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Abstract

In this paper, we introduce PANDORA—a framework that

complements existing parallelizing compilers by automati-

cally discovering application- and architecture-specialized

approximations. We demonstrate that PANDORA creates

approximations that extract massive amounts of parallelism

from inherently sequential code by eliminating loop-carried

dependencies—a long-time goal of the compiler research

community. Compared to exact parallel baselines, prelimi-

nary results show speedups ranging from 2.3x to 81x with

acceptable error for many usage scenarios.

CCS Concepts • Software and its engineering→Com-

pilers; •Mathematics of computing→Approximation;

• Computing methodologies → Machine learning ap-

proaches.

Keywords symbolic regression, approximate computing,

machine learning

ACM Reference Format:

Greg Stitt and David Campbell. 2019. PANDORA: A Paralleliz-

ing Approximation-Discovery Framework (WIP Paper). In Pro-

ceedings of the 20th ACM SIGPLAN/SIGBED Conference on Lan-

guages, Compilers, and Tools for Embedded Systems (LCTES ’19),

June 23, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3316482.3326345

1 Introduction

Over the last decade, the increasingly common usage of ma-

chine learning has resulted in a historic, yet non-obvious,

change to computing: whereas traditional computing has

focused on semantic correctness, machine learning has made

approximation a mainstream design strategy. Similarly, yet

counter-intuitively, the common usage of real numbers shows
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that many applications already tolerate some approximation,

including robotics, financial analysis, Internet searches, and

even some scientific-computing applications, among others

[11]. For other applications (e.g., signal processing), subjec-

tive quality often enables numerous approximations that

trade off efficiency and quality.

Approximate computing is a technology that exploits ac-

ceptable error in these applications to improve performance

and/or energy [5, 8]. Existing research automates approxi-

mation with specialized frameworks, languages, and/or com-

pilers that apply known approximations while meeting user-

specified error constraints [1–4, 13–16]. However, resulting

improvements are often modest because effective approxi-

mations cannot always be generated via transformations to

the original code. In addition, approximations are often too

application specific to have widespread compiler support,

and the acceptable level of approximation is often subjective,

or may even change dynamically (e.g., low battery), which

makes "one-size-fits-all" approximations less effective.

In this paper, we introduce PANDORA—a parallelizing

approximation-discovery framework—which uses machine

learning to automatically discover application-specific ap-

proximations that are specialized for potentially any archi-

tecture, and are not derived from transformations to the

original code. Unlike most existing approximate-computing

approaches that reduce computation, PANDORA also dis-

covers approximations that increase parallelism, even for

inherently sequential applications from which current com-

pilers cannot extract parallelism. Although parallelizing com-

piler transformations have been studied for decades [7],

those transformations are restricted by exact correctness.

By contrast, PANDORA discovers new approximations via

symbolic-regression-based machine learning that eliminates

dependencies to exploit parallelism that improves perfor-

mance or energy given an error constraint. In addition, PAN-

DORA significantly improves scalability by automatically

generating system-specialized approximations that reduce

communication, data-movement, and synchronization bot-

tlenecks. Furthermore, PANDORA automatically generates

a range of Pareto-optimal tradeoffs between error, perfor-

mance, and/or energy, which enables adaptation to different

use cases.
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Figure 1. PANDORA (a) approximates an existing function by (b) sampling a number of outputs across the desired

input range, and then (c) performing a specialized symbolic regression that optimizes a fitness function that uses

error and performance (or any goal) to create a number of Pareto-optimal approximations.

2 PANDORA

As input, PANDORA takes a function to approximate and

an optional set of constraints, and outputs a set of Pareto-

optimal approximations that are specialized for the targeted

architecture. The basic strategy of PANDORA is to first re-

place the original function with samples of the function’s

output. PANDORA exploits the fact that there is an infinite

number of functions that coincide, or nearly coincide, with

the samples to find an alternative function that is cheaper or

more parallel than the original function. To find such a func-

tion, PANDORA performs a specialized form of symbolic

regression, which searches the space of all mathematical

equations to automatically discover the model of a dataset.

However, whereas symbolic regression is generally focused

on finding a function that minimizes error, PANDORA is

also concerned with finding functions (i.e., approximations)

that have desirable computation or communication charac-

teristics for a given architecture.

For illustrative purposes, Figure 1(a) demonstrates a sim-

ple example of a sine wave restricted to the range of -π/2 to
π/2. Figure 1(b) shows the sampled output of the function.

Figure 1(c) demonstrates two example regressions that ap-

proximate the original function within the restricted range:

a parabola and a piecewise linear regression. Approximating

larger ranges can be achieved via piecewise decomposition,

where if-statements first check the range and then apply

the corresponding approximation. However, in many cases,

a user may want the range to be restricted to values used

by the application. Although this simple example does not

demonstrate increased parallelism, it is intended to show

the basic strategy of PANDORA. In general, PANDORA can

trade off error for increased performance to support differ-

ent use cases, where at one extreme is the original function

(low performance, no error) and at the opposite extreme is a

constant (high performance, prohibitive error).

To evaluate PANDORA,we developed a symbolic-regression

framework in Python that extends theDEAP [6] evolutionary

computation library with additional genetic-programming

capabilities. The presented experiments approximate Python

functions, but the framework can support any language

by simply sampling a function’s outputs. Given a function,

the framework assembles approximations using genetic pro-

gramming [9, 10] built from basic mathematical primitives

(addition, multiplication, sine, log, etc.) combined with exist-

ing coarse-grained approximations (neural nets, perceptrons,

hidden Markov models), while using standard crossover

strategies (e.g., one-point crossover, one-point leaf-biased

crossover) and mutation strategies (e.g., uniform, node re-

placement, random subtree insertion, random subtree re-

moval). To guide genetic programming, we provide PAN-

DORA with a fitness function that considers the parallelism

of the approximation, in addition to goal-specific metrics

(performance, energy estimations) and application constraints

(power, error). Performance and energy estimations include

system-specific characteristics (e.g., communication band-

width limits), which enable genetic programming to modify

the approximation to avoid bottlenecks. For example, if data

movement becomes a bottleneck, then genetic programming

would prioritize approximations with reduced communi-

cation (e.g., by eliminating inputs and/or synchronization).

For each generated approximation, PANDORA computes

several error metrics (e.g., root-mean-square, mean absolute-

percentage, etc.) by comparing the approximation and the

original code with random inputs. Although approximation

discovery times generally range from seconds to hours, we

ran these experiments for days and then collected results of

the best approximations found at that time.

Figure 2 demonstrates the benefits of the main envisioned

use of PANDORA: replacing loop-carried dependencies with

approximations that have independent (i.e., parallel) itera-

tions. To show tradeoffs between error and performance,

we generated multiple approximations using different error

constraints. We evaluate this use case using recurrence rela-

tions and show that PANDORA is able to automatically find

closed-form solutions or solutions with parallel iterations.

For example, PANDORA automatically converts the infinite

impulse response (IIR) filters into finite impulse response

(FIR) filters, with no pre-defined knowledge of such concepts.
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Figure 2. Speedup from elimination of loop-carried de-

pendencies via automatically discovered parallel ap-

proximations with constrained input bandwidth.

Although there are known closed-form solutions and approx-

imations for some examples, the key point is that PANDORA

automatically finds a closed-form solution or a parallel ap-

proximation. Such functionality is critical due to the vast

majority of real functions not having existing approxima-

tions, and due to the common use of application-specific

approximations that are too unique for compiler support.

We created each example bywriting corresponding Python

code, but we analyzed performance independently from lan-

guage and architecture by comparing the depth of the approx-

imation’s dataflow graph (DFG)with the depth of the original

DFG after applying unrolling and tree-height reduction. We

use the depth of the DFG because the depth represents the

length of the longest dependence chain, which puts a bound

on execution time. In general, a more parallel solution tends

to have a smaller depth than a sequential solution, where

loop-carried dependencies will create a sequence of itera-

tions in the unrolled DFG. Although some architectures may

not provide enough resources to achieve such parallelism,

for these examples, the comparison is applicable to most

architectures. Application-specific parameters (e.g., input

sizes, constants) used in the experiments are specified in

the legend. Because recurrence relations with closed-form

solutions could have arbitrarily large speedup by using large

inputs, we chose a range of input sizes that illustrate the

basic trends.

To evaluate realistic use cases, the speedup in Figure 2

constrains input bandwidth to existing PCIe bandwidth. The

results demonstrate several trends. First, all of the filter exam-

ples tend to achieve a significant speedup of around 30x with
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Figure 3. Approximation tradeoffs between speedup

and error (log scale) for 336 tested applications.

low error, which increases slightly as more error is allowed.

The second trend is shown by the consecutive-sum exam-

ples, which demonstrated flat speedups of 5x and 7x for input

sizes of 1k and 10k. This speedup does not increase for addi-

tional error due to PANDORA finding an exact closed-form

solution that is simple enough to not benefit from additional

approximation. The third trend is shown by the remaining

examples, for which PANDORA found closed-form solutions

that demonstrated a rapid increase in speedup from 1x to 40x

for different error constraints due to more complex solutions.

The most interesting example in Figure 2 is the logistic-

map approximation. Despite having no known closed-form

solution, PANDORA found approximationswith a root-mean-

square error (RMSE) of less than 1E-4. Although not an exact

solution, that level of error can be treated as a solution in

many use cases. Furthermore, the discovery capabilities are

demonstrated by the counter-intuitive characteristics of the

generated approximation. Despite the logistic map only us-

ing multiplication and subtraction, the approximation uses

a square root, cosine, and hyperbolic tangent.

When not limited by input bandwidth (e.g., internal mem-

ory), the results showed two trends (not in figure): (1) signif-

icantly higher speedups ranging from ∼200x to ∼4000x, and

(2) significant improvements from increasing error.

Figure 3 presents 336 randomly generated DFGs represent-

ing unrolled loops with loop-carried dependencies that were

approximated with a mean-absolute percentage error con-

straint of 1%. The DFGs contained random types of floating-

point operations with multiple non-associative operations,

random numbers of inputs, and random numbers of opera-

tions ranging from 20 to 160. The results show a wide range

of speedups from 2.3x to 81x, with a trend towards larger

speedups for larger error. The overall averages for speedup

and error were 9.5x and 0.3%, respectively. 93% of the ex-

amples were able to meet the error constraint, with many

examples using orders-of-magnitude less error. The remain-

ing 7% achieved errors between 1% and 5.9%.

Interestingly, when repeating the tests with integers, some

approximations had 0% error. To our knowledge, no previous
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Figure 4. FPGA speedup (log2 scale) of reduced-area

approximations compared to Intel IP cores.

compilation approach can automatically convert a series of

non-associative operations into an exact parallel alternative.

Another interesting result was the wide range of differ-

ent approximations. In addition to increasing parallelism,

PANDORA occasionally removed iterations of a loop that

had little effect on error. Such an approximation is an ex-

isting technique known as loop perforation [3, 17], but the

significance here is that this approximation was discovered

automatically. In most cases, PANDORA both reduced the

total operations and parallelized those operations. For five

examples, PANDORA increased the number of operations

to enable a parallel approximation. In addition, PANDORA

often eliminated some of the original inputs, which we envi-

sion being useful for eliminating communication bottlenecks

and improving scalability, which could be further improved

by integrating dimensionality-reduction techniques.

Figure 4 demonstrates parallelizing approximations specif-

ically for FPGAs, where parallelism is often limited by avail-

able resources. In these experiments, we compare achiev-

able parallelism (i.e., number of IP cores that would fit in

the FPGA) between Intel-provided IP cores (synthesized for

Arria 10) and automatically generated approximations. By

reducing the resources needed to implement each core, the

approximations enable FPGA designs to achieve significant

increases in spatial parallelism compared to Intel’s optimized

IP cores. The results show speedups between 1x and 10x for

mean-absolute percentage errors below 5%, with rapid in-

creases in speedup to over 100x for larger errors. ln achieved

a speedup of 757x at 18% error. Although the larger errors are

unlikely to be acceptable, we include the tradeoffs to demon-

strate upper bounds on performance. The results assume

equal clock frequencies, which likely makes the speedup

pessimistic due to most of the approximations using finer-

grained operations that support higher frequencies.

3 Limitations and Future Work

Although the results from the previous section demonstrate

considerable potential, PANDORA has several technical lim-

itations that need to be addressed to make the framework

more widely usable. One primary challenge is that sym-

bolic regression is known to be a considerably challeng-

ing problem, with most existing strategies only working

well for toy problems [12]. We plan to address this chal-

lenge with hardware-accelerated symbolic regression that

performs over a million times faster than existing software

implementations, according to our preliminary results.

Another fundamental limitation is that by using machine

learning, PANDORA can only make probabilistic guarantees

about the error of the approximation. However, this same

limitation applies to all machine-learning techniques, which

are widespread in many application domains.

Another limitation is the tendency for unintuitive approx-

imations. As a result, if a designer needed to understand or

debug the approximation, it would be difficult to do so. Inter-

estingly, this limitation is also one of the biggest advantages

because these non-obvious solutions suggest that an existing

compiler is unlikely to include, or a designer is unlikely to

manually create, approximations of similar quality.

4 Conclusions

In this paper, we introduced the PANDORA framework for

automatically discovering parallelizing approximations that

are specialized for a targeted architecture. Unlike existing

approximate-computing work that focuses on languages and

compilers that transform the original code into an approxima-

tion, PANDORA leverages a specialized symbolic-regression

strategy that discovers a new approximation that is not based

directly on the original code. Instead, PANDORA samples

the outputs of the original function and then leverages the

fact that there are an infinite number of functions that coin-

cide, or nearly coincide, with those samples to search for an

alternative function that can be computed more efficiently.

We demonstrated that PANDORA can remove loop-carried

dependencies from recurrence relations, while also increas-

ing parallelism in the presence of non-associative operations.

Finally, we generated FPGA-specific approximations to re-

duce the resources needed to implement a number of FPGA

functions, which demonstrated attractive tradeoffs between

error and performance. Although there are still technical

challenges preventing PANDORA from being widely usable,

this work-in-progress demonstrates Pareto-optimal trade-

offs to the decades-long compiler challenge of parallelizing

sequential code.
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