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Highlights 14 

• xROI is used to extract and export time series data from stacks of digital images  15 

• Users can interactively delineate regions of interest using xROI 16 

• xROI handles field of view (FOV) shifts  17 



 

 

3 

Abstract 18 

Digital repeat photography and near-surface remote sensing have been used by environmental 19 

scientists to study environmental change for nearly a decade. However, a user-friendly, reliable, 20 

and robust platform to extract color-based statistics and time series from a large stack of 21 

images is still lacking. Here, we present an interactive open-source toolkit, called xROI, that 22 

facilitates the process of time series extraction and improves the quality of the final data. xROI 23 

provides a responsive environment for scientists to interactively a) delineate regions of interest 24 

(ROI), b) handle field of view (FOV) shifts, and c) extract and export time series data 25 

characterizing color-based metrics. The software gives user the opportunity to adjust mask files 26 

or draw new masks, every time an FOV shift occurs. Utilizing xROI can significantly facilitate 27 

data extraction from digital repeat photography and enhance the accuracy and continuity of 28 

extracted data.   29 
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Introduction 33 

Although the idea of repeat photography to study environmental change goes back a century 34 

(Stephens et al., 1987; Turner, 2003), using digital repeat photography has become increasingly 35 

popular to monitor and study the environment for a diverse range of applications such as 36 

studying plant phenology (Berra et al., 2019; de Moura et al., 2017; Olivera-Guerra et al., 2017; 37 

Richardson et al., 2018b; Sonnentag et al., 2012; Watson et al., 2019; Yan et al., 2019), 38 

assessing the seasonality of gross primary production (Crimmins and Crimmins, 2008; 39 

Migliavacca et al., 2011; Yuan et al., 2018), salt marsh restoration (Knox et al., 2017), 40 

monitoring tidal wetlands (O'Connell and Alber, 2016), investigating growth in croplands (Liu 41 

and Pattey, 2010; Zhou et al., 2013), and evaluating phenological data products derived from 42 

satellite remote sensing (Richardson et al., 2018c). However, extracting “clean” and high quality 43 

data from a large set of images often presents three main challenges: a) delineating region of 44 

interests (ROI) (Richardson et al., 2018a), b) computational costs (Filippa et al., 2016a); and c) 45 

handling expected and unexpected field of view (FOV) shifts (Brown et al., 2016; Moore et al., 46 

2016). All three issues require careful consideration. Currently, these steps are often performed 47 

in separate, fully supervised stages. An integrated portable environment with which the user 48 

can interactively manage and extract high quality time series would significantly improve data 49 

collection for environmental studies. 50 

Obtaining quantitative data from digital repeat photography images is usually 51 

performed by defining appropriate ROI’s and, for the red (R), green (G) and blue (B) color 52 

channels, calculating pixel value (intensity) statistics across the pixels within each ROI. ROI 53 
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boundaries are delineated by mask files which define which pixels are included and which are 54 

excluded from these calculations. User-friendly software libraries to delineate user-defined 55 

ROI’s interactively are scarce and commonly require commercial licenses (e.g. ENVI, MATLAB 56 

Image Processing Toolbox). Additionally, the data extraction process is usually performed in 57 

another environment, the process requires adequate familiarity with scripting languages (e.g. R 58 

(Team, 2018), MATLAB (MathWorks, 2015), Phenopix R package (Filippa et al., 2016b), Python 59 

(Sanner, 1999) and third-party plugins (Sunoj et al., 2018)), or the tools are not suitable for 60 

general image datasets (Bradley et al., 2010). Thus, an interactive platform with an easy-to-use 61 

graphical user interface that can integrate ROI delineation and time series extraction is highly 62 

desired.  63 

Camera field of view shifts will result in pixels or areas outside of the original region of 64 

interest falling into the masked area, which can cause low-quality or even misleading data. 65 

Figure 1 shows two examples of FOV shifts from the PhenoCam network 66 

(http://phenocam.sr.unh.edu) that was founded in 2008 to study vegetation phenology across 67 

ecosystems of North America using near-surface remote sensing (Richardson, 2018). After a 68 

FOV shift occurrence (e.g. Figure 1), the corresponding ROI and mask files should be adjusted 69 

(minor shift: ROI is still in FOV but has moved), redrawn (major shifts: ROI is partially in FOV) or 70 

stopped processing (entire FOV has changed). However, detecting FOV shifts is not a trivial task, 71 

particularly for large stacks of digital images (e.g., 35 million images of the PhenoCam archive 72 

(Seyednasrollah et al., 2019)). Correlation based methods (e.g. phase correlation or binary 73 

correlations) (Gottumukkal and Asari, 2004) or distance-based methods (e.g. Manhattan 74 
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distance) (Dhodapkar and Smith, 2003) has been developed for facial recognition, object 75 

detection and tracking techniques, but they often fail to perform a satisfactory job on 76 

landscape images (e.g. composition of canopy and sky). Moreover, most of these methods are 77 

computationally expensive and require calibration and learning steps (such as site-specific 78 

tuning). Therefore, a simple and quick method to detect FOV shifts could further speed-up high 79 

quality data extraction and management.  80 

 81 

Figure 1 Two examples of field of view (FOV) shift at the bartlettir and harvardhemlock PhenoCam sites. At bartlettir, the 82 

original region of interest after the shift was entirely outside of the field of view and the post-shift FOV was not relevant for the 83 

study. At harvardhemlock, FOV shift was minor and redrawing the region of interest fixed the issue.  84 
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Here, we present an interactive, portable and robust framework, called xROI, with a 85 

simple graphical user interface (GUI) with which the user can define regions of interest (ROI’s), 86 

monitor FOV shifts and extract color-based statistical metrics for a stacked set of digital images. 87 

xROI is an R package that can run on several operating systems. Our toolkit facilitates the entire 88 

process by several orders of magnitude, reduces human-based errors, and improves data 89 

continuity and reproducibility.  90 

Application Development  91 

The R language and Shiny package (Chang et al., 2017) were used as the main development 92 

tools for xROI, while Markdown (Baumer et al., 2014), HTML (Aronson, 1995), CSS (Powell, 93 

2010)and JavaScript (Mikkonen and Taivalsaari, 2007) languages were used to improve 94 

interactivity. R is an interpreted computer language which is increasingly popular among 95 

environmental scientists. Shiny is an add-on R package that provides a powerful platform for 96 

development of web-based applications (Shiny apps) in R. Shiny apps generally include three 97 

main elements: 1) the user interface (UI), 2) the server-side engine; and 3) the auxiliary 98 

functionalities. The UI is the element in which the appearance features and graphical user 99 

interface are designed. The server element is the engine built to interpret user responses and 100 

react accordingly. Most of the processing and computation steps are performed inside the 101 

server element, while general set-up and intermediate functions are accommodated inside the 102 

auxiliary functionalities. Although Shiny apps are primarily used for web-based applications 103 

hosted on a web server to be used online, we used Shiny for its graphical user interface 104 
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capabilities. In other words, both UI and server modules are run locally from the same machine 105 

and hence no internet connection is required. The xROI’s UI element presents a side-panel for 106 

data entry and three main tab-pages, each responsible for a specific task. The server-side 107 

element consists of R and shell scripts. Image processing and geospatial features were 108 

performed using the Geospatial Data Abstraction Library (GDAL) (Warmerdam, 2008) and the 109 

rgdal (Bivand et al., 2018) and raster (Hijmans, 2017) R packages.  110 

The xROI R package has been published on The Comprehensive R Archive Network 111 

(CRAN). The latest tested xROI package can be installed from the CRAN packages repository by 112 

running the following command in an R environment: 113 

utils::install.packages('xROI').  114 

Alternatively, the latest beta release of xROI can be directly downloaded and installed from the 115 

package GitHub repository: 116 

devtools::install_github('bnasr/xROI'), 117 

however, this requires that the necessary R packages and GDAL library have already been 118 

installed on the local system.  119 

xROI depends on many R packages including: colourpicker, data.table, jpeg, lubridate, 120 

moments, plotly, raster, RCurl, rgdal, rjson, shiny, shinyAce, shinyBS, shinydashboard, 121 

shinyFiles, shinyjs, shinyTime, shinythemes, sp, stringr, and tiff. All the required libraries and 122 

packages will be automatically installed with installation of xROI. The package offers a fully 123 

interactive high-level interface as well as a set of low-level functions for ROI processing. A 124 

comprehensive user manual for low-level image processing using xROI is available from 125 
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https://cran.r-project.org/package=xROI/xROI.pdf. The user manual includes a set of examples 126 

for each function. Here we explain the graphical user interface, which can be launched from an 127 

interactive R environment by: 128 

library(xROI) 129 

Launch() 130 

or from the command line (e.g. shell in Linux, Terminal in macOS and Command Prompt in 131 

Windows machines) where an R engine is already installed by: 132 

Rscript -e 'xROI::Launch(Interactive = TRUE)' 133 

Calling the Launch function opens up the app in the system’s default web browser, featuring an 134 

example dataset to explore different modules or upload a new dataset of images.  135 

Design and Structure 136 

xROI includes three main modules: a) ROI drawing module, (b) FOV shift monitoring module; 137 

and (c) time series extraction module. Figure 2 shows the arrangement of each module as 138 

separate tab-panels. All the modules have a server-side and a UI-side which are explained in the 139 

following sections. The modules and how they are linked to each other are illustrated in 140 

Appendix A: Application Flowchart. 141 

ROI Drawing Module 142 

The main function of the ROI drawing module is to provide an interactive environment for 143 

creating regions of interest (ROI’s) and storing associated files on a disk space for a later use. 144 

The user can load a set of images using the Image directory button and browse into the folder 145 
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containing the data (item 1 in Figure 2). There are two ways to load images: 1) using the 146 

“PhenoCam format”, and 2) using the filelist.csv input file. If the user selects “PhenoCam 147 

format”, all JPEG images in the image directory that follow the PhenoCam naming convection 148 

(Richardson et al., 2018a) will be loaded into the app. Time and date metadata will be 149 

automatically assigned to each image based on their filenames (i.e. 150 

<sitename>_<YYYY_MM_DD>_<hhmmss>.jpg, where MM=01-12, DD=01-31, hh=00-23, 151 

mm=00-59 and ss=00-59). If the user selects “From filelist.csv”, the software looks for a comma 152 

separated file named “filelist.csv” to obtain information about how to properly load the 153 

dataset. In that case, the user is responsible for generating the filelist.csv file. The filelist.csv file 154 

contains a list of images and their associated timing and is formatted in the comma-separated-155 

values format as follows. Each row includes one column for the filename as character strings 156 

and six columns for year, month, day, hour, minute and second of the acquisition date and 157 

time, in that order. Two example rows are presented as follows: 158 

"dukehw_2015_01_01_120109.jpg",2015,1,1,12,1,9  159 

or  160 

"IMG2012.jpg",2019,2,5,7,00,00.  161 

The user can explore loaded images using the exploring panel (item 2 in Figure 2).  162 

After images are loaded, the first step of generating a new ROI is to enter metadata for 163 

the ROI, including site name, ROI description, vegetation type (see Table 1), ROI ID number (a 164 

user defined number to identify ROI for vegetation type); and start and end date and time of 165 

the mask files (item 3 in Figure 2). The user can create new ROI masks by drawing polygons 166 
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around the region of interest on the plotted image. This is performed using Shiny’s clickOpts 167 

functionality. The image that is used to draw an ROI is called the “sample image”. The sample 168 

image may be used for later references. The user can add new vertices using single clicks on the 169 

image, drawing edges of a polygon. Double clicks are reserved to close a polygon and start a 170 

new one. The user can edit an existing polygon using the Undo and Erase button (item 4 in 171 

Figure 2). The vector-based polygons are stored as the relative coordinates of vertices. The 172 

polygons can be converted to a rasterized mask using the Accept button. This step is performed 173 

using the GDAL, rgdal and raster libraries.  174 

 175 

Figure 2 Arrangement of the user-interface items in the ROI drawing module in xROI. (1) loading images, (2) exploring tool to 176 

browse images, (3) entering ROI metadata, and (4) the ROI drawing panel.  177 
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To store the generated ROI to disk, we adopted the file structure and formats of the 178 

PhenoCam network (Richardson et al., 2018a). Each ROI definition consists of an “ROI List” file, 179 

one or more mask file(s), and their corresponding vector-based polygon files. An ROI List file is a 180 

CSV file that contains ROI metadata including owner’s name, primary vegetation type, 181 

description, list of mask files, their associated start and end date and times and the sample 182 

image filename. Details about formatting of the ROI List file are discussed in Richardson et al. 183 

(2018a) and also presented here in Appendix B: Description of ROI List Files. Vector-based 184 

polygon files indicate the relative coordinates of points defining the region of interest. In fact, 185 

polygon files are the raw input data created by the user in order to generate mask files. Mask 186 

files are raster images containing binary bitmaps of each mask in TIFF format: black (1) for 187 

“included” and white (0) for “excluded” pixels. The vector-based file, which is size-free, is used 188 

to generate a mask file that is the same dimension as the sample image. Although only mask 189 

rasters (in TIFF format) and ROI list files are directly used to extract the time series, vector-190 

based information (i.e. coordinates of vertices) are stored for reference; potential uses include 191 

generating new mask rasters for files with different image dimensions. The user can save all 192 

ROI-related files in the original directory for later reference using the Save ROI button. The user 193 

can also download them as a zipped file using the Download ROI button. And, because the ROI 194 

definitions follow the standard PhenoCam format, the downloaded ROI files can be proposed to 195 

the PhenoCam data management team for incorporation into the routine processing, if image 196 

data have already been contributed to the PhenoCam network. The file formats and the naming 197 

convention of the ROI files are presented in Table 1. 198 
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Table 1 File formats and naming convention of ROI files 199 

File Format Naming convention* Purpose 

ROI List Text/CSV <sitename>_<veg_type>_<ROI_ID_number>_roi.csv ROI metadata 

Mask  TIFF  <sitename>_<veg_type>_<ROI_ID_number>_<mask_ID_n

umber>.csv 

Raster-based mask 

file 

Polygon  CSV <sitename>_<veg_type>_<ROI_ID_number>_<mask_ID_n

umber>_vector.csv 

Vector-based 

region of interest 

*: <sitename> is a character string including the site name entered by the user. <veg_type> is a two-

character value indicating the vegetation type as selected by the user (AG: Agriculture, DB: Deciduous 

Broadleaf, EB: Evergreen Broadleaf, EN: Evergreen Needleleaf, DN: Deciduous Needleleaf, GR: 

Grassland, MX: Mixed Forest, NV: Non-vegetated, RF: Reference Panel, SH: Shrub, TN: Tundra, UN: 

Understory, WL: Wetland, XX: Other/Canopy). <ROI_ID_number> is a four-digit integer number as a 

unique identification number of the ROI for the corresponding vegetation type. <mask_ID_number> is 

a two-digit integer number identifying the mask files. 

 200 

FOV Shifts Monitoring Module 201 

We used a simple, fast and efficient method to detect potential FOV shifts using the center-line 202 

image (CLI) technique (Seyednasrollah, 2017), and to enable the user, with minimal effort, to 203 

validate shift detections. A CLI is a single image raster, representing the entire dataset as its 204 

vertical columns are composed of the center column of each loaded image. The assembled CLI 205 

provides a quick, simple and robust way to visualize significant changes in the horizon line or 206 

canopy texture. This enables the user to rapidly inspect potential FOV shifts, and adjust the ROI 207 
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accordingly. The user can move the mouse pointer over the CLI to find the date on which an 208 

FOV shift has occurred. Clicking on the CLI will display the image from the corresponding date 209 

on the lower left side of the panel. Figure 3 shows the built-in CLI processor of xROI that is used 210 

as a shift monitoring module. The user can generate the CLI from original images, write the 211 

generated CLI on the disk space or read a previously saved CLI from the disk space. Days 212 

without images are shown as black columns (hex code: #000000) in the CLI raster. Besides the 213 

true color RGB raster of CLI, xROI also provides monochromic images of individual color 214 

channels (red, green and blue) and also brightness, darkness and contrast rasters. Multiple 215 

options for visualizing the CLI is to assist the user in detecting FOV shifts with choosing an 216 

appropriate raster. We performed a quantitative analysis to evaluate the performance of each 217 

monochromic images in separating out sky and canopy pixels. We used the bimodality 218 

coefficient defined in Zhang et al. (2003) as a proxy for detectability power, where higher 219 

bimodality coefficients correspond to better separations of pixels. The results showed that the 220 

brightness image and the blue channel were most effective in separating out the pixels, 221 

confirming our visual interpretation. The analysis is presented in Appendix D: Bimodality 222 

Analysis of the Monochromic CLI.  223 

While the CLI technique can be used to detect most FOV shifts including horizontal, and 224 

vertical shifts, the method may fall short in identifying FOV shifts that lacks a strong signal in 225 

the CLI image. To address this limitation, we have implemented an additional function 226 

(“detectShifts”) that can be used for detecting other FOV shifts. The function evaluates day-to-227 

day correlation values of the brightness and blue color channels when they are smoothed. It 228 
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returns a two-column data frame for daily variability of the brightness and the blue channel. A 229 

sudden decrease in the correlation values may be interpreted as a potential FOV shift. Note 230 

fully automated methods are difficult with outdoor photography due obscured FOV due to rain, 231 

clouds, or fog, resulting in false positives when no actual FOV shift has occurred. As the 232 

“detectShifts” function is computationally expensive, it is only available from the command line 233 

and not from the UI.  234 

 235 

Figure 3 Detecting field of view shifts using center line images (CLI). The CLI is built by assembling vertical centerlines of all 236 

loaded images together. The user can visually detect FOV shifts by monitoring sudden changes in the horizon line and / or 237 

canopy texture. The user can plot the corresponding image (small image in the bottom left corner) of each column in the CLI by 238 

clicking on the image. The vertical red line indicates the position of the selected image on the CLI. The above example was 239 

generated from the PhenoCam site at armoklahoma. The vertical yellow dashed lines indicate FOV shifts. 240 
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Time-series Extraction Module 241 

The time series extraction module is designed to extract color-based statistics for a selected ROI 242 

on the entire image dataset at a specified time interval. The time series data can help the user 243 

to make decision on selecting appropriate polygons that lead to clearer signals in the final time 244 

series. While in the example datasets, we used mid-day images at an interval of 1 day, though 245 

in practice data with higher temporal resolution can be obtained using all (sub-daily) images, 246 

resulting in higher-quality time-series (Sonnentag et al., 2012).  247 

To perform statistical calculations, each JPEG image is read as three-dimensional array: 248 

[𝐼]$×&×' , where H is the number of vertical pixels (height), W is the number of horizontal 249 

pixels (width) and C is the color channel (1: red, 2: green, 3: blue). The third dimension is to 250 

store three different color channels (red, green and blue, respectively). Mask rasters, [𝑀]$×&, 251 

(in TIFF format) have the same resolution as the sample image, but unlike the sample image, 252 

they are in binary (0 and 1) format. M is a binary matrix, 1 for pixels within the ROI and 0 for 253 

elsewhere. For a given mask file, the red, green and blue chromatic coordinates (i.e. RCC, GCC and 254 

BCC) are defined as (Sonnentag et al., 2012): 255 

𝑅'' =
𝑅+,

𝑅+, + 𝐺+, + 𝐵+,
 256 

𝐺'' =
𝐺+,

𝑅+, + 𝐺+, + 𝐵+,
 257 

𝐵'' =
𝐵+,

𝑅+, + 𝐺+, + 𝐵+,
 258 

where RDN, GDN and BDN are average red, green and blue digital numbers within the masked 259 

areas, respectively. Statistical metrics such as mean, median, 5, 10, 25, 75, 90 and 95 260 
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percentiles are derived for each chromatic coordinate across the entire ROI. The chromatic 261 

coordinates calculation essentially normalizes each individual color band against the total pixel 262 

value of the three channels, normalizing for the total brightness. GCC, in particular is shown to 263 

be a reliable metric for monitoring changes in the environment such as leaf out phenology 264 

(Klosterman et al., 2018), vegetation identification (Woebbecke et al., 1995), plant health status 265 

(Nijland et al., 2014), and biological conservation and restoration (Alberton et al., 2017). In 266 

addition to chromatic coordinates, brightness, darkness and contrast rasters are also calculated 267 

for the region of interest. Brightness is the maximum value among red, green and blue channel 268 

for each pixel. Darkness is the minimum value among red, green and blue channel for each 269 

pixel. Contrast is the difference between brightness and darkness. The darkness (D), brightness 270 

(B) and contrast (C) rasters (Mao et al., 2014) are calculated as: 271 

𝐷[𝑖, 𝑗] = min
7∈(:,;,<)

𝐼[𝑖, 𝑗, 𝑐] , i ∈ (1,2, . . , 𝐻), j ∈ (1,2, . . ,𝑊)	272 

𝐵[𝑖, 𝑗] = max
7∈(:,;,<)

𝐼[𝑖, 𝑗, 𝑐] , i ∈ (1,2, . . , 𝐻), j ∈ (1,2, . . ,𝑊)	273 

𝐶 = 𝐵 − 𝐷 274 

The user can change the computation interval at which the time series is extracted. To 275 

extract sub-daily time series, the user can simply import a data set consisting of sub-daily 276 

images and change the interval value to extract time-series with different temporal resolution. 277 

Note that timeseries generated with different interval values are not based on the same 278 

concept as the PhenoCam 1-day and 3-day timeseries. Higher interval values in xROI simply 279 

mean skipping the images in between each interval, whereas PhenoCam 1-day and 3-day 280 

products, explained in Richardson et al. (2018a), are extracted based on statistical metrics 281 
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within the interval. Higher intervals may only be used only to speed up processing time, but it is 282 

ideal to analyze every image in a stack for the highest-quality data. The time series will be 283 

plotted as an interactive Plotly object (Sievert et al., 2017) with capabilities of zoom, selection 284 

and scrolling. The user can hide or show any of the chromatic coordinates and their confidence 285 

intervals (i.e. deviation within the ROI) using the checkbox inputs on the side panel. The 286 

extracted time series can also be downloaded as a CSV file containing the filenames, time 287 

information and the data. In addition to the chromatic coordinates, band ratios (Bradley et al., 288 

2010; Tucker, 1979), excess greenness (Nijland et al., 2014) and the green-red vegetation index 289 

(GRVI) (Richardson et al., 2013) are also reported in the output file. Other user defined metrics 290 

can be obtained by postprocessing the data included in the output file. A summary of other 291 

indices that might be used for monitoring phenology is discussed in Richardson et al. (2013).  292 

 293 
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Figure 4 Time series extraction module. The figure shows an example site and the associated RCC, GCC, and BCC time series data 294 

extracted at an X day interval. The interactive plot facilitates exploratory analysis throughout the time series. The bars indicate 295 

50, 80 or 90 percentiles of the confidence interval across the entire ROI, depending on the user’s selection. The user can also 296 

download the time series in CSV format using the Download button. Image datasets with a finer temporal resolution will result 297 

in a finer time series. 298 

Case Studies 299 

In the following sections, we use several case studies to explain different features of xROI. We 300 

quantify how xROI performs for handling data management and extraction tasks. Among the 301 

sites in the PhenoCam network, the number of FOV shifts varies across sites. For example, the 302 

monture PhenoCam site experienced 62 FOV shifts over the course of 18 years and the acadia 303 

PhenoCam site experienced 9 FOV shifts during the same period. Other PhenoCam sites, such 304 

as harvard, with an extremely stable FOV over the period of record (2008-ongoing), and a 305 

strong seasonal cycle due to the deciduous canopy, present comparatively smaller challenges. 306 

We used four PhenoCam sites, including boundarywaters, pasayten, proctor and sherman, as 307 

our case study examples to illustrate how our software works, and how it can be used to extract 308 

high quality time series data. Site selection in this document is based on including sites that 309 

present various situations, complexities and processing challenges. The boundarywaters 310 

images were collected from a mixed deciduous and evergreen forest at Boundary Waters Canoe 311 

Area Wilderness, Superior National Forest, Minnesota, USA. The pasayten images were taken 312 

at a mountainous Ponderosa pine forest at Pasayten Wilderness, Okanogan National Forest, 313 

Washington, USA. The proctor images were taken at a maple-dominated deciduous forest at 314 

University of Vermont, Proctor Maple Research Center, Underhill, Vermont, USA. The sherman 315 



 

 

21 

images were collected from a grassland at Twitchell Island, Antioch, California, USA. Additional 316 

site-specific information is presented in Table 2. We obtained stacks of digital images for the 317 

selected sites from the PhenoCam dataset available from Richardson et al. (2017). Each set 318 

contains daily midday (closest image to the local standard noon) images of the landscape over a 319 

two-year period. Note that we have also processed the higher-frequency data (30-minute, 320 

(Seyednasrollah et al., 2019)), but to detect FOV shifts the daily images are sufficient. All 321 

selected sites have at least one FOV shift occurrence over the course of the collected data. The 322 

case study datasets are available to download from Seyednasrollah (2019) for reproducing the 323 

results presented here.  324 

Table 2 Site specific information and descriptions of regions of interest  325 

Site name Lon. , Lat. Year(s) FOV Shift 

Date(s) 

ROI description Vegetation  

Type 

boundarywaters -91.49, 47.94 2008 

2009 

4/29/2008 

5/11/2009 

 6/9/2009 

Grasses in foreground GR 

pasayten -119.89, 

48.39 

2015 

2016 

12/23/2015 Individual evergreen tree in 

lower left side of the FOV 

EN 

proctor -72.86, 44.52 2016 

2017 

12/13/2016 Individual maple tree in near 

background 

DB 

sherman -121.75, 

38.03 

2014 

2015 

8/18/2014 

9/3/2014 

 9/7/2014 

The upper cropland/grassland 

the foreground 

AG 

 326 
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Procedure and Workflow 327 

Using xROI, we performed two experiments on each image set. In the first experiment, we used 328 

the ROI drawing module to generate an ROI representing the dominant vegetation cover based 329 

on the first image in the dataset. ROI descriptions for all four sites are explained in Table 2. The 330 

originally drawn ROI’s are shown in Figure 5. We intentionally assumed there was no FOV shift 331 

in the dataset and generated the GCC time series for two years of data at each site using the 332 

time series extraction module.  333 

 

Figure 5 Original ROI’s drawn for case study sites: (a) boundarywaters, (b) pasayten, (c) proctor; and (d) sherman. As field of 334 

view has changed for the sites, regions of interest may need to be readjusted or redrawn, otherwise the final data may be 335 

incorrect, misleading or in low quality. 336 
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In the second experiment, we used the FOV shifts monitoring module and the CLI 337 

processor to visually detect all the FOV shifts per camera and then readjust the ROIs from the 338 

first experiment by adding new masks for each shift periods (Table 2). The resulting CLI for each 339 

camera is presented in Appendix C: Center-line Images of Study Sites. 340 

The CLI for the case studies are shown in Figure S 2. Using the CLI processor helped us to 341 

detect FOV shifts in the image datasets by monitoring the horizon line for each image. This is 342 

particularly critical for extracting accurate and meaningful phenological signals from digital 343 

repeat photography. The time series obtained in the first and second experiments are plotted in 344 

Figure 6. Dates when FOV shifts occurred are indicated with dashed vertical lines. It is seen that 345 

accounting for the FOV shifts is essential and greatly enhances the quality of the derived data, 346 

particularly for pasayten and proctor in the second year of each set of images. Another 347 

example of how unadjusted FOV shifts may reduce data quality is the monture PhenoCam site 348 

as it is discussed in Richardson et al. (2018a).  349 
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 350 

Figure 6 Time series extraction using xROI for four case study sites. The left panel shows the extracted time series, for each 351 

dataset. Red (dotted) and green (solid) lines indicate pre and post mask adjustment using xROI, respectively. Dashed vertical 352 

lines indicate FOV shifts. The middle panel shows the cameras’ FOV before a shift occures. The right panel shows the FOV’s after 353 

the shift. ROI’s are shown by yellow polygons.  354 

Discussion 355 

We illustrated how different modules of the xROI application work together to enable 356 

an integrated environment for ROI based image processing. xROI enhances time series 357 
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extraction from digital repeat photography datasets in three ways: 1) interactive generation of 358 

user-defined ROI on a sample image, 2) extracting time series data of red, green and blue 359 

chromatic coordinates and their corresponding statistics, and 3) providing a simple way to 360 

identify FOV shifts using a center line image-based approach.  361 

xROI has integrated several processes in a single framework to produce time series of 362 

multiple bands from a stack of digital images. This is a significant contribution, and greatly 363 

reduces the workload associated with conducting each task using separate software tools. 364 

Importantly, the user can perform the entire image processing workflow without any 365 

knowledge of computer programming or image processing, using a simple and user-friendly 366 

graphical user interface. This is critical, considering the amount of technical analyses that is 367 

being performed in response to the user’s clicks. Alternatively, more advanced users can use 368 

the low-level xROI functions library to carry out customized analyses using a command-line 369 

interface. We believe both approaches will contribute to advancing the potential for cutting-370 

edge science applications of digital repeat photography.  371 

The built-in interactive time series extraction module can be used not only for 372 

generating color-based statistics, but also it can be operated as a real-time evaluation toolkit 373 

for drawing the most appropriate ROI. The user can create several ROI’s and run the time series 374 

extraction module for each one to assess which ROI results in a less noisy time series or more 375 

suitable confidence intervals. To mitigate the impacts of FOV shifts, the tool can also be used to 376 

test candidate ROI masks and identify which masks are most robust to changes in the camera 377 

FOV. This might be particularly useful when FOV shifts are small, and a single, well-chosen ROI 378 
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might suffice. The “interval” input value can be used to speed-up this process by running the 379 

time series extraction module on a subset of the original image set (i.e. by using larger interval 380 

values). Additionally, the confidence interval bars show color variation for pixels across the ROI 381 

at each time step. Relatively lower ranges of variation indicate more homogeneous color across 382 

the ROI. This might be desired in particular for focusing on a specific object such as an individual 383 

tree in the image.  384 

To handle FOV shifts – as one of the most important challenges in digital repeat 385 

photography – we showed how xROI exploits a simple method to visualize camera FOV stability 386 

using the CLI technique. The FOV shift detection module plays an essentially important role at 387 

sites where the camera is subject to intentional or accidental FOV shifts. For example, tower 388 

climbers might accidentally kick the camera housing or wind and vibration might loosen the 389 

camera mount. Using the case studies, we illustrated how the user can readjust ROI masks to 390 

correct for FOV shifts. We also tested detectability of FOV shifts using several monochromic 391 

rasters in the CLI. Both visual interpretations and the results from the bimodality coefficient 392 

(See Appendix D: Bimodality Analysis of the Monochromic CLI) showed brightness and blue 393 

channel rasters suggest the highest performance in distinguishing canopy from sky, and hence 394 

identifying the horizon line. This was true for all the four case studies. This may be explained by 395 

the greater average difference values of blue and brightness between canopy and sky. In other 396 

words, sky pixels are usually bright and have high values in the blue channel, while vegetation 397 

pixels are dark and low in the blue channel. Using the red and green channels showed the 398 

lowest power for detecting FOV shifts. Although this result may not be universal or consistent 399 



 

 

27 

for a larger set of sites, it can further be evaluated and utilized in developing methods for 400 

automatic detection of FOV shifts. Our method using the vertical CLI is not perfect, and one can 401 

envision cases where there is only a horizontal shift in camera FOV, which might not be 402 

detected from the CLI. However, in our experience, the vast majority of FOV shifts that 403 

negatively impact data quality are clearly identified from this analysis, because it is extremely 404 

rare that the plane of an FOV shift is exactly parallel to the horizon. For this reason, even FOV 405 

shifts with a small vertical component can often be detected through inspection of the CLI. 406 

Results from using xROI on the four provided example datasets as case studies showed 407 

the final time series were significantly improved by adjusting the ROI and mask files after each 408 

FOV shift. Unadjusted ROI result in erroneous time series and misleading —if not simply 409 

incorrect —phenological patterns. For instance, unadjusted ROI's at the case study sites 410 

resulted in significant errors in both the magnitude and the timing of greenness. At 411 

boundarywaters, maximum GCC falsely dropped from 0.48 to 0.44 in 2008 and 0.50 to 0.47 in 412 

2009. The unadjusted ROI at the same site resulted in 55 days (from 225 to 170) and 97 days 413 

(from 167 to 264) bias in the length of the growing season in 2008 and 2009, respectively. At 414 

pasayten and proctor, GCC’s from the unadjusted ROI did not exhibit any greenup during the 415 

growing season of the second year (2016 at pasayten and 2017 at proctor). At sherman, the 416 

unadjusted ROI resulted in a false GCC drop (from 0.36 to 0.33) for about 33 days in 2014, which 417 

does not correspond to any phenologically or ecologically relevant change in the state of the 418 

canopy. Previous works have studied ecological drivers that explain the interannual variabilities 419 

of GCC (Richardson et al., 2019; Richardson et al., 2018c) and the strong agreement between 420 
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transition dates from GCC and those observed on the ground (Richardson et al., 2018a). An 421 

overview of methods and scientific questions and applications is discussed in Richardson 422 

(2018).  423 

Although in this paper, we primarily focused on extracting phenological time series from 424 

datasets of vegetation phenology, xROI can be used to extract different kinds of time series 425 

from individual color channels or their combinations. For example, the application can also be 426 

utilized for continuous measurements of accumulated snow depth by delineating an ROI 427 

around a measuring stick with a contrasting color to snow (e.g., black) in the FOV and 428 

converting the chromatic coordinates to the proportion of black and white in the ROI (Farinotti 429 

et al., 2010). Similarly, time series of chromatic coordinates can be used for detecting water in 430 

tidal salt marshes (O'Connell and Alber, 2016), assessing water saturation status in soil (Silasari 431 

et al., 2017), and understanding the geomorphology of sand dunes (Banaszak and Selesko, 432 

2016). As xROI is open-source, we hope that the scientific community can develop other tools 433 

built on the present framework to address a wide range of applications.  434 

Conclusion 435 

The xROI application was introduced for extracting color-based time series for datasets of 436 

digital repeat photography. xROI is an R package with both low-level image processing toolbox 437 

and a responsive graphical user interface. As an open-source software, xROI can be run on 438 

several platforms including macOS, Microsoft Windows, and many Linux distributions. The 439 

ready-to-use binaries of xROI are available from the Comprehensive R Archive Network (CRAN) 440 
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archive. The most up-to-date source code can be accessed from the GitHub repository. We 441 

hope that the xROI R package will significantly enhance data quality and facilitates data 442 

extraction and management tasks, primarily for scientists who use near-surface remote sensing 443 

imagery for studying the environment, including — but not limited to — PhenoCam network 444 

imagery.  445 
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Appendix A: Application Flowchart  475 

 476 

Figure S 1 Application Flowchart 477 

  478 
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Appendix B: Description of ROI List Files 479 

This sections explains the formatting of (1) the “ROI list files”, which detail the date and time 480 

range over which each binary image mask was applied in processing the image data for a site; 481 

(2) the binary “image mask files”, which delineate the ROI over which the image analysis was 482 

conducted; and (3) sample images for each image mask file. With (1) and (2), which we consider 483 

as essential metadata, the time series data sets can be reproduced from the original image files. 484 

A more comprehensive data description is explained in (Richardson et al., 2018a). 485 

The naming convention for the ROI list files in is as follows:  486 

• <sitename>_<veg_type>_<ROI_ID_number>_roi.csv  487 

Where sitename is the name of the camera site, as listed in the metadata contained in Data 488 

Record 1 (e.g., “coweeta”), veg_type is a two-letter abbreviation identifying the dominant 489 

vegetation within the ROI, e.g. DB for deciduous broadleaf trees (see Table 1), and 490 

ROI_ID_number is a numeric code that serves as a unique identifier to distinguish between 491 

multiple ROIs of the same vegetation type at a given site (0001 for the first ROI list, 0002 for the 492 

second, etc.).  493 

A sample ROI list file (coweeta_DB_0001_roi.csv) is as follows: 494 
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 495 
# 496 
# ROI List for coweeta 497 
# 498 
# Site: coweeta 499 
# Veg Type: DB 500 
# ROI ID Number: 0001 501 
# Owner: mtoomey 502 
# Creation Date: 2012-09-05 503 
# Creation Time: 11:42:00 504 
# Update Date: 2012-09-05 505 
# Update Time: 11:42:00 506 
# Description: full canopy including deciduous and subdominant conifers 507 
# 508 
start_date,start_time,end_date,end_time,maskfile,sample_image 509 
2011-04-14,00:00:00,2012-11-08,14:31:57,coweeta_DB_0001_01.tif,coweeta_2011_04_08_143030.jpg 510 
2012-11-08,15:01:00,9999-12-31,23:59:59,coweeta_DB_0001_02.tif,coweeta_2012_11_09_113132.jpg 511 
 512 

The first 13 lines (beginning with #), document the provenance of the ROI list, and contain a 513 

brief description of the vegetation that is delineated by the associated image masks.  514 

Line 14 lists the column headers for the mask entry rows. The mask entries begin on line 15. For 515 

this site there was one minor change in the field of view, so there are two ROI mask entries. 516 

Any additional field of view changes would result in additional rows (mask entries) being 517 

appended to the file. Note that as described in Methods, if the field of view shift is too large or 518 

if there are other exogenous events that necessitate distinguishing between the resulting data 519 

sets, a new ROI list (e.g., coweeta_DB_0002_roi.csv) would be created for the site.  520 

For each mask entry, the data fields are: 521 

• start_date (format: YYYY-MM-DD, where MM = 01-12 and DD = 01-31) 522 
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• start_time (format: hh:mm:ss, where hh = 00-23, mm = 00-59, ss = 00-59) 523 

• end_date (format: same as for start_date) 524 

• end_time (format: same as for start_time) 525 

• mask_file: the filename for the 8-bit TIFF mask file with black for the ROI and white for 526 

the region to exclude from calculations 527 

• sample_image: the filename for a sample image in the date range 528 

Note that only images within the date and time ranges (from start_date and start_time to 529 

end_date and end_time) listed are included in the processed data set generated from this list. 530 

For end_date, the date code 9999-12-31 is used to keep the processing open-ended.  531 

The naming convention for the image mask files is: 532 

• <sitename>_<veg_type>_<ROI_ID_number>_<mask_index>.tif 533 

Here, the mask_index matches the entry number in the list (01 for the first entry, 02 for the 534 

second entry, etc.). The image mask files are stored in the TIFF image format (.tif) because of 535 

the flexibility that this offers, and because of compatibility with the python PIL library. 536 

Sample images for each mask file have the same naming convention but terminate in a .jpg 537 

extension: 538 

• <sitename>_<veg_type>_<ROI_ID_number>_<mask_index>.jpg 539 

  540 
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Appendix C: Center-line Images of Study Sites 541 

  

Figure S 2 Center-line images (CLI) are used to detect field of view shifts. Each panel shows the 542 

CLI image for case study sites: boundarywaters, pasayten, proctor; and sherman. Note that at 543 

sherman the FOV shifts are generally minor, except for the obvious shifts mid-timeseries. 544 

  545 
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Appendix D: Bimodality Analysis of the Monochromic CLI 546 

As we have explained above, the CLI raster in the FOV shift monitoring module can be plotted in 547 

true RGB color format, as well as in monochromic color channels (R, G, and B), and brightness, 548 

and darkness rasters. The individual bands may display different levels of efficiency for 549 

separating canopy and sky pixels and so the horizon line. This can be highlighted by comparing 550 

the bimodality coefficients of each image. To quantify which binary band performs more 551 

reliably for distinguishing between canopy and sky, we ran a bimodality analysis on our 552 

datasets. For each CLI image we calculated the bimodality coefficient (Zhang et al., 2003) of 553 

individual color channels and brightness and darkness rasters (Figure S 3). Higher values of the 554 

bimodality coefficient indicate greater difference between the frequency of sky and canopy 555 

pixels and therefore bands with high bimodality coefficient are less challenging to visualize FOV 556 

shifts. This simple experiment can help us to select the most appropriate bands for which the 557 

CLI is plotted. We also visually observed visibility of the horizon line in different monochromic 558 

rasters. The results suggested that using the brightness and blue channels can better separate 559 

two groups of pixels including sky and canopy pixels than the other bands. 560 
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 561 

Figure S 3 Bimodality coefficients for monochromic rasters at different sites. Similar to our visual interpretations, blue channel 562 

and brightness images showed the highest performance to detect FOV shits. Darkness, red and green channels showed the 563 

lowest detectability power among all tested rasters. 564 

  565 
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