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 21 
Shifts in vegetation phenology are a key example of the biological impacts of climate 22 

change1–3. However, there is substantial uncertainty about whether these temperature-23 

driven trends will continue, or whether other factors – e.g. photoperiod – will become more 24 

important as warming exceeds the bounds of historical variability4,5. Using phenological 25 

transition dates derived from digital repeat photography6, we show that experimental 26 

whole-ecosystem warming treatments7 of up to +9 °C are correlated linearly with delayed 27 

autumn green-down and advanced spring green-up of the dominant woody species in a 28 

Boreal Picea-Sphagnum bog. Results were confirmed by direct observation of both 29 

vegetative and reproductive phenology of these and other bog plant species, and multiple 30 

years of observations. There was little evidence that the observed responses were 31 

constrained by photoperiod. Our results indicate a likely extension of the period of 32 

vegetation activity by 1-2 weeks under a “stabilization” climate scenario (+ 2.6 ± 0.7 °C), 33 

and 3-6 weeks under a “high emission” scenario (+ 5.9 ± 1.1 °C) through the end of the 21st 34 



 2 

century. We also observed severe tissue mortality in the warmest enclosures following a 1 

severe spring frost event. A failure to cue to photoperiod resulted in precocious green-up 2 

and a premature loss of frost hardiness8, suggesting increased vulnerability to spring frost 3 

damage in a warmer world9,10. While vegetation strategies evolved to balance tradeoffs 4 

associated with phenological temperature tracking may be optimal under historic climates, 5 

those strategies may not be optimized for future climate regimes. These in situ 6 

experimental results are of particular significance because Boreal forests have a 7 

circumpolar distribution and play a key role in the global carbon cycle11. 8 

 9 

In temperate and boreal regions, rising temperatures are advancing spring onset (e.g. 10 

budburst and flowering) and delaying autumn senescence (e.g. leaf coloration and leaf fall) 12,13. 11 

Whether these trends will be maintained is an open question4. Warm and cold temperatures, 12 

photoperiod and insolation, precipitation and water availability, have been shown to influence 13 

plant phenology2,5,14,15. However, the future response of phenology to rising temperatures still 14 

remains largely unknown because of the high degree of uncertainty associated with interactions 15 

among these drivers12. Importantly, it has been proposed that photoperiod may constrain the 16 

phenological response to rising air temperatures4,5,16. While there is evidence for this in some 17 

species8,15, the generality of these results – and whether there are robust patterns across 18 

functional types – has yet to be demonstrated5. 19 

Analyses of observational data sets to disentangle the effects of these drivers are 20 

challenged by the lack of variability in natural systems, the inherent correlation among drivers, 21 

and the realism of space-for-time assumptions12. Experimental approaches are thus required. 22 

However, there are sizable challenges associated with conducting realistic environmental 23 
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manipulations, particularly for ecosystems with tall vegetation. Because of financial, logistical 1 

and technological hurdles, experimental warming treatments have not previously been applied to 2 

forest stands, and have only rarely been applied to single mature trees17. While experiments with 3 

seedlings and branch cuttings are relatively common18,19, artifacts associated with these 4 

approaches may limit their broader applicability20,21. 5 

We are studying the impact of experimental whole-ecosystem warming treatments on 6 

vegetation phenology at the SPRUCE (Spruce and Peatland Responses Under Changing 7 

Environments) facility, a long-term, multi-factor, manipulative experiment situated in a Boreal 8 

peatland forest in the Upper Midwest of the US7. The experiment is unique in that the five levels 9 

of warming (from 0 to +9 °C, see Methods and Supplementary Analysis 1) are being applied to 10 

intact communities of native plants, including woody shrubs and mature trees. The dominant 11 

plant species at SPRUCE represent key genera that are found across the vast boreal forest, or 12 

taiga, which covers much of the northern hemisphere land surface from 45° to 70° N. Knowledge 13 

of the environmental controls on the phenology of these species is poor and does not, at present, 14 

provide a strong basis for making predictions about the capacity for phenological tracking of a 15 

warmer climate. Results from SPRUCE will therefore inform our understanding of climate 16 

change impacts on processes related to biogeochemical cycling and biosphere-atmosphere 17 

feedbacks for this globally extensive biome. 18 

Our focus here is on the impact of the experimental ecosystem warming treatments on 19 

spring and autumn phenology in this forested peat bog. Specifically, we tested three competing 20 

hypotheses:  21 

H1. Temperature is the dominant control on phenological events. Prediction: the 22 

observed phenological transition date is directly related to the degree of warming (Figure 1 a).  23 
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H2. Photoperiod is the dominant control on phenological events. Prediction: the observed 1 

phenological transition date is constant regardless of the degree of warming (Figure 1 b). 2 

H3. Photoperiod constrains the phenological response to temperature. Prediction: the 3 

observed response to temperature is flat beyond a threshold temperature, t* (Figure 1 c).   4 

We tracked phenological responses to the experimental treatments in two ways. Since 5 

August 2015, we have monitored the vegetation within each enclosure using digital repeat 6 

photography (Figure 1 d, e)6. And, since April 2016, we have made weekly ground observations 7 

of vegetative and reproductive phenology on a variety of plant species.  8 

 For our analysis of camera imagery, we distinguished between three distinct vegetation 9 

types: evergreen conifer, Picea mariana (black spruce); deciduous conifer, Larix laricina 10 

(eastern tamarack or larch); and a mixed, ground-level shrub community dominated by 11 

Rhododendron groenlandicum (Labrador tea) and Chamaedaphne calyculata (leatherleaf). For 12 

each, green-down (as determined by GCC, a color index derived from the digital images) in 13 

autumn 2015 was delayed with increasing warming (Figure 2, a-c). The response to warming 14 

was significantly stronger (interaction effect between temperature and species, P < 0.001) for the 15 

mixed shrub community (≈5 days delay per 1 °C warming) than for either of the tree species (1-2 16 

days delay per 1 °C warming), but was in all cases highly linear. Our results unequivocally 17 

support H1, i.e., that temperature is the dominant control on the timing of autumn phenology. 18 

The fact that the temperature sensitivities were, in all cases, significantly different from zero 19 

allows us to reject H2. And, in no case did our breakpoint analysis (see Methods) identify a t* 20 

value that substantially improved model fit (Extended Data Table 2), allowing us to reject H3.  21 

While the above results are for autumn 2015, comparable results were observed in autumn 2016 22 

and 2017 (Supplementary Analysis 2). 23 



 5 

 Similarly, green-up in spring 2016 was advanced with increasing warming (Figure 2, d-1 

f). The response to warming (1-2 days advancement per 1 °C warming) was not significantly 2 

different among vegetation types (interaction effect between temperature and species, P = 0.34). 3 

As in autumn, the fact that the temperature sensitivities were significantly different from zero 4 

allows us to reject H2. Breakpoint model analysis allowed us to reject H3, as in no cases was a t* 5 

value identified that would improve model fit (Extended Data Table 2). In spring, as in autumn, 6 

H1 is best supported by the experimental results. Results in spring 2017 were generally 7 

consistent with those for spring 2016 (Supplementary Analysis 2). 8 

 The above results clearly indicate a continued extension of the period of vegetation 9 

activity in response to future warming. By combining downscaled climate projections (Extended 10 

Data Figure 2) from CMIP5 22 with the phenological temperature sensitivities estimated from 11 

Figure 2 (Supplementary Analysis 3), we predict that the physiologically active season of the 12 

two conifer species may be extended by ≈1 week under a “stabilization” climate scenario (RCP 13 

4.5, + 2.9 ± 0.7 °C), and up to 3 weeks under a “high emission” scenario (RCP 8.5, + 5.9 ± 1.1 14 

°C) by 2100  (Extended Data Table 3). Active season extension for the shrub layer is projected to 15 

be roughly twice as large. These results are judged to be entirely plausible, given that future 16 

warming is not projected to exceed the levels of experimental warming at SPRUCE, and thus we 17 

are not extrapolating into unsampled climate space.  18 

Previous work has shown that the seasonality of GCC is a robust proxy for the seasonality 19 

of vegetation photosynthesis in both conifer forests and wetland ecosystems23,24, and thus earlier 20 

plant green-up and delayed green-down at SPRUCE are almost certainly associated with a longer 21 

photosynthetically active period, and likely associated with enhanced annual photosynthetic 22 

uptake (though not necessarily increased vegetation growth). This result is consistent with 23 
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analysis of long-term data from an FLUXNET (Supplementary Analysis 4, Extended Data 1 

Figure 3), as well as previous experimental19 and observational25 studies. However, this does not 2 

necessarily imply an increase in net carbon uptake or carbon sequestration under future warming, 3 

because the long-term C balance of this peatland forest ecosystem is likely dependent the 4 

stability of the underlying peat deposits26. 5 

 Camera-based results are generally consistent with direct observation of spring (2016 and 6 

2017) and autumn (2017 only) phenological transitions for plant species spanning a range of leaf 7 

habits and growth forms (Table 1; see also Supplementary Analysis 5). Spring phenophases 8 

advanced by just over 3 days per 1 °C warming, providing strong support for H1. Autumn 9 

phenophases related to leaf coloration or senescence were delayed by almost 3 days per 1 °C 10 

warming, again providing support for H1. Relatively little variation was observed in dates of fall 11 

bud set for Chamaedaphne and Picea, providing support for H2 for this particular phenophase of 12 

these species. While t* breakpoints that improved model fit were commonly identified, we note 13 

that in most cases, ∆AICc > 0, meaning that the simpler, linear temperature model was better 14 

supported by the data. Furthermore, the identified breakpoint temperatures were generally quite 15 

high – below 4.5°C in only a few instances – indicating that future warming greatly exceeding 16 

RCP 4.5 projections would have to occur before photoperiod constraints begin to limit 17 

phenological shifts. The ground observations therefore robustly support H1 over H2 or H3, and 18 

are consistent with future extension of the active season at both ends.  19 

 There is abundant evidence in the literature that photoperiod plays a role in triggering 20 

phenological events27,28. In many species there has been local adaptation of phenology to both 21 

photoperiod and temperature cues5,15. In some species and environments, photoperiod sets a hard 22 

limit on the phenological response to rising temperatures4,15. But, with warming of up to +9 °C 23 
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above current levels, we found little evidence for this in most of the species and phenophases 1 

studied here. Thus, photoperiod requirements are still getting met even during the shortened 2 

winter simulated by the warmest enclosures. In the few cases where there was evidence of a 3 

photoperiod effect, it was generally only a factor at temperatures well above current 4 

temperatures, again implying that substantial future warming would be required for photoperiod 5 

to become limiting. These findings are consistent with a recent analysis showing that for high-6 

latitude species, spring leaf out was generally not photoperiod-sensitive8.  7 

 The purported role of photoperiod as a phenological constraint is to prevent plants from 8 

responding to temperature signals at the “wrong” time of the year4. However, if photoperiod is 9 

not a strong constraint on spring phenological development, then a counterintuitive prediction is 10 

that continued warming coupled with increasing frequency of climate extremes may increase the 11 

likelihood of spring frost damage9,10. At SPRUCE, atypical weather in March (unusually warm) 12 

and April (extreme cold) 2016 showed that, in addition to triggering visually apparent 13 

phenological shifts, the warming treatments also advanced tissue de-hardening, thereby 14 

heightening the potential for spring frost damage (Supplementary Analysis 6, Extended Data 15 

Figure 4). Following a spring frost event where ambient temperatures dropped to –15 °C, we 16 

observed extensive foliar damage in the +9.0 °C enclosures (where temperatures dropped to 17 

about –4°C) and moderate damage in the +6.75 °C enclosures. Minimal damage occurred in the 18 

enclosures that received less warming and thus experienced colder minimum temperatures.  This 19 

suggests that the transition from frost-hardy to frost-vulnerable is cued by warm temperatures9, 20 

and is not constrained by photoperiod. Without photoperiod as a safety check on the de-21 

hardening process, frost damage may be more severe and/or more frequent under future climate 22 

conditions. Woody plants generally have sufficient nonstructural carbon reserves to recover from 23 
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occasional frost damage10, but repeated damage could impair the competitive ability of 1 

susceptible species (Extended Data Table 6)9,29. 2 

Results from the first year of the SPRUCE experiment, conducted in a winter-dormant 3 

ecosystem, show decisively that warming treatments directly influence vegetation phenology at 4 

both the start and end of the annual period of vegetation activity. These phenological shifts will 5 

almost certainly influence photosynthesis and transpiration3,16, as well as feedbacks to the 6 

climate system through impacts on the surface energy budget12. Future extension of the active 7 

season in most cases appears unlikely to be strongly constrained by photoperiod in this Boreal 8 

ecosystem. Potentially inopportune responses to environmental signals may occur as the climate 9 

moves beyond the range of historical variability, as demonstrated by the spring frost damage in 10 

the warmest enclosures. Thus, temperature-tracking strategies evolved to guide phenological 11 

responses to historical year-to-year variation in weather may be increasingly mis-matched to 12 

future conditions5.  13 
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Figure 1. Testing competing hypotheses for phenological responses to warming using data 1 
from a whole-ecosystem warming experiment. a–c, Conceptual model of relationship between 2 
temperature and vegetation phenology, illustrating three competing hypotheses: a, temperature is 3 
the dominant control (H1); b, photoperiod is the dominant control (H2); c, photoperiod limits the 4 
temperature response above the temperature threshold t* (H3). d–e, Sample digital camera 5 
imagery showing the inside of plot 19 (unheated control enclosure), d, and plot 17 (+9.0 °C 6 
warming treatment enclosure), e, on 6 April 2016. At the time the photographs were taken, the 7 
air temperature was 5 °C in plot 19 (note the last snow of the season), compared to 14 °C in plot 8 
17.  9 
 10 
Figure 2. Impact of whole-ecosystem warming treatments on dates of autumn green-down 11 
and spring-green up, as derived from digital camera imagery.  Response of autumn green-12 
down (a–c, 2015) and spring green-up (d–f, 2016) phenology to experimental warming 13 
treatments for Larix laricina, Picea mariana, and a mixed shrub layer community dominated by 14 
Rhododendron groenlandicum and Chamaedaphne calyculata, based on observations across n = 15 
10 experimental enclosures (n = 9 for Larix, as in one enclosure this species was not within the 16 
camera field of view) Green-down and green-up are proxies for autumn senescence and spring 17 
onset, respectively. Error bars indicate 95% confidence interval around estimated phenological 18 
transition dates. Additional results are presented in Supplementary Analysis 2, and Extended 19 
Data Table 2. 20 
 21 
Table 1. Impact of SPRUCE warming treatments on spring and autumn phenological 22 
events (phenophases) for a variety of woody and herbaceous species. Statistics (mean ± 1 23 
standard deviation) are calculated across all observed species. Sample size (N) indicates the 24 
number of species observed. “T effect” is the temperature sensitivity, in days change per 1 °C 25 
warming, as estimated from the linear temperature model based on regression of transition date 26 
(y) on warming treatment (x). “Breakpoints found” indicates the number of species for which a t* 27 
threshold was identified using the breakpoint temperature model (response is linear up to a 28 
temperature threshold t*, and flat thereafter; see Methods). Species-level results are reported in 29 
Supplementary Analysis 5, and Extended Data Tables 4 and 5.  30 
 31 

 2016   2017 

 

Phenophase 

N 

(species) 

T effect  

(d °C-1 ± 1 SD) 

Breakpoints 

found 

t* 

(± 1 SD) 

  N 

(species) 

T effect  

(d °C-1 ± 1 SD) 

Breakpoints 

found 

t* 

(± 1 SD) 

Leaves growing 5 -3.19 ± 0.69 3 6.34 ± 1.08   7 -3.19 ± 1.25 5 5.46 ± 1.36 

Shoots elongating 4 -3.53 ± 0.92 2 6.14 ± 1.59   5 -3.69 ± 1.04 4 7.12 ± 1.66 

Flowering (cones open) 6 -2.51 ± 0.89 5 6.09 ± 1.89   7 -2.91 ± 1.33 5 6.74 ± 2.34 

Flowers terminated       6 -1.45 ± 1.17 1 4.65 ± N/A 

Fruiting 1 -2.56 ± N/A     6 -2.09 ± 1.38 3 6.06 ± 1.52 

Fall buds       3 -0.59 ± 1.03   

Fall coloration (senescence)       6 2.70 ± 1.45 2 4.73 ± 2.88 

 32 
  33 
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Methods 1 

Study site and experimental design 2 

 The SPRUCE (Spruce and Peatland Responses Under Changing Environments) 3 

experiment is located within the S1 peat bog at the Marcell Experimental Forest (47° 30.171’ N, 4 

93° 28.970’ W)30, approximately 40 km north of Grand Rapids in north-central Minnesota, USA. 5 

The historic climate at the site is subhumid continental: mean annual temperature is 4°C, mean 6 

annual precipitation is 750 mm, and extreme temperatures range from –38 °C to +30 °C. Because 7 

this ecosystem is located at the southern edge of the Boreal zone, it is considered particularly 8 

vulnerable to climate change. 9 

The S1 bog is an ombotrophic peatland with a perched water table. Trees are 10 

approximately 5-8 m in height. Canopy vegetation is dominated by the tree species Picea 11 

mariana (Mill.) B.S.P. (black spruce), with additional contributions from Larix laricina (Du Roi) 12 

K. Koch (eastern tamarack or larch). P. mariana and L. laricina both have a vast geographic 13 

range across North America, from Alaska east to Quebec and Labrador, and south to the Great 14 

Lakes and New England. A number of closely related Picea and Larix species are distributed 15 

across the Boreal zone of northern Europe, Scandinavia and much of Russia and Siberia, 16 

indicating the relevance of results of this experiment to our understanding of Boreal ecosystem 17 

processes globally.  18 

The SPRUCE understory is dominated by the evergreen shrubs Rhododendron 19 

groenlandicum (Oeder) Kron & Judd (Labrador tea) and Chamaedaphne calyculata (L.) 20 

Moench. (leatherleaf), and is underlain by a bryophyte layer dominated by Sphagnum spp. moss. 21 

Other common plant species include the evergreen shrub Kalmia polifolia Wangenh. (bog 22 

laurel), the deciduous shrub Vaccinium angustifolium Aiton 1789 not Benth. 1840 (lowbush 23 
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blueberry), the sedge Eriophorum spp. (cottongrass), and the perennial herb Maianthemum 1 

trifolium (L.) Sloboda (false Solomon’s seal).  2 

At SPRUCE, experimental temperature (+0 °C – “unheated control” – to +9.0 °C, in 3 

2.25°C increments for both air and deep soil) and CO2 (ambient and elevated, approximately 400 4 

and 900 ppm, respectively) treatments are being applied through the use of large (approximately 5 

12 m wide, 8 m high) open-topped octagonal enclosures7. Overall, five temperature treatments 6 

are paired with two CO2 treatments, yielding a total of ten enclosures (additionally, there are two 7 

“ambient environment” plots without constructed enclosures). Each enclosure is hydrologically 8 

isolated from the rest of the bog by a sheet pile corral which has been driven 3-4 m through the 9 

peat into the underlying ancient lake sediments. Outflow pipes allow for lateral drainage from 10 

each enclosure. Within each enclosure, warming of the deep soil began in June 2014, while 11 

aboveground warming was initiated in August 2015 and at this time the phenological 12 

observations were commenced in each individual plot (note that pre-treatment observations were 13 

made in a common area, outside of the enclosures, beginning in 2010). CO2 treatments were 14 

switched on in June 2016.  15 

For context, the warmest enclosures (+9.0 °C) simulate current climate conditions of 16 

Wichita, Kansas (mean annual temperature 13 °C, mean annual precipitation 850 mm), located 17 

approximately 1100 km (10 ° of latitude) to the south. The SPRUCE experiment, with treatments 18 

that will exceed the historic range of climatic variability (Extended Data Figure 1), is 19 

intentionally planned to push the system past projected warming levels to approach or include 20 

tipping points for any number of ecosystem response variables. The regression-based 21 

experimental design facilitates the estimation of temperature response functions, which may be 22 

nonlinear7.  23 
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The enclosure design, and detailed performance metrics for the above- and below-ground 1 

warming, along with a discussion of potential artifacts, are more fully described and assessed in 2 

a prior publication7. Observed temperature differentials were consistent with the nominal 3 

warming treatments for target enclosures. Warming was homogeneous within individual 4 

enclosures, and was sustained over time (see Supplementary Analysis 1, Extended Data Table 1). 5 

 6 

Phenological observations 7 

We are using two methods to track the phenological responses of vegetation to warming 8 

and elevated CO2 in each enclosure. First, beginning in August 2015, we installed digital 9 

cameras31, or phenocams32, in each enclosure in order to track seasonal variation in vegetation 10 

“greenness”, a proxy for vegetation phenology and associated physiological activity6,33–35. 11 

Second, beginning in April 2016, human observers have been directly tracking phenological 12 

events of both woody and herbaceous species.  13 

PhenoCam imagery—Digital cameras (NetCam model SD130BN, StarDot Technologies, 14 

Buena Park, CA) were configured and installed following standard protocols of the PhenoCam 15 

network36. Cameras record sequential visible-light (red, green, blue; RGB) and visible+infrared 16 

images37 every 30 minutes from 4 am to 10 pm, every day of the year. Minimally-compressed 17 

JPEG images, accompanied by a metadata file containing the current status of all camera settings 18 

and diagnostics, are uploaded via FTP (file transfer protocol) to the PhenoCam server for 19 

archiving and processing; a local copy is also maintained on a server running at SPRUCE. The 20 

filename of every image identifies the enclosure in which the picture was recorded, as well as a 21 

date and time stamp in local standard time.  22 
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The aluminum structural members of each enclosure provided convenient and consistent 1 

mounting points for the cameras. All cameras were mounted, at a height of 6 m, in the middle of 2 

the third horizontal structural member on the south wall of each enclosure. Cameras were 3 

enclosed in lightweight, compact weatherproof enclosures (model ENC-OUTD3, StarDot 4 

Technologies, Buena Park, CA). Network connectivity and DC power were delivered to each 5 

camera using a single Ethernet cable and standard power-over-Ethernet (POE) technology. To 6 

reduce the likelihood of lightning damage, an Ethernet surge protector (ProtectNet model 7 

PNET1GB, APC by Schneider Electric, West Kingston, RI) was installed on the camera end of 8 

each Ethernet cable, and grounded to the mounting point. 9 

All imagery is posted in near-real time to the PhenoCam project web page 10 

(http://phenocam.sr.unh.edu/), where it is publicly available. Images are processed nightly, using 11 

standard PhenoCam routines6,36. Briefly, this consists of several steps. First, we defined three 12 

separate regions of interest (ROIs) for each camera field of view, demarcating (1) Picea trees; (2) 13 

Larix trees; and (3) the mixed shrub layer. The ROI definitions are converted to binary masks, so 14 

that image analysis can be completed separately for each vegetation type. Next, images were 15 

read in sequentially, and for each vegetation type the mean pixel value for each of the three color 16 

channels (red, green and blue; for the purposes of the present analysis we used only the visible-17 

wavelength imagery) was calculated across the corresponding ROI, yielding a digital number 18 

(DN) triplet (RDN, GDN, BDN). Then for each ROI in each image, we calculated the green 19 

chromatic coordinate, GCC, which has been shown in numerous studies to be a reliable metric for 20 

characterizing the seasonal trajectory of vegetation color and activity6,31,38: 21 

GCC = 
GDN

RDN+GDN+BDN
 22 

http://phenocam.sr.unh.edu/
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Basic quality control included eliminating images that were recorded when the sun was 1 

less than 5° above the horizon, images that were too dark, or images that were too bright. 2 

Additionally, because snow might obscure the vegetation of interest, for each day from late 3 

August 2015 through the end of December 2017, we visually inspected the mid-day image from 4 

each camera. We flagged images in which there was (1) snow on the ground; or (2) snow on 5 

trees. We excluded from further processing all days on which the camera’s view of the 6 

vegetation of interest was potentially snow-contaminated. For the shrub layer, this meant 7 

eliminating images from days with snow on the ground; for Picea and Larix, this meant 8 

eliminating images from days with snow on trees. The frequency of snow decreased with 9 

increasing plot temperature, from over 100 days per year with snow on the ground in the 10 

unheated enclosures (from late October to early May), to less than 30 days per year in the +9.0 11 

°C enclosures (from late November to early February). The longest period of continuous snow 12 

cover was almost three months in the unheated enclosures, compared with only 2 weeks in the 13 

+9.0 °C enclosures.  14 

Next, we determined 3-day GCC values using the 90th quantile method6. We then used a 15 

spline-based method to sequentially remove outliers in three iterative steps. Finally, we re-fit the 16 

spline, and used the summertime maxima and dormant-season minima to define the seasonal GCC 17 

amplitude, from which we were then able to identify dates at which 10%, 25% and 50% of the 18 

seasonal amplitude were reached in autumn (senescent or “green-down” phase) and spring (onset 19 

or “green-up” phase). Uncertainties on these dates were then derived based on the uncertainty 20 

around the smoothing spline. Our analysis here focuses on the 25% amplitude threshold dates.  21 

Ground observations—Ground observations of spring phenology were made at 22 

approximately weekly intervals by WRN and JL in 2016, and by RRH in 2017. The protocol 23 
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used by WRN and RRH involved recording, on a pre-printed form for each of the 10 enclosures 1 

and the two ambient environment plots, whether or not (“Yes” or “No”) specific vegetative and 2 

reproductive phenophases were observed each week. Observations were conducted on a selection 3 

of woody species (the trees Picea and Larix; the evergreen shrubs leatherleaf, bog laurel, 4 

Labrador tea, and lowbush blueberry), as well as a sedge (cottongrass), and a perennial herb 5 

(false Solomon’s seal). We transcribed the data by taking as the observed date the first survey 6 

date on which an event was definitively observed (i.e., “No” through week 4, followed by “Yes” 7 

in week 5: the event occurred in week 5). Not all phenophases were observed for all species, and 8 

in some difficult-to-observe cases, the data were deemed not reliable because of some 9 

inconsistencies in the recorded data (e.g. blank cells rather than “No”, or “No” followed by 10 

“Yes” followed by “No” again) or poor representation of the species in question in some of the 11 

plots (e.g., bog laurel and lowbush blueberry are sparsely distributed). All transcribed data of 12 

questionable reliability were excluded from the analysis. 13 

JL’s protocol involved recording the first date at which Larix leaf buds were observed to 14 

be just beginning to break (data recorded for all 10 enclosures, plus the two ambient environment 15 

plots), and the first date at which flowers of leatherleaf, bog laurel, and Labrador tea were 16 

observed in each enclosure (data recorded in only half of the treated enclosures, plus one or both 17 

of the ambient environment plots). Although data recorded by JL are not as complete as those 18 

recorded by WRN, they are included to demonstrate the robustness of the observed patterns. 19 

  20 

On-site meteorological data 21 

Air temperature and relative humidity were measured (model HMP-155, Vaisala, Vantaa, 22 

Finland) at four points above the peat surface within each enclosure (0.5, 1, 2 and 4 m), and 30-23 
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minute mean values recorded. We used the measured air temperature at 2 m in our analyses. 1 

SPRUCE environmental data39 are available through the Vista Data Vision portal 2 

(http://sprucedata.ornl.gov/vdv).    3 

 4 

Historical perspective and future climate projections 5 

To put the weather during winter and spring of 2016 in historical context (122 year 6 

record), we used data from NOAA’s National Climatic Data Center (NCDC). Specifically, we 7 

used summary data from the State of the Climate report  8 

(https://www.ncdc.noaa.gov/sotc/national/), and 3-month divisional temperature rankings 9 

(https://www.ncdc.noaa.gov/temp-and-precip/climatological-rankings/). The SPRUCE site falls 10 

within Minnesota’s Climate Division 2. 11 

To place our results in the context of projected warming trends over the coming century, 12 

we used downscaled (1/8°) climate projections from a selection of ten models (see 13 

Supplementary Analysis 2) contributing to the CMIP5 multimodel ensemble dataset22,40. We 14 

used output for two Representative Concentration Pathway (RCP) scenarios: RCP 4.5 (CO2 15 

stabilization) and RCP 8.5 (rising CO2)41,42. To quantify future trends, we calculated the 16 

projected decadal mean air temperature change relative to the 2006-2015 mean for each model. 17 

 18 

Statistical analysis 19 

 To characterize the relationship between air temperature and phenological timing (H1 20 

and H2), we used ordinary linear regression, with the observed phenological date as the 21 

dependent variable, yi, and the measured air temperature differential for each plot (see 22 

Supplementary Analysis 1) as the independent variable, xi. The regression slope, β, thus gives 23 

http://sprucedata.ornl.gov/vdv
https://www.ncdc.noaa.gov/sotc/national/
https://www.ncdc.noaa.gov/temp-and-precip/climatological-rankings/
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the temperature sensitivity in days per 1 °C warming for the “linear temperature model”. We 1 

used a significance level of 0.05 to test the null hypothesis that β = 0. To account for potential 2 

effects of elevated CO2 on phenology, we also analyzed data (where appropriate) using a “linear 3 

temperature and CO2 model”, which included temperature, CO2 (elevated and ambient) and a 4 

temperature x CO2 interaction effect.  5 

For breakpoint analysis (H3), we fit a three-parameter  (α, β, t*) “breakpoint temperature 6 

model”, which was specified as: 7 

 𝑦𝑦𝑖𝑖 =  𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖   for 𝑥𝑥𝑖𝑖 < 𝑡𝑡∗ 8 

𝑦𝑦𝑖𝑖 =  𝛼𝛼 + 𝛽𝛽𝑡𝑡∗ + 𝜖𝜖𝑖𝑖   for 𝑥𝑥𝑖𝑖 ≥ 𝑡𝑡∗ 9 

where xi and yi are as for the ordinary linear regression, 𝜖𝜖𝑖𝑖 is the regression residual, and t* is the 10 

temperature breakpoint, as illustrated in Figure 1. We constrained t* to fall in the range of 2–9 11 

°C. An edge-hitting value of t* = 9°C was obtained when the linear model fit the data every bit 12 

as well as the breakpoint model.  13 

We used Akaike’s Information Criterion (AIC)43 to identify whether the linear model or 14 

the breakpoint model was best supported by the available data. AIC is typically calculated as: 15 

 16 

where n is the number of observations, p is the number of fit parameters plus one, and σ2 is the 17 

residual sum of squares divided by n. When n is small relative to p, the small-sample corrected 18 

criterion, AICC, is preferred43:  19 

 20 
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AIC effectively balances improving explanatory power (lower σ2) against increasing 1 

complexity (larger p), and thus AIC selects against over-parameterized models. The model with 2 

the lowest AIC is considered the best model given the data, and the absolute difference in AICC 3 

scores between two models can be used to evaluate the weight of evidence in support of the 4 

better model. If the difference (∆AIC) is small or zero then the two models are equally good. 5 

But, if ∆AIC ≈ 2.0, then the model with the lower AICC is almost three times more likely to be 6 

best43.  7 

 8 

Data Availability 9 

PhenoCam imagery is publicly available through the project web page 10 

(http://phenocam.sr.unh.edu), and the phenological data sets used in this study are available 11 

through the ORNL DAAC44,45.  12 

 13 
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Extended Data Table 1 | Mean daily air temperature, and temperature differentials, over 1 
the duration of the whole-ecosystem warming treatments (August 2015–December 2017). 2 
 3 
Daily means are calculated based on the mean half-hour data for two temperature sensors 4 
mounted at 2 m height. Temperature differentials (∆T) are calculated relative to the mean of the 5 
two unheated enclosures (Plots 19 and 06). Plots are arranged in order of increasing ∆T; overall 6 
mean ± 1 SD ∆T is calculated across n = 5 multi-month means. 7 
Extended Data Table 2 | Impact of SPRUCE warming treatments on spring green-up and 8 
autumn green-down, as derived from PhenoCam imagery 9 
 10 
Results are shown from the start of the whole-ecosystem warming experiment (autumn 2015), 11 
based on observations across n = 10 experimental enclosures (n = 9 for Larix, as in one enclosure 12 
this species was not within the camera field of view). Mean transition dates are reported ± 1 SD. 13 
Statistics for the “linear temperature model” are based on regression of transition date (y) on 14 
warming treatment (x), and the model slope is the phenological temperature sensitivity in days 15 
per 1°C warming. “T effect” column reports P-value for null hypothesis of no temperature effect. 16 
Statistics for the “breakpoint temperature model” are based on a model in which the response to 17 
warming treatment is assumed linear up to a temperature threshold t*, and flat thereafter (see 18 
Methods for additional details). No statistics are reported for cases in which a t* could not be 19 
identified or where the addition of t* did not improve model fit. ∆AICc is the difference in 20 
Akaike’s Information Criterion (corrected for small sample sizes) between the linear temperature 21 
model and breakpoint temperature model, with a positive value indicating that the linear 22 
temperature model is better supported by the data, and a negative value indicating that the 23 
beakpoint temperature model is better supported by the data. RMSE is root mean squared error. 24 
SE is standard error. Results not shown for the “linear temperature and CO2 model” as the CO2 25 
effect and CO2 x T interaction effect were generally not significant (see Supplementary Analysis 26 
2 for additional information). 27 
 28 
Extended Data Table 3 | Projected future extension of the period of vegetation activity, 29 
based on linear extrapolation of experimental results using CMIP5 climate projections.  30 
 31 
Temperature sensitivities are derived from Figure 2; total projected active season extension is the 32 
product of the temperature sensitivity of total active season length multiplied by the mean 33 
projected temperature increase (decadal means, relative to 2006-2015). Uncertainties in active 34 
season extension represent the uncertainty in the climate projections (SD across ten models), not 35 
the uncertainty in the temperature sensitivities.  36 
 37 
  38 
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Extended Data Table 4 | Impact of SPRUCE warming treatments on visually observed 1 
vegetative and reproductive phenological transitions in 2016. 2 
 3 
Data are from 2016 growing season, based on observations across n = 12 plots. Species are 4 
ordered by functional type, and within each species, phenophases are ordered according to the 5 
mean (± 1 SD) day of year (DOY) on which the event occurred. Statistics for the “linear 6 
temperature model” are based on regression of transition date (y) on warming treatment (x), and 7 
the model slope is the phenological temperature sensitivity in days per 1°C warming. “T effect” 8 
column reports P-value for null hypothesis of no temperature effect. Statistics for the “breakpoint 9 
temperature model” are based on a model in which the response to warming treatment is 10 
assumed linear up to a temperature threshold t*, and flat thereafter (see Methods for additional 11 
details). No statistics are reported for cases in which a t* could not be identified, or where the 12 
addition of t* did not improve model fit. ∆AICc is the difference in Akaike’s Information 13 
Criterion (corrected for small sample sizes) between the linear temperature model and breakpoint 14 
temperature model, with a positive value indicating that the linear temperature model is better 15 
supported by the data, and a negative value indicating that the breakpoint temperature model is 16 
better supported by the data. RMSE is root mean squared error. SE is standard error.  17 
 18 
Extended Data Table 5 | Impact of SPRUCE warming treatments on visually observed 19 
vegetative and reproductive phenological transitions in 2017. 20 
 21 
Data are from 2017 growing season, based on observations across n = 12 plots. Species are 22 
ordered alphabetically, and within each species, phenophases are ordered according to the mean 23 
(± 1 SD) day of year (DOY) on which the event occurred. Statistics for the “linear temperature 24 
model” are based on regression of transition date (y) on warming treatment (x), and the model 25 
slope is the phenological temperature sensitivity in days per 1°C warming. “T effect” column 26 
reports P-value for null hypothesis of no temperature effect. Statistics for the “breakpoint 27 
temperature model” are based on a model in which the response to warming treatment is 28 
assumed linear up to a temperature threshold t*, and flat thereafter (see Methods for additional 29 
details). No statistics are reported for cases in which a t* could not be identified, or where the 30 
addition of t* did not improve model fit. ∆AICc is the difference in Akaike’s Information 31 
Criterion (corrected for small sample sizes) between the linear temperature model and breakpoint 32 
temperature model, with a positive value indicating that the linear temperature model is better 33 
supported by the data, and a negative value indicating that the breakpoint temperature model is 34 
better supported by the data. RMSE is root mean squared error. SE is standard error. Results not 35 
shown for the “linear temperature and CO2 model” as the CO2 effect and CO2 x T interaction 36 
effect were generally not significant (see Supplementary Analysis 5 for additional information). 37 
 38 
  39 
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Extended Data Table 6 | Larix laricina and Picea mariana litter nutrient content following 1 
premature foliar senescence in early May 2016, and natural senescence in late October 2 
2016.  3 
 4 
Following the April 9th 2016 spring frost event, damaged foliage from trees that had lost frost 5 
hardiness began a period of senescence, culminating in heavy leaf fall during early May as air 6 
temperatures frequently exceeded 30 °C in the +9.0 °C plots (temperatures over 40 °C were 7 
observed in plot 10 and plot 17 on May 5 and 6). Prematurely senescent litter was collected May 8 
6 from the ground underneath damaged trees in the two warmest treatments (+6.75 and +9.0 °C) 9 
(n = 3 – 7 trees). Normally senescent litter was collected November 4 from ambient environment 10 
plots outside of the experimental treatments using litter baskets (n = 8 trees). Litter was analyzed 11 
for carbon and nitrogen by combustion using 0.1 g samples of oven-dried and finely ground 12 
tissue on a LECO TruSpec elemental analyzer (LECO Corporation, St. Joseph, MI). Data are 13 
presented on a percent dry matter basis. 14 
  15 
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Extended Data Figure 1 | Air temperature and precipitation in the SPRUCE S1 Bog (August 2015-1 
December 2017) relative to long-term (1960-2016) means and variability. a, Long-term daily mean 2 
temperature (°C, ±1 SD indicated by shading), compared with daily mean temperature (calculated from 3 
30-minute means, based n = 2 sensors mounted at 2 m height in each enclosure) in a +0 °C enclosure 4 
(unheated control) and a +9.0 °C enclosure. b, Long-term monthly mean temperature (mean daily 5 
maximum and mean daily minimum indicated by shaded bars), compared with monthly mean temperature 6 
(calculated from daily means, as in a) in different experimental treatments. c, Long-term monthly mean 7 
precipitation (mm, ±1 SD indicated by shading, with maxima and minima indicated by dotted lines), 8 
compared with measured monthly precipitation (n = 1 rain gage) in the S1 Bog.  9 
 10 
 11 
Extended Data Figure 2 | Decadal mean temperature change (relative to 2006-2015 mean) 12 
projections from ten CMIP5 earth system models for the SPRUCE site. a, “Stabilization” climate 13 
scenario (RCP 4.5). b, “High emission” climate scenario (RCP 8.5). 14 
 15 
Extended Data Figure 3 | Relationships between air temperature and the start and end of the 16 
photosynthetic uptake period, as derived from FLUXNET data for evergreen conifer-dominated 17 
sites. Across-site patterns in a, spring, and b, autumn, in relation to mean annual temperature (n = 12 18 
sites); within-sites patterns in c, spring, and d, autumn, in relation to seasonal temperature anomalies (n = 19 
86 site-years).  20 
Extended Data Figure 4 | Unusually warm weather in late winter, followed by extreme cold in early 21 
April, resulted in severe frost damage in the warmest enclosures at SPRUCE in 2016. a, Time series 22 
of daily mean air temperature, comparing plot 17 (+9.0 °C warming) and plot 19 (unheated enclosure), 23 
during winter and spring 2016. By the time the frost event occurred (grey shading), daily mean 24 
temperature in plot 17 had been above freezing for over a month, but had repeatedly dropped below 25 
freezing in plot 19. b, Time series of 30-minute air temperature, again comparing plot 17 and plot 19, 26 
leading up to and immediately following the frost event which occurred on the morning of April 9 and 27 
again on April 12. The thin red lines indicate the variability (maximum and minimum) across n = 5 28 
temperature sensors in plot 17. c, Time series of daily GCC, the green chromatic coordinate, for Picea trees 29 
in plot 17 and plot 19. Arrows denote spring green-up dates (progressively larger arrows corresponding to 30 
10%, 25% and 50% of seasonal amplitude) estimated from GCC. The pronounced decline in GCC in plot 17 31 
following the frost event (grey shading) is readily apparent. Trees in plot 19 retained sufficient frost 32 
hardiness that they were undamaged, despite experiencing much colder temperatures. d, Brown, frost-33 
damaged Larix foliage in plot 17. e, Picea branches in plot 17, showing loss of most foliage from 34 
previous years, with green foliage from the 2015 flush retained only at branch tips. f, Picea branches with 35 
frost-damaged foliage from previous years, but healthy green foliage from the 2016 flush. 36 
 37 
 38 
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