A Novel Method for Monitoring Air Speed in Offices Using Low Cost Sensors
Ashrant Aryal!, Ishan Shah2, Burcin Becerik-Gerber?

'Ph.D. Student, Sonny Astani Dept. of Civil and Environmental Engineering, Viterbi School of
Engineering, Univ. of Southern California, KAP 217, 3620 South Vermont Ave., Los Angeles,
CA 90089. E-mail: aaryal@usc.edu

2 Undergraduate Research Assistant, Sonny Astani Dept. of Civil and Environmental
Engineering, Viterbi School of Engineering, Univ. of Southern California, KAP 217, 3620 South
Vermont Ave., Los Angeles, CA 90089. Email: ishans@usc.edu

3 Associate Professor, Sonny Astani Dept. of Civil and Environmental Engineering, Viterbi
School of Engineering, Univ. of Southern California, KAP 217, 3620 South Vermont Ave., Los
Angeles, CA 90089. Email: becerik@usc.edu

ABSTRACT

Even though HVAC systems consume around 40% of total building energy, they often fail to
provide satisfactory thermal conditions to occupants in commercial buildings. Personalized
Environmental Control Systems (PECS) such as local fans and heaters have the potential to
control the local environment around the occupant to improve occupant satisfaction. Existing
methods for modeling thermal preferences primarily rely on temperature measurements and
often neglect air speed. Current methods for monitoring air speeds are either too expensive or too
bulky to be used in real office environments. We present our preliminary results on predicting air
speeds using alternate environmental parameters such as air pressure, temperature and humidity
using low cost miniature sensors. The results show that we can accurately predict air speeds with
a mean absolute error of 0.056 m/s for conditions investigated in this study. Although the results
are promising, further studies are needed to improve the system before it can be used in real
world environments.

INTRODUCTION

In the U.S., HVAC systems consume around 43% of the total building energy consumption (U.S.
Department of Energy 2010), yet they often fail their primary purpose of providing comfortable
indoor conditions. A large scale study, collected occupant satisfaction survey in commercial
buildings in North America over 10 years, showed that only 38% of the occupants are thermally
satisfied, with only 2% of buildings meeting the ASHRAE requirement of satisfying at least 80%
of occupants (Karmann et al. 2018). Poor occupant satisfaction stems from two main reasons: the
differences in comfort preferences among occupants, and the inability of centralized HVAC
systems to provide personalized environmental conditioning and control opportunities. A recent
simulation study showed that even when thermal comfort preferences of occupants are known, it
is very difficult to achieve 80% occupant satisfaction using centralized HVAC systems due to
lack of capability of controlling the environment at a granular level to meet individual occupant
requirements (Aryal and Becerik-Gerber 2018).

Personalized Environmental Control Systems (PECS) have recently received interest
from the research community as solutions to provide more comfortable environments while
reducing building energy consumption. PECS, such as local fans and heaters, have the potential
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to provide local cooling and heating to maintain comfortable conditions around each occupant
while enabling central HVAC systems to be controlled over a wider range of temperatures,
thereby reducing overall energy consumption while improving occupant satisfaction. For
example, a recent study demonstrated that extending HVAC setpoints could reduce CO>
emissions up to 21.4% per year, and the use of personal cooling systems can result in cooling
energy savings of 10% to 70% depending on the location (Heidarinejad et al. 2018). Thermal
comfort depends on several factors, such as air temperature, radiant temperature, relative
humidity, air speed, metabolic rate and clothing. There have been several recent efforts to learn
individual thermal comfort preferences of building occupants by leveraging recent advancements
in Internet of Things (IoT) and machine learning techniques (Kim et al. 2018). Once individual
comfort preferences are modeled, these models could be used to automatically control HVAC
systems and PECS to improve occupant comfort and satisfaction (Aryal et al. 2018). However,
current methods of modeling thermal comfort preferences primarily rely on environmental
temperature measurements, and physiological measurements using wearable devices, however
they do not often consider air speeds due to the difficulty in monitoring air speed using existing
methods (Kim et al. 2018).

Traditionally, it was believed that air movement has a negative effect of causing draft that
can lead to discomfort. However, there has been a recent shift in focus towards the positive
effects of air movement and its ability to improve thermal comfort of occupants and even
provide thermal pleasure or thermal alliesthesia (Parkinson and de Dear 2017; Zhai et al. 2017).
Air speeds around an occupant could be affected by several factors, such as the fan size, fan
location and orientation, furniture in the room, and so on. For example, a recent study mapped
the influence of desks and office partitions on the air flow patterns inside a room with a ceiling
fan to provide a better understanding of how furniture affects air movement in a room (Gao et al.
2017). Climate chamber studies have also been conducted to identify suitable air speeds for
improving comfort in a typical office layout (Zhai et al. 2017). However, such studies utilize
bulky sensing methods, such as an array of anemometers mounted on a rod for monitoring air
speed around an occupant, which would be impractical for monitoring air movement in an actual
office due to the large space requirements. Other methods, such as hot wire anemometer (~$100 -
$500) and ultrasonic anemometers (~$100 - $2500) are expensive to be utilized at a large scale.
A more practical approach would be to utilize sensing methods that are low cost, and small in
size so they could easily be embedded in an existing office space (e.g., on desks, chairs, and
other furniture) to monitor air movement around an occupant to provide real time measurements
of air speed even when other conditions change in the environment. In this paper, we present our
preliminary results from our attempt to find an alternate way to monitor air speeds in indoor
spaces.

METHODOLOGY

Moving air exerts pressure on objects as we experience in everyday life, such as trees swaying in
the wind. Pitot tubes, a common instrument, used to measure air speeds in aircrafts, rely on
measuring the dynamic pressure caused by moving air to evaluate the air speed. Moving air also
has a cooling effect as it can take away some of the thermal energy from a body by conduction
and convection. Moving air can also change relative humidity by causing a change in the density
of air. Analytical modeling of the underlying physical relationships among temperature, pressure,
humidity and air speed for turbulent flows of open air is a complicated task. However, machine



learning algorithms can model complex relationships solely from the provided data. Thus, we
utilize inexpensive sensors to monitor environmental parameters, such as air pressure,
temperature and humidity, and utilize machine learning algorithms to predict the air speed. The
sensors utilized in this study are low-cost (2 sensors, $20 each) and small in size (2cm*2cm),
which can be easily embedded in office spaces and deployed at a large scale.

Anemometer

Main sensor

“|Reference
sensor

Figure 1: Left- Data Collection Setup. Right- Top: Main sensor, Bottom: Reference sensor

Data Collection: For this study, air movement was generated using a typical desk fan
(Honeywell HT-908) with three different speed settings. A cup-based anemometer connected to
an Arduino Uno was used to monitor the air speed and provided the training labels for our
model. Environmental measurements for pressure, temperature and humidity were taken using
two BME280 sensors connected to the Arduino Uno. One of the BME280 sensor was directly
facing the fan (referred hereafter as the main sensor), and another BME280 sensor (referred
hereafter as reference sensor) was placed in a location that was not directly influenced by the fan
to serve as a reference measurement of the ambient conditions in the room. The anemometer, as
well as the BME280 sensors were mounted on an office chair, with the anemometer and the main
sensor placed roughly at the location of the head of a person sitting on the chair, while the
reference sensor was mounted at the back of the chair as shown in Figure 1. The three fan speeds
as measured by the anemometer were around 3.2 m/s, 3.5 m/s, and 4 m/s.

Since ambient conditions in the room change throughout the day due to several factors,
such as HVAC operations, occupants in the room, outside climate etc., we utilized the reference
sensor to gather background changes that can be removed from the measurements collected by
the main sensor directly facing the fan. It is important to note that the office space was occupied
during the data collection period where occupants were in the office during the day, and the
temperature setpoint of the HVAC system was set by the occupants as desired. For this pilot
study, the fan was placed roughly 2 feet from the sensors, with the center of the fan aligned to
the sensors. We also utilized a smart plug that can be remotely controlled to switch the fan on or
off. The fan was switched on or off at a random interval between 5 to 15 minutes while the
measurements were taken from all the sensors. The data was collected for a period of 115 hours
(4 days and 19 hours) with sensor measurements taken every second resulting in approximately
416,000 data points. A portion of the collected data for a 6-hour window is shown in Figure 2,
where the large fluctuation is caused by the HVAC being turned on when an occupant entered
the office, and the smaller fluctuations are related to the fan operation.
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Figure 2: Pressure, temperature and humidity readings from main and reference sensors

Data pre-processing: The data collected, from the reference sensor, provided information
regarding the changes in the background - not affected by the fan. The background trend was
removed by subtracting the readings of pressure, temperature and humidity obtained by the
reference sensor from the readings obtained by the main sensor. The data was then normalized
by subtracting the mean from each data point and dividing it by the standard deviation. The

cleaned data, after removing the background trend and normalization, is shown in Figure 3 along
with the airspeed measurements obtained from the anemometer. Turning the fan on corresponds
to increase in pressure and decreases in temperature and humidity, as seen in Figure 3. This trend
can be observed strongly when the HVAC system is not operating but becomes weaker when the
HVAC system is operating, around time 16:00 in Figure 3, due to additional background
variation caused by the system.
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Figure 3: Cleaned and normalized data along with air speed measured by an anemometer

Among the three data streams shown in Figure 3, pressure seems to be more robust against the
changes caused by HVAC operation as it does not abruptly change when the HVAC is turned on
(around time 16:00) compared to other measurements. Since the changes observed in the
pressure seemed to be more robust, a new variable that provides the information regarding
whether the fan was on or off (fan state) was derived from the pressure data. An algorithm that
finds the points where there is an abrupt change in the average of data was utilized to detect the
points of change in the cleaned data. Since we know that the pressure increases correspond to the
fan being turned on, the fan state was then calculated by evaluating the direction of change
between two change points. After including this derived measurement, the data was used to train
different regression models using supervised learning techniques.

Model Training: The sensor measurements for pressure, temperature and humidity from the
main and reference sensors, the cleaned data stream for pressure, temperature and humidity, and



the derived fan state, resulting in a total of 10 predictors, were used as predictors for training the
regression models. The target variable (response) was the air speed measured by the
anemometer. The dataset was split into training set (60%), and testing set (40%). We evaluated
the common regression algorithms to determine which algorithm performed well for predicting
air speeds.

RESULTS

The algorithms were evaluated using 5-fold cross validation on the training set in order to pick
the best algorithm. The Root Mean Square Error (RMSE) for each of the algorithms in the 5-fold
cross validation is shown in Table 1. Bagged trees outperformed other algorithms that were
evaluated with the lowest RMSE of 0.15 as seen in Table 1. Bagged trees consist of a collection
of decision trees trained on separate subsets of the data, which are later combined together to
provide a more robust prediction. Since all the sensor signals in this case are inherently noisy,
bagged trees seem to outperform other algorithms due to their robust nature.

Table 1: RMSE for different algorithms using all predictors

Algorithm RMSE using all predictors
Linear Regression 0.91
Decision Trees (Large — minimum leaf size = 4) 0.21
Decision Trees (Small — minimum leaf size = 36) 0.49
Bagged Trees 0.15
Boosted Trees 0.84

Furthermore, to evaluate which of the physical measurements were most useful in predicting the
air speed, we trained different bagged tree models using one physical measurement (pressure,
temperature, or humidity) at a time. In addition, we also evaluated the usefulness of adding fan
state, which was derived from changes in pressure readings, as a predictor by including fan state
with one physical measurement at a time. The RMSE in the 5-fold cross validation for bagged
trees, trained using a single type of physical measurement, is shown in

Table 2. We see that pressure was the most useful physical measurement that resulted in the
lowest RMSE, followed by temperature and humidity respectively. In

Table 2, we also see that fan state was a useful predictor in the model as it reduced the RMSE by
roughly 50% compared to using one of the physical measurements alone.

Table 2: RMSE when using data from single type of physical measurement

Predictors used RMSE with Bagged Trees
Temperature 0.85

Pressure 0.64

Humidity 0.9

Temperature, fan state 0.42

Pressure, fan state 0.35

Humidity, fan state 0.41




Using all of the predictors together to train a bagged tree model yielded the best prediction with
an RMSE of 0.15 as seen in Table 1. After selecting bagged trees as the preferred algorithm, we
evaluated its prediction error in the testing set (40% of the data) using all the predictors. The
RMSE in the testing set was 0.15, which is the same as the RMSE obtained from cross
validation, which indicates that there was no overfitting on the training set. The measured vs.
predicted airspeeds from the testing set are shown in Figure 4 for a 6-hour window. The
coefficient of determination (r-squared) was 0.9934 and Mean Absolute Error (MAE) was
0.056m/s between the measured and predicted airspeeds in the test set. MAE, in contrast to
RMSE, provides a better reflection of the average error that can be expected because it does not
square the errors to penalize outliers. The low MAE of 0.056m/s provides a strong evidence that
airspeed can be accurately predicted using other physical measurements.
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Figure 4: Airspeed measured from anemometer and predicted from bagged trees model.

DISCUSSION

Our results from this preliminary investigation strongly supports the idea of monitoring air speed
using alternative measurements for pressure, temperature and humidity. This could provide a
low-cost alternative to existing methods of monitoring air speed, such as the ones currently used,
e.g., hot-wire anemometer or ultrasonic anemometers. Furthermore, the BME280 sensor used in
this study is only 2cm*2cm in size, which makes it possible to embed these sensors into
everyday objects, such as office furniture, which is not practical with bulky cup-based
anemometers. In addition to monitoring airspeed, the data collected from the BME280 sensor is
also useful for other purposes, such as ensuring temperature and humidity in the environment are
within the desired ranges. This increases the usefulness of using our approach to monitor air
speed compared to using different sensors for monitoring different parameters.

In this study, we collected air speeds under three fan speed settings, which were around
3.2 m/s, 3.5 m/s, and 4 m/s. Air speeds in offices tend to be lower than the air speeds used in this
study, typically lower than 0.8m/s due to current guidelines to avoid draft. However, several
studies have shown that higher air speeds such as 1.4m/s (Zhai et al. 2017) or even as high as
3m/s (Fong et al. 2010) can be effective ways to maintain thermal comfort at higher
temperatures. Since this study was intended to provide a proof of concept, a higher air speed was
used to improve the signal to noise ratio. Lower air speeds need to be considered in future
studies.



Improved air quality is another added benefit that may result from using higher air speeds
indoors. A recent study showed that using air movement devices such as a desk fan can
significantly reduce the CO; inhaled by the occupant (Ghahramani et al. 2019). Since most
existing methods to model individual thermal comfort preferences rely only on temperature and
humidity measurements, having a convenient method to monitor air movement in real time can
be useful in developing new methods that can include air movement as an additional parameter
in individual comfort models. Ultimately, the actual effectiveness of using real time air speed
measurements for thermal comfort prediction needs to be evaluated after the system is fully
developed.

There are several limitations in this preliminary investigation that need to be overcome
before air speed can be monitored in real offices using the approach. In our study, only one type
of fan was used to generate air movement, but the changes observed in the sensor signals might
vary with different types of fans. The air speed also depends on the distance from the fan and the
angle that the fan is positioned in, which was fixed in this study. Future studies need to consider
different types of fans or air terminals positioned at different distances and orientations to
develop more robust models that can work under different conditions. For real world
implementation, the impact of an occupant sitting on a chair where the sensor is placed also
needs to be considered. The ideal location for sensor placement needs to be investigated by
considering the occupant, and methods to filter out additional noise caused by occupant’s
presence need to be developed.

CONCLUSION

In this study, we presented our preliminary results for monitoring air speed in office
environments using alternate measurements of air pressure, temperature and humidity. The
presented approach resulted in a mean absolute error of 0.056m/s in air speed prediction, which
indicates the possibility of using this approach for real time monitoring of air speed in indoor
environments. The approach provides a low-cost alternative to existing methods, such as hot
wire anemometers and ultrasonic anemometers, and is much smaller in size compared to cup-
based anemometers. Although this preliminary investigation has several limitations and there is
additional work needed to develop a robust method to monitor air speeds around an occupant, the
results are promising and warrant further investigation. We believe that with a convenient
method to monitor air speeds, we can better understand the impact of air speed on thermal
comfort by being able to obtain real time air speed measurements and comfort feedback from
occupants. Current methods of learning thermal comfort preferences of individual occupants
mostly rely on temperature measurements alone to infer thermal comfort of occupants and
including air speed measurements could potentially improve the modeling of thermal comfort
preferences. Furthermore, with real time monitoring of temperature and air speed, and by
modeling individual comfort preferences, the local environment around the occupant could be
automatically controlled to improve occupant comfort and satisfaction using PECS.
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