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ABSTRACT 

 

Even though HVAC systems consume around 40% of total building energy, they often fail to 

provide satisfactory thermal conditions to occupants in commercial buildings. Personalized 

Environmental Control Systems (PECS) such as local fans and heaters have the potential to 

control the local environment around the occupant to improve occupant satisfaction. Existing 

methods for modeling thermal preferences primarily rely on temperature measurements and 

often neglect air speed. Current methods for monitoring air speeds are either too expensive or too 

bulky to be used in real office environments. We present our preliminary results on predicting air 

speeds using alternate environmental parameters such as air pressure, temperature and humidity 

using low cost miniature sensors. The results show that we can accurately predict air speeds with 

a mean absolute error of 0.056 m/s for conditions investigated in this study. Although the results 

are promising, further studies are needed to improve the system before it can be used in real 

world environments.  

 

INTRODUCTION 

 

In the U.S., HVAC systems consume around 43% of the total building energy consumption (U.S. 

Department of Energy 2010),  yet they often fail their primary purpose of providing comfortable 

indoor conditions. A large scale study, collected occupant satisfaction survey in commercial 

buildings in North America over 10 years, showed that only 38% of the occupants are thermally 

satisfied, with only 2% of buildings meeting the ASHRAE requirement of satisfying at least 80% 

of occupants (Karmann et al. 2018). Poor occupant satisfaction stems from two main reasons: the 

differences in comfort preferences among occupants, and the inability of centralized HVAC 

systems to provide personalized environmental conditioning and control opportunities. A recent 

simulation study showed that even when thermal comfort preferences of occupants are known, it 

is very difficult to achieve 80% occupant satisfaction using centralized HVAC systems due to 

lack of capability of controlling the environment at a granular level to meet individual occupant 

requirements (Aryal and Becerik-Gerber 2018). 

Personalized Environmental Control Systems (PECS) have recently received interest 

from the research community as solutions to provide more comfortable environments while 

reducing building energy consumption. PECS, such as local fans and heaters, have the potential 
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to provide local cooling and heating to maintain comfortable conditions around each occupant 

while enabling central HVAC systems to be controlled over a wider range of temperatures, 

thereby reducing overall energy consumption while improving occupant satisfaction. For 

example, a recent study demonstrated that extending HVAC setpoints could reduce CO2 

emissions up to 21.4% per year, and the use of personal cooling systems can result in cooling 

energy savings of 10% to 70% depending on the location (Heidarinejad et al. 2018). Thermal 

comfort depends on several factors, such as air temperature, radiant temperature, relative 

humidity, air speed, metabolic rate and clothing. There have been several recent efforts to learn 

individual thermal comfort preferences of building occupants by leveraging recent advancements 

in Internet of Things (IoT) and machine learning techniques (Kim et al. 2018). Once individual 

comfort preferences are modeled, these models could be used to automatically control HVAC 

systems and PECS to improve occupant comfort and satisfaction (Aryal et al. 2018). However, 

current methods of modeling thermal comfort preferences primarily rely on environmental 

temperature measurements, and physiological measurements using wearable devices, however 

they do not often consider air speeds due to the difficulty in monitoring air speed using existing 

methods (Kim et al. 2018).   

Traditionally, it was believed that air movement has a negative effect of causing draft that 

can lead to discomfort. However, there has been a recent shift in focus towards the positive 

effects of air movement and its ability to improve thermal comfort of occupants and even 

provide thermal pleasure or thermal alliesthesia (Parkinson and de Dear 2017; Zhai et al. 2017). 

Air speeds around an occupant could be affected by several factors, such as the fan size, fan 

location and orientation, furniture in the room, and so on. For example, a recent study mapped 

the influence of desks and office partitions on the air flow patterns inside a room with a ceiling 

fan to provide a better understanding of how furniture affects air movement in a room (Gao et al. 

2017). Climate chamber studies have also been conducted to identify suitable air speeds for 

improving comfort in a typical office layout (Zhai et al. 2017). However, such studies utilize 

bulky sensing methods, such as an array of anemometers mounted on a rod for monitoring air 

speed around an occupant, which would be impractical for monitoring air movement in an actual 

office due to the large space requirements. Other methods, such as hot wire anemometer (~$100 - 

$500) and ultrasonic anemometers (~$100 - $2500) are expensive to be utilized at a large scale. 

A more practical approach would be to utilize sensing methods that are low cost, and small in 

size so they could easily be embedded in an existing office space (e.g., on desks, chairs, and 

other furniture) to monitor air movement around an occupant to provide real time measurements 

of air speed even when other conditions change in the environment. In this paper, we present our 

preliminary results from our attempt to find an alternate way to monitor air speeds in indoor 

spaces.  

 

METHODOLOGY 

 

Moving air exerts pressure on objects as we experience in everyday life, such as trees swaying in 

the wind. Pitot tubes, a common instrument, used to measure air speeds in aircrafts, rely on 

measuring the dynamic pressure caused by moving air to evaluate the air speed. Moving air also 

has a cooling effect as it can take away some of the thermal energy from a body by conduction 

and convection. Moving air can also change relative humidity by causing a change in the density 

of air. Analytical modeling of the underlying physical relationships among temperature, pressure, 

humidity and air speed for turbulent flows of open air is a complicated task. However, machine 
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learning algorithms can model complex relationships solely from the provided data. Thus, we 

utilize inexpensive sensors to monitor environmental parameters, such as air pressure, 

temperature and humidity, and utilize machine learning algorithms to predict the air speed. The 

sensors utilized in this study are low-cost (2 sensors, $20 each) and small in size (2cm*2cm), 

which can be easily embedded in office spaces and deployed at a large scale.  

 

 
Figure 1: Left- Data Collection Setup. Right- Top: Main sensor, Bottom: Reference sensor 

 

Data Collection: For this study, air movement was generated using a typical desk fan 

(Honeywell HT-908) with three different speed settings. A cup-based anemometer connected to 

an Arduino Uno was used to monitor the air speed and provided the training labels for our 

model. Environmental measurements for pressure, temperature and humidity were taken using 

two BME280 sensors connected to the Arduino Uno. One of the BME280 sensor was directly 

facing the fan (referred hereafter as the main sensor), and another BME280 sensor (referred 

hereafter as reference sensor) was placed in a location that was not directly influenced by the fan 

to serve as a reference measurement of the ambient conditions in the room. The anemometer, as 

well as the BME280 sensors were mounted on an office chair, with the anemometer and the main 

sensor placed roughly at the location of the head of a person sitting on the chair, while the 

reference sensor was mounted at the back of the chair as shown in Figure 1. The three fan speeds 

as measured by the anemometer were around 3.2 m/s, 3.5 m/s, and 4 m/s.   

Since ambient conditions in the room change throughout the day due to several factors, 

such as HVAC operations, occupants in the room, outside climate etc., we utilized the reference 

sensor to gather background changes that can be removed from the measurements collected by 

the main sensor directly facing the fan. It is important to note that the office space was occupied 

during the data collection period where occupants were in the office during the day, and the 

temperature setpoint of the HVAC system was set by the occupants as desired.  For this pilot 

study, the fan was placed roughly 2 feet from the sensors, with the center of the fan aligned to 

the sensors. We also utilized a smart plug that can be remotely controlled to switch the fan on or 

off. The fan was switched on or off at a random interval between 5 to 15 minutes while the 

measurements were taken from all the sensors. The data was collected for a period of 115 hours 

(4 days and 19 hours) with sensor measurements taken every second resulting in approximately 

416,000 data points. A portion of the collected data for a 6-hour window is shown in Figure 2, 

where the large fluctuation is caused by the HVAC being turned on when an occupant entered 

the office, and the smaller fluctuations are related to the fan operation. 



 4 

 

 
Figure 2: Pressure, temperature and humidity readings from main and reference sensors 

 

Data pre-processing: The data collected, from the reference sensor, provided information 

regarding the changes in the background - not affected by the fan. The background trend was 

removed by subtracting the readings of pressure, temperature and humidity obtained by the 

reference sensor from the readings obtained by the main sensor. The data was then normalized 

by subtracting the mean from each data point and dividing it by the standard deviation. The 

cleaned data, after removing the background trend and normalization, is shown in Figure 3 along 

with the airspeed measurements obtained from the anemometer. Turning the fan on corresponds 

to increase in pressure and decreases in temperature and humidity, as seen in Figure 3. This trend 

can be observed strongly when the HVAC system is not operating but becomes weaker when the 

HVAC system is operating, around time 16:00 in Figure 3, due to additional background 

variation caused by the system.  

 

 
Figure 3: Cleaned and normalized data along with air speed measured by an anemometer 

 

Among the three data streams shown in Figure 3, pressure seems to be more robust against the 

changes caused by HVAC operation as it does not abruptly change when the HVAC is turned on 

(around time 16:00) compared to other measurements. Since the changes observed in the 

pressure seemed to be more robust, a new variable that provides the information regarding 

whether the fan was on or off (fan state) was derived from the pressure data. An algorithm that 

finds the points where there is an abrupt change in the average of data was utilized to detect the 

points of change in the cleaned data. Since we know that the pressure increases correspond to the 

fan being turned on, the fan state was then calculated by evaluating the direction of change 

between two change points. After including this derived measurement, the data was used to train 

different regression models using supervised learning techniques. 

 

Model Training: The sensor measurements for pressure, temperature and humidity from the 

main and reference sensors, the cleaned data stream for pressure, temperature and humidity, and 
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the derived fan state, resulting in a total of 10 predictors, were used as predictors for training the 

regression models. The target variable (response) was the air speed measured by the 

anemometer. The dataset was split into training set (60%), and testing set (40%). We evaluated 

the common regression algorithms to determine which algorithm performed well for predicting 

air speeds. 

 

RESULTS 

 

The algorithms were evaluated using 5-fold cross validation on the training set in order to pick 

the best algorithm. The Root Mean Square Error (RMSE) for each of the algorithms in the 5-fold 

cross validation is shown in Table 1. Bagged trees outperformed other algorithms that were 

evaluated with the lowest RMSE of 0.15 as seen in Table 1. Bagged trees consist of a collection 

of decision trees trained on separate subsets of the data, which are later combined together to 

provide a more robust prediction. Since all the sensor signals in this case are inherently noisy, 

bagged trees seem to outperform other algorithms due to their robust nature.  

 

Table 1: RMSE for different algorithms using all predictors 

Algorithm RMSE using all predictors 

Linear Regression 0.91 

Decision Trees (Large – minimum leaf size = 4) 0.21 

Decision Trees (Small – minimum leaf size = 36) 0.49 

Bagged Trees 0.15 

Boosted Trees 0.84 

 

Furthermore, to evaluate which of the physical measurements were most useful in predicting the 

air speed, we trained different bagged tree models using one physical measurement (pressure, 

temperature, or humidity) at a time. In addition, we also evaluated the usefulness of adding fan 

state, which was derived from changes in pressure readings, as a predictor by including fan state 

with one physical measurement at a time. The RMSE in the 5-fold cross validation for bagged 

trees, trained using a single type of physical measurement, is shown in  

Table 2. We see that pressure was the most useful physical measurement that resulted in the 

lowest RMSE, followed by temperature and humidity respectively. In  

Table 2, we also see that fan state was a useful predictor in the model as it reduced the RMSE by 

roughly 50% compared to using one of the physical measurements alone.  

Table 2: RMSE when using data from single type of physical measurement 

Predictors used RMSE with Bagged Trees 

Temperature 0.85 

Pressure 0.64 

Humidity 0.9 

Temperature, fan state 0.42 

Pressure, fan state 0.35 

Humidity, fan state 0.41 
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Using all of the predictors together to train a bagged tree model yielded the best prediction with 

an RMSE of 0.15 as seen in Table 1. After selecting bagged trees as the preferred algorithm, we 

evaluated its prediction error in the testing set (40% of the data) using all the predictors. The 

RMSE in the testing set was 0.15, which is the same as the RMSE obtained from cross 

validation, which indicates that there was no overfitting on the training set. The measured vs. 

predicted airspeeds from the testing set are shown in Figure 4 for a 6-hour window. The 

coefficient of determination (r-squared) was 0.9934 and Mean Absolute Error (MAE) was 

0.056m/s between the measured and predicted airspeeds in the test set. MAE, in contrast to 

RMSE, provides a better reflection of the average error that can be expected because it does not 

square the errors to penalize outliers. The low MAE of 0.056m/s provides a strong evidence that 

airspeed can be accurately predicted using other physical measurements. 

 

 
Figure 4: Airspeed measured from anemometer and predicted from bagged trees model. 

 

DISCUSSION 

 

Our results from this preliminary investigation strongly supports the idea of monitoring air speed 

using alternative measurements for pressure, temperature and humidity. This could provide a 

low-cost alternative to existing methods of monitoring air speed, such as the ones currently used, 

e.g., hot-wire anemometer or ultrasonic anemometers. Furthermore, the BME280 sensor used in 

this study is only 2cm*2cm in size, which makes it possible to embed these sensors into 

everyday objects, such as office furniture, which is not practical with bulky cup-based 

anemometers. In addition to monitoring airspeed, the data collected from the BME280 sensor is 

also useful for other purposes, such as ensuring temperature and humidity in the environment are 

within the desired ranges. This increases the usefulness of using our approach to monitor air 

speed compared to using different sensors for monitoring different parameters.  

In this study, we collected air speeds under three fan speed settings, which were around 

3.2 m/s, 3.5 m/s, and 4 m/s. Air speeds in offices tend to be lower than the air speeds used in this 

study, typically lower than 0.8m/s due to current guidelines to avoid draft. However, several 

studies have shown that higher air speeds such as 1.4m/s (Zhai et al. 2017) or even as high as 

3m/s (Fong et al. 2010) can be effective ways to maintain thermal comfort at higher 

temperatures. Since this study was intended to provide a proof of concept, a higher air speed was 

used to improve the signal to noise ratio. Lower air speeds need to be considered in future 

studies.  
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Improved air quality is another added benefit that may result from using higher air speeds 

indoors. A recent study showed that using air movement devices such as a desk fan can 

significantly reduce the CO2 inhaled by the occupant (Ghahramani et al. 2019). Since most 

existing methods to model individual thermal comfort preferences rely only on temperature and 

humidity measurements, having a convenient method to monitor air movement in real time can 

be useful in developing new methods that can include air movement as an additional parameter 

in individual comfort models. Ultimately, the actual effectiveness of using real time air speed 

measurements for thermal comfort prediction needs to be evaluated after the system is fully 

developed. 

There are several limitations in this preliminary investigation that need to be overcome 

before air speed can be monitored in real offices using the approach. In our study, only one type 

of fan was used to generate air movement, but the changes observed in the sensor signals might 

vary with different types of fans. The air speed also depends on the distance from the fan and the 

angle that the fan is positioned in, which was fixed in this study. Future studies need to consider 

different types of fans or air terminals positioned at different distances and orientations to 

develop more robust models that can work under different conditions. For real world 

implementation, the impact of an occupant sitting on a chair where the sensor is placed also 

needs to be considered. The ideal location for sensor placement needs to be investigated by 

considering the occupant, and methods to filter out additional noise caused by occupant’s 

presence need to be developed.  

 

CONCLUSION 

 

In this study, we presented our preliminary results for monitoring air speed in office 

environments using alternate measurements of air pressure, temperature and humidity. The 

presented approach resulted in a mean absolute error of 0.056m/s in air speed prediction, which 

indicates the possibility of using this approach for real time monitoring of air speed in indoor 

environments. The approach provides a low-cost alternative to existing methods, such as hot 

wire anemometers and ultrasonic anemometers, and is much smaller in size compared to cup-

based anemometers. Although this preliminary investigation has several limitations and there is 

additional work needed to develop a robust method to monitor air speeds around an occupant, the 

results are promising and warrant further investigation. We believe that with a convenient 

method to monitor air speeds, we can better understand the impact of air speed on thermal 

comfort by being able to obtain real time air speed measurements and comfort feedback from 

occupants. Current methods of learning thermal comfort preferences of individual occupants 

mostly rely on temperature measurements alone to infer thermal comfort of occupants and 

including air speed measurements could potentially improve the modeling of thermal comfort 

preferences. Furthermore, with real time monitoring of temperature and air speed, and by 

modeling individual comfort preferences, the local environment around the occupant could be 

automatically controlled to improve occupant comfort and satisfaction using PECS. 
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