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Shifts in vegetation phenology are a key example of the biological impacts of climate
change!—. However, there is substantial uncertainty about whether these temperature-
driven trends will continue, or whether other factors — e.g. photoperiod — will become more
important as warming exceeds the bounds of historical variability*°. Using phenological
transition dates derived from digital repeat photography®, we show that experimental
whole-ecosystem warming treatments’ of up to +9 °C are correlated linearly with delayed
autumn green-down and advanced spring green-up of the dominant woody species in a
Boreal Picea-Sphagnum bog. Results were confirmed by direct observation of both
vegetative and reproductive phenology of these and other bog plant species, and multiple
years of observations. There was little evidence that the observed responses were
constrained by photoperiod. Our results indicate a likely extension of the period of
vegetation activity by 1-2 weeks under a “stabilization” climate scenario (+ 2.6 £ (0.7 °C),

and 3-6 weeks under a “high emission” scenario (+ 5.9 + 1.1 °C) through the end of the 21
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century. We also observed severe tissue mortality in the warmest enclosures following a
severe spring frost event. A failure to cue to photoperiod resulted in precocious green-up
and a premature loss of frost hardiness®, suggesting increased vulnerability to spring frost
damage in a warmer world*'’. While vegetation strategies evolved to balance tradeoffs
associated with phenological temperature tracking may be optimal under historic climates,
those strategies may not be optimized for future climate regimes. These in situ
experimental results are of particular significance because Boreal forests have a

circumpolar distribution and play a key role in the global carbon cycle!'.

In temperate and boreal regions, rising temperatures are advancing spring onset (e.g.
budburst and flowering) and delaying autumn senescence (e.g. leaf coloration and leaf fall) !>13,
Whether these trends will be maintained is an open question*. Warm and cold temperatures,
photoperiod and insolation, precipitation and water availability, have been shown to influence
plant phenology>>!'*!3. However, the future response of phenology to rising temperatures still
remains largely unknown because of the high degree of uncertainty associated with interactions
among these drivers'?. Importantly, it has been proposed that photoperiod may constrain the
phenological response to rising air temperatures*>!'®. While there is evidence for this in some
species®!?, the generality of these results — and whether there are robust patterns across
functional types — has yet to be demonstrated®.

Analyses of observational data sets to disentangle the effects of these drivers are
challenged by the lack of variability in natural systems, the inherent correlation among drivers,
and the realism of space-for-time assumptions'?. Experimental approaches are thus required.

However, there are sizable challenges associated with conducting realistic environmental
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manipulations, particularly for ecosystems with tall vegetation. Because of financial, logistical
and technological hurdles, experimental warming treatments have not previously been applied to
forest stands, and have only rarely been applied to single mature trees'’. While experiments with

18,19

seedlings and branch cuttings are relatively common >, artifacts associated with these

approaches may limit their broader applicability?%!.

We are studying the impact of experimental whole-ecosystem warming treatments on
vegetation phenology at the SPRUCE (Spruce and Peatland Responses Under Changing
Environments) facility, a long-term, multi-factor, manipulative experiment situated in a Boreal
peatland forest in the Upper Midwest of the US’. The experiment is unique in that the five levels
of warming (from 0 to +9 °C, see Methods and Supplementary Analysis 1) are being applied to
intact communities of native plants, including woody shrubs and mature trees. The dominant
plant species at SPRUCE represent key genera that are found across the vast boreal forest, or
taiga, which covers much of the northern hemisphere land surface from 45° to 70° N. Knowledge
of the environmental controls on the phenology of these species is poor and does not, at present,
provide a strong basis for making predictions about the capacity for phenological tracking of a
warmer climate. Results from SPRUCE will therefore inform our understanding of climate
change impacts on processes related to biogeochemical cycling and biosphere-atmosphere
feedbacks for this globally extensive biome.

Our focus here is on the impact of the experimental ecosystem warming treatments on
spring and autumn phenology in this forested peat bog. Specifically, we tested three competing
hypotheses:

HI1. Temperature is the dominant control on phenological events. Prediction: the

observed phenological transition date is directly related to the degree of warming (Figure 1 a).
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H2. Photoperiod is the dominant control on phenological events. Prediction: the observed
phenological transition date is constant regardless of the degree of warming (Figure 1 b).

H3. Photoperiod constrains the phenological response to temperature. Prediction: the
observed response to temperature is flat beyond a threshold temperature, #* (Figure 1 c).

We tracked phenological responses to the experimental treatments in two ways. Since
August 2015, we have monitored the vegetation within each enclosure using digital repeat
photography (Figure 1 d, €)°. And, since April 2016, we have made weekly ground observations
of vegetative and reproductive phenology on a variety of plant species.

For our analysis of camera imagery, we distinguished between three distinct vegetation
types: evergreen conifer, Picea mariana (black spruce); deciduous conifer, Larix laricina
(eastern tamarack or larch); and a mixed, ground-level shrub community dominated by
Rhododendron groenlandicum (Labrador tea) and Chamaedaphne calyculata (leatherleaf). For
each, green-down (as determined by Gcc, a color index derived from the digital images) in
autumn 2015 was delayed with increasing warming (Figure 2, a-c). The response to warming
was significantly stronger (interaction effect between temperature and species, P < 0.001) for the
mixed shrub community (=5 days delay per 1 °C warming) than for either of the tree species (1-2
days delay per 1 °C warming), but was in all cases highly linear. Our results unequivocally
support H1, i.e., that temperature is the dominant control on the timing of autumn phenology.
The fact that the temperature sensitivities were, in all cases, significantly different from zero
allows us to reject H2. And, in no case did our breakpoint analysis (see Methods) identify a #*
value that substantially improved model fit (Extended Data Table 2), allowing us to reject H3.
While the above results are for autumn 2015, comparable results were observed in autumn 2016

and 2017 (Supplementary Analysis 2).
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Similarly, green-up in spring 2016 was advanced with increasing warming (Figure 2, d-
f). The response to warming (1-2 days advancement per 1 °C warming) was not significantly
different among vegetation types (interaction effect between temperature and species, P = 0.34).
As in autumn, the fact that the temperature sensitivities were significantly different from zero
allows us to reject H2. Breakpoint model analysis allowed us to reject H3, as in no cases was a ¢*
value identified that would improve model fit (Extended Data Table 2). In spring, as in autumn,
HI is best supported by the experimental results. Results in spring 2017 were generally
consistent with those for spring 2016 (Supplementary Analysis 2).

The above results clearly indicate a continued extension of the period of vegetation
activity in response to future warming. By combining downscaled climate projections (Extended
Data Figure 2) from CMIP5 % with the phenological temperature sensitivities estimated from
Figure 2 (Supplementary Analysis 3), we predict that the physiologically active season of the
two conifer species may be extended by ~1 week under a “stabilization” climate scenario (RCP
4.5,+2.9+0.7 °C), and up to 3 weeks under a “high emission” scenario (RCP 8.5, + 5.9 £ 1.1
°C) by 2100 (Extended Data Table 3). Active season extension for the shrub layer is projected to
be roughly twice as large. These results are judged to be entirely plausible, given that future
warming is not projected to exceed the levels of experimental warming at SPRUCE, and thus we
are not extrapolating into unsampled climate space.

Previous work has shown that the seasonality of Gcc is a robust proxy for the seasonality

2324 and thus earlier

of vegetation photosynthesis in both conifer forests and wetland ecosystems
plant green-up and delayed green-down at SPRUCE are almost certainly associated with a longer

photosynthetically active period, and likely associated with enhanced annual photosynthetic

uptake (though not necessarily increased vegetation growth). This result is consistent with
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analysis of long-term data from an FLUXNET (Supplementary Analysis 4, Extended Data

119 125

Figure 3), as well as previous experimental ” and observational”” studies. However, this does not
necessarily imply an increase in net carbon uptake or carbon sequestration under future warming,
because the long-term C balance of this peatland forest ecosystem is likely dependent the
stability of the underlying peat deposits?.

Camera-based results are generally consistent with direct observation of spring (2016 and
2017) and autumn (2017 only) phenological transitions for plant species spanning a range of leaf
habits and growth forms (Table 1; see also Supplementary Analysis 5). Spring phenophases
advanced by just over 3 days per 1 °C warming, providing strong support for H1. Autumn
phenophases related to leaf coloration or senescence were delayed by almost 3 days per 1 °C
warming, again providing support for H1. Relatively little variation was observed in dates of fall
bud set for Chamaedaphne and Picea, providing support for H2 for this particular phenophase of
these species. While #* breakpoints that improved model fit were commonly identified, we note
that in most cases, AAICc > 0, meaning that the simpler, linear temperature model was better
supported by the data. Furthermore, the identified breakpoint temperatures were generally quite
high — below 4.5°C in only a few instances — indicating that future warming greatly exceeding
RCP 4.5 projections would have to occur before photoperiod constraints begin to limit
phenological shifts. The ground observations therefore robustly support H1 over H2 or H3, and
are consistent with future extension of the active season at both ends.

There is abundant evidence in the literature that photoperiod plays a role in triggering
phenological events*”-?. In many species there has been local adaptation of phenology to both

photoperiod and temperature cues>'>. In some species and environments, photoperiod sets a hard

limit on the phenological response to rising temperatures®!>. But, with warming of up to +9 °C
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above current levels, we found little evidence for this in most of the species and phenophases
studied here. Thus, photoperiod requirements are still getting met even during the shortened
winter simulated by the warmest enclosures. In the few cases where there was evidence of a
photoperiod effect, it was generally only a factor at temperatures well above current
temperatures, again implying that substantial future warming would be required for photoperiod
to become limiting. These findings are consistent with a recent analysis showing that for high-
latitude species, spring leaf out was generally not photoperiod-sensitive®.

The purported role of photoperiod as a phenological constraint is to prevent plants from
responding to temperature signals at the “wrong” time of the year*. However, if photoperiod is
not a strong constraint on spring phenological development, then a counterintuitive prediction is
that continued warming coupled with increasing frequency of climate extremes may increase the
likelihood of spring frost damage®!'°. At SPRUCE, atypical weather in March (unusually warm)
and April (extreme cold) 2016 showed that, in addition to triggering visually apparent
phenological shifts, the warming treatments also advanced tissue de-hardening, thereby
heightening the potential for spring frost damage (Supplementary Analysis 6, Extended Data
Figure 4). Following a spring frost event where ambient temperatures dropped to —15 °C, we
observed extensive foliar damage in the +9.0 °C enclosures (where temperatures dropped to
about —4°C) and moderate damage in the +6.75 °C enclosures. Minimal damage occurred in the
enclosures that received less warming and thus experienced colder minimum temperatures. This
suggests that the transition from frost-hardy to frost-vulnerable is cued by warm temperatures’,
and is not constrained by photoperiod. Without photoperiod as a safety check on the de-
hardening process, frost damage may be more severe and/or more frequent under future climate

conditions. Woody plants generally have sufficient nonstructural carbon reserves to recover from
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occasional frost damage'?, but repeated damage could impair the competitive ability of

susceptible species (Extended Data Table 6)*2°.

Results from the first year of the SPRUCE experiment, conducted in a winter-dormant
ecosystem, show decisively that warming treatments directly influence vegetation phenology at
both the start and end of the annual period of vegetation activity. These phenological shifts will

almost certainly influence photosynthesis and transpiration®!®, as well as feedbacks to the

t12

climate system through impacts on the surface energy budget'~. Future extension of the active

season in most cases appears unlikely to be strongly constrained by photoperiod in this Boreal
ecosystem. Potentially inopportune responses to environmental signals may occur as the climate
moves beyond the range of historical variability, as demonstrated by the spring frost damage in
the warmest enclosures. Thus, temperature-tracking strategies evolved to guide phenological
responses to historical year-to-year variation in weather may be increasingly mis-matched to

future conditions’.
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Figure 1. Testing competing hypotheses for phenological responses to warming using data
from a whole-ecosystem warming experiment. a—c, Conceptual model of relationship between
temperature and vegetation phenology, illustrating three competing hypotheses: a, temperature is
the dominant control (H1); b, photoperiod is the dominant control (H2); ¢, photoperiod limits the
temperature response above the temperature threshold #* (H3). d—e, Sample digital camera
imagery showing the inside of plot 19 (unheated control enclosure), d, and plot 17 (+9.0 °C
warming treatment enclosure), e, on 6 April 2016. At the time the photographs were taken, the
air temperature was 5 °C in plot 19 (note the last snow of the season), compared to 14 °C in plot
17.

Figure 2. Impact of whole-ecosystem warming treatments on dates of autumn green-down
and spring-green up, as derived from digital camera imagery. Response of autumn green-
down (a—c, 2015) and spring green-up (d—f, 2016) phenology to experimental warming
treatments for Larix laricina, Picea mariana, and a mixed shrub layer community dominated by
Rhododendron groenlandicum and Chamaedaphne calyculata, based on observations across n =
10 experimental enclosures (n = 9 for Larix, as in one enclosure this species was not within the
camera field of view) Green-down and green-up are proxies for autumn senescence and spring
onset, respectively. Error bars indicate 95% confidence interval around estimated phenological
transition dates. Additional results are presented in Supplementary Analysis 2, and Extended
Data Table 2.

Table 1. Impact of SPRUCE warming treatments on spring and autumn phenological
events (phenophases) for a variety of woody and herbaceous species. Statistics (mean + 1
standard deviation) are calculated across all observed species. Sample size (N) indicates the
number of species observed. “T effect” is the temperature sensitivity, in days change per 1 °C
warming, as estimated from the linear temperature model based on regression of transition date
(y) on warming treatment (x). “Breakpoints found” indicates the number of species for which a ¢*
threshold was identified using the breakpoint temperature model (response is linear up to a
temperature threshold #*, and flat thereafter; see Methods). Species-level results are reported in
Supplementary Analysis 5, and Extended Data Tables 4 and 5.

2016 2017
N T effect Breakpoints t* N T effect Breakpoints t*

Phenophase (species)  (d°C1+1SD) found (£ 1SD) (species)  (d°C1+1SD) found (x1SD)
Leaves growing 5 -3.19+0.69 3 6.34+£1.08 7 -3.19+1.25 5 5.46 £1.36
Shoots elongating 4 -3.53+0.92 2 6.14 +1.59 5 -3.69 +1.04 4 7.12+1.66
Flowering (cones open) 6 -2.51+0.89 5 6.09 £ 1.89 7 -2.91+1.33 5 6.74 £2.34
Flowers terminated 6 -1.45+1.17 1 4.65 + N/A
Fruiting 1 -2.56 £ N/A 6 -2.09+1.38 3 6.06 +1.52
Fall buds 3 -0.59 £1.03

Fall coloration (senescence) 6 2.70 £ 1.45 2 4,73+2.88

13
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Methods
Study site and experimental design

The SPRUCE (Spruce and Peatland Responses Under Changing Environments)
experiment is located within the S1 peat bog at the Marcell Experimental Forest (47° 30.171° N,
93°28.970° W)*°, approximately 40 km north of Grand Rapids in north-central Minnesota, USA.
The historic climate at the site is subhumid continental: mean annual temperature is 4°C, mean
annual precipitation is 750 mm, and extreme temperatures range from —38 °C to +30 °C. Because
this ecosystem is located at the southern edge of the Boreal zone, it is considered particularly
vulnerable to climate change.

The S1 bog is an ombotrophic peatland with a perched water table. Trees are
approximately 5-8 m in height. Canopy vegetation is dominated by the tree species Picea
mariana (Mill.) B.S.P. (black spruce), with additional contributions from Larix laricina (Du Roi)
K. Koch (eastern tamarack or larch). P. mariana and L. laricina both have a vast geographic
range across North America, from Alaska east to Quebec and Labrador, and south to the Great
Lakes and New England. A number of closely related Picea and Larix species are distributed
across the Boreal zone of northern Europe, Scandinavia and much of Russia and Siberia,
indicating the relevance of results of this experiment to our understanding of Boreal ecosystem
processes globally.

The SPRUCE understory is dominated by the evergreen shrubs Rhododendron
groenlandicum (Oeder) Kron & Judd (Labrador tea) and Chamaedaphne calyculata (L.)
Moench. (leatherleaf), and is underlain by a bryophyte layer dominated by Sphagnum spp. moss.
Other common plant species include the evergreen shrub Kalmia polifolia Wangenh. (bog

laurel), the deciduous shrub Vaccinium angustifolium Aiton 1789 not Benth. 1840 (lowbush

14
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blueberry), the sedge Eriophorum spp. (cottongrass), and the perennial herb Maianthemum
trifolium (L.) Sloboda (false Solomon’s seal).

At SPRUCE, experimental temperature (+0 °C — “unheated control” —to +9.0 °C, in
2.25°C increments for both air and deep soil) and CO> (ambient and elevated, approximately 400
and 900 ppm, respectively) treatments are being applied through the use of large (approximately
12 m wide, 8 m high) open-topped octagonal enclosures’. Overall, five temperature treatments
are paired with two CO; treatments, yielding a total of ten enclosures (additionally, there are two
“ambient environment” plots without constructed enclosures). Each enclosure is hydrologically
isolated from the rest of the bog by a sheet pile corral which has been driven 3-4 m through the
peat into the underlying ancient lake sediments. Outflow pipes allow for lateral drainage from
each enclosure. Within each enclosure, warming of the deep soil began in June 2014, while
aboveground warming was initiated in August 2015 and at this time the phenological
observations were commenced in each individual plot (note that pre-treatment observations were
made in a common area, outside of the enclosures, beginning in 2010). CO» treatments were
switched on in June 2016.

For context, the warmest enclosures (+9.0 °C) simulate current climate conditions of
Wichita, Kansas (mean annual temperature 13 °C, mean annual precipitation 850 mm), located
approximately 1100 km (10 ° of latitude) to the south. The SPRUCE experiment, with treatments
that will exceed the historic range of climatic variability (Extended Data Figure 1), is
intentionally planned to push the system past projected warming levels to approach or include
tipping points for any number of ecosystem response variables. The regression-based
experimental design facilitates the estimation of temperature response functions, which may be

nonlinear’.
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The enclosure design, and detailed performance metrics for the above- and below-ground
warming, along with a discussion of potential artifacts, are more fully described and assessed in
a prior publication’. Observed temperature differentials were consistent with the nominal
warming treatments for target enclosures. Warming was homogeneous within individual

enclosures, and was sustained over time (see Supplementary Analysis 1, Extended Data Table 1).

Phenological observations

We are using two methods to track the phenological responses of vegetation to warming
and elevated COz in each enclosure. First, beginning in August 2015, we installed digital
cameras’', or phenocams”, in each enclosure in order to track seasonal variation in vegetation
“greenness”, a proxy for vegetation phenology and associated physiological activity®*3~>,
Second, beginning in April 2016, human observers have been directly tracking phenological
events of both woody and herbaceous species.

PhenoCam imagery—Digital cameras (NetCam model SD130BN, StarDot Technologies,
Buena Park, CA) were configured and installed following standard protocols of the PhenoCam
network>. Cameras record sequential visible-light (red, green, blue; RGB) and visible+infrared
images®” every 30 minutes from 4 am to 10 pm, every day of the year. Minimally-compressed
JPEG images, accompanied by a metadata file containing the current status of all camera settings
and diagnostics, are uploaded via FTP (file transfer protocol) to the PhenoCam server for
archiving and processing; a local copy is also maintained on a server running at SPRUCE. The

filename of every image identifies the enclosure in which the picture was recorded, as well as a

date and time stamp in local standard time.
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The aluminum structural members of each enclosure provided convenient and consistent
mounting points for the cameras. All cameras were mounted, at a height of 6 m, in the middle of
the third horizontal structural member on the south wall of each enclosure. Cameras were
enclosed in lightweight, compact weatherproof enclosures (model ENC-OUTD3, StarDot
Technologies, Buena Park, CA). Network connectivity and DC power were delivered to each
camera using a single Ethernet cable and standard power-over-Ethernet (POE) technology. To
reduce the likelihood of lightning damage, an Ethernet surge protector (ProtectNet model
PNET1GB, APC by Schneider Electric, West Kingston, RI) was installed on the camera end of
each Ethernet cable, and grounded to the mounting point.

All imagery is posted in near-real time to the PhenoCam project web page

(http://phenocam.sr.unh.edu/), where it is publicly available. Images are processed nightly, using

standard PhenoCam routines®*°. Briefly, this consists of several steps. First, we defined three
separate regions of interest (ROIs) for each camera field of view, demarcating (1) Picea trees; (2)
Larix trees; and (3) the mixed shrub layer. The ROI definitions are converted to binary masks, so
that image analysis can be completed separately for each vegetation type. Next, images were
read in sequentially, and for each vegetation type the mean pixel value for each of the three color
channels (red, green and blue; for the purposes of the present analysis we used only the visible-
wavelength imagery) was calculated across the corresponding ROI, yielding a digital number
(DN) triplet (Rpn, Gpn, Bpn). Then for each ROI in each image, we calculated the green
chromatic coordinate, Gcc, which has been shown in numerous studies to be a reliable metric for

characterizing the seasonal trajectory of vegetation color and activity®3!-®:

GDN

G -
“C Rpn+Gpn+Bpx
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Basic quality control included eliminating images that were recorded when the sun was
less than 5° above the horizon, images that were too dark, or images that were too bright.
Additionally, because snow might obscure the vegetation of interest, for each day from late
August 2015 through the end of December 2017, we visually inspected the mid-day image from
each camera. We flagged images in which there was (1) snow on the ground; or (2) snow on
trees. We excluded from further processing all days on which the camera’s view of the
vegetation of interest was potentially snow-contaminated. For the shrub layer, this meant
eliminating images from days with snow on the ground; for Picea and Larix, this meant
eliminating images from days with snow on trees. The frequency of snow decreased with
increasing plot temperature, from over 100 days per year with snow on the ground in the
unheated enclosures (from late October to early May), to less than 30 days per year in the +9.0
°C enclosures (from late November to early February). The longest period of continuous snow
cover was almost three months in the unheated enclosures, compared with only 2 weeks in the
+9.0 °C enclosures.

Next, we determined 3-day Gcc values using the 90™ quantile method®. We then used a
spline-based method to sequentially remove outliers in three iterative steps. Finally, we re-fit the
spline, and used the summertime maxima and dormant-season minima to define the seasonal Gcc
amplitude, from which we were then able to identify dates at which 10%, 25% and 50% of the
seasonal amplitude were reached in autumn (senescent or “green-down” phase) and spring (onset
or “green-up” phase). Uncertainties on these dates were then derived based on the uncertainty
around the smoothing spline. Our analysis here focuses on the 25% amplitude threshold dates.

Ground observations—Ground observations of spring phenology were made at

approximately weekly intervals by WRN and JL in 2016, and by RRH in 2017. The protocol
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used by WRN and RRH involved recording, on a pre-printed form for each of the 10 enclosures
and the two ambient environment plots, whether or not (“Yes” or “No”) specific vegetative and
reproductive phenophases were observed each week. Observations were conducted on a selection
of woody species (the trees Picea and Larix; the evergreen shrubs leatherleaf, bog laurel,
Labrador tea, and lowbush blueberry), as well as a sedge (cottongrass), and a perennial herb
(false Solomon’s seal). We transcribed the data by taking as the observed date the first survey
date on which an event was definitively observed (i.e., “No” through week 4, followed by “Yes”
in week 5: the event occurred in week 5). Not all phenophases were observed for all species, and
in some difficult-to-observe cases, the data were deemed not reliable because of some
inconsistencies in the recorded data (e.g. blank cells rather than “No”, or “No” followed by
“Yes” followed by “No” again) or poor representation of the species in question in some of the
plots (e.g., bog laurel and lowbush blueberry are sparsely distributed). All transcribed data of
questionable reliability were excluded from the analysis.

JL’s protocol involved recording the first date at which Larix leaf buds were observed to
be just beginning to break (data recorded for all 10 enclosures, plus the two ambient environment
plots), and the first date at which flowers of leatherleaf, bog laurel, and Labrador tea were
observed in each enclosure (data recorded in only half of the treated enclosures, plus one or both
of the ambient environment plots). Although data recorded by JL are not as complete as those

recorded by WRN, they are included to demonstrate the robustness of the observed patterns.

On-site meteorological data

Air temperature and relative humidity were measured (model HMP-155, Vaisala, Vantaa,

Finland) at four points above the peat surface within each enclosure (0.5, 1, 2 and 4 m), and 30-
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minute mean values recorded. We used the measured air temperature at 2 m in our analyses.
SPRUCE environmental data®® are available through the Vista Data Vision portal

(http://sprucedata.ornl.gov/vdv).

Historical perspective and future climate projections

To put the weather during winter and spring of 2016 in historical context (122 year
record), we used data from NOAA’s National Climatic Data Center (NCDC). Specifically, we
used summary data from the State of the Climate report

(https://www.ncdc.noaa.gov/sotc/national/), and 3-month divisional temperature rankings

(https://www.ncdc.noaa.gov/temp-and-precip/climatological-rankings/). The SPRUCE site falls

within Minnesota’s Climate Division 2.

To place our results in the context of projected warming trends over the coming century,
we used downscaled (1/8°) climate projections from a selection of ten models (see
Supplementary Analysis 2) contributing to the CMIP5 multimodel ensemble dataset’>*°, We
used output for two Representative Concentration Pathway (RCP) scenarios: RCP 4.5 (CO»
stabilization) and RCP 8.5 (rising CO2)*!**2. To quantify future trends, we calculated the

projected decadal mean air temperature change relative to the 2006-2015 mean for each model.

Statistical analysis

To characterize the relationship between air temperature and phenological timing (H1
and H2), we used ordinary linear regression, with the observed phenological date as the
dependent variable, y;, and the measured air temperature differential for each plot (see

Supplementary Analysis 1) as the independent variable, x;. The regression slope, £, thus gives
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the temperature sensitivity in days per 1 °C warming for the “linear temperature model”. We
used a significance level of 0.05 to test the null hypothesis that = 0. To account for potential
effects of elevated CO> on phenology, we also analyzed data (where appropriate) using a “linear
temperature and CO> model”, which included temperature, CO; (elevated and ambient) and a
temperature x CO; interaction effect.

For breakpoint analysis (H3), we fit a three-parameter (a, £, t*) “breakpoint temperature
model”, which was specified as:

yi=a+fx;+e€ forx; <t”

yi=a+ft +e€ forx; >t"

where x; and y; are as for the ordinary linear regression, ¢; is the regression residual, and #* is the
temperature breakpoint, as illustrated in Figure 1. We constrained #* to fall in the range of 2-9
°C. An edge-hitting value of * = 9°C was obtained when the linear model fit the data every bit
as well as the breakpoint model.

We used Akaike’s Information Criterion (AIC)* to identify whether the linear model or

the breakpoint model was best supported by the available data. AIC is typically calculated as:
AIC=nlog(c))+2p

where 7 is the number of observations, p is the number of fit parameters plus one, and 6 is the
residual sum of squares divided by n. When # is small relative to p, the small-sample corrected

criterion, AICc, is preferred*:
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AIC effectively balances improving explanatory power (lower c2) against increasing
complexity (larger p), and thus AIC selects against over-parameterized models. The model with
the lowest AIC is considered the best model given the data, and the absolute difference in AICc
scores between two models can be used to evaluate the weight of evidence in support of the
better model. If the difference (AAIC) is small or zero then the two models are equally good.
But, if AAIC = 2.0, then the model with the lower AICc is almost three times more likely to be

best*.

Data Availability
PhenoCam imagery is publicly available through the project web page

(http://phenocam.sr.unh.edu), and the phenological data sets used in this study are available

through the ORNL DAAC*#,
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Extended Data Table 1 | Mean daily air temperature, and temperature differentials, over
the duration of the whole-ecosystem warming treatments (August 2015-December 2017).

Daily means are calculated based on the mean half-hour data for two temperature sensors
mounted at 2 m height. Temperature differentials (AT) are calculated relative to the mean of the
two unheated enclosures (Plots 19 and 06). Plots are arranged in order of increasing AT; overall
mean + 1 SD AT is calculated across #» = 5 multi-month means.

Extended Data Table 2 | Impact of SPRUCE warming treatments on spring green-up and
autumn green-down, as derived from PhenoCam imagery

Results are shown from the start of the whole-ecosystem warming experiment (autumn 2015),
based on observations across n = 10 experimental enclosures (n = 9 for Larix, as in one enclosure
this species was not within the camera field of view). Mean transition dates are reported + 1 SD.
Statistics for the “linear temperature model” are based on regression of transition date () on
warming treatment (x), and the model slope is the phenological temperature sensitivity in days
per 1°C warming. “T effect” column reports P-value for null hypothesis of no temperature effect.
Statistics for the “breakpoint temperature model” are based on a model in which the response to
warming treatment is assumed linear up to a temperature threshold #*, and flat thereafter (see
Methods for additional details). No statistics are reported for cases in which a #* could not be
identified or where the addition of #* did not improve model fit. AAICc is the difference in
Akaike’s Information Criterion (corrected for small sample sizes) between the linear temperature
model and breakpoint temperature model, with a positive value indicating that the linear
temperature model is better supported by the data, and a negative value indicating that the
beakpoint temperature model is better supported by the data. RMSE is root mean squared error.
SE is standard error. Results not shown for the “linear temperature and CO2 model” as the CO>
effect and CO; x T interaction effect were generally not significant (see Supplementary Analysis
2 for additional information).

Extended Data Table 3 | Projected future extension of the period of vegetation activity,
based on linear extrapolation of experimental results using CMIPS5 climate projections.

Temperature sensitivities are derived from Figure 2; total projected active season extension is the
product of the temperature sensitivity of total active season length multiplied by the mean
projected temperature increase (decadal means, relative to 2006-2015). Uncertainties in active
season extension represent the uncertainty in the climate projections (SD across ten models), not
the uncertainty in the temperature sensitivities.
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Extended Data Table 4 | Impact of SPRUCE warming treatments on visually observed
vegetative and reproductive phenological transitions in 2016.

Data are from 2016 growing season, based on observations across n = 12 plots. Species are
ordered by functional type, and within each species, phenophases are ordered according to the
mean (= 1 SD) day of year (DOY) on which the event occurred. Statistics for the “linear
temperature model” are based on regression of transition date (y) on warming treatment (x), and
the model slope is the phenological temperature sensitivity in days per 1°C warming. “T effect”
column reports P-value for null hypothesis of no temperature effect. Statistics for the “breakpoint
temperature model” are based on a model in which the response to warming treatment is
assumed linear up to a temperature threshold #*, and flat thereafter (see Methods for additional
details). No statistics are reported for cases in which a #* could not be identified, or where the
addition of #* did not improve model fit. AAICc is the difference in Akaike’s Information
Criterion (corrected for small sample sizes) between the linear temperature model and breakpoint
temperature model, with a positive value indicating that the linear temperature model is better
supported by the data, and a negative value indicating that the breakpoint temperature model is
better supported by the data. RMSE is root mean squared error. SE is standard error.

Extended Data Table 5 | Impact of SPRUCE warming treatments on visually observed
vegetative and reproductive phenological transitions in 2017.

Data are from 2017 growing season, based on observations across n = 12 plots. Species are
ordered alphabetically, and within each species, phenophases are ordered according to the mean
(£ 1 SD) day of year (DOY) on which the event occurred. Statistics for the “linear temperature
model” are based on regression of transition date (y) on warming treatment (x), and the model
slope is the phenological temperature sensitivity in days per 1°C warming. “T effect” column
reports P-value for null hypothesis of no temperature effect. Statistics for the “breakpoint
temperature model” are based on a model in which the response to warming treatment is
assumed linear up to a temperature threshold #*, and flat thereafter (see Methods for additional
details). No statistics are reported for cases in which a #* could not be identified, or where the
addition of #* did not improve model fit. AAICc is the difference in Akaike’s Information
Criterion (corrected for small sample sizes) between the linear temperature model and breakpoint
temperature model, with a positive value indicating that the linear temperature model is better
supported by the data, and a negative value indicating that the breakpoint temperature model is
better supported by the data. RMSE is root mean squared error. SE is standard error. Results not
shown for the “linear temperature and CO; model” as the CO, effect and CO; x T interaction
effect were generally not significant (see Supplementary Analysis 5 for additional information).
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Extended Data Table 6 | Larix laricina and Picea mariana litter nutrient content following
premature foliar senescence in early May 2016, and natural senescence in late October
2016.

Following the April 9™ 2016 spring frost event, damaged foliage from trees that had lost frost
hardiness began a period of senescence, culminating in heavy leaf fall during early May as air
temperatures frequently exceeded 30 °C in the +9.0 °C plots (temperatures over 40 °C were
observed in plot 10 and plot 17 on May 5 and 6). Prematurely senescent litter was collected May
6 from the ground underneath damaged trees in the two warmest treatments (+6.75 and +9.0 °C)
(n =3 -7 trees). Normally senescent litter was collected November 4 from ambient environment
plots outside of the experimental treatments using litter baskets (n = 8 trees). Litter was analyzed
for carbon and nitrogen by combustion using 0.1 g samples of oven-dried and finely ground
tissue on a LECO TruSpec elemental analyzer (LECO Corporation, St. Joseph, MI). Data are
presented on a percent dry matter basis.
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Extended Data Figure 1 | Air temperature and precipitation in the SPRUCE S1 Bog (August 2015-
December 2017) relative to long-term (1960-2016) means and variability. a, Long-term daily mean
temperature (°C, £1 SD indicated by shading), compared with daily mean temperature (calculated from
30-minute means, based n = 2 sensors mounted at 2 m height in each enclosure) in a +0 °C enclosure
(unheated control) and a +9.0 °C enclosure. b, Long-term monthly mean temperature (mean daily
maximum and mean daily minimum indicated by shaded bars), compared with monthly mean temperature
(calculated from daily means, as in a) in different experimental treatments. ¢, Long-term monthly mean
precipitation (mm, =1 SD indicated by shading, with maxima and minima indicated by dotted lines),
compared with measured monthly precipitation (# = 1 rain gage) in the S1 Bog.

Extended Data Figure 2 | Decadal mean temperature change (relative to 2006-2015 mean)
projections from ten CMIPS5 earth system models for the SPRUCE site. a, “Stabilization” climate
scenario (RCP 4.5). b, “High emission” climate scenario (RCP 8.5).

Extended Data Figure 3 | Relationships between air temperature and the start and end of the
photosynthetic uptake period, as derived from FLUXNET data for evergreen conifer-dominated
sites. Across-site patterns in a, spring, and b, autumn, in relation to mean annual temperature (n = 12
sites); within-sites patterns in ¢, spring, and d, autumn, in relation to seasonal temperature anomalies (n =
86 site-years).

Extended Data Figure 4 | Unusually warm weather in late winter, followed by extreme cold in early
April, resulted in severe frost damage in the warmest enclosures at SPRUCE in 2016. a, Time series
of daily mean air temperature, comparing plot 17 (+9.0 °C warming) and plot 19 (unheated enclosure),
during winter and spring 2016. By the time the frost event occurred (grey shading), daily mean
temperature in plot 17 had been above freezing for over a month, but had repeatedly dropped below
freezing in plot 19. b, Time series of 30-minute air temperature, again comparing plot 17 and plot 19,
leading up to and immediately following the frost event which occurred on the morning of April 9 and
again on April 12. The thin red lines indicate the variability (maximum and minimum) across n =5
temperature sensors in plot 17. ¢, Time series of daily Gcc, the green chromatic coordinate, for Picea trees
in plot 17 and plot 19. Arrows denote spring green-up dates (progressively larger arrows corresponding to
10%, 25% and 50% of seasonal amplitude) estimated from Gcc. The pronounced decline in Gee in plot 17
following the frost event (grey shading) is readily apparent. Trees in plot 19 retained sufficient frost
hardiness that they were undamaged, despite experiencing much colder temperatures. d, Brown, frost-
damaged Larix foliage in plot 17. e, Picea branches in plot 17, showing loss of most foliage from
previous years, with green foliage from the 2015 flush retained only at branch tips. f, Picea branches with
frost-damaged foliage from previous years, but healthy green foliage from the 2016 flush.
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