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Abstract: People spend most of their day in buildings, and a large portion of the energy in
buildings is used to control the indoor environment for creating acceptable conditions for
occupants. However, majority of the building systems are controlled based on a ‘one size fits all’
scheme which cannot account for individual occupant preferences. This leads to discomfort, low
satisfaction and negative impacts on occupants’ productivity, health and well-being. In this
paper, we describe our vision of how recent advances in Internet of Things (IoT) and machine
learning can be used to add intelligence to an office desk to personalize the environment around
the user. The smart desk can learn individual user preferences for the indoor environment,
personalize the environment based on user preferences, and act as an intelligent support system
for improving user comfort, health and productivity. We briefly describe the recent advances
made in different domains that can be leveraged to enhance occupant experience in buildings and
describe the overall framework for the smart desk. We conclude the paper with a discussion of
possible avenues for further research.
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1 Introduction

The office workplace has evolved over the past decades due to multiple factors, including
changes in the nature of work, digitization, integration of ergonomics in space design, cost of
building and maintaining office spaces, and the drive to improve employee productivity. For
example, workspaces evolved from open floor factories in 1920s to personal cubicles in 1980s to
more flexible and collaborative spaces in the 21 century. At the core of the workspace evolution
is the design and layout of the office workstation (desk, chair and partitioning furniture), which
has also changed over the years from supporting paperwork to supporting personal computers.
With the recent advancements in Human Computer Interaction (HCI), the office desk continues
to evolve into an interactive device, supporting multiple inputs, such as touch, hand gestures, and
voice commands, leading to faster information retrieval, reduced paperwork, and enhanced
collaboration (Arai et al., 1995; Coen, 1998; Gebhardt et al., 2014; Mutlu et al., 2007; Wimmer
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et al., 2010). Furthermore, efforts in injury prevention and health promotion have led to the
development of ergonomic advances, such as sit-stand desks, adjustable chairs, and walking and
cycling workstations (Helander et al., 1987; Robertson et al., 2013; Straker et al., 2009).
Although these developments help to improve worker productivity and health, there are other
emerging novel approaches that support further improvements in the office workspace by
focusing on the indoor environmental quality. In this paper, we present our vision for improving
comfort, health and productivity by leveraging recent advancements in sensing technologies and
Internet of Things (IoT) to create a smart desk for monitoring, controlling, and personalizing the
local indoor office environment.

We envision future workspaces that provide personalized experiences for each user and promote
office worker productivity, health and well-being while also reducing overall energy
consumption through direct interactions with their users to learn comfort requirements. Since the
desk is an important part of any office space, where workers spend most of their time, we
envision the desk acting as a point of contact between building systems and office users. By
leveraging the current advancements in loT, we believe a smart desk equipped with a variety of
sensors and actuators can act as an agent for monitoring and controlling the local indoor
environment. The field of [oT has seen enormous growth in recent years and is predicted to reach
24 billion devices by 2020, with smart buildings being a primary application domains (Gubbi et
al., 2013). Potential applications of IoT in buildings include real time performance monitoring,
fault diagnosis of equipment, data visualization, optimization of indoor environment for comfort
and energy consumption, demand response, and predictive controls (Gunay and Shen, 2017). To
support these applications, smart desks could be used as distributed sensor networks throughout
an office workplace to provide relevant sensor data. By collecting granular data in proximity to
building occupants, the desks can enhance existing Building Management Systems (BMS) and
Building Automation Systems (BAS), which currently only monitor the environment at the room
or zone level. Moreover, smart desks provide a unique opportunity to improve the indoor
environmental quality in buildings that do not have a BMS.

There is a large energy cost associated with maintaining comfortable indoor environments.
Buildings consume about 40% of all energy in the U.S., U.K. and the EU, where more than half
of the energy is used to maintain indoor thermal and lighting environments (Pérez-Lombard et
al., 2008; US Department of Energy, 2015).The main focus of BMS or BAS has been to
automate building operations to lower energy costs while maintaining adequate indoor
conditions. However, post occupancy evaluations have shown that about 43% of occupants are
dissatisfied with their thermal environment (Karmann et al., 2018), and only about 11% of
buildings met the ASHRAE 55 requirements of satisfying at least 80% of the occupants
(Huizenga et al., 2006). Furthermore, there is very little difference in occupant satisfaction
between green-certified buildings and conventional buildings (Altomonte et al., 2017; Paul and
Taylor, 2008). This fact suggests that although centralized control of indoor environments may
lower energy consumption, it leads to low occupant satisfaction (Hellwig and Boerstra, 2017).
Current standards and guidelines for determining comfortable ranges for different indoor
parameters are based on average responses from participants across various studies (Kim et al.,
2018). However, individual occupant preferences can vary significantly from these average
responses, leading to a mismatch between occupant preferences and indoor conditions (Kim et
al., 2018). Considering individual preferences within the control loop of centralized HVAC



systems can improve average satisfaction by 25% compared to the existing control methods;
however, it is quite difficult to meet the ASHRAE 55 requirement of 80% satisfaction by using
centralized systems alone (Aryal and Becerik-Gerber, 2018).

Completely automated control systems that take away the occupant’s control over the
environment lead to lower satisfaction (Vischer, 2007). Although a clear solution to improve
comfort and satisfaction would be to provide local control (e.g., light switches, controllers for
blinds), it is not clear that mere ability to control the environment will fully alleviate the
problem. In fact, inaccessibility, poor location, and negative user acceptability of the
environmental controls can lead to further dissatisfaction (Day and O’Brien, 2017). Furthermore,
occupants often use these controls in inefficient ways, such as leaving the systems on even when
it is not needed, taking the easiest and quickest option rather than the best option for their health
and environment, over-compensating for relatively minor annoyances, taking actions only after
an event prompts them to do so or when they reach a very uncomfortable state (Cole and Brown,
2009; Leaman, 1999). Complete manual control of the environment given to occupants might
also compromise efficiency because not all occupants make the best choices (Cole and Brown,
2009); for example leaving windows open can compromise security. A smart desk could provide
the necessary behavioral support to occupants to use the building systems in more efficient ways.

In addition to efficiency in environmental management, local sensing and control through a
smart desk can promote healthier workplaces and increased worker productivity. Indoor
environmental quality (IEQ) parameters, such as air quality, ventilation, thermal environment,
lighting, and acoustics are associated with comfort, productivity, creativity, physiological and
psychological health and well-being of building occupants (Allen et al., 2015; Cedefio-Laurent et
al., 2018; Clausen and Wyon, 2008; De Croon et al., 2005; Turunen et al., 2014; Wong et al.,
2009). Majority of the population in the U.S. spends about 90% of the time in enclosed buildings
(Allen et al., 2015; Klepeis et al., 2001), and there are more than 81 million professional office
workers in the U.S. (Department for Professional Employees, 2015) who spend most of their
time working at a desk with little control over the thermal and lighting conditions. Unsuitable
indoor conditions, in addition to low satisfaction with the environment, can lead to reduced job
satisfaction and be a source of stress at the workplace (Vischer, 2007), which can lead to
presenteeism or absenteeism (Brager et al., 2015; Vischer, 2007). Personalized Comfort Systems
(PCS), which create a microclimate around the occupant, have the potential to provide
comfortable conditions while reducing overall energy consumption (Amai et al., 2007; Brager et
al., 2015; Vesely and Zeiler, 2014; Zhang et al., 2015). Furthermore, it has been estimated that
potential productivity increases in the range of 0.5% to 5% is possible by improving the thermal
and lighting conditions, which translates to an annual productivity increase of $19 billion to $190
billion in the U.S. alone (Fisk, 2000). Several PCS devices have been studied in the past such as
a personal fan and foot warmers (Zhang et al., 2010), heater heated/cooled chair (Pasut et al.,
2015), and radiant panels on the desk (He et al., 2017). where improvement in occupant comfort
was observed due to the use of PCS. Prior studies focused on the improvement in occupant
satisfaction using PCS, but relied on the users to manually control the devices. An intelligent
system could reduce the burden of manual control and alleviate the inefficiencies that could
result from manual control.

Apart from the unsatisfactory environmental conditions, office workers also spend
approximately 11.6 hours per day in sedentary activities (Tudor-Locke et al., 2011), which
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includes 80% of their working time spent in sedentary activities (Parry and Straker, 2013).
Sedentary time leads to increased obesity, musculoskeletal disorders, cardiovascular disease,
diabetes, and other chronic conditions (Chau et al., 2013; Chu et al., 2016). There is emerging
evidence that use of sit-stand desks can reduce sedentary time, while also improving worker
satisfaction (Carr et al., 2016). At the same time, prolonged standing can lead to negative
outcomes such as lower back and leg pain, fatigue and discomfort (Waters and Dick, 2015). A
structured sit-stand paradigm is necessary to reap the benefits of reduced sedentary time and
avoid drawbacks of prolonged standing (Karakolis and Callaghan, 2014; Karol and Robertson,
2015). An intelligent support system, such as a smart desk, that automatically cues the user into
proper use of sit-stand regimen could improve overall health of office workers.

Although an intelligent, user-centered automated system offers numerous benefits, determining
the acceptable and preferred levels of automation is a foundational issue in the development of
this solution (Ahmadi-Karvigh et al., 2017).Various sensors on the desk can enable it to be aware
of the state of environment around the user, as well as the user’s overall comfort and posture.
This intelligent desk can then consider the degree of automation preferred by the user to use
available controls to either make recommendations to the user or automatically adjust the local
environment. If user preferences are not met, leading a user to override the automated controls,
the desk can further utilize this feedback to adapt to user for making future adjustments. Through
this iterative and symbiotic learning process between the user and the desk, we believe that the
intelligent desk can provide solutions to the issues of indoor working environments. Enabling
occupants to control their environments with the support of an intelligent system might lead to
positive behavioral changes, improving building efficiency and worker satisfaction, health, and
productivity.

2 Overall Smart Desk Framework

The overall framework of the Smart desk consists of different application modules for enhancing
various aspects of occupant comfort, well-being and productivity by providing recommended
conditions for thermal comfort, visual comfort, sit-stand and posture. Each of the application
modules consist of sensing, data analysis and actuation components. The sensing and actuation
components rely on IoT devices, and the data analysis component leverages machine learning
algorithms to model individual preferences. Each of the modules are independent from one
another and can be implemented as needed. In this section, we briefly review some of the
relevant literature and describe different smart desk modules that can enhance occupants’
experience in office buildings. Furthermore, we identify previously developed methods that can
be integrated into different modules with little or no modification, and highlight modules where
new methods need to be developed specifically for the desk because previous methods are not
adequate. Some of the modules of the desk are categorized as supporting modules, and others,
which are specific to certain applications, are categorized as application modules. Figure 1 shows
the overall framework of the desk, where green color indicates components that have been
implemented in a prototype. The prototype is shown in Figure 2 for illustration and is discussed
in another publication (Aryal et al., 2018).
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Figure 2: Current prototype of the desk showing different sensors

2.1 User Interaction

The user interaction module is essential for all aspects of the smart desk and is one of the
supporting modules for other application modules that are focused on a single aspect of the
indoor environment. The desk should support interactions with its user and gather feedback to
learn his/her preferences. For instance, several studies have utilized smartphone-based interfaces
to promote physical activity (Bort-Roig et al., 2014). There are several avenues for user
interaction with the desk, from simple switches for controlling lights and other PCS, to more
modern interfaces, such as gesture recognition or speech. Due to their ubiquitous nature,
previous studies in the domain of human building interaction (HBI) have utilized mobile phone
and web interfaces to gather user feedback to learn their preferences (Erickson and Cerpa, 2012;
Jazizadeh and Becerik-Gerber, 2012). In the field of human computer interaction, several
interfaces based on visual information, natural language, gesture, touch, or haptic feedback have
been developed in recent years to make the interaction more natural for the user (Bird and Loper,
2004; Jaimes and Sebe, 2007; Mullet and Sano, 1995). There is a potential to integrate more
natural interaction interfaces into the desk. For instance, researchers have developed methods for
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tracking hand motions and gestures for an augmented desk surface using vision-based
techniques, which can be implemented with low cost cameras (Sato et al., 2004). Other means,
such as interaction via voice may not be appropriate in shared office spaces as it can cause
distraction to other occupants in the same room.

In addition to the physical interface for user interaction, the psychological aspects of interaction
between the user and the desk are also important. We envision a bi-directional communication
between the occupant and the desk where the occupant can indicate his/her preferences, and the
desk can provide suggestions for the user to change their behavior. Past studies have explored
different social influence methods for communication between a building agent and its occupants
to increase compliance (Khashe et al., 2015). For instance, the study found that methods that
apply the principal of reciprocity (i.e. the agent does something for the user first, and requests the
user to take an action), or foot in the door (i.e. the agent makes a small request first, and then
makes a bigger request to the user after the user complies with the smaller request) have a higher
rate of user compliance compared to making a direct request (Khashe et al., 2015). Several
studies have explored the intricacies of interaction between humans and robotic agents. For
instance, personality traits of the user, their expectations from the agent, and user’s perception of
the agent’s personality are important considerations for development of better collaboration
between virtual agents and the user (Dautenhahn, 2007). In addition to the direct messages or
commands between the user and the desk, the interaction between the desk and the user also
occurs via automated control of appliances. Depending on occupant’s preferences towards
automation, appliances can be automated to turn off when not in use. A study that explored
automation preferences of occupants and developed algorithms to automate appliances based on
these preferences (Ahmadi-Karvigh et al., 2018) is suitable for integrating into the desk.

Communication can also occur via the user interaction module, by providing a dashboard with
feedback about the impact of occupant's choices on energy consumption, productivity and health.
Several dashboards have been developed to promote energy efficient behavior in building
occupants (Yun et al., 2013; Yun and Ray, 2014). In general, eco-feedback systems, which
provide occupants with information regarding their current and historical energy consumption
lead to reduction in energy consumption (Paone et al., 2018). Furthermore, studies have found
that adding social interaction (by providing comparisons of energy usage against other occupants
or neighbors), and adding advice and tips on a dashboard can improve the effectiveness of an
eco-feedback system and achieve greater energy savings (Cuddy et al., 2010; Paone et al., 2018;
Yun and Ray, 2014). Furthermore, gamification of the feedback system by introducing game
rewards and incentives can motivate change in occupant behavior (Cuddy et al., 2010). Due to
their ubiquitous nature, mobile phones can be a suitable channel of communication between the
user and the desk. Using a web interface on the occupant’s computer or having an embedded
screen on the desk are other options.

Another important aspect of the user interaction module is user identification, which provides
information about the person who is using the desk to be able to personalize their experience
across settings and desks. Due to increasing costs of providing office spaces and advances in
technology that enable work to be performed outside of the office, there is an increasing
tendency in the number of office workers working remotely (Felstead et al., 2005). There is also
an increasing trend in the use of open plan offices and hot desking (i.e. workers do not have a
fixed personal workspace and use any available desk as needed) (Felstead et al., 2005). In the
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context of a smart desk that learns and adapts to user preferences, it becomes important to
identify the user because the desk they use may change. Several options exist for user
identification, from simple password protected login using the user interface to more convenient
methods such as RFID (Radio Frequency IDentification) tags, fingerprint, face detection, NFC
(Near Field Communication) authentication using cellphones etc. (Braz and Robert, 2006); either
of the user identification methods can be integrated into the desk depending on the level of
security required and ease of authentication for the user.

Ultimately, the goal of user interaction is to increase acceptance of the smart desk’s suggestions
for thermal and lighting conditions and sit-stand regimen and posture. Research has shown that
users accept machines’ suggestions based on the extent to which they understand and agree with:
why the automation is operating (benevolence), how well the automation is operating
(competence), and how the automation operates (integrity). As examples of benevolence,
competence and integrity: understanding system goals are aligned with user goals helps users to
accept the systems suggestions, people accept suggestions more when it is portrayed as a
reputable or “expert” system and “explainable AI” increases acceptance by giving insight to
users about how the Al made its decisions, respectively (De Vries and Midden, 2008; Lerch et
al., 1997; Pak et al., 2012; Spain and Madhavan, 2009). The chosen interface -whether based on
visual information, natural language, gesture, touch, or haptic feedback- will follow these
principles as closely as possible to encourage acceptance of the smart desk’s suggestions
regarding thermal and lighting conditions and sit-stand regimen. Furthermore, the smart desk
would also go beyond traditional work in this area. Our novel recent work shows that imbuing
machines with relational features can increase acceptance of a system’s suggestions in an office
context (Khashe et al., 2017, 2018b, 2018a). To the extent possible based on the interface, the
smart desk will also use relational features to increase acceptance. However, this prior work did
not consider how to increase acceptance in automation beyond getting approval of users for a
single automation request. The smart desk builds on this work to facilitate increasing levels of
automation over time.

2.2 Activity Recognition

For the desk to be effective, it is important for it to be aware of the activities that the user is
engaged in. User’s preferences for thermal and lighting conditions and sit-stand regimen could
be highly influenced by the activity of the occupant. Different activities performed at the desk
could be identified using a combination of occupancy sensors, use of electric appliances and
ambient conditions. For example, if the user is engaged in focused work on their computer, the
energy monitoring could identify if the computer is currently under use, and ambient sensors
could identify that the noise levels are low. On the other hand, if the user is engaged in
collaborative work with other occupants, the ambient noise levels could be used to identify
conversations (Nguyen et al., 2012). In addition, monitoring of occupancy is crucial to identify if
the user is at the desk or not, and can guide the operation of other services. For instance, the
lighting systems can be turned off if the user is away from the desk.

Past studies have developed several methods for activity recognition using a multitude of sensors
including video, audio, computer interactions, Wi-Fi1 signals, wearable sensors, 3-d depth
cameras, energy plug meters and many more (Ahmadi-Karvigh et al., 2018; Gaglio et al., 2015;
Maurer et al., 2006; Nguyen et al., 2012; Wang et al., 2015; Wojek et al., 2006). For instance,
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Karvigh et. al. used power meters to identify different activities of occupants such as working
with computer, working without computer etc. (Ahmadi-Karvigh et al., 2018). Laput et. al. used
a combination of sound, vibration and other sensors to identify the appliances currently being
used as a proxy for the activity that the occupant was engaged in (Laput et al., 2017). After
identifying the activity of the occupant, the indoor environmental conditions can be controlled to
suit the occupant’s activities. Activity recognition plays a crucial part in automated control of
different indoor conditions as described in the following sections. The sensors for detecting
activities include power meters for appliances, occupancy sensors and ambient noise sensors.
The algorithm previously developed by (Ahmadi-Karvigh et al., 2018) can be used as a starting
point for the desk because the original algorithm was developed specifically for activity
recognition in office environments and focused on appliances typically found in office desks.
However, since the algorithm mostly focuses on appliances' energy consumption data and is only
able to identify a limited number of activities, it needs to be improved to identify more activities
typically performed in an office environment.

2.3 Thermal Conditions

Recent advancements in sensing technologies have improved BAS and BMS through which
indoor environments can be monitored at a zone level, enabling more efficient control of the
building’s HVAC and lighting systems. However, the zone level operation of HVAC systems is
unable to meet the comfort requirements of most of the occupants due to variation in occupant
preferences (Aryal and Becerik-Gerber, 2018; Huizenga et al., 2006). HVAC systems in
buildings are operated based on the PMV (Predicted Mean Vote) model, developed by Fanger
(Fanger, 1970), which specifies a narrow range of comfort conditions developed based on a heat
transfer model from experiments with large numbers of participants (Hoyt et al., 2009; Roussac
et al., 2011). Naturally ventilated buildings utilize the adaptive comfort model, which considers
different ways occupants can adapt themselves or modify the environment to maintain comfort
(De Dear et al., 1998). ASHRAE 55, the current standard upon which buildings are designed
and operated allows the use of the adaptive model for naturally ventilated buildings and
recommends the use of PMV model for all other types of buildings (ASHRAE, 2017). However,
a study has shown that only 11% of the buildings meet the ASHRAE requirement of satisfying
80% or more occupants (Huizenga et al., 2006). Uncomfortable thermal conditions have been
linked to lower productivity in office environments (Seppanen and Fisk, 2006). Furthermore,
long term exposure to uniform sustained thermal conditions has been linked to negative health
impacts, such as reduced metabolism and increased risk of cardiovascular diseases (van Marken
Lichtenbelt et al., 2017). Using Personalized Control Systems (PCS) and providing direct control
to the occupant has shown to improve comfort and satisfaction (Zhang et al., 2015). Several such
systems have been developed, such as heated and cooled chairs, hand warmers, foot warmers,
personal air terminals, local fans and heaters etc. (Luo et al., 2018; Zhai et al., 2013).

Thermal comfort of occupants depends on several factors such as the air temperature, radiant
temperature, humidity, air movement, metabolic rate, and clothing levels (Fanger, 1970). In
office settings, the metabolic rate is fairly constant, and clothing levels are also constant for each
season. The other variables (i.e. air temperature, humidity, radiant temperature, and air
movement) can vary based on daily weather, location of the occupant in a space, and operation
of HVAC systems. In air-conditioned buildings, air movement is fairly constant, therefore it is
not very important to monitor air speeds, but for naturally ventilated buildings, air speeds can
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vary depending on outdoor air speed. Although monitoring of air speeds is important, it is
challenging because there is a high variation in air movement around the office desk, chairs and
other furniture (Gao et al., 2017). However, as better methods to monitor air speeds are
developed in the future, it should be one of the parameters that is monitored. In buildings with
radiant heating systems, monitoring of radiant temperatures is important, however, for buildings
without radiant heating systems, connecting to a model of sun movement and weather forecast
might be sufficient. In addition, relative humidity has a small impact on thermal comfort in the
range that is found in most indoor environments (Toftum et al., 1998), and might not be
important to monitor in air-conditioned buildings where humidification/dehumidification is
performed.

Several new methods have been developed to model personal thermal comfort preferences of
occupants in recent years (Kim et al., 2018). The general procedure consists of using sensor data
combined with periodic user feedback to build a comfort profile that indicates the environmental
settings where the occupant is likely to be comfortable or uncomfortable. Once a preference
profile for the user is learned, it can be used to control the HVAC systems or local PCS to
improve user comfort. The user needs to provide frequent feedback until the system learns their
preferences, but over time the system can automatically control the environment based on the
learned comfort profiles without much feedback from the occupant. As occupant’s preferences
change over time, the system can update the comfort profiles based on new feedback from the
occupant. Several algorithms have been utilized in recent years to learn thermal comfort
preferences of occupants such as logistic regression, decision trees, Bayesian networks, neural
networks, etc. (Kim et al., 2018). Furthermore, emerging technologies, such as wearable devices
and thermal imaging could be used to learn comfort preferences more accurately (Burzo et al.,
2014; Ghahramani et al., 2016; Li et al., 2018). Several ways to control the thermal environment
based on occupant feedback have been developed, some controlling the central HVAC system,
such as comfy (www.comfyapp.com), and Thermovote (Erickson and Cerpa, 2012). Several PCS,
such as heated chairs, personal air terminals, hand warmers, local cooling fans etc. have been
studied in recent years and can be used to control the local thermal environment around the user
to improve their comfort and satisfaction (Zhai et al., 2013; Zhang et al., 2007, 2010). Although
previous studies provide a good starting point to introduce local comfort systems as part of the
desk (Zhang et al., 2007; Zhao et al., 2014), several improvements in learning algorithms are
necessary to meet the vision of truly personalized environments. Current learning algorithms
require a large amount of user feedback, and usually only consider the room temperature while
learning personal comfort preferences. Furthermore, the learning algorithms have mostly focused
on learning whole body thermal sensations in air-conditioned environments. New algorithms that
consider the effects of local heating and cooling systems on user thermal comfort need to be
developed for successful personalization of thermal comfort at the desk.

2.4 Visual Conditions

Lighting is another IEQ (indoor environmental quality) variable that is highly related to occupant
comfort and productivity. Improper lighting can cause problems with visual acuity, cause
distraction from the task, and lead to eyestrain (Boyce, 2010). Too much or too little light,
variation in illuminance between work surface, glare, etc. can cause visual discomfort that leads
to eye strain (Boyce, 2014). In addition to the direct impact on eye strain, lighting parameters
also affect the posture of the user depending on the task (Rea et al., 1985). For instance, the user
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might hunch or move closer to the task while trying to read text that is affected by glare,
reflection or poor contrast (Joines et al., 2015). Proper task lighting can help mitigate these
negative effects on the posture, eye strain, and visual comfort of the user (Joines et al., 2015;
Newsham et al., 2005). Furthermore, studies have linked exposure to blue light during night to
disruption in the circadian rhythm and increased risk of breast and colorectal cancer (James et
al., 2016; Stevens, 2009). Exposure to bright white light during the day, and non-blue light at
night can help reduce the impact on the natural circadian rhythm (Pauley, 2004). The circadian
rhythm is also responsible for the regulation of core body temperature and can indirectly impact
thermal comfort of the user (Pauley, 2004). Use of variable lighting conditions in offices could
potentially improve mood (Zhang et al., 2015), and occupant satisfaction (de Kort and Smolders,
2010).

Lighting quality is commonly measured using light intensity (lux) and correlated color
temperature (CCT) (Oi and Takahashi, 2007). In addition, a model of the daylight cycle can be
used as an additional input to provide information about the variation of natural lighting in the
location that the module is being implemented. Lighting standards define the typical range of lux
and CCT values required in different environments depending on the primary task that is
performed in that environment. However, studies have shown that the actual preferences of users
can vary from those defined in the standards (Oi and Takahashi, 2007). Furthermore, lighting
also has an impact on the human circadian rhythm, and can have negative impacts on sleep,
leading to reduced productivity and satisfaction. Although light settings, which are high in light
intensity and CCT can improve task specific productivity in the short term (Badia et al., 1991), it
can impact the circadian rhythm and could have a long term negative impact on occupant’s
health (Boyce, 2014; Pauley, 2004). It is crucial to understand the positive and negative aspects
of the lighting environment and find a balanced setting to promote productivity while reducing
the negative impacts.

Several methods have been developed to learn lighting preferences of occupants. The methods
primarily rely on the measurements from lighting sensors, user feedback and use of control
options where available (Despenic et al., 2017; O1 and Takahashi, 2007; Sadeghi et al., 2018),
using algorithms, such as k-means clustering (Despenic et al., 2017) and Bayesian classification
(O1 and Takahashi, 2007; Sadeghi et al., 2018) to learn user preferences. Task specific lighting
can be used to promote productivity in the short term (Juslén et al., 2007), and lighting that is
close to the natural light cycle can be used to reduce the negative impacts on the circadian
rhythm (Pauley, 2004; Rea and Figueiro, 2018). Previous methods such as the ones developed by
Despenic et.al. or Sadeghi et.al. provide a good starting point for learning individual preferences
of the user. However, these methods do not consider changing preferences of the user depending
on the tasks that they are engaged in. For the desk to understand the tasks that the user is engaged
in, methods for activity recognition such as the ones described in section 2.2 are needed. New
algorithms that can integrate user activity into lighting comfort profiles need to be developed.
Modern lighting fixtures based on LEDs enable changes in both lux and CCT values (Hye Oh et
al., 2014). Control algorithms should be able to recognize the task that the occupant is engaged
in and provide suitable lighting settings. Furthermore, control algorithms should vary the
ambient lighting in the room while taking the sun cycle into consideration to reduce disruption to
the circadian rhythm.

Glare usually arises when direct sunlight enters the room and causes visual discomfort when it
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shines into the eyes of the occupant or reflects off of their surrounding surfaces (Osterhaus,
2005). Although daylight is typically considered good for occupants’ health and wellbeing,
occupants take corrective actions to eliminate daylight if it causes discomfort glare (Boyce et al.,
2003). Glare is one of the major issues in lighting and daylighting design (Boyce, 2014; Clear,
2013) and it is typically avoided by controlling the blinds or other shading devices on the
building facade (Haldi and Robinson, 2010). Since multiple occupants in the same room can be
affected by glare, the elimination of glare needs to be achieved by controlling shading devices at
a room level rather than a desk level. Although the glare control is beyond the scope of the desk,
several methods have been developed to assess glare (Borisuit et al., 2010; Fisekis et al., 2003;
Kim et al., 2009; Nazzal, 2005) and to control shading devices to reduce glare discomfort (Chan
and Tzempelikos, 2013; Gunay et al., 2017; Ochoa et al., 2012; Osterhaus, 2005) which can be
integrated into the BMS.

2.5 Postural conditions and sit-stand regimen

Proper use of sit-stand regimen can reduce sedentary time and improve productivity while
reducing the negative health effects of prolonged sitting or prolonged standing. It is
recommended to switch between sitting and standing positions at 30-minute intervals (Thorp et
al., 2014). Initial preferences of users might be more biased towards sitting or standing. Recent
literature in ergonomics suggests the standing time of occupants should be gradually increased to
gradually habituate the occupant to increased standing time (Thorp et al., 2014), and without
proper intervention, it is difficult to promote long term change in behavior (Laestadius et al.,
2009; Thorp et al., 2014).The feedback system of the desk can cue the user to switch between
sitting and standing positions. The data from the sensors that monitor the desk height can be used
to analyze typical sitting and standing durations to create a sit-stand profile for the occupant. The
user interaction module can cue the user to increase or decrease the standing durations depending
on their sit-stand profiles. Since undesirable change in desk height can create a nuisance to the
occupant, it might be better to prompt the user regarding the change and wait for the occupant to
change their position instead of automatically controlling the desk height.

In addition to prolonged sitting, office workers are also at risk of developing musculoskeletal
disorders due to improper posture while working at their computers (Fogleman and Lewis,
2002). Several studies indicate that providing postural feedback to users helps to improve posture
and can help alleviate musculoskeletal discomfort (Park and Yoo, 2012; Vedsted et al., 2011).
Several methods have been developed for posture recognition using techniques such as
Electromyography (EMGQ) (Park and Yoo, 2012), inertial sensors (Alahakone and Senanayake,
2010), pressure sensors, 3-D depth cameras (Alahakone and Senanayake, 2010) and computer
vision-based methods (Moeslund and Granum, 2001). The desk can be equipped with sensors to
monitor the posture of the user and provide appropriate feedback to correct the posture if needed.
The methods that rely on 3-D depth cameras, computer vision, and pressure sensors are less
intrusive to the user and have shown promising results. However, they can only provide
information from the section of the human body that is captured by the sensors, typically upper
body from cameras and back and torso from pressure sensors. A combination of these methods is
necessary to capture postural information from different parts of the body. Although several
methods for identifying posture have been developed, methods to learn individual postural habits
and provide tailored ergonomic feedback need to be developed.

11



2.6 Air Quality

Poor air quality is associated with reduced work performance and prevalence of Sick Building
Syndrome (SBS). Dissatisfaction with air quality can arise after prolonged exposure to harmful
levels of air pollutants. Carbon dioxide is a good proxy for indoor air quality because it can
provide an indication of air exchange rate (Chatzidiakou et al., 2015). Additional indicators of
indoor air quality such as VOCs, PM2.5 etc. can be utilized. The World Health Organization
(WHO) provides guidelines for safe levels of exposure to different air quality parameters (WHO,
2010). Furthermore, Occupational Safety and Health Administration (OSHA) provides
guidelines regarding indoor air quality in commercial and institutional buildings in the
U.S.(OSHA, 2015). The air quality parameters can be monitored using appropriate sensors to
measure CO», VOC, PM10, PM2.5 etc. Measurement of CO;, respiratory suspended particles
(such as PM10 and PM2.5), and VOCs can also be an effective way to predict other indoor
pollutants such as carbon monoxide, nitrogen dioxide, ozone, formaldehyde etc. (Wong et al.,
2006). The algorithm for this module can create a warning when the air quality measurements
exceed the exposure levels indicated in the guidelines (OSHA, 2015; WHO, 2010). Furthermore,
the control algorithm can increase the air flow rate through the HVAC system or open the
windows to reduce the build-up of indoor pollutants by integrating with the BMS (Fisk et al.,
2010).

Many of the indoor pollutants are a result of emissions from fuel combustion (e.g. while
cooking), furnishing, from consumer products and construction materials (Zhang and Smith,
2003), whose exposure could be reduced by selection of better materials. Indoor CO», on the
other hand, results primarily from occupants’ respiration (Persily and de Jonge, 2017; Satish et
al., 2012). COz is one of the indoor air quality parameters that has a direct on impact occupants’
health and work productivity (Satish et al., 2012; Seppanen et al., 1999). CO: concentrations
exceeding 950ppm was found to cause significant declines in cognitive scores, even though the
level of exposure is considered acceptable by ASHRAE 62.1 which provides ventilation
guidelines for acceptable indoor air quality (Allen et al., 2016). Past studies have shown that the
exhaled CO: does not immediately dissipate with the surrounding air when occupants are
sedentary and results in a buildup of a personal CO> bubble around the occupant’s head
(Ghahramani et al., 2019; Ozkaynak et al., 1996). A recent study has shown that using a desk fan
can dissipate the CO; bubble and reduce the CO, concentration by 177ppm on average
(Ghahramani et al., 2019). The use of personal fans can maintain comfortable thermal conditions
while also reducing CO> concentration and improving perceived air quality even when the air
movement is from recirculated room air (Ghahramani et al., 2019; Zhang et al., 2010). Control
algorithms that consider both thermal comfort and improvement in air quality need to be
developed for control of PCS devices such as fans or local air terminals.

2.7 Other Supporting Components

There are additional components of the desk that support the application modules discussed
above. These components provide the necessary infrastructure for collecting and storing sensor
data and monitoring status of the desk. We briefly mention these components and some of the
commercially available products in this section, but a detailed review is beyond the scope of this

paper.
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2.7.1 Energy Monitoring

Energy monitoring at the desk can provide granular data to help building managers understand
how energy is consumed in the building. Several studies have used wired and wireless plug load
meters to monitor energy consumption of different appliances (Jiang et al., 2009; Lifton et al.,
2007). Furthermore, Non-Intrusive Load Monitoring (NILM) techniques have been developed to
disaggregate the energy consumption of different appliances from an aggregated source
(Jazizadeh et al., 2014; Rowe et al., 2010). If certain occupants are wasting energy, they can be
identified and prompted about their wasteful habits. Different algorithms to evaluate energy
waste in office settings have been developed. For instance, (Ahmadi-Karvigh et al., 2018)
developed a ontology-based approach for quantifying energy waste of occupants. In addition to
appliances used by individuals, Cheng et al. developed methods to attribute energy consumption
of shared resources to individuals to calculate a per person energy footprint (Cheng et al., 2012).
Several energy monitoring plug meters are commercially available in the market such as WeMo
from Belkin, Kill A Watt from P3 international, Extech etc. which can be used for monitoring
appliance level energy consumption. The energy monitoring module can also provide input to
activity recognition module described in section 2.2, and provide feedback to the user using the
interaction module described in section 2.1.

2.7.2 Cloud Storage and Computing

Cloud computing is another supporting module that is required for all other modules. The sensor
data that is gathered from the desk, along with logs of user interaction can be stored in the cloud
servers where different algorithms can be used to process the data to create meaningful actions.
For a small number of desks, local servers may be set up for storage and data analysis. Different
database systems, such as IRONdb, InfluxDB are available for storage of time series sensor
signals and can be easily set up on local or cloud servers. For larger implementations, cloud
computing is usually cheaper and more scalable than implementing local servers (Armbrust et
al., 2010). Several service providers, such as Amazon, Google, Microsoft, IBM etc. provide easy
access to cloud computing with real time data analytics. The algorithms for each of the modules
can run simultaneously on a cloud server and they can be used for analyzing real time behaviors
of the user to provide appropriate feedback. Given that different cloud service providers offer
products with similar capabilities, any service can be adopted for storage and computing of data
collected from the desk.

2.7.3 Data Visualization Dashboard

Visualization of data collected from the desk can be useful to identify use patterns, detect
anomalies and increase awareness of building operations. Visualization dashboards can enable
building managers to monitor the operation of building systems and take corrective actions in
case of system malfunction or optimize building energy use (Chen et al., 2009). Current BMS
and BAS are unable to provide information related to individual occupants since the monitoring
of the environment usually occurs at the zone level. The desk monitors the local environment
around the user and can provide relevant data at a much granular level, which can enable the
dashboard to provide real time and historical information regarding comfort and IEQ related
parameters and energy consumption for each user in the building. Several frameworks have been
developed by researchers to visualize sensor data for building management applications, such as
WattDepot(Brewer and Johnson, 2010), SAGA (Buevich et al., 2011). Indeed, several open
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source solutions exist for visualization of sensor data collected from IoT devices, such as
Thingsboard (https://thingsboard.io), Freeboard (http://freeboard.io/), Grafana (https:/grafana.com/),
Graphite (https:/graphiteapp.org/), etc. Furthermore, there are additional potential applications that
could use the data gathered from the desk but are not directly linked to the occupant, such as
demand response and failure prediction. Although these applications are beyond the scope of this
paper, a visualization dashboard could be an important tool for these applications as well.

3 Discussion and Future Directions

We strongly believe that the smart desk can help improve productivity and well-being of office
workers in the future. We see the greatest potential as the improvement of indoor environmental
quality in buildings with centralized HVAC systems and poor daylighting. However, occupants
in buildings that are naturally ventilated or have natural daylighting can also benefit from the
increased local control. Since the desk modules are separated by application, it is possible to only
select the modules that focus on a particular aspect of the indoor environment that needs
improvement. This could lower the initial investment costs by reducing the number of sensing
and actuation devices needed. Even though our current vision is focused on office buildings, the
idea of personalizing indoor environments using current [oT technology and advancements in
machine learning and control fields can be applied to other types of buildings as well.
Furthermore, sensing and actuation devices can be implemented on other pieces of furniture,
such as office chairs in order to provide similar functions. A pilot implementation of the smart
desk is discussed in (Aryal et al., 2018).

Although ample related research has already been conducted, there are still gaps that need to be
addressed to enable wide scale use of IoT devices for improving productivity and well-being of
building occupants. Current methods for learning user preferences heavily rely on user feedback
as discussed in section 2. Lack of user feedback can negatively impact the accuracy of learned
preferences and therefore, lead to discomfort and dissatisfaction. To address this issue, better
methods for sensing occupant comfort, and robust methods for learning user preferences that
work with low amount of user feedback need to be developed. Simultaneously, methods to
increase user’s engagement and to sustain the level of engagement over time need to be
developed using better design of the interaction between the desk and the user.

Another challenge lies in trying to identify the right optimization objective. The objectives of
optimizing for comfort, productivity, health and well-being or energy efficiency may sometimes
conflict with each other. For instance, prolonged exposure to uniform thermal environment might
be comfortable, but it could have adverse health impacts such as reduced metabolism and
increased risk of cardiovascular diseases (van Marken Lichtenbelt et al., 2017). Exposure to
bright white light can increase immediate alertness and productivity (Badia et al., 1991) but it
can affect the circadian rthythm and negatively impact the occupants’ health over the long term
(Boyce, 2014; Pauley, 2004). Slightly cooler temperatures may improve productivity but
compromise comfort (Geng et al., 2017). Optimizing for comfort might lead to increased energy
use in some climates (Aryal and Becerik-Gerber, 2018). It is difficult to quantify the tradeoffs
between different objectives and it is important to find a balance between these different
objectives. The potential economic benefits from improved work performance and reduced
absenteeism due to improved indoor environmental quality is estimated to be two orders of
magnitude larger than the increase in associated energy costs (Fisk et al., 2011). Occupants in
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commercial buildings are not responsible for the associated energy costs and energy
consumption might not be a concern for building occupants. However, it is still important to
improve the indoor environmental quality in energy efficient ways to reduce greenhouse gas
emissions. Finding a balance between multiple objectives is challenging as it depends on the
values of the stakeholders responsible for indoor environment control in each building. Further
research is necessary to understand the potential tradeoffs between trying to optimize for
different objectives and to find a balance.

Past research has mostly focused on a single aspect of the indoor environmental quality (i.e.
thermal comfort, visual comfort, air quality, ergonomics, etc.). However, one aspect of the
indoor environmental quality might influence another aspect. For instance, the user might hunch
or move closer while trying to read a text that is affected by glare, reflection or poor contrast
caused by poor lighting, and thus also leading to poor posture (Joines et al., 2015). The circadian
rhythm, which is influenced by the lighting environment, is also responsible for the regulation of
core body temperature and can indirectly impact thermal comfort (Pauley, 2004). Many such
influences may be discovered when different aspects are studied together. In order to improve
our understanding of the interplays between different variables, there is a need for research that
focuses on studying the indoor environment as a whole and is conducted in real world rather than
controlled environments. Although new evidence is emerging on the negative impacts of poor
indoor environments on health and productivity, there is a lack of consensus in what indoor
conditions are ideal for promoting health and productivity. Long-term studies are needed to
improve our understanding of the impacts of indoor environments on these two objectives.
Large-scale studies are needed to explore the variations on the impact of the environment on
health and productivity that is affected by individual differences. Such knowledge would greatly
enhance our capabilities to tailor the environment to promote health while accounting for
individual characteristics. There is also a need for standardized metrics for the measurement of
productivity and health in indoor environments, which can be utilized to quantify improvements
in health and productivity achieved by improving the indoor environment.

4 Conclusion

Centralized control of indoor environments is unable to cater to individual requirements of
building occupants. Furthermore, existing BMS and BAS rely on zone level monitoring of an
environment and do not consider individual preferences. In order to cater towards individual
preferences and personalize the local environment around each user, the monitoring and control
of the environment should occur around each individual. Personalizing the environment based on
individual preferences can lead to increased satisfaction. In this paper, we described our vision of
a smart desk that leverages recent advances in [oT to monitor the environment, machine learning
to learn user preferences and predictive control algorithms to control the environment based on
their preferences. Furthermore, we also described our vision where the smart desk acts as an
intelligent support system, which can motivate the user to change their preferences towards
healthier, more productive and more energy efficient settings. We also provided a reference for
the readers to look at an overview of our current prototypes for the smart desk and our work in
progress (Aryal et al., 2018) and we discussed some research gaps and future research directions.
We believe that there is a great potential to enhance occupant comfort, productivity and health by
using smart furniture such as the smart office desk using the framework described in this paper.
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