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Abstract

In this paper, we introduce PANDORA—a framework that
complements existing parallelizing compilers by automati-
cally discovering application- and architecture-specialized
approximations. We demonstrate that PANDORA creates
approximations that extract massive amounts of parallelism
from inherently sequential code by eliminating loop-carried
dependencies—a long-time goal of the compiler research
community. Compared to exact parallel baselines, prelimi-
nary results show speedups ranging from 2.3x to 81x with
acceptable error for many usage scenarios.

CCS Concepts - Software and its engineering — Com-
pilers; - Mathematics of computing — Approximation;
» Computing methodologies — Machine learning ap-
proaches.
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1 Introduction

Over the last decade, the increasingly common usage of ma-
chine learning has resulted in a historic, yet non-obvious,
change to computing: whereas traditional computing has
focused on semantic correctness, machine learning has made
approximation a mainstream design strategy. Similarly, yet
counter-intuitively, the common usage of real numbers shows
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that many applications already tolerate some approximation,
including robotics, financial analysis, Internet searches, and
even some scientific-computing applications, among others
[11]. For other applications (e.g., signal processing), subjec-
tive quality often enables numerous approximations that
trade off efficiency and quality.

Approximate computing is a technology that exploits ac-
ceptable error in these applications to improve performance
and/or energy [5, 8]. Existing research automates approxi-
mation with specialized frameworks, languages, and/or com-
pilers that apply known approximations while meeting user-
specified error constraints [1-4, 13-16]. However, resulting
improvements are often modest because effective approxi-
mations cannot always be generated via transformations to
the original code. In addition, approximations are often too
application specific to have widespread compiler support,
and the acceptable level of approximation is often subjective,
or may even change dynamically (e.g., low battery), which
makes "one-size-fits-all" approximations less effective.

In this paper, we introduce PANDORA—a parallelizing
approximation-discovery framework—which uses machine
learning to automatically discover application-specific ap-
proximations that are specialized for potentially any archi-
tecture, and are not derived from transformations to the
original code. Unlike most existing approximate-computing
approaches that reduce computation, PANDORA also dis-
covers approximations that increase parallelism, even for
inherently sequential applications from which current com-
pilers cannot extract parallelism. Although parallelizing com-
piler transformations have been studied for decades [7],
those transformations are restricted by exact correctness.
By contrast, PANDORA discovers new approximations via
symbolic-regression-based machine learning that eliminates
dependencies to exploit parallelism that improves perfor-
mance or energy given an error constraint. In addition, PAN-
DORA significantly improves scalability by automatically
generating system-specialized approximations that reduce
communication, data-movement, and synchronization bot-
tlenecks. Furthermore, PANDORA automatically generates
a range of Pareto-optimal tradeoffs between error, perfor-
mance, and/or energy, which enables adaptation to different
use cases.



LCTES ’19, June 23, 2019, Phoenix, AZ, USA

y=sin(x - m/2)+1
Y,
1

X
-t/2 0 /2
(b) Output Samples

X
/2 0 /2
(@) Original Function

(c) Approximation 1

Stitt and Campbell

y=lco*x|

X
-mt/2 0 /2
Approximation N

X
-1t/2 0 /2

Figure 1. PANDORA (a) approximates an existing function by (b) sampling a number of outputs across the desired
input range, and then (c) performing a specialized symbolic regression that optimizes a fitness function that uses
error and performance (or any goal) to create a number of Pareto-optimal approximations.

2 PANDORA

As input, PANDORA takes a function to approximate and
an optional set of constraints, and outputs a set of Pareto-
optimal approximations that are specialized for the targeted
architecture. The basic strategy of PANDORA is to first re-
place the original function with samples of the function’s
output. PANDORA exploits the fact that there is an infinite
number of functions that coincide, or nearly coincide, with
the samples to find an alternative function that is cheaper or
more parallel than the original function. To find such a func-
tion, PANDORA performs a specialized form of symbolic
regression, which searches the space of all mathematical
equations to automatically discover the model of a dataset.
However, whereas symbolic regression is generally focused
on finding a function that minimizes error, PANDORA is
also concerned with finding functions (i.e., approximations)
that have desirable computation or communication charac-
teristics for a given architecture.

For illustrative purposes, Figure 1(a) demonstrates a sim-
ple example of a sine wave restricted to the range of -7/2 to
7 /2. Figure 1(b) shows the sampled output of the function.
Figure 1(c) demonstrates two example regressions that ap-
proximate the original function within the restricted range:
a parabola and a piecewise linear regression. Approximating
larger ranges can be achieved via piecewise decomposition,
where if-statements first check the range and then apply
the corresponding approximation. However, in many cases,
a user may want the range to be restricted to values used
by the application. Although this simple example does not
demonstrate increased parallelism, it is intended to show
the basic strategy of PANDORA. In general, PANDORA can
trade off error for increased performance to support differ-
ent use cases, where at one extreme is the original function
(low performance, no error) and at the opposite extreme is a
constant (high performance, prohibitive error).

To evaluate PANDORA, we developed a symbolic-regression
framework in Python that extends the DEAP [6] evolutionary
computation library with additional genetic-programming
capabilities. The presented experiments approximate Python

functions, but the framework can support any language

by simply sampling a function’s outputs. Given a function,
the framework assembles approximations using genetic pro-
gramming [9, 10] built from basic mathematical primitives

(addition, multiplication, sine, log, etc.) combined with exist-
ing coarse-grained approximations (neural nets, perceptrons,
hidden Markov models), while using standard crossover

strategies (e.g., one-point crossover, one-point leaf-biased

crossover) and mutation strategies (e.g., uniform, node re-
placement, random subtree insertion, random subtree re-
moval). To guide genetic programming, we provide PAN-
DORA with a fitness function that considers the parallelism

of the approximation, in addition to goal-specific metrics

(performance, energy estimations) and application constraints
(power, error). Performance and energy estimations include

system-specific characteristics (e.g., communication band-
width limits), which enable genetic programming to modify
the approximation to avoid bottlenecks. For example, if data

movement becomes a bottleneck, then genetic programming

would prioritize approximations with reduced communi-
cation (e.g., by eliminating inputs and/or synchronization).
For each generated approximation, PANDORA computes

several error metrics (e.g., root-mean-square, mean absolute-
percentage, etc.) by comparing the approximation and the

original code with random inputs. Although approximation

discovery times generally range from seconds to hours, we

ran these experiments for days and then collected results of
the best approximations found at that time.

Figure 2 demonstrates the benefits of the main envisioned
use of PANDORA: replacing loop-carried dependencies with
approximations that have independent (i.e., parallel) itera-
tions. To show tradeoffs between error and performance,
we generated multiple approximations using different error
constraints. We evaluate this use case using recurrence rela-
tions and show that PANDORA is able to automatically find
closed-form solutions or solutions with parallel iterations.
For example, PANDORA automatically converts the infinite
impulse response (IIR) filters into finite impulse response
(FIR) filters, with no pre-defined knowledge of such concepts.
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Figure 2. Speedup from elimination of loop-carried de-
pendencies via automatically discovered parallel ap-
proximations with constrained input bandwidth.

Although there are known closed-form solutions and approx-
imations for some examples, the key point is that PANDORA
automatically finds a closed-form solution or a parallel ap-
proximation. Such functionality is critical due to the vast
majority of real functions not having existing approxima-
tions, and due to the common use of application-specific
approximations that are too unique for compiler support.

We created each example by writing corresponding Python
code, but we analyzed performance independently from lan-
guage and architecture by comparing the depth of the approx-
imation’s dataflow graph (DFG) with the depth of the original
DFG after applying unrolling and tree-height reduction. We
use the depth of the DFG because the depth represents the
length of the longest dependence chain, which puts a bound
on execution time. In general, a more parallel solution tends
to have a smaller depth than a sequential solution, where
loop-carried dependencies will create a sequence of itera-
tions in the unrolled DFG. Although some architectures may
not provide enough resources to achieve such parallelism,
for these examples, the comparison is applicable to most
architectures. Application-specific parameters (e.g., input
sizes, constants) used in the experiments are specified in
the legend. Because recurrence relations with closed-form
solutions could have arbitrarily large speedup by using large
inputs, we chose a range of input sizes that illustrate the
basic trends.

To evaluate realistic use cases, the speedup in Figure 2
constrains input bandwidth to existing PCle bandwidth. The
results demonstrate several trends. First, all of the filter exam-
ples tend to achieve a significant speedup of around 30x with
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Figure 3. Approximation tradeoffs between speedup
and error (log scale) for 336 tested applications.

low error, which increases slightly as more error is allowed.
The second trend is shown by the consecutive-sum exam-
ples, which demonstrated flat speedups of 5x and 7x for input
sizes of 1k and 10k. This speedup does not increase for addi-
tional error due to PANDORA finding an exact closed-form
solution that is simple enough to not benefit from additional
approximation. The third trend is shown by the remaining
examples, for which PANDORA found closed-form solutions
that demonstrated a rapid increase in speedup from 1x to 40x
for different error constraints due to more complex solutions.

The most interesting example in Figure 2 is the logistic-
map approximation. Despite having no known closed-form
solution, PANDORA found approximations with a root-mean-
square error (RMSE) of less than 1E-4. Although not an exact
solution, that level of error can be treated as a solution in
many use cases. Furthermore, the discovery capabilities are
demonstrated by the counter-intuitive characteristics of the
generated approximation. Despite the logistic map only us-
ing multiplication and subtraction, the approximation uses
a square root, cosine, and hyperbolic tangent.

When not limited by input bandwidth (e.g., internal mem-
ory), the results showed two trends (not in figure): (1) signif-
icantly higher speedups ranging from ~200x to ~4000x, and
(2) significant improvements from increasing error.

Figure 3 presents 336 randomly generated DFGs represent-
ing unrolled loops with loop-carried dependencies that were
approximated with a mean-absolute percentage error con-
straint of 1%. The DFGs contained random types of floating-
point operations with multiple non-associative operations,
random numbers of inputs, and random numbers of opera-
tions ranging from 20 to 160. The results show a wide range
of speedups from 2.3x to 81x, with a trend towards larger
speedups for larger error. The overall averages for speedup
and error were 9.5x and 0.3%, respectively. 93% of the ex-
amples were able to meet the error constraint, with many
examples using orders-of-magnitude less error. The remain-
ing 7% achieved errors between 1% and 5.9%.

Interestingly, when repeating the tests with integers, some
approximations had 0% error. To our knowledge, no previous
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Figure 4. FPGA speedup (log; scale) of reduced-area
approximations compared to Intel IP cores.

compilation approach can automatically convert a series of
non-associative operations into an exact parallel alternative.

Another interesting result was the wide range of differ-
ent approximations. In addition to increasing parallelism,
PANDORA occasionally removed iterations of a loop that
had little effect on error. Such an approximation is an ex-
isting technique known as loop perforation [3, 17], but the
significance here is that this approximation was discovered
automatically. In most cases, PANDORA both reduced the
total operations and parallelized those operations. For five
examples, PANDORA increased the number of operations
to enable a parallel approximation. In addition, PANDORA
often eliminated some of the original inputs, which we envi-
sion being useful for eliminating communication bottlenecks
and improving scalability, which could be further improved
by integrating dimensionality-reduction techniques.

Figure 4 demonstrates parallelizing approximations specif-
ically for FPGAs, where parallelism is often limited by avail-
able resources. In these experiments, we compare achiev-
able parallelism (i.e., number of IP cores that would fit in
the FPGA) between Intel-provided IP cores (synthesized for
Arria 10) and automatically generated approximations. By
reducing the resources needed to implement each core, the
approximations enable FPGA designs to achieve significant
increases in spatial parallelism compared to Intel’s optimized
IP cores. The results show speedups between 1x and 10x for
mean-absolute percentage errors below 5%, with rapid in-
creases in speedup to over 100x for larger errors. In achieved
a speedup of 757x at 18% error. Although the larger errors are
unlikely to be acceptable, we include the tradeoffs to demon-
strate upper bounds on performance. The results assume
equal clock frequencies, which likely makes the speedup
pessimistic due to most of the approximations using finer-
grained operations that support higher frequencies.

Stitt and Campbell

3 Limitations and Future Work

Although the results from the previous section demonstrate
considerable potential, PANDORA has several technical lim-
itations that need to be addressed to make the framework
more widely usable. One primary challenge is that sym-
bolic regression is known to be a considerably challeng-
ing problem, with most existing strategies only working
well for toy problems [12]. We plan to address this chal-
lenge with hardware-accelerated symbolic regression that
performs over a million times faster than existing software
implementations, according to our preliminary results.

Another fundamental limitation is that by using machine
learning, PANDORA can only make probabilistic guarantees
about the error of the approximation. However, this same
limitation applies to all machine-learning techniques, which
are widespread in many application domains.

Another limitation is the tendency for unintuitive approx-
imations. As a result, if a designer needed to understand or
debug the approximation, it would be difficult to do so. Inter-
estingly, this limitation is also one of the biggest advantages
because these non-obvious solutions suggest that an existing
compiler is unlikely to include, or a designer is unlikely to
manually create, approximations of similar quality.

4 Conclusions

In this paper, we introduced the PANDORA framework for
automatically discovering parallelizing approximations that
are specialized for a targeted architecture. Unlike existing
approximate-computing work that focuses on languages and
compilers that transform the original code into an approxima-
tion, PANDORA leverages a specialized symbolic-regression
strategy that discovers a new approximation that is not based
directly on the original code. Instead, PANDORA samples
the outputs of the original function and then leverages the
fact that there are an infinite number of functions that coin-
cide, or nearly coincide, with those samples to search for an
alternative function that can be computed more efficiently.

We demonstrated that PANDORA can remove loop-carried
dependencies from recurrence relations, while also increas-
ing parallelism in the presence of non-associative operations.
Finally, we generated FPGA-specific approximations to re-
duce the resources needed to implement a number of FPGA
functions, which demonstrated attractive tradeoffs between
error and performance. Although there are still technical
challenges preventing PANDORA from being widely usable,
this work-in-progress demonstrates Pareto-optimal trade-
offs to the decades-long compiler challenge of parallelizing
sequential code.
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