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A B S T R A C T

Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and
sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect
anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange
of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been
undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem
respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total
site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross
carbon uptake by photosynthesis (i.e. GEP > 3000 g C m−2 y-1) have the lowest net carbon uptake – or even
carbon losses – versus other study ecosystems because RE is of a similar magnitude. Sites that provided sub-
canopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes
of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in eco-
systems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit
(VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated
conditions across most study sites, but to differing degrees from -0.31 to -0.87 μmol CO2m−2 s-1 hPa-1. Climate
projections from 13 general circulation models (CMIP5) under the representative concentration pathway that
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generates 8.5W m−2 of radiative forcing suggest that many current tropical rainforest sites on the lower end of
the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year
2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher
VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water
stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon
exchange in tropical rainforests.

1. Introduction

Tropical rainforests regulate the amount of heat and moisture that
enters the atmosphere in the tropics (Avissar and Werth, 2005), act as a
critical reservoir for biodiversity (Gibson et al., 2011), and serve as a
globally important stock of carbon (Dixon et al., 1994; Phillips et al.,
1998). They may be turning into a net source of carbon to the atmo-
sphere due largely to degradation and disturbance (Baccini et al.,
2017). Such threats to tropical rainforests affect not only their carbon
dynamics, but also the other ecosystem and Earth system services that
rainforests provide (Foley et al., 2005; Kim et al., 2015; Mitchard,
2018), and emphasize the need to understand the functional diversity of
rainforests for a deeper understanding of the Earth system (Asner et al.,
2017; Levine et al., 2016; Pavlick et al., 2013).

Inverse and forward modeling approaches demonstrate that tropical
forests contribute ∼20% of the interannual variability of global net
biome production (net carbon flux including fire emissions) (Ahlström
et al., 2015), but up to 1/3 of the interannual variability of biosphere-
atmosphere carbon dioxide (CO2) flux in the southern hemisphere (Fu
et al., 2017). Satellite observations demonstrate diverse patterns of
carbon fluxes within the tropical rainforest biome; for example, the
standard deviation of gross ecosystem productivity (GEP) estimated
from Moderate Resolution Imaging Spectroradiometer (MODIS) is
higher across some tropical rainforest areas - especially in southeast
Asia, coastal Africa, and the western Amazon - than many other global
ecosystems (Fig. 1, Xiao et al., (2016)). Such observations motivate the

need to study the controls over carbon fluxes in the natural and in-
creasingly managed ecosystems of the tropical rainforest biome (Hall
et al., 1995).

Much has been learned about the net surface-atmosphere exchange
(NEE) of CO2 since the first eddy covariance measurements of terra
firme tropical rainforests demonstrated a substantial carbon sink on
daily timescales (Grace et al., 1996, 1995; Malhi et al., 1998; Oberbauer
et al., 2000). Tropical rainforests tend to have lower carbon use effi-
ciency than temperate forests (Chambers et al., 2004), emphasizing the
critical role of ecosystem respiration (RE) to the tropical carbon bal-
ance. Counterintuitive seasonal CO2 flux patterns are now resolved;
tropical rainforest GEP is often greater in the dry season due to leaf
emergence (Aguilos et al., 2018; Huete et al., 2008, 2006; Hutyra et al.,
2007; Lopes et al., 2016; Saleska et al., 2016, 2007, 2003) despite
strong limitations to GEP when water is limiting (Kiew et al., 2018; Wu
et al., 2017) and a “brown down” due to water limitation toward drier
regions (Saleska et al., 2009). Some studies find that tropical rainforest
trees tend to be isohydric (Fisher et al., 2006; Konings and Gentine,
2016), suggesting that they tightly regulate stomatal conductance
under conditions of water stress including when the vapor pressure
deficit (VPD) is high. However, tropical trees exhibit a range of hy-
draulic behavior (Braga et al., 2016; Giardina et al., 2018; Klein, 2014;
Powell et al., 2017; Siddiq et al., 2017) and modeling studies suggest
that anisohydric strategies may be preferred in tropical systems with
little risk of water stress (Inoue et al., 2016; Kumagai and Porporato,
2012). These climate and hydrologic stresses are coupled with

Fig. 1. The standard deviation of annual gross ecosystem productivity (GEP) from MODIS (MOD17A3) for the period.2000–2015. (For interpretation of the refer-
ences to color in the figure the reader is referred to the web version of this article.)
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management pressures that impact carbon fluxes in tropical ecosys-
tems.

Forests in the tropical rainforest biome are increasingly managed,
and managed ecosystems must also be studied for a comprehensive
understanding of carbon metabolism in the tropics. Reforestation tends
to increase carbon sequestration (Wolf et al., 2011b, 2011c), but re-
sponses of tropical rainforests to other anthropogenic and natural dis-
turbances, such as deforestation (Pan et al., 2011), fire (van Marle et al.,
2017) and drought (Bonal et al., 2008; Phillips et al., 2009) are diverse
and interactive. For example, a tropical peat forest near Palangkaraya,
Indonesian Borneo (ID-Pag; see Table 1) was a net source of CO2 to the
atmosphere over multiple years due to constraints on GEP by VPD,
radiative perturbations due to peat fire smoke, and perturbation of the
water table (Hirano et al., 2012; 2008; 2007). These and other factors
create large interannual variability in tropical rainforest NEE (e.g.
Fig. 1) that remains poorly understood at the ecosystem scale.

Studying the annual and interannual variability in tropical rain-
forest carbon exchange at the ecosystem scale is challenging due to the
unique difficulties that they present to the eddy covariance metho-
dology (Kruijt et al., 2004; Miller et al., 2004). Intact tropical forests
tend to be at remote sites away from line power sources, which creates
logistical challenges for making quasi-continuous long-term measure-
ments. Tropical rainforest canopies are characteristically tall and dense,
resulting in complex within-canopy atmospheric transport (Fuentes
et al., 2016; Gerken et al., 2017; Tóta et al., 2012) that makes standard
approaches for measuring and modeling nighttime ecosystem respira-
tion difficult to apply (Dargie et al., 2017; de Araújo et al., 2010; Grace
et al., 2016; Loescher et al., 2003; Pan et al., 2011; Santos et al., 2016).
Alternate approaches for estimating nighttime RE based on daytime
flux measurements (e.g. Lasslop et al., (2010)) may represent an im-
provement, but the sensitivity of tropical rainforest carbon fluxes to flux
partitioning methods across different ecosystems has not been studied
to date.

Despite these and other challenges, there is a pressing need to
quantify surface-atmosphere carbon exchange across managed and
(quasi-) unmanaged ecosystems in the tropical rainforest biome to
further understand their role in the Earth system. As a critical step in
this process, the impacts of methodological approaches and environ-
mental drivers on carbon exchange need to be investigated. Here, we
study NEE and its components, GEP and RE, across thirteen natural and
managed tropical forest ecosystems in seven countries in all five con-
tinents where tropical rainforests exist. We place particular emphasis on
the relationship between surface-atmosphere carbon exchange and
environmental drivers and critique different eddy covariance data
processing approaches with an eye toward methodological improve-
ments. The goal of this paper is to synthesize observations of NEE and
its components in managed and unmanaged tropical rainforests and to
highlight important current and future directions for studying tropical
rainforest carbon metabolism in a changing climate.

2. Materials and methods

2.1. Study sites

For the purposes of this study we define tropical rainforests as
comprising characteristic evergreen broadleaf vegetation (Fig. 2) rather
than inhabiting a climate zone with the absence of a dry season, given
that severe droughts can and do occur in tropical rainforests (Lewis
et al., 2011). We also include managed ecosystems given their in-
creasing importance to the carbon cycle of the tropical rainforest biome
(Tyukavina et al., 2015). By this definition we include the site BR-Ban
(Table 1) on the tropical rainforest – cerrado ecotone (Borma et al.,
2009; da Rocha et al., 2009) as well as reforested (PA-SPn) and man-
aged (VU-Coc) tropical rainforests (Table 1). We exclude sites with
characteristic savanna, subtropical, or tropical dry forest vegetation,
noting some subjectivity in the definition of what constitutes a tropical Ta
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rainforest. We analyze surface-atmosphere exchange observations ob-
tained from the LaThuile and FLUXNET2015 databases for 13 tropical
rainforests located in Australia, Brazil, French Guiana, Ghana, Ma-
laysia, Panama, and Vanuatu (Fig. 2) and summarize key variables in
Table 1, which also lists respective publications in which additional site
information is available. We use the conventions that GEP and RE are
positive quantities and that NEE=RE – GEP such that net C uptake by
the biosphere is denoted as negative per the atmospheric convention.

2.2. The LaThuile and FLUXNET2015 databases

We explored data from both the LaThuile and FLUXNET2015 da-
tabases. Both databases harmonize, standardize, and gap-fill half-hourly
or hourly observations of NEE submitted by Principal Investigators
from regional flux networks. The LaThuile database standardizes flux
observations following Papale et al., (2006) and Reichstein et al.,
(2005), and uses nighttime RE observations under conditions of suffi-
cient friction velocity (u*) to model RE during daytime and thus esti-
mate GEP by the difference between modeled RE and measured NEE.
The FLUXNET2015 database uses additional daytime flux partitioning
approaches (Lasslop et al., 2010) to estimate GEP and RE, and includes
multiple uncertainty estimates about each approach. For sites included
in both databases, we focus on the longer FLUXNET2015 records and
compare flux estimates from both databases for completeness. We note
that subcanopy CO2 storage is required for the calculation of NEE in the
FLUXNET2015 dataset but not the LaThuille dataset, and that carbon
flux estimates from FLUXNET processing algorithms may differ from
those determined by Principal Investigators. Additional information
with regards to flux processing in the FLUXNET2015 dataset is provided
in Appendix A.

2.3. Data analysis

We analyze the sensitivity of NEE, GEP, and RE to flux methodology
amongst the 13 study sites and characterize differences in the response
of tropical canopies to atmospheric water stress via the VPD (Kiew
et al., 2018; Wu et al., 2017) given the intermittent availability of soil
moisture measurements and to account for recent arguments that VPD
will increasingly constrain canopy conductance and thereby GEP

(Novick et al., 2016; Sulman et al., 2016). We critique the notion that
VPD is responsible for the decline in light-saturated GEP and NEE using
a path analysis that also includes soil water content (SWC) and air
temperature (Ta) and their interactions to account for soil hydraulic
limitations to productivity and the role of high temperatures in enzyme
denaturation. We first designed the path diagrams for their correlations
as in Fig. A1; Ta, VPD and SWC affect GEP or NEE under light-saturated
conditions, and all micrometeorological variables are directly related
(as is the case with Ta and VPD) or correlated. To derive the final path
diagram, we ran the path analysis multiple times, removing insignif-
icant paths with P-values> 0.05 on each iteration, until all remaining
paths were statistically significant. The path value (PV, arrow thickness
in Fig. A1) was derived from the standardized partial regression coef-
ficients, representing the relative strength of a given relationship. The
PV was designed to quantitatively compare the relative influence of Ta,
VPD and SWC on GEP and NEE under light-saturated conditions. The
path model was fitted using the ‘lavaan’ package in R3.0.2 for Mac and
we use the convention that carbon uptake by the biosphere is denoted
as positive (i.e. –NEE) in the path analysis to use the same sign con-
vention as GEP to simplify comparison.

2.4. General circulation models

To ascertain the projected climate state of the study sites, monthly
averages of Ta and VPD from 13 General Circulation Models (GCMs)
were obtained from the Coupled Model Intercomparison Project - Phase
5 archive (CMIP5, Table A2) (Taylor et al., 2012) for Representative
Concentration Pathway 8.5 (high emissions scenario). These models
were previously downscaled to 0.5° grid using the Bias Correction –
Spatial Downscaling method (Wood et al., 2004). Thirteen different
models comprised the ensemble and were averaged together to create a
single monthly time series for the model grid cells that contain the sites
for each variable from 1950 to 2050. Annual averages and standard
deviations were calculated from the monthly means. Atmospheric
vapor pressure (ea) was estimated by assuming that when Ta is close to
its daily minimum it is saturated with water vapor such that relative
humidity is close to 100% (i.e. the dewpoint temperature was assumed
to be near the daily minimum temperature) following Roderick and
Farquhar (2002).

Fig. 2. A map of global tropical rainforest area (in green) based on the MODI MCD12C1 land cover classification with the location and distribution of the 13 tropical
rainforest eddy covariance sites used in this study (see Table 1).

Z. Fu et al. Agricultural and Forest Meteorology 263 (2018) 292–307

295



3. Results

3.1. Data availability

More tropical forest eddy covariance sites provided data to
FLUXNET in the past, (e.g. data from eight sites from the year 2003 are
available for analysis) than in more recent years; as of 2018 only two
sites are available for the El Niño year of 2010 and the La Niña year of
2012 (Fig. 3). While there were more La Niña years than El Niño years

in the available period (Fig. 3), more sites were affected by the 2003 El
Niño. Our results are subject to this asymmetry of data availability
among years.

3.2. Meteorological variability

We used daily mean meteorological data to compare mean monthly
meteorological characteristics among sites. Mean Ta was approximately
26 °C at BR-Ban, BR-Cax, BR-Sa1, BR-Ma2, BR-Sa3, GF-Guy and MY-
PSO and approximately 25 °C in BR-Ji2, GH-Ank, VU-Coc, and PA-SPn
(Fig. 4a). AU-Rob experienced cooler conditions and was more seasonal
with a mean monthly (± standard deviation) Ta of 21.7 ± 2.6 °C,
while ID-Pag was the hottest and the least seasonal with a mean
monthly Ta of 26.6 ± 0.4 °C (Fig. 4a). Similarly, the highest monthly
soil temperature (Ts) was found at ID-Pag (27.4 ± 0.4 °C, Fig. 4e) and
the lowest at AU-Rob (18.9 ± 2.6 °C). BR-Ban had the highest monthly
mean and standard deviation of VPD (12.2 ± 5.6 hPa, Fig. 4d). BR-Sa3
(9.0 ± 2.2 hPa) and ID-Pag (8.1 ± 1.3 hPa) had a larger monthly VPD
than MY-PSO, BR-Ma2, GF-Guy, BR-Sa1 (all ∼ 6.0 ± 1.2 hPa, Fig. 4d),
while GH-Ank (3.0 ± 1.4 hPa) and AU-Rob (4.4 ± 1.6 hPa) had the
lowest monthly mean VPD (Fig. 4d). Monthly mean precipitation and
PPFD were both highly variable at all 13 sites, on average
5.6 ± 4.0mm/day and 402.6 ± 63.4 umol m−2 s-1, respectively
(Fig. 4b, c). BR-Ban had the highest monthly mean PPFD
(488.1 ± 64.5 umol m−2 s-1) while monthly mean PPFD at GH-Ank
was the lowest amongst the 13 sites (297.4 ± 65.3 umol m−2 s-1,
Fig. 4c). Monthly mean soil water content in VU-Coc (44.7 ± 5.8%),
MY-PSO (41.6 ± 2.7%), PA-SPn (39.1 ± 9.9%), and BR-Cax
(38.6 ± 4.5%) was higher than that of GF-Guy and GH-Ank
(18.9 ± 3.3%, Fig. 4f), noting that not all sites were able to provide
VPD, PPFD, Ts and soil water content observations.

Fig. 3. The number of tropical rainforest eddy covariance research sites per
year with data archived in the LaThuile and/or FLUXNET2015 databases as of
March 2017.

Fig. 4. Median (blue) and average (red) monthly above-canopy air temperature (a), precipitation (b), photosynthetic photon flux density (PPFD, c), vapor pressure
deficit (d), soil temperature (e), and soil water content (f) from daily mean observations with boxes representing, from top to bottom, 95th, 75th, 50th, 25th, and 5th
percentiles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Carbon fluxes in tropical rainforests: trends and sensitivity to flux
methodology

We compare carbon flux values obtained using nighttime parti-
tioning methods from both the LaThuile and FLUXNET2015 databases,
and then discuss differences between daytime and nighttime parti-
tioning methods from the FLUXNET2015 database. The cumulative sum
of NEE using nighttime partitioning methods (Fig. A2) exhibits differ-
ences in magnitude and sometimes sign amongst sites during the ob-
servation periods (Table 1). At ID-Pag, approximately 700 g C m−2 of
carbon (or∼ 350 g C m−2 y-1) was released to the atmosphere over two
years (Fig. A2). MY-PSO took up 7000 g C m−2 during the seven-year
available observation period or ∼ 1000 g C m−2 y-1 (Fig. A2a and
Table 2). BR-Ban, BR-Ma2, and BR-Cax were also measured to be net
carbon sinks (i.e. negative NEE) on the order of -1000 g C m−2 y-1, but
the carbon sinks at BR-Sa1, GF-Guy and BR-Sa3 were weaker, ap-
proximately −200 g C m−2 y-1 on average (Table 2, Fig. A2a).

The cumulative sum of RE (Fig. A2c) using nighttime partitioning
techniques showed large differences while the cumulative sum of GEP
(Fig. A2b) was less variable during the available observation periods.
Mean annual RE ranged from 1430 g C m−2 y-1 (BR-Ban) to 3580 g C
m−2 y-1 (ID-Pag) across the 13 sites while mean annual GEP ranged
from 2330 g C m−2 y-1 at PA-SPn to 3720 g C m−2 y-1 at GF-Guy
(Table 2, Fig. A2).

RE estimated from daytime partitioning approaches tended to be
larger than those derived from nighttime partitioning approaches; for
example, RE at BR-Sa1 estimated from daytime partitioning approaches
was larger than that of nighttime partitioning approaches by 560 g C
m−2 y-1 on average (P < 0.05, Tables 2 and A3). We proceed with our
analysis by comparing GEP and RE derived from nighttime partitioning
approaches simply because more data are available to analyze (Table 2)
while noting important differences in C flux estimates that result from
differences in partitioning methodology.

An ANOVA coupled to a least-significant difference test for multiple
comparisons (Rice, 1989) demonstrated that the 13 sites (using night-
time partitioning approaches) can be separated at the P < 0.05 level
into the five sites that represent a relatively weak mean annual C sink
with a NEE less negative than -400 g C m−2 y-1 (GF-Guy, VU-Coc, BR-
Sa3, BR-Sa1) or even a C source (ID-Pag), the four sites (BR-Ma2, MY-
PSO, BR-Cax and BR-Ban) that represented a stronger C sink of less than
−900 g C m−2 y-1, and the remaining four sites with NEE between -400

and−900 g C m−2 y-1 (Table 2, Fig. 5). Perhaps counter-intuitively, the
sites that represented a weaker net ecosystem C uptake (i.e. those with
NEE values closer to zero, Fig. A2) had higher GEP (greater than 3000 g
C m−2 y-1 for all sites) and higher RE (greater than 3000 g C m−2 y-1 for
all sites, Fig. 5). Four of these five sites with the exception of VU-Coc
provided subcanopy carbon storage observations to the FLUXNET da-
tabase (Table 1). In contrast, the sites that represented a stronger net
ecosystem C uptake had lower GEP (less than 2800 g C m−2 y-1 for all
sites, Fig. 5b) and RE (less than 1800 g C m−2 y-1 for all sites, Fig. 5c).
Three of these four sites with the exception of MY-PSO were unable to
provide subcanopy C storage observations to the FLUXNET database
(Table 1).

3.4. Responses of tropical rainforest carbon flux to environmental
variability

There was a strong relationship between half-hourly or hourly GEP
and VPD during periods of high PPFD which was rather insensitive
when thresholding observations to include PPFD values greater than
1300 μmolm−2 s-1 (Fig. 6). For a conservative interpretation of light
saturated conditions, we chose PPFD values greater than 1500 μmol
m−2 s-1 following Wu et al. (2017) to explore the relationship between
VPD and GEP (Fig. 7), which demonstrates a variety of slopes ranging
from -0.31 μmol CO2m−2 s-1 hPa-1 (AU-Rob) to -0.87 μmol CO2m−2 s-
1 hPa-1 (PA-SPn).

Relationships between VPD and GEP alone are not necessarily in-
dicative that VPD is the primary control over the decrease in GEP at
high light levels because VPD is correlated with Ta and SWC, each of
which exert independent controls over GEP (Fig. A1), which itself is
subject to the assumptions of the partitioning routine used to estimate it
from NEE observations. VPD, Ta, and SWC are related under light sa-
turated conditions in most instances, as expected, at the seven ecosys-
tems in which Ta, VPD and SWC observations were available (Table
A4). The path analyses for GEP demonstrates that VPD (-0.54) and SWC
(-0.31) have direct negative effects on GEP under light saturated con-
ditions across these seven sites, but the response of Ta is on average
positive (0.28, Table 3). A similar pattern holds for the constraints on
NEE at high PPFD (Table 4), but the effect of VPD (-0.45) is even
stronger in relative terms than that of SWC (-0.08) and Ta again has a
positive effect (0.13). The total effect of VPD on GEP (-0.51) and NEE
(-0.44) under light saturated conditions is stronger than the other

Table 2
The annual mean and standard deviation of net ecosystem exchange (NEE), gross ecosystem productivity (GEP), and ecosystem respiration (RE) in units of g C m−2 y-
1 from tropical forest eddy covariance sites in the LaThuile and FLUXNET2015 eddy covariance databases. * indicates that measurements of subcanopy CO2 storage
were included in the NEE calculation in the LaThuile or FLUXNET2015 databases. Note that AU-Rob only includes one year of data and standard deviation could not
be calculated. Values refer to measurement from the FLUXNET2015 when observations were available from both databases, i.e. we study the FLUXNET2015 values
when data are available from both datasets because the time series are longer.

Sites LaThuile FLUXNET2015

NEE Nighttime flux partitioning approaches NEE Nighttime flux partitioning approaches Daytime flux partitioning approaches

GEP RE GEP RE GEP RE

AU-Rob – – – −744 1994 1250 2112 1547
BR-Ban −1190 ± 172 2623 ± 202 1433 ± 374 – – – – –
BR-Cax −1002 ± 88 2791 ± 360 1788 ± 419 – – – – –
BR-Ji2 −733 ± 124 2990 ± 154 2257 ± 278 – – – – –
BR-Ma2 −953 ± 151 2515 ± 604 1578 ± 487 – – – – –
BR-Sa1* – – – −57 ± 197 3425 ± 365 3391 ± 227 3634 ± 599 3953 ± 649
BR-Sa3* – – – −171 ± 328 3234 ± 505 3033 ± 745 3348 ± 239 3483 ± 504
GF-Guy* – – – −157 ± 86 3720 ± 223 3560 ± 222 3637 ± 222 3426 ± 269
GH-Ank* – – – -768 ± 223 2825 ± 715 2009 ± 508 2776 ± 475 2250 ± 286
ID-Pag* 375 ± 179 3209 ± 177 3584 ± 2 – – – – –
MY-PSO* – – – −999 ± 110 2495 ± 120 1510 ± 76 2608 ± 169 1629 ± 188
PA-SPn* – – – −600 ± 248 2328 ± 376 1679 ± 128 2215 ± 22 1667 ± 39
VU-Coc −367 ± 264 3505 ± 74 3138 ± 338 – – – – –
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indicators (Tables 3 & 4). The path analysis also indicates that Ta has a
strong indirect effect on GEP (-0.36, Table 3) and NEE (-0.29, Table 4)
due to its impact on VPD.

Path values from individual sites point to differences in the re-
lationship between micrometeorological variables and carbon fluxes
under light saturated conditions. AU-Rob, near the tropical/subtropical
forest ecotone, has positive direct and total effects on GEP and NEE by
SWC (0.31 and greater) that balances the negative effect of VPD (-0.37
to -0.38). Ta has no significant direct effect on GEP at 3 of the seven
sites (4 sites for NEE) that measured both SWC and VPD, but Ta had a
total effect on GEP that exceeded that of VPD at BR-Sa3 and ID-Pag (and
a larger total effect on NEE at BR-Sa3). The strong relationships be-
tween Ta and VPD (0.83-0.87, Table A4) lead to large indirect effects on

GEP and NEE. SWC exerted a strong positive influence on GEP (0.71)
and NEE (0.67) in the regrowing tropical forest PA-SPn.

3.5. Projected future climate conditions

Climate projections from 13 general circulation models (CMIP5)
under RCP 8.5 suggest that many current tropical rainforest sites on the
cooler end of the current temperature range are likely to reach a climate
space similar to present-day warmer sites by the year 2050, and warmer
sites will reach a climate space not currently experienced (Fig. 8). Ta

and VPD have increased from the 1950s until the present at the study
sites and are projected to increase further by the year 2050 (Fig. 8). The
cooler AU-Rob ecosystem is projected to have a mean Ta on the order of
24.5 °C by 2050, approaching the mean annual Ta of many study sites at
the present (approximately 25–26 °C, Fig. 4a). Many other ecosystems
are projected to reach mean annual Ta values of 30 °C or greater, which
is not observed across any study sites at the present (Fig. 4a). Most sites
are projected to have annual average VPD of> 10 hPa, the point at
which stomatal conductance often responds to VPD (Körner, 1995;
Lasslop et al., 2010; Oren et al., 1999), noting that some of the drier
ecosystems (e.g. BR-Ban on the tropical rainforest/cerrado ecotone)
currently experience such conditions on an annual or monthly basis
(Fig. 4d) and that GEP appears to respond to VPD at values below
10 hPa across the study ecosystems under light-saturated conditions
(Figs. 6 and 7).

4. Discussion

4.1. Surface-atmosphere carbon dioxide flux in tropical rainforests

The broad definition of tropical rainforests applied in this study –
including both managed and unmanaged ecosystems – leads to a large
diversity of ecosystems with diverse ecosystem-atmosphere exchange of
CO2, but with largely consistent patterns with respect to micro-
meteorological variability and measurement methodology. The five
ecosystems that are estimated to have greater carbon uptake (with the
magnitude of GEP greater than 3000 g C m−2 y-1) sequester less carbon
– or even lose it – on an annual basis because RE likewise tends to be
large (Fig. 5). This apparent negative relationship between GEP and
NEE should be critically examined against the observation that tower
sites which were able to calculate NEE as the combination of subcanopy
storage and eddy flux had higher magnitudes of GEP and RE and lower
magnitudes of NEE (Table 1, Fig. 5). These findings may have im-
plications for approaches that seek to upscale tower-based observations
to larger regions given that the inclusion of subcanopy storage was
related to a decrease in the magnitude of the measured C sink.

Carbon dioxide storage can dominate surface-atmosphere CO2 ex-
change over parts of the diurnal cycle (Malhi et al., 1998), particularly
during the early morning, late evening and night (i.e. often during
periods in which the NEE fluxes are used for gapfilling and partitioning
algorithms). Given the importance of subcanopy CO2 storage mea-
surements to net surface-atmosphere CO2 exchange in tropical rain-
forests (Araújo et al., 2002; Hayek et al., 2018; Hutyra et al., 2008),
methodological differences among sites should be investigated to re-
duce uncertainties associated with NEE, GEP, and RE estimates. Ad-
ditionally, careful consideration should be taken by users of tropical
flux data to ensure robustness of results in the face of these un-
certainties. Note that due to the small number of sites considered here
(13 total), which limits statistical analysis and the diversity of ecosys-
tems in question, we caution against making categorical statements
about the cause of the finding that sites with high GEP have less net CO2

uptake. To illustrate this point, VU-Coc showed high GEP and RE,
leading to a relatively weak net C sink, and was unable to provide
subcanopy storage measurements. This can be attributed in part to the
fact that seasonal cycles of net primary productivity of this coconut
palm canopy are driven by fruit development; fruits accounted for 46%

Fig. 5. Mean annual net ecosystem exchange (NEE), gross ecosystem pro-
ductivity (GEP) and ecosystem respiration (RE) during the available observa-
tion period for the eddy covariance research sites described in Table 1 (see also
Table 2). Gray shading represents the sites identified by the least-significant
difference test (P < 0.05) for multiple comparisons as having a net C sink of
greater than -400 g C m−2 y-1; green shading represents sites with a NEE of less
than −900 g C m−2 y-1, while white represents sites with NEE between -400
and −900 g C m−2 y-1. The different lowercase letters indicate the significant
difference (P < 0.05) between carbon flux at different sites and are marked as
a, b, c, d, e and f, successively. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The relationship between vapor pressure deficit
(VPD) and gross ecosystem productivity (GEP) as re-
presented by a two-dimensional kernel density esti-
mate (“heat map”) for all half-hourly observations that
passed FLUXNET quality control tests under different
PPFD thresholds for the Indonesia-Palangkaraya (ID-
Pag) tropical peat forest ecosystem, taken as an ex-
ample for all other sites. The color bar denotes the
probability of finding a value within a given pixel and
slopes are in units of μmol CO2m−2 s-1 hPa-1 from
regression lines (red) calculated using ordinary least
squares regression. (For interpretation of the refer-
ences to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 7. The relationship between vapor pressure deficit (VPD) and gross ecosystem productivity (GEP) as represented by a two-dimensional kernel density estimate
(“heat map”) for all half-hourly observations that passed FLUXNET quality control thresholds for different sites, choosing also values for which
PPFD > 1500 μmolm−2 s-1 following Wu et al., (2017) to include only periods with light-saturated conditions (Fig. 6). The color bar denotes the probability of
finding a value within a given pixel and slopes are in units of μmol CO2m−2 s-1 hPa-1.
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of tree net primary productivity at Vu-Coc (Navarro et al., 2008).
Conversely, some non-agricultural sites that provided subcanopy C
storage measurements (e.g. GH-Ank and PA-SPn) did not have high
magnitudes of GEP and RE compared to other study ecosystems, leading
to a relatively weak net C sink (Table 1, Fig. 5). In other words,
methodological differences alone cannot fully explain the pattern of
NEE across sites, highlighting the role of environmental and ecological
controls on NEE. Other unmeasured state factors such as soil fertility,
forest composition, topography and disturbance history, can also
strongly influence tropical rainforest C cycling (e.g. Aiba and Kitayama,

(1999); Asner et al., (2015); Cleveland et al., (2011); Fuentes et al.,
(2016); Paoli et al., (2008); Raich et al., (1997)). Resolving other
controls on rates of ecosystem C exchange will require more holistic
biogeochemical research alongside field inventories of tropical rain-
forest C budgets for an improved understanding of the mechanisms that
result in different surface-atmosphere C fluxes amongst tropical rain-
forests.

This study also found that RE at BR-Sa1 estimated from daytime
partitioning approaches was larger than that of nighttime partitioning
approaches by 560 g C m−2 y-1 on average (P < 0.05). Previous work

Table 3
Standardized effect of air temperate (Ta), vapor pressure deficit (VPD) and soil water content (SWC) on gross ecosystem productivity (GEP) from the path analysis
(Fig. A1) for all half-hourly observations that passed FLUXNET quality control thresholds for different sites, choosing also values for which PPFD > 1500 μmolm−2

s-1 to include only periods with light-saturated conditions. ns means insignificant paths (P> 0.05).

Site Direct effect on GEP Indirect effect on GEP Total effect on GEP

Ta VPD SWC Ta VPD SWC Ta VPD SWC

AU-Rob 0.28 −0.38 0.37 −0.36 −0.04 −0.08 −0.08 −0.42 0.41
BR-Sa3 −0.12 −0.35 ns −0.29 ns 0.11 −0.41 −0.35 0.08
GF-Guy ns −0.22 0.06 −0.21 −0.01 0.02 −0.21 −0.22 0.08
ID-Pag ns −0.50 −0.31 −0.42 0.16 0.26 −0.42 −0.35 −0.05
MY-PSO 0.27 −0.57 0.09 −0.51 −0.02 0.09 −0.24 −0.59 0.25
PA-SPn ns −0.15 0.61 −0.03 −0.43 0.11 −0.03 −0.58 0.71
VU-Coc 0.14 −0.18 0.05 −0.02 −0.02 0.10 0.11 −0.20 0.12
All 0.28 −0.54 −0.31 −0.36 0.03 0.05 −0.08 −0.51 −0.25

Table 4
Standardized effect of air temperate (Ta), vapor pressure deficit (VPD) and soil water content (SWC) on net ecosystem exchange (NEE) from the path analysis (Fig.
A1) for all half-hourly observations that passed FLUXNET quality control thresholds for different sites, choosing also values for which PPFD > 1500 μmolm−2 s-1 to
include only periods with light-saturated conditions. ns means insignificant paths (P-value> 0.05).

Sites Direct effect on -NEE Indirect effect on -NEE Total effect on -NEE

Ta VPD SWC Ta VPD SWC Ta VPD SWC

AU-Rob ns −0.37 0.31 −0.33 −0.04 0.04 −0.33 −0.40 0.35
BR-Sa3 −0.12 −0.27 ns −0.23 ns 0.09 −0.34 −0.27 0.09
GF-Guy −0.18 −0.15 −0.03 −0.11 ns 0.10 −0.29 −0.15 0.07
ID-Pag ns −0.58 −0.17 −0.49 0.09 0.30 −0.49 −0.49 0.12
MY-PSO 0.22 −0.56 ns −0.48 ns 0.10 −0.27 −0.56 0.10
PA-SPn ns −0.25 0.49 −0.08 −0.35 0.18 −0.08 −0.60 0.67
VU-Coc ns −0.19 −0.08 −0.06 0.03 0.07 −0.06 −0.16 −0.01
All 0.13 −0.45 −0.08 −0.29 0.01 0.04 −0.16 −0.44 −0.04

Fig. 8. Future climate projections from the
ensemble mean of 13 CMIP5 models for vapor
pressure deficit (VPD) and air temperature (Ta)
for the representative concentration pathway
(RCP) 8.5. The black dots represent the 1950
average; the red dots represent the 2017
average while the lines represent the time
series from 1950 to 2050, smoothed with a
five-year moving average. As a consequence,
dots that reflect individual years may not per-
fectly align with lines. The oval shadings in-
dicate the standard deviation of the 2050
projected climate regime. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)
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at this site demonstrated that the choice of u* threshold can change
inferred NEE from a C sink to a C source (Hayek et al., 2018; Miller
et al., 2004; Saleska et al., 2003). Nighttime partitioning approaches
use nighttime RE observations under conditions of sufficient u* to
model RE during daytime and thus estimate GEP by the difference
between modeled RE and measured NEE while daytime flux parti-
tioning approaches is based on daytime data, which are used to para-
meterize a model to estimate GEP and RE. If we assume RE based on
daytime flux measurements represent an improvement (Lasslop et al.,
2010), both RE and GEP estimated from nighttime partitioning ap-
proaches may be underestimated. Small changes in the approach used
to derive component fluxes has a substantial impact on their estimates,
especially in tropical rainforests where GEP and RE are character-
istically of large magnitude.

4.2. Responses of tropical rainforest carbon flux to environmental drivers

High rainfall and warm temperatures consistently enhance both
aboveground net primary productivity and decomposition at tropical
rainforest sites (Cusack et al., 2009; Salinas et al., 2011; Taylor et al.,
2017) by maximizing decomposer activity and promoting physical
leaching of forest floor material (Cleveland et al., 2010; Wieder et al.,
2009). Further increases in Ta translate into an increase in VPD if at-
mospheric humidity remains constant, and VPD serves as a strong
control over GEP (Kiew et al., 2018; Wu et al., 2017). As a consequence,
the ability of tropical rainforest trees to acclimate to both Ta and VPD
should be investigated to understand how they may (or may not) adapt
to projected global changes over the coming decades. Recent studies
have also emphasized the important role of canopy surface temperature
in constraining GEP in tropical forests (Pau et al., 2018). Five of the
study ecosystems provided outgoing longwave radiation flux observa-
tions by which radiometric surface temperature can be estimated using
the Stefan-Boltzmann law, but it is difficult to distinguish canopy sur-
face temperature from the temperature of other elements in the eco-
system that tend to be warmer than leaves during the day (like tree
bark) or cooler like soil. Integrating phenological cameras that can
observe the thermal (Pau et al., 2018), visible (Lopes et al., 2016;
Richardson et al., 2009), and near infra-red bands (Richardson et al.,
2009) with existing eddy covariance measurements is a logical way
forward for understanding spatial and temporal processes that are im-
portant for flux dynamics.

To the extent that the response of GEP to VPD reflects canopy iso-
hydricity through its relationship to leaf water potential (Martinez-
Vilalta et al., 2014; Matheny et al., 2017), our results suggest that the
trees at different sites may have varying degrees of isohydricity that
may influence their response to predicted increases in VPD (Fig. 8).
Isohydricity is strongly related to canopy height (Giardina et al., 2018;
Konings and Gentine, 2016), as is reference canopy conductance
(conductance when VPD=10 hPa, Novick et al., (2009)). From the
observations, it is unclear why the 13 different tropical rainforest ca-
nopies exhibited different responses of GEP to increases in VPD (Fig. 7)
as the slope of the relationships were unrelated to other aspects of the
soil-vegetation-atmosphere hydraulic transport system including
rooting depth and SWC (data not shown). Path analysis indicated that
VPD tended to have a stronger total (negative) effect on GEP and NEE
under light-saturated conditions than did Ta or SWC across most study
ecosystems (Tables 3 and 4), in agreement with the findings of Wu
et al., (2017) and Kiew et al., (2018). The negative relationship be-
tween flux and Ta is mainly because Ta is closely related with VPD
(Table A4), which led to large indirect (negative) effects on GEP or
NEE. In other words, VPD is mainly responsible for the decline in light-

saturated GEP and NEE based on the path analysis, but this does not
preclude the importance of Ta (especially via its relationship to VPD
and surface temperature) and SWC on controlling carbon fluxes in
tropical rainforest ecosystems, noting also that we were able to study
the interplay between hydraulic variables and carbon fluxes at only
seven of the thirteen study sites due to data availability constraints
(Tables 3 and 4).

4.3. Future directions

Future studies should continue research on tropical tree sensitivity
to hydrologic stress both through decreases in SWC and increases VPD,
and study whether and how tropical trees may acclimate to VPD as well
as canopy surface temperature (Pau et al., 2018), which may limit re-
sponses to future climate increases (Kutsch et al., 2001; Marchin et al.,
2016). Models consistently estimate future increases in Ta and VPD at
the study sites (Fig. 8), albeit with a considerable uncertainty range
across the CMIP5 models. Ecosystems with already higher VPD are
expected to experience the strongest VPD increase. No such agreement
is found for SWC given the challenges of estimating future precipitation
(Novick et al., 2016), highlighting the importance to measure and study
both VPD and soil moisture trends in concert to understand how tree
physiology is impacted by water supply (via SWC) and demand (via
VPD). Moreover, increasing CO2 levels will also impact stomatal aper-
ture and thus GEP (Swann et al., 2016), highlighting the need to study
all climate change effects on GEP in concert.

Results also demonstrate that flux measurement methodology in
tropical rainforest ecosystems is an important avenue of future research
(Hayek et al., 2018). The impact of nighttime gapfilling on carbon
fluxes partitioning (as discussed in Section 4.1) is further exacerbated
by tropical rainforests’ characteristicially large plant area indices and
the presence of large within-canopy air spaces that result in decoupling
between above and below-canopy flows. Recent studies have demon-
strated the utility of using the variance of vertical wind velocity (σw)
rather than u* as an improved criterion for approximating the coupling
between the within and above-canopy air space in forested canopies for
determining the quality of flux measurements (Santana et al., 2018),
especially at night (Acevedo et al., 2009; Jocher et al., 2017; Thomas
et al., 2013). Hayek et al., (2018) reiterated the importance of sub-
canopy drainage and introduced approaches to account for potential
“missing” CO2 storage. Results in the present manuscript agree with the
argument that alternative flux partitioning and eddy covariance pro-
cessing techniques should be explored across different tropical forests
to better-constrain their role in the regional and global C cycle.

5. Conclusions

Eddy covariance measurements suggest that tropical rainforest ca-
nopies exhibit a wide range of NEE values that range from carbon
source to sink, but these estimates are sensitive to flux measurement
methodology. Sites that included subcanopy CO2 storage values re-
ported characteristially higher magnitudes of GEP (greater than 3000 g
C m−2 y-1) and RE, and consequently lower NEE, characteristicaly be-
tween approximately 400 g C m−2 y-1 (i.e. a CO2 source to the atmo-
sphere) and about -400 g C m−2 y-1. This highlights the importance of
standardized processing of biosphere-atmosphere flux measurements,
which is particularly challenging in tropical forests given logistical
considerations. Such estimates will serve to increase the confidence in
studies that assess ecosystem and environmental variability as drivers
for variations in NEE, GEP, and RE. That being said, CO2 storage
measurements alone cannot fully explain the differences in NEE, GEP,
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and RE amongst sites, demonstrating the importance of ecological dif-
ferences amongst tropical forest ecosystems. Our results emphasize the
importance and diversity of tropical rainforest carbon flux responses to
atmospheric water deficit, and future studies should investigate the
acclimation of mature tropical trees to increases in VPD in addition to
Ta. Combined, our results highlight the importance of continued re-
search into the biosphere-atmosphere exchange of CO2 in tropical for-
ests, especially as fewer observations are available in more recent years
than in the past.

Logistical challenges of making ecosystem-scale measurements on a
quasi-continuous basis at remote research sites with tall canopies that
require considerable infrastructure and reliable power systems persist.
Recent and forthcoming research initiatives including the Amazon Tall
Tower Observatory (ATTO, see Andreae et al., (2015)), Next Generation
Ecosystem Experiments—Tropics (NGEE-Tropics, Chambers et al.,
(2014)) and associated Amazon Free Atmosphere Carbon Enrichment
facility (AmazonFACE, Norby et al. (2015)) suggest that more eddy
covariance and model estimates of tropical rainforest GEP and RE will
be available in the future if funding is sustained. Such investments will
help stem the decline in tropical rainforest flux data availability
(Fig. 3), but global initiatives must be undertaken to improve our
ability to observe the carbon dynamics of tropical ecosystems across
different regions.
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Appendix A

A1 Notes on the FLUXNET2015 C flux calculation

It is noteworthy that NEE is only approximately equal to RE minus GEP for daily data although NEE is equal to RE minus GEP for half-hourly data
in FLUXNET 2015. In FLUXNET 2015, a reference NEE was selected on the basis of the Model Efficiency (identified with “_REF” in the variable
name). The extraction of NEE_REF is done separately for each time aggregation and for this reason the u* threshold associated to the NEE_REF can
change across time. The Model Efficiency calculation (which determines _REF variables) is performed independently using variable u* thresholds
(NEE_VUT_REF, Table A1) and for each temporal aggregation. Therefore, percentile variables are re-ranked at each temporal aggregation, and
reference values (_REF) are recomputed, and should not be considered the same variable. For instance, NEE_VUT_REF at half-hourly resolution might
have been generated using a different u* threshold than NEE_VUT_REF at daily resolution. In this way, NEE is approximately but not exactly equal to
RE minus GEP for yearly data in Table 3 because annual NEE, RE and GEP were taken from the sum from daily data.

.

Table A1
A list of variables and their description and units, including the name of each variable in the LaThuile and FLUXNET2015 databases.

Variable LaThuile FLUXNET2015 Units Description

NEE NEE_f NEE_VUT_REF μmol CO2m−2 s-1

or g C m−2 y-1
Net ecosystem exchange

GEP GEP_f GEP_NT_VUT_REF μmol CO2m−2 s-1

or g C m−2 y-1
Gross ecosystem productivity

RE Reco RECO_NT_VUT_REF μmol CO2m−2 s-1

or g C m−2 y-1
Ecosystem respiration

Ta Ta_f TA_F °C Air temperature
VPD VPD_f VPD_F hPa Vapor pressure deficit
Precipitation Precip_f P_F mm Precipitation
Ts Ts1_f TS_F_MDS_1 °C Soil temperature (upper layer) *

SWC SWC1_f SWC_F_MDS_1 % Soil water content (upper layer) *

PPFD PPFD_f PPFD_IN umol m−2 s-1 Photosynthetic photon flux density

* Soil measurement depths vary.
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Table A4
The covariance between air temperature (Ta), vapor pressure deficit (VPD), and soil water content (SWC) at the
study ecosystems during the measurement period as determined by path analysis (Fig. A1).

Site Covariance

Ta-SWC Ta-VPD VPD-SWC

AU-Rob −0.43 0.53 −0.11
BR-Sa3 −0.27 0.84 −0.23
GF-Guy −0.49 0.83 −0.09
ID-Pag −0.06 0.87 −0.51
MY-PSO −0.24 0.86 −0.27
PA-SPn 0.04 0.33 −0.72
VU-Coc 0.24 0.2 −0.37
All ns 0.66 −0.1

Table A3
Results of a one-way analysis of variance (ANOVA) for mean comparisons of annual RE and GEP at BR-Sa1 using nighttime and daytime partitioning approaches.
NT_DT means nighttime partitioning approaches versus daytime partitioning approaches. Please see Table A1 for abbreviations.

Sum of Squares df Mean Square F Sig.

RE×NT_DT Between Groups 1,423,608.758 1 1,423,608.758 6.026 0.026
Within Groups 3780046.637 16 236252.915
Total 5203655.395 17

GEP×NT_DT Between Groups 196,991.091 1 196,991.091 0.801 0.384
Within Groups 3932744.559 16 245796.535
Total 4129735.650 17

Table A2
The 13 General Circulation Models (GCMs) from the Coupled Model Intercomparison Project - Phase 5 archive (CMIP5) used in the present analysis.

Model Name Model Country Developed by

ACCESS1.0 Australia Commonwealth Scientific and Industrial Research Organisation, Australia (CSIRO), and Bureau of Meteorology, Australia (BOM)
BNU-ESM China College of Global Change and Earth System Science, Beijing Normal University, China
CNRM-CM5 France National Centre of Meteorological Research, France
CSIRO-Mk3-6-0 Australia Commonwealth Scientific and Industrial Research Organization/Queensland Climate Change Centre of Excellence, Australia
CanESM2 Canada Canadian Centre for Climate Modeling and Analysis
GFDL-CM3 United States National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory
GISS-E2-R United States NASA Goddard Institute for Space Studies
IPSL-CM5A-LR France Institut Pierre Simon Laplace, France
MIROC-ESM Japan Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National

Institute for Environmental Studies
MIROC5 Japan Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies and Japan Agency for

Marine-Earth Science and Technology
MPI-ESM-LR Germany Max Planck Institute for Meteorology (MPI-M)
MRI-CGCM3 Japan Meteorological Research Institute, Japan
inmcm4 Russia Institute for Numerical Mathematics, Russia

Fig. A1. A path diagram illustrating interactions between the micrometeorological variables Ta, VPD and SWC and their controls on GEP and NEE. We use half-hourly
observations that passed FLUXNET quality control thresholds for different sites, choosing also values for which PPFD > 1500 μmolm−2 s-1 to include only periods
with light-saturated conditions for the analysis. The thickness of each arrow indicates standardized correlation coefficients (path value) described in Tables 3 and 4.
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