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Highlights

e xROl is used to extract and export time series data from stacks of digital images
e Users can interactively delineate regions of interest using xROI

e XxROI handles field of view (FOV) shifts
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Abstract

Digital repeat photography and near-surface remote sensing have been used by environmental
scientists to study environmental change for nearly a decade. However, a user-friendly, reliable,
and robust platform to extract color-based statistics and time series from a large stack of
images is still lacking. Here, we present an interactive open-source toolkit, called xROI, that
facilitates the process of time series extraction and improves the quality of the final data. xRO/
provides a responsive environment for scientists to interactively a) delineate regions of interest
(ROI), b) handle field of view (FOV) shifts, and c) extract and export time series data
characterizing color-based metrics. The software gives user the opportunity to adjust mask files
or draw new masks, every time an FOV shift occurs. Utilizing xROI can significantly facilitate
data extraction from digital repeat photography and enhance the accuracy and continuity of

extracted data.
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Introduction

Although the idea of repeat photography to study environmental change goes back a century
(Stephens et al., 1987; Turner, 2003), using digital repeat photography has become increasingly
popular to monitor and study the environment for a diverse range of applications such as
studying plant phenology (Berra et al., 2019; de Moura et al., 2017; Olivera-Guerra et al., 2017;
Richardson et al., 2018b; Sonnentag et al., 2012; Watson et al., 2019; Yan et al., 2019),
assessing the seasonality of gross primary production (Crimmins and Crimmins, 2008;
Migliavacca et al., 2011; Yuan et al., 2018), salt marsh restoration (Knox et al., 2017),
monitoring tidal wetlands (O'Connell and Alber, 2016), investigating growth in croplands (Liu
and Pattey, 2010; Zhou et al., 2013), and evaluating phenological data products derived from
satellite remote sensing (Richardson et al., 2018c). However, extracting “clean” and high quality
data from a large set of images often presents three main challenges: a) delineating region of
interests (ROI) (Richardson et al., 2018a), b) computational costs (Filippa et al., 2016a); and c)
handling expected and unexpected field of view (FOV) shifts (Brown et al., 2016; Moore et al.,
2016). All three issues require careful consideration. Currently, these steps are often performed
in separate, fully supervised stages. An integrated portable environment with which the user
can interactively manage and extract high quality time series would significantly improve data
collection for environmental studies.

Obtaining quantitative data from digital repeat photography images is usually
performed by defining appropriate ROI’s and, for the red (R), green (G) and blue (B) color

channels, calculating pixel value (intensity) statistics across the pixels within each ROI. ROI
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boundaries are delineated by mask files which define which pixels are included and which are
excluded from these calculations. User-friendly software libraries to delineate user-defined
ROl’s interactively are scarce and commonly require commercial licenses (e.g. ENVI, MATLAB
Image Processing Toolbox). Additionally, the data extraction process is usually performed in
another environment, the process requires adequate familiarity with scripting languages (e.g. R
(Team, 2018), MATLAB (MathWorks, 2015), Phenopix R package (Filippa et al., 2016b), Python
(Sanner, 1999) and third-party plugins (Sunoj et al., 2018)), or the tools are not suitable for
general image datasets (Bradley et al., 2010). Thus, an interactive platform with an easy-to-use
graphical user interface that can integrate ROI delineation and time series extraction is highly
desired.

Camera field of view shifts will result in pixels or areas outside of the original region of
interest falling into the masked area, which can cause low-quality or even misleading data.
Figure 1 shows two examples of FOV shifts from the PhenoCam network

(http://phenocam.sr.unh.edu) that was founded in 2008 to study vegetation phenology across

ecosystems of North America using near-surface remote sensing (Richardson, 2018). After a
FOV shift occurrence (e.g. Figure 1), the corresponding ROl and mask files should be adjusted
(minor shift: ROl is still in FOV but has moved), redrawn (major shifts: ROl is partially in FOV) or
stopped processing (entire FOV has changed). However, detecting FOV shifts is not a trivial task,
particularly for large stacks of digital images (e.g., 35 million images of the PhenoCam archive
(Seyednasrollah et al., 2019)). Correlation based methods (e.g. phase correlation or binary

correlations) (Gottumukkal and Asari, 2004) or distance-based methods (e.g. Manhattan
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distance) (Dhodapkar and Smith, 2003) has been developed for facial recognition, object
detection and tracking techniques, but they often fail to perform a satisfactory job on
landscape images (e.g. composition of canopy and sky). Moreover, most of these methods are
computationally expensive and require calibration and learning steps (such as site-specific
tuning). Therefore, a simple and quick method to detect FOV shifts could further speed-up high

guality data extraction and management.

After FOV Shift

harvardhemlock  2012-08-08  harvardhemlock  2012-08-09

Figure 1 Two examples of field of view (FOV) shift at the bartlettir and harvardhemlock PhenoCam sites. At bartlettir, the
original region of interest after the shift was entirely outside of the field of view and the post-shift FOV was not relevant for the

study. At harvardhemlock, FOV shift was minor and redrawing the region of interest fixed the issue.
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Here, we present an interactive, portable and robust framework, called xR0/, with a
simple graphical user interface (GUI) with which the user can define regions of interest (ROl’s),
monitor FOV shifts and extract color-based statistical metrics for a stacked set of digital images.
XROl is an R package that can run on several operating systems. Our toolkit facilitates the entire
process by several orders of magnitude, reduces human-based errors, and improves data

continuity and reproducibility.

Application Development

The R language and Shiny package (Chang et al., 2017) were used as the main development
tools for xROI, while Markdown (Baumer et al., 2014), HTML (Aronson, 1995), CSS (Powell,
2010)and JavaScript (Mikkonen and Taivalsaari, 2007) languages were used to improve
interactivity. R is an interpreted computer language which is increasingly popular among
environmental scientists. Shiny is an add-on R package that provides a powerful platform for
development of web-based applications (Shiny apps) in R. Shiny apps generally include three
main elements: 1) the user interface (Ul), 2) the server-side engine; and 3) the auxiliary
functionalities. The Ul is the element in which the appearance features and graphical user
interface are designed. The server element is the engine built to interpret user responses and
react accordingly. Most of the processing and computation steps are performed inside the
server element, while general set-up and intermediate functions are accommodated inside the
auxiliary functionalities. Although Shiny apps are primarily used for web-based applications

hosted on a web server to be used online, we used Shiny for its graphical user interface
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capabilities. In other words, both Ul and server modules are run locally from the same machine
and hence no internet connection is required. The xRO!’s Ul element presents a side-panel for
data entry and three main tab-pages, each responsible for a specific task. The server-side
element consists of R and shell scripts. Image processing and geospatial features were
performed using the Geospatial Data Abstraction Library (GDAL) (Warmerdam, 2008) and the
rgdal (Bivand et al., 2018) and raster (Hijmans, 2017) R packages.

The xROI R package has been published on The Comprehensive R Archive Network
(CRAN). The latest tested xROI package can be installed from the CRAN packages repository by
running the following command in an R environment:
utils::install.packages('xROI'").

Alternatively, the latest beta release of xRO/ can be directly downloaded and installed from the
package GitHub repository:

devtools::install_github('bnasr/xROl'),

however, this requires that the necessary R packages and GDAL library have already been
installed on the local system.

XROI depends on many R packages including: colourpicker, data.table, jpeg, lubridate,
moments, plotly, raster, RCurl, rgdal, rjson, shiny, shinyAce, shinyBS, shinydashboard,
shinyfFiles, shinyjs, shinyTime, shinythemes, sp, stringr, and tiff. All the required libraries and
packages will be automatically installed with installation of xROI. The package offers a fully
interactive high-level interface as well as a set of low-level functions for ROl processing. A

comprehensive user manual for low-level image processing using xR0/ is available from
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https://cran.r-project.org/package=xR0OI/xROI.pdf. The user manual includes a set of examples

for each function. Here we explain the graphical user interface, which can be launched from an
interactive R environment by:

library(xROI)

Launch()

or from the command line (e.g. shell in Linux, Terminal in macOS and Command Prompt in
Windows machines) where an R engine is already installed by:

Rscript -e 'xROl::Launch(Interactive = TRUE)'

Calling the Launch function opens up the app in the system’s default web browser, featuring an

example dataset to explore different modules or upload a new dataset of images.

Design and Structure

XROI includes three main modules: a) ROl drawing module, (b) FOV shift monitoring module;
and (c) time series extraction module. Figure 2 shows the arrangement of each module as
separate tab-panels. All the modules have a server-side and a Ul-side which are explained in the
following sections. The modules and how they are linked to each other are illustrated in
Appendix A: Application Flowchart.

ROI Drawing Module

The main function of the ROl drawing module is to provide an interactive environment for
creating regions of interest (ROI’s) and storing associated files on a disk space for a later use.

The user can load a set of images using the Image directory button and browse into the folder

10



146  containing the data (item 1 in Figure 2). There are two ways to load images: 1) using the

147  “PhenoCam format”, and 2) using the filelist.csv input file. If the user selects “PhenoCam

148 format”, all JPEG images in the image directory that follow the PhenoCam naming convection
149  (Richardson et al., 2018a) will be loaded into the app. Time and date metadata will be

150 automatically assigned to each image based on their filenames (i.e.

151  <sitename>_<YYYY_MM_DD>_<hhmmss>.jpg, where MM=01-12, DD=01-31, hh=00-23,

152  mm=00-59 and ss=00-59). If the user selects “From filelist.csv”, the software looks for a comma
153  separated file named “filelist.csv” to obtain information about how to properly load the

154  dataset. In that case, the user is responsible for generating the filelist.csv file. The filelist.csv file
155  contains a list of images and their associated timing and is formatted in the comma-separated-
156  values format as follows. Each row includes one column for the filename as character strings
157  and six columns for year, month, day, hour, minute and second of the acquisition date and

158 time, in that order. Two example rows are presented as follows:

159  "dukehw_2015_01_01_120109.jpg",2015,1,1,12,1,9

160 or

161 "IMG2012.jpg",2019,2,5,7,00,00.

162  The user can explore loaded images using the exploring panel (item 2 in Figure 2).

163 After images are loaded, the first step of generating a new ROl is to enter metadata for
164  the ROI, including site name, ROI description, vegetation type (see Table 1), ROI ID number (a
165 user defined number to identify ROI for vegetation type); and start and end date and time of

166  the mask files (item 3 in Figure 2). The user can create new ROl masks by drawing polygons
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around the region of interest on the plotted image. This is performed using Shiny’s clickOpts
functionality. The image that is used to draw an ROl is called the “sample image”. The sample
image may be used for later references. The user can add new vertices using single clicks on the
image, drawing edges of a polygon. Double clicks are reserved to close a polygon and start a
new one. The user can edit an existing polygon using the Undo and Erase button (item 4 in
Figure 2). The vector-based polygons are stored as the relative coordinates of vertices. The
polygons can be converted to a rasterized mask using the Accept button. This step is performed

using the GDAL, rgdal and raster libraries.

XROI: A General ROI Processor

Time series extraction CLI Processor About

1

Images directory

example
Description

deciduous forest canopy

Vegetation Type

Deciduous Broadleaf (DB)

example_DB_0001_roi.csv

example_DB_0001_roi.csv
Mask

example_DB_0001 01

Sample Image: dukehw_2015_01_01_120109.jpg
Match start Matchend

fre
o 2015-01-01 12:01:09 &Erase ol Accept v Show Mask
to

9999-12-31 00:00:00 L

Save ROI 3. Download ROI

Figure 2 Arrangement of the user-interface items in the ROl drawing module in xROI. (1) loading images, (2) exploring tool to

browse images, (3) entering ROl metadata, and (4) the ROI drawing panel.
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To store the generated ROI to disk, we adopted the file structure and formats of the
PhenoCam network (Richardson et al., 2018a). Each ROI definition consists of an “ROlI List” file,
one or more mask file(s), and their corresponding vector-based polygon files. An ROI List file is a
CSV file that contains ROl metadata including owner’s name, primary vegetation type,
description, list of mask files, their associated start and end date and times and the sample
image filename. Details about formatting of the ROI List file are discussed in Richardson et al.
(2018a) and also presented here in Appendix B: Description of ROI List Files. Vector-based
polygon files indicate the relative coordinates of points defining the region of interest. In fact,
polygon files are the raw input data created by the user in order to generate mask files. Mask
files are raster images containing binary bitmaps of each mask in TIFF format: black (1) for
“included” and white (0) for “excluded” pixels. The vector-based file, which is size-free, is used
to generate a mask file that is the same dimension as the sample image. Although only mask
rasters (in TIFF format) and ROl list files are directly used to extract the time series, vector-
based information (i.e. coordinates of vertices) are stored for reference; potential uses include
generating new mask rasters for files with different image dimensions. The user can save all
ROI-related files in the original directory for later reference using the Save ROI button. The user
can also download them as a zipped file using the Download ROI button. And, because the ROI
definitions follow the standard PhenoCam format, the downloaded ROI files can be proposed to
the PhenoCam data management team for incorporation into the routine processing, if image
data have already been contributed to the PhenoCam network. The file formats and the naming

convention of the ROl files are presented in Table 1.

13



199 Table 1 File formats and naming convention of RO files

File Format Naming convention” Purpose

ROI List | Text/CSV | <sitename>_<veg_type> <ROl_ID_number>_roi.csv ROI metadata

Mask TIFF <sitename>_<veg_type>_<ROI_ID_number>_<mask_ID_n | Raster-based mask
umber>.csv file

Polygon | CSV <sitename>_<veg_type>_<ROI_ID_number>_<mask_ID_n | Vector-based
umber>_vector.csv region of interest

*: <sitename> is a character string including the site name entered by the user. <veg_type> is a two-
character value indicating the vegetation type as selected by the user (AG: Agriculture, DB: Deciduous
Broadleaf, EB: Evergreen Broadleaf, EN: Evergreen Needleleaf, DN: Deciduous Needleleaf, GR:
Grassland, MX: Mixed Forest, NV: Non-vegetated, RF: Reference Panel, SH: Shrub, TN: Tundra, UN:
Understory, WL: Wetland, XX: Other/Canopy). <ROI_ID_number> is a four-digit integer number as a
unique identification number of the ROI for the corresponding vegetation type. <mask_ID_number> is

a two-digit integer number identifying the mask files.

200

201  FOV Shifts Monitoring Module

202  We used a simple, fast and efficient method to detect potential FOV shifts using the center-line
203  image (CL/) technique (Seyednasrollah, 2017), and to enable the user, with minimal effort, to
204  validate shift detections. A CL/ is a single image raster, representing the entire dataset as its
205  vertical columns are composed of the center column of each loaded image. The assembled CL/
206  provides a quick, simple and robust way to visualize significant changes in the horizon line or

207  canopy texture. This enables the user to rapidly inspect potential FOV shifts, and adjust the ROI
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accordingly. The user can move the mouse pointer over the CL/ to find the date on which an
FOV shift has occurred. Clicking on the CLI/ will display the image from the corresponding date
on the lower left side of the panel. Figure 3 shows the built-in CL/ processor of xROI that is used
as a shift monitoring module. The user can generate the CL/ from original images, write the
generated CL/ on the disk space or read a previously saved CL/ from the disk space. Days
without images are shown as black columns (hex code: #000000) in the CL/ raster. Besides the
true color RGB raster of CLI, xROI also provides monochromic images of individual color
channels (red, green and blue) and also brightness, darkness and contrast rasters. Multiple
options for visualizing the CL/ is to assist the user in detecting FOV shifts with choosing an
appropriate raster. We performed a quantitative analysis to evaluate the performance of each
monochromic images in separating out sky and canopy pixels. We used the bimodality
coefficient defined in Zhang et al. (2003) as a proxy for detectability power, where higher
bimodality coefficients correspond to better separations of pixels. The results showed that the
brightness image and the blue channel were most effective in separating out the pixels,
confirming our visual interpretation. The analysis is presented in Appendix D: Bimodality
Analysis of the Monochromic CLI.

While the CLI technique can be used to detect most FOV shifts including horizontal, and
vertical shifts, the method may fall short in identifying FOV shifts that lacks a strong signal in
the CLI image. To address this limitation, we have implemented an additional function
(“detectShifts”) that can be used for detecting other FOV shifts. The function evaluates day-to-

day correlation values of the brightness and blue color channels when they are smoothed. It
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returns a two-column data frame for daily variability of the brightness and the blue channel. A
sudden decrease in the correlation values may be interpreted as a potential FOV shift. Note
fully automated methods are difficult with outdoor photography due obscured FOV due to rain,
clouds, or fog, resulting in false positives when no actual FOV shift has occurred. As the
“detectShifts” function is computationally expensive, it is only available from the command line

and not from the Ul.

XROI: A General ROI Processor

ROI Tool Time series extraction About

|+~ Generate CLI
|~ Write CLI

|~ Read CLI

- RGB @R @G @B @ Bright @ Dark

Image # 176 : 2004-07-11 09:59:15

Figure 3 Detecting field of view shifts using center line images (CLI). The CLI is built by assembling vertical centerlines of all
loaded images together. The user can visually detect FOV shifts by monitoring sudden changes in the horizon line and / or
canopy texture. The user can plot the corresponding image (small image in the bottom left corner) of each column in the CLI by
clicking on the image. The vertical red line indicates the position of the selected image on the CLI. The above example was

generated from the PhenoCam site at armoklahoma. The vertical yellow dashed lines indicate FOV shifts.
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Time-series Extraction Module
The time series extraction module is designed to extract color-based statistics for a selected ROI
on the entire image dataset at a specified time interval. The time series data can help the user
to make decision on selecting appropriate polygons that lead to clearer signals in the final time
series. While in the example datasets, we used mid-day images at an interval of 1 day, though
in practice data with higher temporal resolution can be obtained using all (sub-daily) images,
resulting in higher-quality time-series (Sonnentag et al., 2012).

To perform statistical calculations, each JPEG image is read as three-dimensional array:
[ yxwxc, Wwhere H is the number of vertical pixels (height), W is the number of horizontal
pixels (width) and C is the color channel (1: red, 2: green, 3: blue). The third dimension is to
store three different color channels (red, green and blue, respectively). Mask rasters, [M ]y,
(in TIFF format) have the same resolution as the sample image, but unlike the sample image,
they are in binary (0 and 1) format. M is a binary matrix, 1 for pixels within the ROl and 0 for
elsewhere. For a given mask file, the red, green and blue chromatic coordinates (i.e. Rcc, Gec and

Bcc) are defined as (Sonnentag et al., 2012):

R — RDN
e RDN + GDN + BDN
G — GDN
¢ RDN + GDN + BDN
BDN
BCC

B RDN + GDN + BDN
where Ron, Gon and Bow are average red, green and blue digital numbers within the masked

areas, respectively. Statistical metrics such as mean, median, 5, 10, 25, 75, 90 and 95

17
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percentiles are derived for each chromatic coordinate across the entire ROIl. The chromatic
coordinates calculation essentially normalizes each individual color band against the total pixel
value of the three channels, normalizing for the total brightness. Gcc, in particular is shown to
be a reliable metric for monitoring changes in the environment such as leaf out phenology
(Klosterman et al., 2018), vegetation identification (Woebbecke et al., 1995), plant health status
(Nijland et al., 2014), and biological conservation and restoration (Alberton et al., 2017). In
addition to chromatic coordinates, brightness, darkness and contrast rasters are also calculated
for the region of interest. Brightness is the maximum value among red, green and blue channel
for each pixel. Darkness is the minimum value among red, green and blue channel for each
pixel. Contrast is the difference between brightness and darkness. The darkness (D), brightness
(B) and contrast (C) rasters (Mao et al., 2014) are calculated as:

DI[i,j] = migl3)1[i,j, cl, ie(1,2,..,H),je (1,2,..,W)

ce(1

B[i,j]= max I[i,j,c], 1i€(2,.. H),je@2,..,W)

c€(1,2,3)
C=B-D
The user can change the computation interval at which the time series is extracted. To
extract sub-daily time series, the user can simply import a data set consisting of sub-daily
images and change the interval value to extract time-series with different temporal resolution.
Note that timeseries generated with different interval values are not based on the same
concept as the PhenoCam 1-day and 3-day timeseries. Higher interval values in xROI simply
mean skipping the images in between each interval, whereas PhenoCam 1-day and 3-day

products, explained in Richardson et al. (2018a), are extracted based on statistical metrics
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within the interval. Higher intervals may only be used only to speed up processing time, but it is
ideal to analyze every image in a stack for the highest-quality data. The time series will be
plotted as an interactive Plotly object (Sievert et al., 2017) with capabilities of zoom, selection
and scrolling. The user can hide or show any of the chromatic coordinates and their confidence
intervals (i.e. deviation within the ROI) using the checkbox inputs on the side panel. The
extracted time series can also be downloaded as a CSV file containing the filenames, time
information and the data. In addition to the chromatic coordinates, band ratios (Bradley et al.,
2010; Tucker, 1979), excess greenness (Nijland et al., 2014) and the green-red vegetation index
(GRVI) (Richardson et al., 2013) are also reported in the output file. Other user defined metrics
can be obtained by postprocessing the data included in the output file. A summary of other

indices that might be used for monitoring phenology is discussed in Richardson et al. (2013).

XROI: A General ROI Processor

ROI Tool CLI Processor About.

Temporal Interval

1

l#” Extract

@ Markers
* Lines+Markers

, S DR

Confidence Interval
@ None
- 50%
@ 80%
® 90%

& Download

May 2015 Jul 2015 Sep 2015
Time
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294 Figure 4 Time series extraction module. The figure shows an example site and the associated Rcc, G, and Bcc time series data

295 extracted at an X day interval. The interactive plot facilitates exploratory analysis throughout the time series. The bars indicate
296 50, 80 or 90 percentiles of the confidence interval across the entire ROIl, depending on the user’s selection. The user can also
297 download the time series in CSV format using the Download button. Image datasets with a finer temporal resolution will result
298  inafiner time series.

299 Case Studies

300 Inthe following sections, we use several case studies to explain different features of xRO/. We
301 quantify how xROI! performs for handling data management and extraction tasks. Among the
302 sites in the PhenoCam network, the number of FOV shifts varies across sites. For example, the
303 monture PhenoCam site experienced 62 FOV shifts over the course of 18 years and the acadia
304 PhenoCam site experienced 9 FOV shifts during the same period. Other PhenoCam sites, such
305 as harvard, with an extremely stable FOV over the period of record (2008-ongoing), and a

306 strong seasonal cycle due to the deciduous canopy, present comparatively smaller challenges.
307 We used four PhenoCam sites, including boundarywaters, pasayten, proctor and sherman, as
308  our case study examples to illustrate how our software works, and how it can be used to extract
309 high quality time series data. Site selection in this document is based on including sites that

310 present various situations, complexities and processing challenges. The boundarywaters

311 images were collected from a mixed deciduous and evergreen forest at Boundary Waters Canoe
312  Area Wilderness, Superior National Forest, Minnesota, USA. The pasayten images were taken
313 at a mountainous Ponderosa pine forest at Pasayten Wilderness, Okanogan National Forest,
314  Washington, USA. The proctor images were taken at a maple-dominated deciduous forest at

315  University of Vermont, Proctor Maple Research Center, Underhill, Vermont, USA. The sherman
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images were collected from a grassland at Twitchell Island, Antioch, California, USA. Additional

site-specific information is presented in Table 2. We obtained stacks of digital images for the

selected sites from the PhenoCam dataset available from Richardson et al. (2017). Each set

contains daily midday (closest image to the local standard noon) images of the landscape over a

two-year period. Note that we have also processed the higher-frequency data (30-minute,

(Seyednasrollah et al., 2019)), but to detect FOV shifts the daily images are sufficient. All

selected sites have at least one FOV shift occurrence over the course of the collected data. The

case study datasets are available to download from Seyednasrollah (2019) for reproducing the

results presented here.

Table 2 Site specific information and descriptions of regions of interest

Site name Lon., Lat. Year(s) FOV Shift ROI description Vegetation
Date(s) Type
boundarywaters | -91.49, 47.94 | 2008 4/29/2008 Grasses in foreground GR
2009 5/11/2009
6/9/2009
pasayten -119.89, 2015 12/23/2015 Individual evergreen tree in EN
48.39 2016 lower left side of the FOV
proctor -72.86, 44.52 | 2016 12/13/2016 Individual maple tree in near DB
2017 background
sherman -121.75, 2014 8/18/2014 The upper cropland/grassland | AG
38.03 2015 9/3/2014 the foreground
9/7/2014
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Procedure and Workflow

Using xROI, we performed two experiments on each image set. In the first experiment, we used
the ROl drawing module to generate an ROl representing the dominant vegetation cover based
on the first image in the dataset. ROl descriptions for all four sites are explained in Table 2. The
originally drawn ROI’s are shown in Figure 5. We intentionally assumed there was no FOV shift
in the dataset and generated the G¢c time series for two years of data at each site using the

time series extraction module.

UVM Proctor Maple Res

proctor  2016-12-11 [ sherman

Figure 5 Original ROI’s drawn for case study sites: (a) boundarywaters, (b) pasayten, (c) proctor; and (d) sherman. As field of
view has changed for the sites, regions of interest may need to be readjusted or redrawn, otherwise the final data may be

incorrect, misleading or in low quality.
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In the second experiment, we used the FOV shifts monitoring module and the CL/
processor to visually detect all the FOV shifts per camera and then readjust the ROls from the
first experiment by adding new masks for each shift periods (Table 2). The resulting CLI for each
camera is presented in Appendix C: Center-line Images of Study Sites.

The CLI for the case studies are shown in Figure S 2. Using the CL/ processor helped us to
detect FOV shifts in the image datasets by monitoring the horizon line for each image. This is
particularly critical for extracting accurate and meaningful phenological signals from digital
repeat photography. The time series obtained in the first and second experiments are plotted in
Figure 6. Dates when FOV shifts occurred are indicated with dashed vertical lines. It is seen that
accounting for the FOV shifts is essential and greatly enhances the quality of the derived data,
particularly for pasayten and proctor in the second year of each set of images. Another
example of how unadjusted FOV shifts may reduce data quality is the monture PhenoCam site

as it is discussed in Richardson et al. (2018a).
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Figure 6 Time series extraction using xRO! for four case study sites. The left panel shows the extracted time series, for each

dataset. Red (dotted) and green (solid) lines indicate pre and post mask adjustment using xROI, respectively. Dashed vertical

lines indicate FOV shifts. The middle panel shows the cameras’ FOV before a shift occures. The right panel shows the FOV’s after

the shift. ROI’s are shown by yellow polygons.

Discussion

We illustrated how different modules of the xRO! application work together to enable

an integrated environment for ROl based image processing. xROl enhances time series
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extraction from digital repeat photography datasets in three ways: 1) interactive generation of
user-defined ROI on a sample image, 2) extracting time series data of red, green and blue
chromatic coordinates and their corresponding statistics, and 3) providing a simple way to
identify FOV shifts using a center line image-based approach.

XROI has integrated several processes in a single framework to produce time series of
multiple bands from a stack of digital images. This is a significant contribution, and greatly
reduces the workload associated with conducting each task using separate software tools.
Importantly, the user can perform the entire image processing workflow without any
knowledge of computer programming or image processing, using a simple and user-friendly
graphical user interface. This is critical, considering the amount of technical analyses that is
being performed in response to the user’s clicks. Alternatively, more advanced users can use
the low-level xROI functions library to carry out customized analyses using a command-line
interface. We believe both approaches will contribute to advancing the potential for cutting-
edge science applications of digital repeat photography.

The built-in interactive time series extraction module can be used not only for
generating color-based statistics, but also it can be operated as a real-time evaluation toolkit
for drawing the most appropriate ROI. The user can create several ROl’s and run the time series
extraction module for each one to assess which ROl results in a less noisy time series or more
suitable confidence intervals. To mitigate the impacts of FOV shifts, the tool can also be used to
test candidate ROI masks and identify which masks are most robust to changes in the camera

FOV. This might be particularly useful when FOV shifts are small, and a single, well-chosen ROI
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might suffice. The “interval” input value can be used to speed-up this process by running the
time series extraction module on a subset of the original image set (i.e. by using larger interval
values). Additionally, the confidence interval bars show color variation for pixels across the ROI
at each time step. Relatively lower ranges of variation indicate more homogeneous color across
the ROI. This might be desired in particular for focusing on a specific object such as an individual
tree in the image.

To handle FOV shifts — as one of the most important challenges in digital repeat
photography — we showed how xRO! exploits a simple method to visualize camera FOV stability
using the CL/ technique. The FOV shift detection module plays an essentially important role at
sites where the camera is subject to intentional or accidental FOV shifts. For example, tower
climbers might accidentally kick the camera housing or wind and vibration might loosen the
camera mount. Using the case studies, we illustrated how the user can readjust ROl masks to
correct for FOV shifts. We also tested detectability of FOV shifts using several monochromic
rasters in the CL/. Both visual interpretations and the results from the bimodality coefficient
(See Appendix D: Bimodality Analysis of the Monochromic CLI) showed brightness and blue
channel rasters suggest the highest performance in distinguishing canopy from sky, and hence
identifying the horizon line. This was true for all the four case studies. This may be explained by
the greater average difference values of blue and brightness between canopy and sky. In other
words, sky pixels are usually bright and have high values in the blue channel, while vegetation

pixels are dark and low in the blue channel. Using the red and green channels showed the

lowest power for detecting FOV shifts. Although this result may not be universal or consistent
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for a larger set of sites, it can further be evaluated and utilized in developing methods for
automatic detection of FOV shifts. Our method using the vertical CLI is not perfect, and one can
envision cases where there is only a horizontal shift in camera FOV, which might not be
detected from the CLI. However, in our experience, the vast majority of FOV shifts that
negatively impact data quality are clearly identified from this analysis, because it is extremely
rare that the plane of an FOV shift is exactly parallel to the horizon. For this reason, even FOV
shifts with a small vertical component can often be detected through inspection of the CLI.
Results from using xROI on the four provided example datasets as case studies showed
the final time series were significantly improved by adjusting the ROl and mask files after each
FOV shift. Unadjusted ROI result in erroneous time series and misleading —if not simply
incorrect —phenological patterns. For instance, unadjusted ROI's at the case study sites
resulted in significant errors in both the magnitude and the timing of greenness. At
boundarywaters, maximum Gcc falsely dropped from 0.48 to 0.44 in 2008 and 0.50 to 0.47 in
2009. The unadjusted ROI at the same site resulted in 55 days (from 225 to 170) and 97 days
(from 167 to 264) bias in the length of the growing season in 2008 and 2009, respectively. At
pasayten and proctor, Gcc's from the unadjusted ROI did not exhibit any greenup during the
growing season of the second year (2016 at pasayten and 2017 at proctor). At sherman, the
unadjusted ROI resulted in a false Gec drop (from 0.36 to 0.33) for about 33 days in 2014, which
does not correspond to any phenologically or ecologically relevant change in the state of the
canopy. Previous works have studied ecological drivers that explain the interannual variabilities

of Gce (Richardson et al., 2019; Richardson et al., 2018c) and the strong agreement between
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transition dates from Gcc and those observed on the ground (Richardson et al., 2018a). An
overview of methods and scientific questions and applications is discussed in Richardson
(2018).

Although in this paper, we primarily focused on extracting phenological time series from
datasets of vegetation phenology, xROI can be used to extract different kinds of time series
from individual color channels or their combinations. For example, the application can also be
utilized for continuous measurements of accumulated snow depth by delineating an ROI
around a measuring stick with a contrasting color to snow (e.g., black) in the FOV and
converting the chromatic coordinates to the proportion of black and white in the ROI (Farinotti
et al., 2010). Similarly, time series of chromatic coordinates can be used for detecting water in
tidal salt marshes (O'Connell and Alber, 2016), assessing water saturation status in soil (Silasari
et al., 2017), and understanding the geomorphology of sand dunes (Banaszak and Selesko,
2016). As xROl is open-source, we hope that the scientific community can develop other tools

built on the present framework to address a wide range of applications.

Conclusion

The xROI application was introduced for extracting color-based time series for datasets of
digital repeat photography. xRO! is an R package with both low-level image processing toolbox
and a responsive graphical user interface. As an open-source software, xRO/ can be run on
several platforms including macQOS, Microsoft Windows, and many Linux distributions. The

ready-to-use binaries of xROI are available from the Comprehensive R Archive Network (CRAN)
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441  archive. The most up-to-date source code can be accessed from the GitHub repository. We

442  hope that the xROI R package will significantly enhance data quality and facilitates data

443  extraction and management tasks, primarily for scientists who use near-surface remote sensing
444  imagery for studying the environment, including — but not limited to — PhenoCam network

445  imagery.
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Appendix B: Description of ROI List Files

This sections explains the formatting of (1) the “ROl list files”, which detail the date and time
range over which each binary image mask was applied in processing the image data for a site;
(2) the binary “image mask files”, which delineate the ROl over which the image analysis was
conducted; and (3) sample images for each image mask file. With (1) and (2), which we consider
as essential metadata, the time series data sets can be reproduced from the original image files.

A more comprehensive data description is explained in (Richardson et al., 2018a).

The naming convention for the ROI list files in is as follows:

e <sitename>_<veg_type> <ROL_ID_number>_roi.csv

Where sitename is the name of the camera site, as listed in the metadata contained in Data
Record 1 (e.g., “coweeta”), veg_type is a two-letter abbreviation identifying the dominant
vegetation within the ROI, e.g. DB for deciduous broadleaf trees (see Table 1), and
ROI_ID_number is a numeric code that serves as a unique identifier to distinguish between
multiple ROIs of the same vegetation type at a given site (0001 for the first ROI list, 0002 for the

second, etc.).

A sample ROl list file (coweeta_DB_0001_roi.csv) is as follows:
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#

# ROl List for coweeta

#

# Site: coweeta

# Veg Type: DB

# ROl ID Number: 0001

# Owner: mtoomey

# Creation Date: 2012-09-05

# Creation Time: 11:42:00

# Update Date: 2012-09-05

# Update Time: 11:42:00

# Description: full canopy including deciduous and subdominant conifers
#

start_date,start_time,end_date,end_time, maskfile,sample_image
2011-04-14,00:00:00,2012-11-08,14:31:57,coweeta_DB_0001_01.tif,coweeta_2011_04_08_143030.jpg

2012-11-08,15:01:00,9999-12-31,23:59:59,coweeta_DB_0001_02.tif,coweeta_2012_11_09_113132.jpg

The first 13 lines (beginning with #), document the provenance of the ROI list, and contain a

brief description of the vegetation that is delineated by the associated image masks.

Line 14 lists the column headers for the mask entry rows. The mask entries begin on line 15. For
this site there was one minor change in the field of view, so there are two ROl mask entries.
Any additional field of view changes would result in additional rows (mask entries) being
appended to the file. Note that as described in Methods, if the field of view shift is too large or
if there are other exogenous events that necessitate distinguishing between the resulting data

sets, a new ROl list (e.g., coweeta_DB_0002_roi.csv) would be created for the site.

For each mask entry, the data fields are:

e start_date (format: YYYY-MM-DD, where MM = 01-12 and DD = 01-31)
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523 e start_time (format: hh:mm:ss, where hh = 00-23, mm = 00-59, ss = 00-59)

524 e end_date (format: same as for start_date)

525 e end_time (format: same as for start_time)

526 e mask_file: the filename for the 8-bit TIFF mask file with black for the ROI and white for
527 the region to exclude from calculations

528 e sample_image: the filename for a sample image in the date range

529  Note that only images within the date and time ranges (from start_date and start_time to
530 end_date and end_time) listed are included in the processed data set generated from this list.

531 For end_date, the date code 9999-12-31 is used to keep the processing open-ended.

532  The naming convention for the image mask files is:

533 e <sitename>_<veg_type>_<ROI_ID_number>_<mask_index>.tif

534  Here, the mask_index matches the entry number in the list (01 for the first entry, 02 for the
535 second entry, etc.). The image mask files are stored in the TIFF image format (.tif) because of

536 the flexibility that this offers, and because of compatibility with the python PIL library.

537 Sample images for each mask file have the same naming convention but terminate in a .jpg
538 extension:
539 e <sitename>_<veg_type>_<ROI_ID_number>_<mask_index>.jpg

540
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Appendix C: Center-line Images of Study Sites
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Figure S 2 Center-line images (CLI) are used to detect field of view shifts. Each panel shows the
CLI image for case study sites: boundarywaters, pasayten, proctor;, and sherman. Note that at

sherman the FOV shifts are generally minor, except for the obvious shifts mid-timeseries.
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Appendix D: Bimodality Analysis of the Monochromic CLI

As we have explained above, the CL/ raster in the FOV shift monitoring module can be plotted in
true RGB color format, as well as in monochromic color channels (R, G, and B), and brightness,
and darkness rasters. The individual bands may display different levels of efficiency for
separating canopy and sky pixels and so the horizon line. This can be highlighted by comparing
the bimodality coefficients of each image. To quantify which binary band performs more
reliably for distinguishing between canopy and sky, we ran a bimodality analysis on our
datasets. For each CLI image we calculated the bimodality coefficient (Zhang et al., 2003) of
individual color channels and brightness and darkness rasters (Figure S 3). Higher values of the
bimodality coefficient indicate greater difference between the frequency of sky and canopy
pixels and therefore bands with high bimodality coefficient are less challenging to visualize FOV
shifts. This simple experiment can help us to select the most appropriate bands for which the
CLlis plotted. We also visually observed visibility of the horizon line in different monochromic
rasters. The results suggested that using the brightness and blue channels can better separate

two groups of pixels including sky and canopy pixels than the other bands.
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562 Figure S 3 Bimodality coefficients for monochromic rasters at different sites. Similar to our visual interpretations, blue channel
563 and brightness images showed the highest performance to detect FOV shits. Darkness, red and green channels showed the

564  lowest detectability power among all tested rasters.
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