query’s bias
(Example 1.2). We empirically show that these explanations are
crucial for decision making and reveal illuminating insights about
the domain and the data collection process. For instance, HypDB
reveals an inconsistency in the adult dataset [22] (Sec. 7).

Example 1.2. HypDB will detect that the query in Fig. 1 is biased

and will explain the bias by computing a list of covariates ranked

by their responsibility. Fig. 1 (d) shows that Airport has the highest
responsibility, followed by Year; this provides valuable information to

the data analyst for understanding the trend reversal. Finally, HypDB

rewrites the original query into the query in Listing 3, in order to

compute both the total effect and the direct effect. The total effect
measures the expected changes in the delay when the carrier is set

to AA and UA by a hypothetical external intervention. The direct

effect measures the effect that is not mediated by other variables, such

as destination and late arrival delay. Fig. 1 (d) shows that UA has a

slightly better performance than AA in terms of total effect, but there

is no significant difference for the direct effect.

An important application of HypDB, which we demonstrate in
the empirical evaluation, is to detect algorithmic unfairness [40, 47,
50]. Here, the desire is to ensure that a machine learning algorithm
does not make decisions based on protected attributes such as
gender or race, for example in hiring decisions. While no generally
accepted definition exists for algorithmic unfairness, it is known
that any valid proof of unfairness requires evidence of causality
[8]. For example, in gender discrimination, the question is whether
gender has any direct effect on income or hiring [34]. We show how
to use HypDB post factum to detect unfairness, by running a group-
by query on the protected attribute and checking for biasness. We
show that the obtain insights from HypDB goes beyond state of the
art tools for detecting discrimination such as FairTest [47].

The main contributions of this paper are as follows: We provide
a formal definition of a biased query based on independence tests in
the data (Sec. 3.1); give a definition of responsibility and contribu-
tion, allowing us to rank attributes and their ground levels by how
well they explain the bias of a query (Sec. 3.2); and describe a query
rewriting procedure that eliminates bias from queries (Sec. 3.3).
Then, we propose a novel algorithm for computing covariates with-
out having to compute the complete causal DAG (Sec. 4). Next, we
describe optimization techniques that speed up the independence
test based on the Monte Carlo permutation-test (Sec. 5). We pro-
pose some optimizations to speed up all components of our system
(Sec. 6). Finally, we perform an extensive evaluation using four real
datasets and a set of synthetic datasets (Sec. 7).

2 BACKGROUND AND ASSUMPTIONS

We fix a relational schema with attributes A = {X1, . . . ,Xk } and
discrete domains Dom(Xi ), i = 1,k . We use lower case letters to
denote values in the domains, x ∈ Dom(X ), and use bolded letters

for sets of attributes X, or tuples x ∈ Dom(X) (
def
=

∏

X ∈X Dom(X ))
respectively. A database instance is a set of tuples with attributes A.
We denote its cardinality by n.

Listing 1: An OLAP query Q.

SELECT T ,X,avg(Y1), ... ,avg(Ye )
FROM D
WHERE C
GROUP BY T ,X

We restrict the OLAP queries to group-by-average queries, as
shown in Listing 1. We do not consider more complex OLAP queries
(drill-down, roll-up or cube queries); we also do not consider ag-
gregate operators other than average because they are not needed
in causal analysis. To simplify the exposition we assume T and Yi
take only two values, Dom(T ) = {t0, t1}, Dom(Yi ) = {0, 1} and de-
note Dom(X) = {x1 . . . xm }. For each i = 1,m we call the condition

Γi
def
= C∧ (X = xi ) a context for the query Q. We interpret the query

as follows: for each context, we want to compute the difference
between avg(Yi ) for T = t1, and for T = t0.

We make the following key assumption, standard in statistics.
The databaseD is a uniform sample from a large population (e.g., all
flights in the United States, all customers, etc.), obtained according
to some unknown distribution Pr(A). Then, the query Q represents
a set of estimates E[(Y1, . . . ,Ye ) |T = tj , Γi ].

We assume familiarity with the notions of entropy H (X), con-
ditional entropy H (Y|X), and mutual information I (X;Y|Z) associ-
ated to the probability distribution Pr; see the Appendix for a brief
review. Since Pr is not known, we instead estimate the entropy
from the sample D using the Miller-Madow estimator [28].

TheNeyman-RubinCausalModel (NRCM). HypDB is based
on the Neyman-Rubin Causal Model (NRCM) [17, 44], whose goal
is to study the causal effect of a treatment variable T ∈ {t0, t1} on
an outcome variable Y . The model assumes that every object (called
unit) in the population has two attributes, Y (t0),Y (t1), representing
the outcome both when we don’t apply, and when we do apply the
treatment to the unit. The average treatment effect (ATE) of T on Y
is defined as:

ATE(T ,Y )
def
= E[Y (t1) − Y (t0)] = E[Y (t1)] − E[Y (t0)] (1)

In general, ATE cannot be estimated from the data, because for each
unit one of Y (t0) or Y (t1) is missing; this is called the fundamental

problem of causal inference [18]. To compute the ATE, the statistics
literature considers one of two assumptions. The first is the inde-
pendence assumption, stating that (Y (t0),Y (t1)) is independent ofT .
Independence holds only in randomized data, where the treatment
T is chosen randomly, but fails in observational data, which is the
focus of our work; we do not assume independence in this paper,
but, for completeness, include its definition in the appendix. For
observational data, we consider a second, weaker assumption [45]:

Assumption 2.1. The data contains a set of attributes Z ⊆ A,

called covariates, satisfying the following property: forall z ∈ Dom(Z),

(1) (Y (t0),Y (t1) ⊥⊥ T |Z = z) (this is called Unconfoundedness), and
(2) 0 < Pr(T = t1 |Z = z) < 1 (this is called Overlap).
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Under this assumption,ATE can be computed using the following
adjustment formula:

ATE(T ,Y ) =
∑

z∈Dom (Z)

(E[Y |T = t1, z] − E[Y |T = t0, z]) Pr(z) (2)

Example 2.1. Referring to our example 1.1, we assume that each
flight has two delay attributes, Y (AA) and Y (UA), representing the
delay if the flight were serviced by AA, or by UA respectively. Of
course, each flight was operated by either AA or UA, hence Y is
either Y (AA) or Y (UA) in the database; the other one is missing,
and we can only imagine it in an alternative, counterfactual world.
The independence assumption would require a controlled experi-
ment, where we randomly assign each flight to either AA or UA,
presumably right before the flight happens, clearly an impossible
task. Instead, under the Unconfoundedness assumption we have
to find sufficient covariates, such that, after conditioning, both de-
lay variables are independent of which airline operates the flight.
We note that łindependencež here is quite subtle. While the delay
Y may depends on whether the flight is operated by AA or UA,
what the assumption states is that, after conditioning, the delay of

the flight if it were operated by AA (i.e. Y (AA)) is independent of
whether the flight is actually operated by AA or UA, and similarly
for Y (UA); see the appendix for details.

To summarize, in order to compute ATE, one has to find the
covariates Z. The overlap condition is required to ensure that (2)
is well defined, but in practice overlap often fails on the data D.
The common approach is to select covariates Z that satisfy only
Unconfoundedness, then estimate (2) on the subset of the data
where overlap holds (Sec. 3.3). Thus, our goal is to find covariates
satisfying Unconfoundedness.

Causal DAGs. A causal DAG G is a graph whose nodes are
the set of attributes V (G ) = A and whose edges E (G ) capture all
potential causal relationships between the attributes [5, 34, 35].
We denote PAX the set of parents of X . If there exists a directed
path from X to Y then we say that X is an ancestor or a cause of
Y , and say that Y is a descendant or an effect of X . A probability
distribution Pr(A) is called causal, orDAG-isomorphic, if there exists
a DAG G with nodes A that captures precisely its independence
relations[35, 38, 46]: the formal definition is in the appendix, and
is not critical for the rest of the paper. Throughout this paper we
assume Pr is DAG-isomorphic.

Covariate Selection. Fix some database D, representing a sam-
ple of some unknown distribution Pr, and suppose we want to
compute the causal effect of an attribute T on some other attribute
Y . Suppose that we computed somehow a causal DAG G isomor-
phic to Pr(A). Pearl [33] showed that the parents of T are always a
sufficient set of covariates, more precisely:

Proposition 2.2. [35, Th. 3.2.5] Fix two attributesT and Y . Then

the set of parents, Z
def
= PAT satisfies the Unconfoundedness property.

In HypDB we always choose PAT as covariates, and estimate
ATE using Eq. (2) on the subset of the data where overlap holds;
we give the details in Sec. 3.3.

Learning the Parents from the Data. The problem is that we
do not have the causal DAGG , we only have the dataD. Learning the
causal DAG from the data is considered to be a challenging task, and
there are two general approaches. The score-based approach [16]

uses a heuristic score function on DAGs and a greedy search. The
constraint-based approach [36, 43] builds the graph by repeatedly
checking for independence relations in the data. Both approaches
are expensive, as we explain in Sec. 4, and unsuitable for interactive
settings. Furthermore, in our application the causal DAG must
be computed at query time, because it depends on the WHERE
condition of the query. Instead, to improve the efficiency of HypDB,
we compute only PAT , by using the Markov Boundary.

Definition 2.3. [38] Fix a probability distribution Pr(A) and a

variable X ∈ A. A set of variables B ⊆ A − {X } is called a Markov
Blanket of X if (X⊥⊥A−B− {X } |B); it is called aMarkov Boundary
if it is minimal w.r.t. set inclusion.

Next, we relate the Markov Boundary of T with PAT :

Proposition 2.4. [30, The. 2.14] Suppose P (A) is DAG-isomorphic

with G . Then for each variable X , the set of all parents of X , children

of X , and parents of children of X is the unique Markov boundary of

X , denoted B(X ).

Thus, PAT ⊆ B(T ). Several algorithms exists in the literature
for computing Markov Boundary, B(T ), for example the Grow-
Shrink [25]. In Sec. 4 we describe a novel technique that, once B(T )
is computed, extracts the parents PAT .

Total and Direct Effects. ATEmeasures the total effect ofT on
Y , aggregating over all directed paths from T to Y . In some cases
we want to investigate the natural direct effect, NDE [34], which
measures the effect only through a single edge from T to Y . Its
definition is rather technical and deferred to the appendix. For the
rest of the paper it suffices to note that it can be computed using
the following formula [34], NDE(T ,Y ) =
∑

(z, m) ∈ Dom (Z, M)

(E[Y |T = t0,m] − E[Y |T = t1,m]) Pr(m|T = t1, z) Pr(z) (3)

where the covariates are Z
def
= PAT , andM

def
= PAY − {T } is called

the set of mediators. HypDB computes both total and direct effect.

3 BIASED OLAP QUERIES

We introduce now the three main components of HypDB: the def-
inition of bias in queries, a novel approach to explain bias, and a
technique to eliminate bias. Throughout this section, we will as-
sume that the user issues a query Q (Listing 1), with intent to study
the causal effect (total or direct) from T to Yj , for each outcome
variable Yj , and for each context Γi . We assume that we are given
the set of covariates Z (for the total effect) or covariates Z and medi-
atorsM (for the direct effect); next section explains how to compute
them. We assume that all query variables other than treatment and
outcome are included in Z, or Z ∪M respectively.

3.1 Detecting Bias

Let V denote Z for total effect, or Z ∪M for direct effect.

Definition 3.1. We say the query Q is balanced w.r.t. a set of

variables V in a context Γi if the marginal distributions Pr(V|T =

t0, Γi ) and Pr(V|T = t1, Γi ) are the same.

Equivalently, Q is balanced w.r.t. V in the context Γi iff (T⊥⊥V|Γi ).
We prove (in the appendix):
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Proposition 3.2. Fix a context Γi of the queryQ, and let ∆i denote

the difference between avg(Y) forT = t1 and forT = t0 (∆i estimates

E[Y|T = t1, Γi ] − E[Y|T = t0 |Γi ]). Then:

(a) if Q is balanced w.r.t. the covariates Z in the context Γi , then

∆i is an unbiased estimate of the ATE (Eq. (1)). In this case,

with some abuse, we say that Q is unbiased for estimating
total effect.

(b) if Q is balanced w.r.t. the covariates and mediators Z ∪M in

the context Γi , then ∆i is an unbiased estimate of NDE (Eq. (7));
we say that Q is unbiased for estimating direct effect.

In otherwords, if the query is unbiasedw.r.t. the covariatesZ (and
mediatorsM) then the user’s query is an unbiased estimator, as she
expected. In that case the groups are comparable in every relevant
respect, i.e., the distribution of potential covariates such as age,
proportion of male/female, qualifications, motivation, experience,
abilities, etc., are similar in all groups. The population defined by
the query’s context behaves like a randomization experiment.

During typical data exploration, however, queries are biased. In
Ex. 1.1, the distribution of the covariate Airport differs across the
carriers. (Fig. 1(b)). This makes the groups incomparable and the
query biased in favor of AA, because AA has many more flights
from airports that have few delays, like COS, while UA has more
flights from ROC, which has many delays (Fig. 1 (b) and (c)).

To detect whether a query is unbiased w.r.t. V, we need to check
if (T⊥⊥V|Γi ), or equivalently if I (T ;V|Γi ) = 0, where I is the condi-
tional mutual information. Recall that I is defined by the unknown
probability distribution Pr and cannot be computed exactly. In-
stead, we have the database D, which is a sample of the entire
population, we estimate Î , then check dependence by rejecting
the null hypothesis I (T ;V|Γi ) = 0 if the p-value is small enough.
(Even if D consists of the entire population, the exact equality
I (T ;V|Γi ) = 0 is unlikely to hold for the uniform distribution Pr

over D.) We discuss this in detail in Sec. 5. For an illustration, in
Ex. 1.1, Î (Carrier;Aiport|Γ) = 0.25 , 0 with p-value< 0.001, where
Γ is the context of the four airports. Thus, the query is biased.

3.2 Explaining Bias

In this section, we propose novel techniques to explain the bias in
the query Q. We provide two kinds of explanations: coarse grained
explanations consist of a list of attributes Z ∈ Z (or Z ∪M), ranked
by their responsibility to the bias, and fine grained explanations,
consisting of categories (data values) of each attribute Z , ranked by
their contribution to bias.

Coarse-grained. Our coarse-grained explanation consists of
ranking the variables V (which is either Z or Z ∪M), in terms of
their responsibilities for the bias, which we measure as follows:

Definition 3.3. (Degree of Responsibility): We define the degree
of responsibility of a variable Z ∈ V in the context Γi as

ρZ =
I (T ;V|Γi ) − I (T ;V|Z , Γi )

∑

V ∈V I (T ;V|Γi ) − I (T ;V|V , Γi )
(4)

WhenZ ∈ V, the quantity I (T ;V|Γi )−I (T ;V|Z , Γi ) is always1 ≥ 0.
Therefore ρZ is simply the normalized value of some positive quan-
tities, and thus 0 ≤ ρZ ≤ 1. The larger ρZ , the more responsible

1Dropping the context, we have I (T ;V) − I (T ;V |Z ) = (H (T ) + H (V) − H (TV)) −
(H (TZ )+H (V)−H (TV)−H (Z )) = H (T )+H (Z )−H (TZ ) ≥ 0 by submodularity.
Notice that, if Z < V, then it is known that this difference may be < 0.

Listing 2: Refined OLAP query Qrw .

WITH Blocks

AS(

SELECT T ,X,Z,avg(Y1) AS Avg1 ,...,avg(Ye ) AS Avge

FROM D
WHERE C
GROUP BY T ,Z,X),

Weights

AS(

SELECTX,Z, count (*)/n AS W

FROM D
WHERE C
GROUP BY Z,X
HAVING count(DISTINCT T )=2)

SELECT T ,X,sum(Avg1 * W) ,...,sum(Avge * W)

FROM Blocks ,Weights

GROUP BY T ,X
WHERE Blocks.Z = Weights.Z AND

Blocks.X = Weights.X

V is for bias. The intuition is that there is no bias iff I (T ;V|Γi ) = 0,
thus the degree of responsibility measures the contribution of a
single variable to the inequality I (T ;V|Γi ) > 0.

HypDB generates coarse-grained explanations for a biased query,
by ranking covariates in terms of their responsibilities. In Ex. 1.1,
the covariates consists of attributes such as Airport, Day, Month,
Quarter, Year. Among them Airport has the highest responsibility,
followed by Year (Fig. 1 (d)). See Sec. 7 for more examples.

Fine-Grained. A fine-grained explanation for a variable Z ∈ V
is a triple (t ,y, z), where t ∈ Dom(T ), y ∈ Dom(Y ), z ∈ Dom(Z ),
that highly contributes to both I (T ;Z ) and I (Y ;Z ). These triples
explain the confounding (or mediating) relationships between the
ground levels. We measure these contributions as follows:

Definition 3.4. (Degree of contribution): Given two variables

X ,Y ∈ A with I (X ;Y ) > 0 and a pair (x ,y) ∈ Dom(XY ), we define

the degree of contribution of (x ,y) to I (X ;Y ) as:

κ(x,y ) = Pr(x ,y) log(
Pr(x ,y)

Pr(x )Pr(y)
) (5)

Mutual information satisfies I (X ;Y ) =
∑

(x,y )∈Dom (X,Y) κ(x,y ) .
Thus, a pair (x ,y) can either make a positive (κ(x,y ) > 0), negative
(κ(x,y ) < 0), or no contribution (κ(x,y ) = 0) to I (X ;Y ).

To compute the contribution of the triples (t ,y, z) to both I (T ;Z |Γi )
and I (Y ;Z |Γi ) and generate explanations, HypDB proceeds as fol-
lows. It first ranks all triples (t ,y, z) ∈ ΠTYZ (σΓi (D)), based on

their contributions to Î (T ;Z ), then it ranks them again based on
their contribution to Î (Y ;Z ), then aggregates the two rankings
using Borda’s methods [23]; we give the details in the algorithm
FGE in Alg. 3 in the appendix. HypDB returns the top k highest
ranked triples to the user. For example, Fig. 1(d) shows the triple
(Airport=ROC, Carrier=UA, Delayed=1) as the top explanation for
the Z = Airport covariate; notice that this captures exactly the
intuition described in Ex. 1.1 for the trend reversal.

3.3 Resolving Bias

Finally, HypDB can automatically rewrite the query to remove the
bias, by conditioning on the covariates Z (recall that we assumed
in this section the covariates to be known). Listing 2 shows the
general form of the rewritten query Qrw for computing the total
effect of Q (Listing 1). The query Qrw essentially implements the
adjustment formula Eq. (2); it partitions the data into blocks that
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are homogeneous on Z. It then computes the average of each Y ∈ Y
Group by T ,X, in each block. Finally, it aggregates the block’s av-
erages by taking their weighted average, where the weights are
probabilities of the blocks. In order to enforce the overlap require-
ment (Assumption 2.1) we discard all blocks that do not have at
least one tuple with T = t1 and one tuple with T = t0; this pruning
technique is used in causal inference in statistics, and is known as
exact matching [19]. We express exact matching in SQL using the
condition count(DISTINCT T) = 2, ensuring that for every group
t0, x, avg1, . . . in the query answer, there exits a matching group
t1, x, avg

′
1, . . ., and vice versa. Note that probabilities need to be

computed wrt. the size of renaming data after pruning. The API
of HypDB finds these matching groups, and computes the differ-
ences avg′i − avgi , for i = 1, e; this represents precisely the ATE
for that context, Eq. (1). HypDB performs a similar rewriting for
computing the direct effects of T on covariates Y and mediators M,
by implementing the mediator formula (Eq. 3).

4 AUTOMATIC COVARIATES DISCOVERY

In this section we present our algorithm for automatic covariates
discovery from the data. More precisely, given a treatment variable
T , our algorithm computes its parents in the causal DAG, PAT , and
sets Z = PAT (Prop. 2.2); importantly, our algorithm discovers PAT
directly from the data, without computing the entire DAG.

In this section we assume to have an oracle for testing condi-
tional independence in the data; we describe this algorithm in the
next section. Using repeated independence tests, we can compute
the Markov Boundary of T , MB(T ), e.g. using the Grow-Shrink
algorithm [25]. While PAT ⊆ MB(T ), identifying the parents is dif-
ficult because it is sometimes impossible to determine the direction
of the edges. For example, consider a dataset with three attributes
T ,W ,Z and a single independence relation, (Z⊥⊥W |T ). This is con-
sistent with three causal DAGs: Z → T →W , or Z ← T ←W , or
Z ← T →W , and PAT is eitherZ , orW , or ∅. AMarkov equivalence

class [46] is a set of causal DAGs that encode the same indepen-
dence assumptions, and it is well known that one cannot distinguish
between them using only the data. For that reason, in HypDB we
make the following assumption: for every U ∈ PAT there exists
V ∈ PAT such that U and V are not neighbors. Intuitively, the as-
sumption says that PAT is big enough: if PAT = ∅, then there is no
need to choose any covariates (i.e. Z = ∅), so the only setting where
our assumption fails is whenT has a single parent, or all its parents
are neighbors. In the former case, HypDB sets Z = MB(T ) − {Y }. In
the latter case, parents of T can not be learned from data. However,
one can compute a set of potential parents of T and use them to
establish a bound on causal effect. We leave this extension for
future work. Given our assumption, we prove:

Proposition 4.1. Let Pr be DAG-isomorphic with G, T ∈ V (G ),

and Z ∈ MB(T ). Then Z ∈ PAT iff both conditions hold:

(a) There existsW ∈ MB(T )− {Z } and S ⊆ MB(Z )− {W ,T } such

that (Z⊥⊥W |S) ∧ (Z⊥̸⊥W |S ∪ {T })

(b) Forall S′ ⊂ MB(T ) − {Z }, (Z⊥̸⊥T |S′)

The intuition behind this proposition is that a necessary con-
dition for Z ,W ∈ MB(T ) to be the parents of T is that T be a
collider in a path between them. In causal DAG terms, a common
descendant of two nodes is called a collider node, because two

Z W

CY

D T

Figure 2: Example of a causal DAG.

arrowheads collide at this node (see Appendix A.1). If Z andW
are not neighbors this can be detected from data by performing
a series of independence tests to check for the condition (a). For
instance, in the causal DAG in Fig. 2 (Z⊥⊥W ) but (Z⊥̸⊥W |T ), thus (a)
holds for S = ∅. However, (a) is only necessary but not sufficient. In
Fig. 2, D⊥⊥W and D⊥̸⊥W |T , but D is not a parent of T . This would
happen if T was a collider in a path between one of its parents,
e.g.,W , and a parent of its children, e.g., D, that are (conditionally)
independent.2 Condition (b) excludes such cases by removing all
those that are not neighbor with T . Furthermore, to check (a) and
(b), it is sufficient to restrict the search to subsets of the relevant
Markov boundaries.

The CD algorithm, shown in Alg 1, implements this idea in two
phases. In phase I, it collects in C the set of all pairs of variables
that satisfy (a). Note that (a) is a symmetric property. At the end
of this step C consists of all parents of T and possibly parents of
its children. In phase II, those variables in C that violate (b) will be
discarded, in a single iteration over the subsets of MB(T ). At the
end of this stepC consists of all and only parents ofT . While theCD
algorithm uses principles similar to those used by the constrained-
based CDD methods (Sec 2), its local two-phase search strategy
is novel and optimized for the discovery of parents. In contrast
to other constraint-based algorithms that learn the structure of
a DAG by first identifying all direct neighbors of the nodes, the
CD algorithm only checks whether a node is a neighbor of T if it
satisfies (a). In Sec. 7, we show that our algorithm is more robust
and efficient for covariates discovery than other CDDmethods. The
worst case complexity of the algorithm is exponential in the size of
the largest Markov boundary it explores, which is typically much
smaller than the number of attributes. In Ex. 1.1, Markov Boundary
of Carrier consists of only 5 out of 101 attributes in FlightData.

HypDB applies the CD algorithm to the subpopulation specifies
by the WHERE clause of Q, assuming homogeneity in the contexts
formed by the grouping attributes. Note that for computing the
direct effect of T on each outcome Yj , the parents of PAYj must be
also learned from data (Sec. 2), using the CD algorithm.

Dropping logical dependencies. As discuss in the introduc-
tion, logical dependencies such as keys or functional dependen-
cies can completely confuse inference algorithms; for example, if
the FD X ⇒ T holds then MB(T ) = {X }, thus totally isolating T
from the rest of the DAG. HypDB performs the following steps.
Before computing the Markov Boundary of a variableT , it discards
all attributes X ∈ A such that H (T |X ) = ϵ and H (X |T ) = ϵ for

2Note that T can be a collider in a path between any pairs of its parents, children, and
parents of its children, e.g., (W , C ), (W , Y ) in Fig. 2. However, only two parents or
one parent and a parent of a child can satisfy (a).
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Algorithm 1: Covariate Detection (CD)

Input: A dataset D , and a treatment T ∈ A
Output: A set of covariates Z

1 C← ∅

2 ▷ Phase I

3 for Z ∈ MB(T ) s.t. Z < C do
4 for S ⊆ MB(Z ) − {T } do
5 if ∃W ∈ MB(T ) s.t. (Z⊥⊥W |S) ∧ (Z⊥̸⊥W | S ∪ {T }) then
6 C← C ∪ {Z ,W }

7 Break

8 ▷ Phase II

9 forC ∈ C do
10 if ∃ S ⊆ MB(T ) − {C } s.t. (T⊥⊥C |S) then
11 C← C − {C }

12 Z← C

13 return Z

ϵ ≈ 0. These tests correspond to approximate FDs, for example
AirportWAC⇒ Airport. In addition, it drops attributes such as ID,
FlightNum, TailNum, etc., that have high entropy and either indi-
vidually or in combination form key constraints. Attributes with
high entropy are either uninteresting or must be further refined
into finer categories.

Algorithm 2: Mutual Information Test (MIT)

Input: A dataset D , two variables T , Y ∈ A and a set Z ⊂ A, number of permutation
samplesm

Output: Significant level of Î (T , Y |Z)

1 s0 ← Î (X , Y |Z)

2 for z ∈ ΠZ (D ) do
3 for i ∈ {1 . . .m } do

4 CTi ← RandT(CX
σZ=z (D )

, CY
σZ=z (D )

)

5 S[z, i]← ÎCi (X , Y )

6 α̂ ← 0

7 for i ∈ {1, . . . ,m } do
8 si ← 0

9 for z ∈ ΠZ (D )) do
10 si = +S[z, i] × Pr(Z = z)

11 if si > s0 then

12 α̂ = + 1
m .

13 return α̂ 1.96

√

α̂ (1−α̂ )
m

5 EFFICIENT INDEPENDENCE TEST

In this section we describe our algorithm for checking conditional
independence in the data. The problem of determining significance
of dependency can be formulated as a chi-squared test [13], G-
test [26] or as exact tests such as the permutation test [12]. The
permutation test applies to the most general settings, and is non-
parametric, but it is also computationally very expensive. In this
section we propose new optimization methods that significantly
speedup the permutation test. We start with the brief review.

Monte-Carlo permutation test. (T⊥⊥Y |Z) holds iff I (T ;Y |Z) =
0, but in practice we can only estimate Î (T ;Y |Z) = v . Permutation
test aims to compute the p-value of a hypothesis test: under the
null-hypothesis I (T ;Y |Z) = 0, the p-value is the probability that
the estimand Î (T ;Y |Z) is ≥ v . The distribution of the estimand Î

under the null-hypothesis can be computed using the following
Monte-Carlo simulation: permute the values of the attribute T in
the data within each group of the attributes Z, re-compute Î , and
return the probability of Î ≥ v . In other words, for each z ∈ ΠZ (D),

we randomly permute the values of T within σZ=z (D),(the permu-
tation destroys any conditional dependence that may have existed
between T and Y ), then recompute Î , and set the p-value α to the
fraction of them trials where Î ≥ v .

The Monte Carlo simulation needs to be performed a sufficiently
large number of times,m, and each simulation requires permuting
the entire database. This is infeasible even for small datasets. Our
optimization uses contingency tables instead.

Permutation test using contingency tables. A contingency
table is a tabular summarization of categorical data. A k-way con-
tingency table over A is a k-dimensional array of non-negative
integers CA

D
= {n(i)}i∈Dom (A) , where n(i) =

∑

a∈D 1a=i. For any
X ⊆ A, marginal frequencies can be obtained by summation over
X. For instance, the following table shows a 2× 2 contingency table
over T and Y together with all marginal probabilities.

Y = 1 Y = 0

T = 1 n11 n10 n1_
T = 0 n01 n00 n0_

n_1 n_0 n__

Randomly shuffling data only changes the entries of a contin-
gency table, leaving all marginal frequencies unchanged (or equiva-
lently, shuffling data does not change the marginal entropies). Thus,
instead of drawing random permutations by shuffling data, one can
draw them directly from the distribution of all contingency tables
with fixed marginals. An efficient way to do this sampling is to use
Patefield’s algorithm[32]. This algorithm accepts marginals of an
i × j contingency table and generatesm random contingency tables
with the given marginals, where the probability of obtaining a table
is the same as the probability of drawing it by randomly shuffling.

Based on this observation, we developMIT, a non-parametric
test for significance of conditional mutual information, shown in
Alg. 2. To test the significance of Î (T ;Y |Z), for each z ∈ ΠZ (D),
MIT takesm samples from the distribution of the contingency ta-
ble with fixed marginals CX

σZ=z (D )
and CY

σZ=z (D )
using Patefield’s

algorithm. Then, it computes ÎCi (T ;Y ), the mutual information
between T and Y in the distribution defined by a random contin-
gency table Ci . These results are aggregated using the equation
I (T ;Y |Z) = Ez[I (T ;Y ) |Z = z] to compute the test statistic in each
permutation sample. Finally, MIT computes a 95% binomial pro-
portion confidence interval around the observed p-value.

As opposed to the complexity of shuffling data, which is propor-
tional to the size of the data, the complexity of Patefield’s algorithm
is proportional to the dimensions of T and Y . Thus, the complexity
ofMIT is essentially proportional tom, the number of permutation
tests, and |ΠZ (D) |, the number of groups. This makes MIT orders
of magnitude faster than the random shuffling of data. In Ex. 1.1 to
test whether Carrier⊥⊥Delayed|Airport, MIT summarizes the data
into four 2×2 contingency tables (one table per each airport), which
is dramatically smaller than FlightData that consists of 50k rows.

Sampling from groups. If the dimension of the conditioning
set Z becomes large, the curse of dimensionality makes MIT in-
feasible. Let Îz be a random variables that represents the outcome
of ÎCi (T ;Y ) for z ∈ ΠZ (D). It holds that ÎCi (T ;Y ) ≤ max(H (T |Z =

zi ),H (Y |Z = zi ). Then, the observed p-value α ′ reads as P (a0Îz0 +
. . . + ac Îzc ≥ Î (T ;Y |Z)), where ai = Pr(Z = zi ) and c = |ΠZ (D) |.

Thus, a zi ∈ ΠZ (D) with wi
def
= azi max(H (X |Z = zi ),H (Y |Z =

zi )) ≈ 0 does not affect the p-value. Based on this observation, to
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further improve performance, we restrict the test to a weighted
sample of ΠZ (D), where the weights are {wi } for i = 1, c . Note that
for a fixed |ΠZ (D)|, uniform random sampling is not effective.MIT

with sampling operates in an łanytime" manner; we empirically
show that it is reliable for small sampling fractions (Sec. 7). We
leave the theoretical evaluation of its precision for future work.

6 OTHER OPTIMIZATIONS

We briefly report here other optimizations in HypDB.
Materializing contingency tables. The major computational

efforts in all three components of HypDB involve contingency tables
and computing entropies, which can be done by count(*) Group By

query. However, this must be done for several combinations of at-
tributes. Contingency tables with their marginals are essentially
OLAP data-cubes. Thus, with a pre-computed OLAP data cube,
HypDB can detect, explain and resolve bias interactively at query
time. In the absence of data-cubes, all three components of HypDB
can benefit from the on line materialization of selected contingency
tables. For instance, in both phases of CD (Alg. 1) only the frequen-
cies of a subset of attributes is required. In phase I, all Independence
tests are performed on a subset ofMB(Z ) ∪MB(T ); and In phase II,
on a subset of MB(Z ) ∪ C. Hence, HypDB materializes appropriate
contingency tables and compute the required marginal frequencies
by summarization.

Caching entropy.A simple yet effective optimization employed
by HypDB is to cache entropies. Note that the computation of
I (T ;Y |Z ) computes the entropiesH (X ),H (Y ),H (XZ ) andH (XYZ ).
These entropies are shared among many other conditional mutual
information statements. For instance, H (T ) and H (TZ ) are shared
between I (T ;Y |Z ) and I (T ;W |Z ). HypDB caches entropies for effi-
cient retrieval and to avoid redundant computations.

Hybrid independent test. It is known that χ2 distribution can
be used for testing the significance of Î (X ;T |Z), if the sample size is
sufficiently larger than the degree of freedom of the test, calculated
as d f = ( |ΠX (D) | − 1) ( |ΠY (D) | − 1) |ΠZ (D) |. Thus, HypDB uses

the following hybrid approach for independent test: if d f ≤ |D |
β

(β = 5 is ideal) it uses the χ2 approximation; otherwise, it performs
permutation test using MIT. We call this approach HyMIT.

7 EXPERIMENTAL RESULTS

We implemented HypDB in Python to use it as a standalone library.
This section presents experiments that evaluate the feasibility and
efficacy of HypDB. We aim to address the following questions. Q1:
To what extentHypDB does prevent the chance of false discoveries?
Q2: What are the end-to-end results of HypDB? Q3: What is the
quality of the automatic covariate discovery algorithm in HypDB,
and how does it compare to the state of the art CDD methods? Q4:
What is the efficacy of the proposed optimization techniques?

7.1 Setup

Data. For (Q1) we used 50M entries in the FlightData. Table 1
shows the datasets we used for (Q2). For (Q3) and (Q4), we needed
ground truth for quality comparisons, so we generated more than
100 categorical datasets of varying sizes for which the underlying
causal DAG is known. To this end, we first generated a set of random
DAGs using the Erdős-Rènyi model. The DAGs were generated with
8, 16 and 32 nodes, and the expected number of edges was in the

Dataset Columns [#] Rows[#] Det. Exp. Res.

AdultData [22] 15 48842 65 <1 <1
StaplesData [49] 6 988871 5 <1 <1
BerkeleyData [3] 3 4428 2 <1 <1
CancerData [15] 12 2000 <1 <1 <1
FlightData [42] 101 43853 20 <1 <1

Table 1: Runtime in seconds for experiments in Sec. 7.3.

range 3-5. Then, each DAG was seen as a causal model that encodes
a set of conditional independences. Next, we drew samples from the
distribution defined by these DAGs using the catnet package in R [2].
Note that causal DAGs admit the same factorized distribution as
Bayesian networks [39]. The samples were generated with different
sizes in the range 10K-501M rows, and different numbers of attribute
categories (numbers of distinct values) were in the range 2-20. We
refer to these datasets as RandomData.

Significance test. We used MIT with 1000 permutations to
test the significance of the differences between the answers to the
queries Q (Listings 1) and Qrw (Listings 2). It is easy to see that the
difference is zero iff I (T ;Y ) = 0 for Q and iff I (Y ;T |Z) = 0 for Qrw .

Systems. The experiments were performed locally on a 64-bit OS
X machine with an Intel Corei7 processor (16 GB RAM, 2.8 GHz).

7.2 Avoiding false discoveries (Q1)

What are the chances that a data analyst does a false discovery by
running a SQL query? For this experiment, we generated 1000 ran-
dom SQL queries of the form Q (Listing 1) from FlightData (queries
with random, months, airports, carriers, etc.) that compare the per-
formance of two carriers (similar to Ex. 1.1). We used HypDB to
rewrite the queries into a query of the form Qrw w.r.t. the potential
covariates Airport, Day, Month, DayOfWeek. As shown in Fig 5 (a),
for more than 10% of SQL queries that indicate a significant differ-
ence between the performance of carriers, the difference became
insignificant after query rewriting. That is, the observed difference
in such cases explained by the covariates. Fig 5 (a) also shows in
20% of the cases, query rewriting reversed the trend (similar to Ex.
1.1). Indeed, for any query that is not located in the diagonal of the
graph in Fig 5 (a), query rewriting was effective.

7.3 End-to-end results (Q2)

In the following experiments, for each query, the relevant covari-
ates and mediators were detected using the CD algorithm with
HyMIT (Sec. 6). Table. 1 reports the running times of the covari-
ates detection. Some of the datasets used in this experiment were
also investigated by FairTest [47]. By using the same datasets, we
could compare our results and confirm them.

AdultData. Using this dataset, several prior works in algorith-
mic fairness have reported gender discrimination based on a strong
statistical dependency between income and gender in favor of males
[24, 47, 51]. In particular, FairTest reports 11% of women have high
income compared to 30% of men, which suggests a huge disparity
against women. We applied HypDB to AdultData to compute the
effect of gender on income. We started with the query in Fig. 3 (top),
which computes the average of Income (1 iff Income> 50k) Group
By Gender, which indeed suggests a strong disparity with respect
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Rank Education Gender Income

1 Bachelors Male 1

2 SomeCollage Female 0

SELECT avg(Income)
FROM AdultData
GROUP BY Gender

Rank MarialStatus Gender Income

1 Married Male 1

2 Single Female 0

Gender SQL Q. 
Answer

Rewritten Q.
(Total 
Effect)

Rewritten Q.
(Direct 
Effect)

Female 0.11 0.23 0.10

Male 0.30 0.25 0.11

Attribute Res.

MaritalStatus 0.58

Education 0.13

CapitalGain 0.07

HoursPerwWeek 0.04

Age 0.04

Coarse-grained
Explanation:

(Med. and Cov.)

Fine-grained Explanation:

SELECT avg(Price)
FROM StaplesData
GROUP BY Income

Rank Income Price Distance

1 0 1 Far

2 1 0 Near

Income SQL Q.  
Answer

Rewritten Q.
Answer(Total)

Rewritten Q.
Answer(Direct)

0 0.06 0.07 0.58

1 0.05 0.05 0.58

Attribute Res.

Distance 1

Coarse-grained
Explanation:

Fine-grained Explanation:

Diff. 0.01 <0.01 0

p-value <0.001 <0.001 1

SQL Query:

The effect of gender
on income using
AdultData.

The effect of income
on price using
StaplesData.

SQL Query:

Diff. 0.29 <0.02 0.01

p-value <0.001 <0.001 (0,0.004)

Figure 3: The effect of gender on income in AdultData (top);

The effect of income on price in StaplesData (bottom).

to females’ income. Note that FairTest essentially reports the result
of the query in Fig. 3 (top). In contrast, HypDB detects that this
query is biased. It identifies attributes, such as MaritalStatus, Edu-
cation, Occupation and etc., as mediators and covariates. The result
of the rewritten query suggests that the disparity between male
and female is not nearly as drastic. The explanations generated
by HypDB show that Maritalstatus accounts for most of the bias,
followed by Education. However, the top fine-grained explanations
for MaritalStatus reveal surprising facts: there are more married
males in the data than married females, and marriage has a strong
positive association with high income. It turns out that the income
attribute in US census data reports the adjusted gross income as
indicated in the individual’s tax forms, which depends on filing
status (jointly and separately), could be household income. Thus,
AdultData is inconsistent and should not be used to investigate gender

discrimination. HypDB explanations also show that males tend to
have higher educations than females and higher educations is asso-
ciated with higher incomes. Although, this dataset does not meet
the assumptions needed for inferring causal conclusions, HypDB’s
report is illuminating and goes beyond FairTest.

BerkeleyData. In 1973, UC Berkeley was sued for discrimina-
tion against females in graduate school admissions. The admission
figures for the fall of 1973 showed that men applying were more
likely than women to be admitted, and the difference was so large
that it was unlikely to be due to chance. The result of the query

in Fig. 4 (top) suggests a huge disparate impact on female appli-
cants. However, the query is bias w.r.t. Department. After removing
bias by rewriting the query, HypDB reveals that disparity between
males and females is not nearly as drastic (Fig. 4 (top)). Note that
potentially missing covariates, such as an applicant’s qualification,
prohibits causal interpretation of the answers. However, the fine-
grained explanations generated by HypDB are insightful. They
reveal that females tended to apply to departments such as F that
have lower acceptance rates, whereas males tended to apply to de-
partments such as A and B that have higher acceptance rates. For
BerkeleyData, FairTest reports a strong association between Gender
and Acceptance, which becomes insignificant after conditioning
on Department. In contrast, HypDB reveals that there still exists
an association even after conditioning, but the trend is reversed!
In addition, HypDB’s explanations demystify the seemingly para-
doxical behavior of this dataset. These explanations agree with the
conclusion of [3], in which the authors investigated BerkeleyData.

StaplesData. Wall Street Journal investigators showed that Sta-
ples’ online pricing algorithm discriminated against lower income
people [49]. The situation was referred to as an łunintended conse-
quence" of Staples’s seemingly rational decision to adjust online
prices based on user proximity to competitors’ stores. We used
HypDB to investigate the problem. As depicted in Fig 3 (bottom),
HypDB reveals that Income has no direct effect on Price. However,
it has an indirect effect via Distance. The explanations show that
this is simply because people with low incomes tend to live far
from competitors’ stores, and people who live far get higher prices.
This is essentially the conclusion of [49]. For StaplesData, FairTest
reports strong association between Income and Price, which is con-
firmed byHypDB. However, the obtained insights fromHypDB, e.g.,
the indirect interaction of Income and Price, are more profound
and critically important for answering the question whether the
observed discrimination is intended or unintended.

CancerData. This is a simulated dataset generated according to
the causal DAG shown in Fig. 7 in the appendix. This data was used
to test all three components of HypDB against ground truth. We
used the query in Fig. 4 (bottom) to decide whether lung cancer has
any impact on car accidents. According to the ground truth, there
is no direct edge between lung cancer and car accidents; hence,
there is no significant direct causal effect. However, since there is
an indirect path between them, we expect a significant total causal
effect. As shown in Fig. 4 (bottom),HypDB detects that this query is
biased and correctly discovers sufficient confounding and mediator
variables. The explanations for bias show that fatigue is the most
responsible attribute for bias; people with lung cancer tend to be
fatigued, which is highly associated with car accidents. Thus, the
answers to the rewritten queries and explanations coincide with
the ground truth.

FlightData. The results presented in Ex. 1.1 were generated
using HypDB. During covariate detection, HypDB identifies and
drops logical dependencies induced by attributes such as FlightNum,
TailNum, AirportWAC, etc. It identified attributes such as Airport,
Year, ArrDelay, Deptime, etc., as covariates and mediating variables.
The generated explanations coincide with the intuition in Ex. 1.1.

Finally, we remark that the assumptions needed to perform para-
metric independence tests fail for FlightData and AdultData due
to the large number of categories in their attributes and the high

Research 11: Data Mining SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1029



SELECT avg(Car_Accident)
FROM CancerData
GROUP BY Lung_Cancer

Rank Lung_
Cancer

Car_
Accident

Fatigue

1 0 0 0

2 1 1 1

Lung_
Cancer

SQL Q. 
Answer

Rewritten Q.
Answers(Total)

Rewritten Q.
Answers(Direct)

0 0.60 0.61 0.189

1 0.77 0.76 0.185

Attribute
(Medi.)

Res.

Fatigue 0.91

Attention_
Disorder

0.09

Corse-grained
Explanation:

Fine-grained Explanation:

The effect of lung
cancer on car accident
using CancerData.

SQL Query:
Diff. 0.17 0.14 0.004

p-value <0.001 <0.001 (0.07, 0.1)

SELECT avg(Accepted)
FROM BerkeleyData
GROUP BY Gender

Rank Gender Accepted Department

1 Male 1 A

2 Male 1 B

3 Female 0 F

Gender SQL Q.  
Answer

Rewritten Q.
Answers(Direct)

Female 0.30 0.32

Male 0.46 0.27

Attribute Res.

Department 1

Coarse-grained
Explanation:

Fine-grained Explanation:

Diff. 0.16 0.05

p-value <0.001 <0.001

SQL Query:

The effect of gender on
admission rate using
BerkeleyData.

Figure 4: Report of the effect of lung cancer on car accident

on CancerData (top); report of the effect of gender discrimi-

nation in BerkeleyData (bottom).

density of the underlying causal DAG; (this also justifies the higher
running time for these datasets). The analysis of these datasets
was possible only with the non-parametric tests developed in Sec 5.
(Also, other CDD methods we discuss in the next section were
not able to infer sufficient covariates and mediators.) To test the
significance of Î (T ;Y |Z) with MIT, the permutation confidence
interval was computed based on m = 100 permutation samples.
We restricted the test to a sample of groups of size proportional to
log( |ΠZ (D) |) as described in Sec. 5. Note that we used the signifi-
cance level of 0.01 in all statistical tests in the CD algorithm.

7.4 Quality comparison (Q3)

We used RandomData, for which we had the ground truth, to assess
the quality of the CD algorithm. We used the algorithm to learn the
parents of all attributes in the corresponding DAG underlying differ-
ent datasets in RandomData. We repeated the experiment with the
following independence tests: MIT with sampling (same sampling
fraction as in Sec 7.3),HyMIT and χ2. We used the F1-score as the
accuracy metric to measure the performance the CD algorithm and
compared it to the following reference algorithms implemented in
BNlearn library in R [29]: two contained-based methods, Full Grow-
Shrink (FGS) [25] and Incremental Association (IAMB) [48] with
χ2 independent test; the score based greedy search with Akaike
Information Criterion (AIC), Bayesian Dirichlet equivalent (BDe)

and Bayesian Information Criterion (BIC) scores. The significance
level of 0.01 was used in all statistical tests.

The FGS utilizes Markov boundary for learning the structure
of a causal DAG. It first discovers the Markov Boundary of all
nodes using the Grow-Shrink algorithm. Then, it determines the
underlying undirected graph, which consists of all nodes and their
neighbors. For edge orientation, it uses similar principles as used
in the CD algorithm. The IAMB is similar to FGS except that it
uses an improved version of the Grow-Shrink algorithm to learn
Markov boundaries. Note that the superiority of CDD methods
based on Markov boundary to other constraint-based method (such
as the PC algorithm [46]) was shown in [41]. Thus, we restricted
the comparison to these algorithms.

Fig. 5 (b) shows that our algorithm significantly outperforms
most other algorithms. We remark, however, that this comparison
is not fair, because the CD algorithm is not designed for learning
the entire structure of a DAG. In fact, other constrained-based
algorithms use the information across different nodes for edge
origination. Thus, they could potentially learn the parent of a nodes
with only one parent. Since learning the entire DAG is not the focus
of our algorithm, in Fig. 5 (c) and (d) we restrict the comparison
to nodes with at least two parents (either neighbors or not). As
depicted, the CD algorithm with HyMIT outperforms all other
algorithms. Notice that for smaller datasets and larger number
of categories, our algorithm performs much better than the other
algorithms. In fact, for a fixed DAG, χ2 test and score basedmethods
become less reliable on sparse data. Conditioning on Z splits the
data into |ΠZ (D) | groups. Thus, conditioning on large Z causes
the data to split into very small groups that makes inference about
independence less reliable. Fig. 5 (d) shows that , for sparse data,
tests based on permutation deliver highest accuracy. Note that size
conditioning sets in the CD algorithm depends on the density of
underlying causal DAG.

An interesting observation is that even though our method uses
principles that are similar to the other constraint-based methods,
it outperforms them even with the same independence test, i.e.,
χ2 test. This is because the CD algorithm uses a novel two-phase
search strategy that is optimized for learning parents, and does not
relay on learning the underlying undirected graph. As shown in
Fig 6 (a), the CD algorithm conducted fewer independence tests per
node than the FGS algorithm. Fewer independence tests not only
improve efficiency but make the algorithm more reliable. Note that
we only compared with the FGS, because we also used the Grow-
Shrink algorithm to compute Markov boundaries. Also, notice that
learning the parents of a nodes required many fewer independence
test than the entire causal DAG. This makes our algorithm scalable
to highly dimensional data for which learning the entire causal
DAG is infeasible.

7.5 Efficacy of the optimization techniques (Q4)

To evaluate the quality of the optimizations proposed for non-
parametric independence tests, we compared the running time and
performance of MIT, MIT with sampling (same sampling fraction
as in Sec 7.3), HyMIT and χ2 tests using the same data as used in
Sec 7.4, but we restricted the experiments to samples smaller than
50k, to study their behavior on sparse data. Fig 6 (b) compares the
average running time of performing each test. As depicted, both
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A APPENDIX

A.1 Additional Background

We give here some more technical details to the material in Sec. 2.

Entropy. The entropy of a subset of random variables X ⊆

A is H (X)
def
= −

∑

x∈Dom (X) Pr(x) log Pr(x), where Pr(x) is the
marginal probability. The conditional mutual information (CMI) is

I (X;Y|Z)
def
= H (XZ)+H (XY)−H (XZY)+H (Z).We say thatX,Y are

conditionally independent (CI), in notation X⊥⊥Y|Z, if I (X;Y|Z) = 0.
Notice that all these quantities are defined in terms of the un-
known population and the unknown probability Pr(A). To estimate
the entropy from the database D we use the Miller-Madow esti-
mator [28]: Ĥ (X) =

∑

x∈ΠX (D ) F (x) log F (x) +
m−1
2n , where F (x) =

1
n

∑

a∈D 1a[X]=x (the empirical distribution function) andm = |ΠX (D) |

is the number of distinct elements of X. We refer to the sample
estimate of I (X;Y|Z) as Î (X;Y|Z).

Justification of Unconfoundedness. In the Neyman-Rubin
CausalModel, the independence assumption states that (Y (t0),Y (t1) ⊥⊥
T ). This assumption immediately implies E[Y (ti )] = E[Y (ti ) |T =
ti ], i = 0, 1, and therefore ATE can be computed as:

ATE(T ,Y ) = E[Y |T = t1] − E[Y |T = t0] (6)

Here Y is Y (T ), the attribute present in the data, and thus Eq. (2)
can be estimated from D as the difference of avg(Y ) for T = t1
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and for T = t0. Notice that one should not to confuse the inde-
pendence assumption (Y (t0),Y (t1) ⊥⊥ T ) with (Y ⊥⊥ T ), meaning
(Y (T ) ⊥⊥ T ); if the latter holds, then T has no causal effect on Y .
Under the independence assumption,

The independence assumption holds in randomized data (where
the treatment T is chosen randomly), but fails in observational

data. In the case of observational data, we need to rely on the
weaker Assumption 2.1. Notice that Unconfoundedness essentially
states that the independence assumption holds for each value of the
covariates. Thus, Eq.(6) holds once we condition on the covariates,
proving the adjustment formula (2).

Causal DAGs. Intuitively, a causal DAG G with nodes V (G ) =

A, and edges E (G ) captures all potential causes between the vari-
ables [5, 34, 35]. We review here how compute the covariates Z
using the DAG G, following [39]. A node Xi is a parent of X j if
(Xi ,X j ) ∈ E (G ), PAX j

denotes the set of parents of X j , and two
nodes Xi and X j are neighbors if one of them is a parent of the
other one. A path P is a sequence of nodes X1, . . . ,Xℓ such that Xi
and Xi+1 are neighbors forall i . P is directed if (Xi ,Xi+1) ∈ E (G )

forall i , otherwise it is nondirected. If there is a directed path from

X to Y then we write X
∗
→ Y , and we say X is an ancestor, or

a cause of Y , and Y is a descendant or an effect of X . A nondi-
rected path P = (X1, . . . ,Xℓ ) from X1 to Xℓ is called a back-door if
(X2,X1) ∈ E (G ) and (Xℓ−1,Xℓ ) ∈ E (G ). Xk is a collider in a path
P if both Xk−1 and Xk+1 are parents of Xk . A path with a collider
is closed; otherwise it is open; note that an open path has the form

X
∗
←
∗
→ Y , i.e. X causes Y or Y causes X or they have a common

cause. If P is open, then we say that a set of nodes Z closes P if
P ∩ Z , ∅. Given two sets of nodes X,Y we say that a set Z d-

separates3 X and Y, denoted by X⊥⊥Y|d Z, if Z closes every open
path from X to Y [39]. This special handling of colliders, reflects a
general phenomenon known as Berkson’s paradox, whereby con-
ditioning on a common consequence of two independent cause
render spurious correlation between them, see Ex. A.1 below.

Example A.1. CancerData [15] is a simulated dataset generated

according to the causal DAG shown in Fig. 7. In this graph, Smoking

is a collider in the path between Peer_Pressure and Anxiety, i.e., P:

Peer_Pressure→ Smoking← Anxiety. Furthermore, P is the only path

between Peer_Pressure and Anxiety. Since P is a closed path, Anxiety

and Peer_Pressure are marginally independent. This independence

holds in CancerData, since I (Anxiety, Peer_Pressure) = 0.000004,

which is not statistically significant (pvalue>0.6). Now, since Smoking

is a collider in P, conditioning on Smoking renders spurious correla-

tion between Anxiety and _Pressure. From CancerData we obtain that,

I (Anxiety, Peer_Pressure|Smoking) = 0.003, which is statistically sig-

nificant (pvalue<0.001).

3d stands for łdirectionalž.

Anxiety
Peer

Pressure

SmokingAnxiety Genetics

Lung Cancer
Attention

DisorderAllergy

Coughing Fatigue

Lung Cancer

Born an 

Even Day

Figure 7: The causal DAG used to generate CancerData.

Definition A.2. A distribution Pr(A) on the variables A is causal
or DAG-isomorphic if there exists a DAG G with nodes A such that4

X⊥⊥Y|d Z⇔ X⊥⊥Y|Z [35, 38, 46].

Fix a treatment T and outcome Y . A set Z is said to satisfy the
back-door criterion if it closes all back-door paths fromT to Y . Pearl
[33] proved the following:

Theorem A.3. [35, Th. 3.2.5] if Z satisfies the back-door criterion,

then it satisfies Unconfoundedness.

Total and Direct Effects. ATEmeasures the total effect ofT on
Y , aggregating over all directed paths fromT toY . In some cases we
want to investigate the direct effect, or natural direct effect,NDE [34],
which measures the effect only through a single edge from T to
Y , which we review here. A nodeM that belongs to some directed
path from T to Y is called a mediator. We will assume that each
unit in the population has two attributes Y (t1) and Y (t0,M (t1)),
representing the outcome Y when we apply the treatment t1, and
the outcome when we don’t apply the treatment and simultaneously

keep the value of all mediators, M, to what they were when the
treatment t1 was applied. Then:

NDE(T ,Y )
def
= E[Y (t0,M(t1))] − E[Y (t1)] (7)

For example, in gender discrimination the question is whether
gender has any direct effect on income or hiring [34]. Here t1 =Male,
t0 =Female, Y is the decision to hire, while the mediators M are
the qualifications of individuals. The outcome Y (t0,M (t1)) is the
hiring decision for a male, if we changed his gender to female, but
kept all the qualifications unchanged. Since Y (t0,M (t1)) is missing
in the data, NDE can not be estimated, even with a controlled

experiment [34]. However, for mediators M
def
= PAY − {T } and

covariates Z
def
= PAT , it satisfies the mediator formula [34], given

by Eq.(3) in Sec. 2.

A.2 Additional Proofs, Algorithms, Examples
and Graphs

In this section we present some of the proofs and algorithms that
were missing in the main part of the paper. We also present addi-
tional examples and graphs.

4 The⇒ direction is called Causal Markov Assumption and⇐ is called Faithfulness.
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