

1 **Widespread seasonal compensation effects of spring warming on**
2 **northern plant productivity**

3 *Authors*

4 Wolfgang Buermann^{1,2*}, Matthias Forkel³, Michael O'Sullivan¹, Stephen S. Sitch⁴,
5 Pierre Friedlingstein⁵, Vanessa Haverd⁶, Atul K. Jain⁷, Etsushi Kato⁸, Markus Kautz⁹,
6 Sebastian Lienert^{10,11}, Danica Lombardozzi¹², Julia E.M.S. Nabel¹³, Hanqin Tian^{14,15},
7 Andrew J. Wiltshire¹⁶, Dan Zhu¹⁷, William K. Smith¹⁸ and Andrew D. Richardson^{19,20}

8 ¹Institute for Climate and Atmospheric Science, School of Earth and Environment,
9 University of Leeds, Leeds LS2 9JT, UK

10 ²Institute of the Environment and Sustainability, University of California, Los
11 Angeles, 90095 Los Angeles, USA

12 ³Climate and Environmental Remote Sensing Group, Department for Geodesy and
13 Geoinformation, TU Wien, 1040 Vienna, Austria.

14 ⁴College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QF,
15 UK

16 ⁵College of Engineering, Mathematics and Physical Sciences, University of Exeter,
17 Exeter EX4 4QE, UK

18 ⁷Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61821, USA

19 ⁸Institute of Applied Energy, Minato, Tokyo 105-0003, Japan

20 ⁹Forest Research Institute Baden-Württemberg, 79100 Freiburg, Germany

21 ¹⁰Climate and Environmental Physics, Physics Institute, University of Bern, Bern,
22 Switzerland

23 ¹¹Oeschger Centre for Climate Change Research, University of Bern, Bern,
24 Switzerland

25 ¹²National Center for Atmospheric Research, Climate and Global Dynamics,
26 Terrestrial Sciences Section, Boulder, CO 80305, USA

27 ¹³Max Planck Institute for Meteorology, Hamburg, Germany

28 ¹⁴School of Forestry and Wildlife Sciences, Auburn University, 602 Dukan Drive,
29 Auburn, AL 36849, USA

30 ¹⁵Research Center for Eco-Environmental Sciences, State Key Laboratory of Urban
31 and Regional Ecology, Chinese Academy of Sciences, Beijing, 100085, Chin

32 ¹⁶Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK

33 ¹⁷Laboratoire des Sciences du Climat et de l'Environnement, LSCE CEA-CNRS-UVSQ,
34 91191 Gif sur Yvette, France

35 ¹⁸School of Natural Resources and the Environment, University of Arizona, Tucson,
36 AZ 85721, USA

37 ¹⁹School of Informatics, Computing and Cyber Systems, Northern Arizona
38 University, Flagstaff AZ 86011 USA

39 ²⁰Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff
40 AZ 86011 USA

41 *Corresponding author

42 Climate change is causing plant phenological cycles to shift¹, thereby altering
43 the functioning of ecosystems, which in turn induces feedbacks to the climate
44 system². In northern ecosystems, warmer springs lead generally to an earlier
45 onset of the growing season^{3,4} and increased ecosystem productivity early in
46 the season⁵. But in-situ⁶ and regional studies⁷⁻⁹ also provide evidence for
47 corresponding lagged effects of spring warmth on plant productivity during
48 subsequent summer and autumn seasons. Yet, our present understanding of
49 such lagged effects – including their direction and geographic distribution – is
50 still very limited. Here we analyse long-term satellite data products, flux
51 tower and model-based data and show that there are widespread and
52 contrasting lagged productivity responses to spring warmth across northern
53 ecosystems. We find that 13-16% and 4-6% of a total area of about 41 million
54 km² show adverse and beneficial lagged effects, respectively. In contrast,
55 current-generation terrestrial carbon cycle models show significantly lower
56 areal fractions of adverse lagged effects (1-14%) and much higher areal
57 expanses of beneficial lagged effects (9-54%). Furthermore, we find that
58 elevation and seasonal precipitation patterns largely dictate the geographic
59 pattern and direction of the lagged effects. Inadequate consideration of the
60 effects of seasonal build-up of water stress on seasonal vegetation growth may
61 be able to explain why current models do not adequately represent lagged
62 effects associated with spring warming. Overall, our results suggest that for
63 many northern ecosystems, the benefits of warmer springs on growing season
64 ecosystem productivity are substantially reduced by the accumulation of

65 **seasonal water deficits despite the fact that northern ecosystems are thought**
66 **to be largely temperature and radiation limited¹⁰.**

67 Northern land regions have experienced substantial warming since the early 1970s
68 and this has changed how ecosystems function¹¹. One prominent example of such
69 emerging ecosystem responses is shifts in plant phenological cycles: earlier spring
70 onset and delayed autumn senescence are together lengthening the northern
71 growing season^{6,12}. These phenological shifts have altered ecosystem
72 productivity^{5,6,8,13,14} and the seasonality of important ecosystem feedbacks to the
73 atmosphere and climate system^{6,15}.

74 Warmer and earlier springs may also influence ecosystem function later in
75 the growing season through indirect or lagged effects^{16,17}. For example, in-situ
76 studies provide evidence for significant positive lagged effects on ecosystem
77 productivity, whereby the influence of warmer springs may be conveyed to
78 subsequent seasons through development of larger leaf area and/or increased foliar
79 nitrogen⁶. In contrast, warmer/earlier springs may also cause earlier autumn
80 senescence because of fixed leaf life spans¹⁸ or adversely affect plant productivity
81 later in the season through the building up of water deficits^{7-9,19,20}. However, at
82 present a more comprehensive understanding of such lagged productivity
83 responses is still lacking.

84 Here, we exploit long-term satellite-based measures of vegetation greenness
85 (as a proxy of potential photosynthesis)²¹, flux tower- and model-based estimates of
86 CO₂ uptake through photosynthesis (gross primary productivity (GPP))^{22,23} and
87 high-resolution climate data²⁴ to estimate the strength and geographic distribution

88 of lagged effects that capture the influence of spring phenological transitions on
89 plant productivity during subsequent summer and autumn seasons. Our analysis
90 framework relies on identifying correlations between spring temperatures (which
91 serve as an independent phenological indicator), and satellite greenness or
92 simulated GPP during spring and subsequent seasons to estimate concurrent
93 phenological responsiveness and linked lagged effects (see Methods).

94 Across northern lands, correlations between annual spring temperatures and
95 spring greenness show significantly positive and spatially extensive pattern
96 consistent with the notion of a tight control of spring temperature on concurrent
97 plant productivity: 80% of northern ($>30^{\circ}\text{N}$) vegetated non-agricultural land (total
98 study area ~ 41 million km^2) exhibit statistically significant ($P < 0.05$ at grid cell
99 level) positive correlations (Fig. 1a). To assess lagged effects on plant productivity
100 associated with anomalous spring temperatures, we computed partial correlations
101 between spring temperature and subsequent summer and autumn greenness,
102 whereby covarying effects of concurrent climate on these correlations are
103 controlled for (see Supplementary Information section 1). Partial correlations
104 between annual spring temperature and subsequent summer greenness show
105 widespread positive (6%, $P < 0.05$) as well as negative (6%, $P < 0.05$) pattern (Fig.
106 1b). Areas of positive partial correlations are predominantly situated in Eurasia
107 covering vast regions north of 50°N , whereas areas displaying negative correlations
108 are more localized in western North America, Siberia and temperate eastern Asia.
109 The partial correlation pattern between spring temperature and autumn greenness
110 indicate an extension of the 'summer' pattern of negative correlation (11%, $P < 0.05$;

111 positive correlations cover only 2%, $P < 0.05$) with additional coverage seen mainly
112 in northeastern Eurasia and temperate central Asia (Fig. 1b and c). While long-term
113 trends in temperature and greenness may potentially influence these correlations, a
114 corresponding analysis on detrended data shows that the patterns are similar
115 (Supplementary Information section 1) which suggests a dominant influence of
116 interannual to quasi-decadal variability on the correlation pattern between spring
117 temperature and satellite greenness during subsequent seasons. A comparison of
118 the strength of these lagged relationships with concurrent climatic influences on
119 greenness pattern shows that at regional scales the influence of preceding spring
120 temperatures on summer and autumn greenness can be equally important or even
121 dominant (Supplementary Information section 1).

122 To further assess the robustness of the identified satellite-based lagged
123 productivity responses we also compared them to those inferred from tower-based
124 measurements of land-atmosphere CO₂ flux (FLUXNET). Results show that across
125 n=16 tower sites, the strength and direction of relationships between spring
126 temperature and spring as well as summer greenness correspond well to those
127 based on FLUXNET estimates of spring temperature and spring as well as summer
128 GPP (Extended Data Fig. 1). The agreement between satellite- and tower-based
129 relationships between spring temperature and autumn greenness and GPP,
130 respectively, is however not as strong (Extended Data Fig. 1). This validation has
131 several caveats including few available tower sites and differences in spatial scales
132 for satellite (coarse) and tower (fine-scale) data, but the overall consistency in the
133 estimated lagged productivity responses suggests that the satellite-based estimates

134 are plausible.

135 The geographic distribution of the relationships between changes in spring
136 temperature and subsequent summer greenness (see Fig. 1B) suggests that some
137 combination of climate, elevation, and/or landcover may explain these patterns. To
138 investigate this, we conducted a random forest (RF) analysis using a set of
139 predictors that encapsulate such factors (see Supplementary Information section 2).
140 Results show that the spring temperature-summer greenness partial correlation
141 pattern can be explained with elevation and selected climate variables (e.g. summer
142 precipitation and precipitation seasonality) acting as the most important variables
143 (Extended Data Fig. 2 and Supplementary Information section 2). Across northern
144 ecosystems, we find that these partial correlations tend to become more negative
145 with higher elevation, but such well-defined directional relationships are not as
146 apparent for important precipitation metrics (Extended Data Fig. 2).

147 Grouping the lagged productivity responses based on the direction of robust
148 correlations between spring temperature and spring, summer and autumn
149 greenness, respectively, shows large clusters of regions with negative lagged effects
150 and more scattered areas with positive lagged effects (Fig. 2a). Hereby, negative
151 'lagged productivity response scenarios' associated with spring warming and
152 greening coupled with summer and/or autumn greenness declines stretch over vast
153 areas in western North America, Siberia and to some extent eastern temperate Asia,
154 whereas positive lagged effects are more common in eastern Eurasia above 50°N
155 (except Siberia).

156 Carbon cycle models must be able to simulate vegetation phenology

157 responses and corresponding impacts on ecosystem productivity and net carbon
158 uptake realistically to credibly estimate climate-carbon feedbacks²⁵. We therefore
159 assessed the ability of ten current-generation models contributing to TRENDYv6^{22,23}
160 to replicate the observed lagged productivity responses in respect to spring
161 warming. Results show a substantially higher areal coverage of positive lagged
162 effects on plant productivity for the multi-model mean (and significantly lower
163 coverage of negative lagged effects) than for the satellite-based estimates (Fig. 2a
164 and b). While there are marked differences among the individual models (Extended
165 Data Fig. 3), a striking pattern in the ensemble is the near absence of any negative
166 lagged effects across Siberia and the overall abundance of positive lagged effects
167 that extend over summer and autumn seasons (Fig. 2a and b). Satellite greenness
168 has been used extensively as a proxy for vegetation productivity^{3,26} but direct
169 comparisons between greenness- and GPP-based pattern may be limited (see
170 Methods). However, a similar analysis with two satellite-constrained GPP datasets
171 (based on upscaled FLUXNET data and a light use efficiency model; see Methods)
172 shows nearly identical lagged productivity pattern to those based on satellite
173 greenness (Extended Data Fig. 4).

174 Grouping these 'lagged productivity response scenarios' more broadly in
175 positive and negative lagged effects yields an areal extent of regions showing
176 positive lags of 36% for the TRENDYv6 ensemble (spanning 9–54% for the ten
177 individual TRENDYv6 models) and 4–6% for the satellite-based estimates (Fig. 2c).
178 The areal coverage of negative lagged effects based on the TRENDYv6 ensemble is
179 only 2% (spanning 1–14% for the ten models) compared to the satellite-based

180 estimates of 13-16%.

181 Why can present terrestrial carbon cycle models not adequately replicate the
182 spatial pattern of observed lagged productivity responses in respect to warmer
183 springs? One key factor may be how seasonal vegetation growth is represented in
184 the models. To assess this, we performed a similar seasonal correlation analyses
185 with satellite-based and modelled leaf area index (LAI) data (see Methods). These
186 results show an even larger discrepancy in the areal proportions of positive and
187 negative lagged LAI responses to spring warming between observation-based and
188 modelling approaches compared to the results based on productivity metrics (Fig. 2c
189 and d, Extended Data Fig. 4). The substantial overestimation of growing season LAI in
190 the models in response to spring warmth may cause too much new carbon to be
191 allocated in plant tissue, which then serves to enhance GPP.

192 Water availability may cause adverse lagged effects in response to spring
193 warmth and could help to reconcile the differences in observations and models. To
194 further investigate this we performed a regional analysis for the Western US and Siberia
195 where observation-based and simulated lagged productivity responses show more
196 converging and diverging pattern (see Fig. 2). For the Western US, we find that
197 seasonal trajectories in aggregated satellite-based and modelled LAI and
198 evapotranspiration (ET) both display positive anomalies during spring in years with
199 warmer springs and corresponding negative anomalies later in the growing season
200 (suggestive of negative lagged effects associated with a buildup of water stress) (Fig.
201 3a and b). For Siberia, however, the seasonal trajectories in observation-based and
202 modelled LAI for warm spring years start to diverge substantially during summer

203 and autumn with the observations displaying more negative anomalies during
204 summer and autumn (again suggestive of water stress) and the opposite pattern for
205 the models (Fig. 3c). Seasonal trajectories of observation-based and modeled ET for
206 years with anomalous spring temperatures are more in agreement, although there is
207 some indication that the models tend to underestimate water stress in summer in
208 warm spring years (Fig. 3d). The consistent response in observed and modelled LAI
209 and ET in respect to spring warmth over Western US, a region which is known for its
210 vulnerability to drought in respect to spring warmth²⁷⁻²⁹, suggests that the model's
211 hydrology and phenology schemes are generally fit for purpose. The strong
212 divergence between observation-based and modelled seasonal vegetation growth
213 responses to spring warmth over Siberia (which is dominated by needleleaf
214 deciduous forests) may be due to underestimating the effects of water stress on
215 seasonal canopy development and omission of fixed leaf life spans in the models
216 (Extended Data Table 1 and Supporting Information section 3). We estimate that
217 due this observation-model mismatch across Siberia annual GPP for a warm spring
218 year (relative to mean conditions) may be up to 4 times higher in the TRENDYv6
219 ensemble (1.7 PgC/yr) compared to an observation-constrained estimate based on
220 upscaled FLUXNET data (0.4 PgC/yr) (Extended Data Fig. 5).

221 Our analysis based on satellite vegetation records over multiple decades
222 provides first evidence for widespread positive and negative lagged plant
223 productivity responses across northern ecosystems in association with warmer
224 springs. The spatially extensive pattern of negative lagged effects identified here
225 also implies substantially reduced benefits for ecosystem productivity and carbon

226 sequestration from longer northern growing seasons under climate change. We also
227 show that current terrestrial carbon cycle models substantially underestimate
228 (overestimate) negative (positive) lagged effects associated with spring warming.
229 This is possibly because of inadequately capturing the effects of seasonal buildup of
230 water stress on seasonal vegetation growth. Continued monitoring of emerging
231 ecosystem responses and improved modelling capabilities will thus be crucial to
232 improve understanding of the complex interactions of a changing climate, shifts in
233 phenological cycles and impacts on energy, water and carbon cycles.

234

235 **References**

- 236 1. Fu, Y.H. *et al.* Declining global warming effects on the phenology of spring leaf
237 unfolding. *Nature* **526**, 104–107 (2015).
- 238 2. Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change.
239 *Science* **324**, 887–888 (2009).
- 240 3. Myneni, R., Keeling, C., Tucker, C., Asrar, G. & Nemani, R. R. Increased plant
241 growth in the northern high latitudes from 1981 to 1991. *Nature* **386**, 698–702
242 (1997).
- 243 4. Menzel, A. *et al.* European phenological response to climate change matches the
244 warming pattern. *Glob. Change Biol.* **12**, 1969–1976 (2006).
- 245 5. Keenan, T.F. *et al.* Net carbon uptake has increased through warming-induced
246 changes in temperate forest phenology. *Nature Clim Change* **4**, 598–604 (2014).

247 6. Richardson, A. D. *et al.* Climate change, phenology, and phenological control of
248 vegetation feedbacks to the climate system *Agric. For. Meteor.* **169** 156–173
249 (2013).

250 7. Grippa, M. *et al.* The impact of snow depth and snowmelt on the vegetation
251 variability over central Siberia, *Geophys. Res. Lett.* **32**, L21412 (2005).

252 8. Buermann, W., Bikash, P. R., Jung, M., Burn, D. H. & Reichstein, M. Earlier springs
253 decrease peak summer productivity in North American boreal forests. *Environ.*
254 *Res. Lett.* **8**, 024027 (2013).

255 9. Sippel, S. *et al.* Contrasting and interacting changes in simulated spring and
256 summer carbon cycle extremes in European ecosystems. *Environ. Res. Lett.* **12**,
257 075006 (2017).

258 10. Nemani, R. R. *et al.* Climate-driven increases in global terrestrial net primary
259 production from 1982 to 1999. *Science* **300**, 1560–1563 (2003).

260 11. Settele, J. *et al.* Terrestrial and inland water systems. In: Climate Change 2014:
261 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.
262 Contribution of Working Group II to the Fifth Assessment Report of the IPCC
263 [Field, C.B. *et al.* (eds.)]. Cambridge University Press, Cambridge, United
264 Kingdom and New York, NY, USA, pp. 271–359 (2014).

265 12. Forkel, M. *et al.* Codominant water control on global interannual
266 variability and trends in land surface phenology and greenness. *Glob. Change*
267 *Biol.* **21**, 3414–3435 (2015).

268 13. Piao, S. L. *et al.* Net carbon dioxide losses of northern ecosystems in response to
269 autumn warming. *Nature* **451**, 49–53 (2008).

270 14. Forkel, M. *et al.* Enhanced seasonal CO₂ exchange caused by amplified plant
271 productivity in northern ecosystems. *Science* **351**, 696–699 (2016).

272 15. Forzieri, G. *et al.* Satellites reveal contrasting responses of regional climate to
273 the widespread greening of Earth, *Science* **356**, 1180–1184 (2017).

274 16. Richardson, A. D. *et al.* Influence of spring and autumn phenological transitions
275 on forest ecosystem productivity. *Philosoph. Trans. R. Soc. B* **365**, 3227–3246
276 (2010).

277 17. Wolf, S. *et al.* Warm spring reduced carbon cycle impact of the 2012 US summer
278 drought. *Proc. Natl. Acad. Sci.* **113**, 5880–5885 (2016).

279 18. Keenan, T. & Richardson, A. D. The timing of autumn senescence is affected by
280 the timing of spring phenology: implications for predictive models. *Global
281 Change Biol.* **21**, 2634–41 (2015).

282 19. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming
283 climate on water availability in snow-dominated regions. *Nature* **438**, 303–309
284 (2005).

285 20. Zhang, K., Kimball, J. S., Kim, Y. & McDonald, K. C. Changing freeze–thaw seasons
286 in northern high latitudes and associated influences on evapotranspiration.
287 *Hydrol. Proc.* **25**, 4142–4151 (2011).

288 21. Pinzon, J. E. & Tucker, C. J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time
289 Series. *Remote Sens.* **6**, 6929–6960 (2014).

290 22. Sitch, S. *et al.* Recent trends and drivers of regional sources and sinks of carbon
291 dioxide. *Biogeosciences* **12**, 653–679 (2015).

292 23. LeQuéré, C. *et al.* Global Carbon Budget 2017. *Earth System Sci. Data Disc.*

293 <https://doi.org/10.5194/essd-2017-123> (2017).

294 24. Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. Updated high-resolution grids
295 of monthly climate observations – the CRU TS3.10 dataset, *Int. J. Climatol.* **34**, 623–
296 642, (2014).

297 25. Cadule, P. *et al.* Benchmarking coupled climate-carbon models against long-term
298 atmospheric CO₂ measurements. *Glob. Biogeochem. Cycles* **24**, Gb2016 (2010).

299 26. Huang, M. *et al.* Velocity of change in vegetation productivity over northern
300 high latitudes. *Nature Eco. Evo.* **1**, 1649–1654 (2017).

301 27. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and
302 earlier spring increase western U.S. forest wildfire activity. *Science* **313**, 940–
303 943 (2006).

304 28. Sacks, W. J., Schimel, D. S. & Monson, R. K. Coupling between carbon cycling and
305 climate in a high-elevation subalpine forest: a model-data fusion analysis.
306 *Oecologia* **151**, 54–68 (2007).

307 29. Parida, B. R. & Buermann, W. Increasing summer drying in North American
308 ecosystems in response to longer nonfrozen periods. *Geophys. Res. Lett.* **41**,
309 5476–5483 (2014).

310

311 **Acknowledgements**

312 M.O. is funded through an EU Marie Curie Integration grant to W.B.. M.F. is funded
313 through the TU Wien Wissenschaftspreis 2015, a personal science award to Wouter
314 Dorigo. V.H.'s contribution is supported through funding from the Earth Systems
315 and Climate Change Hub of the Australian Government's National Environmental

316 Science Program. H.T. is supported by National Key R & D Program of China (no.
317 2017YFA0604702) and US National Science Foundation (1210360, 1243232).

318 A.D.R. is funded through the Macrosystems Biology Program of the National Science
319 Foundation (award EF-1702697). This work used eddy covariance data acquired
320 and shared by the FLUXNET community, including these networks: AmeriFlux,
321 AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux,
322 Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia,
323 and USCCC. The ERA-Interim reanalysis data are provided by ECMWF and processed
324 by LSCE. The FLUXNET eddy covariance data processing and harmonization was
325 carried out by the European Fluxes Database Cluster, AmeriFlux Management
326 Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS
327 Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices. We also
328 thank Martin Jung for providing upscaled FLUXNET GPP data.

329

330 **Author contributions**

331 W.B., M.F. and A.D.R. designed the research. W.B. and M.F. carried out the analysis and
332 W.B. wrote the manuscript with contributions from all authors. S.S., P.F, V.H., A.K.J., E.K.,
333 M.K., S.L., D.L., J.E.M.S.N., H.T., A.J.W., and D.Z. contributed to TRENDY results. W.K.S.
334 contributed to LUE-FPAR3g results.

335

336 **Competing financial interests**

337 The authors declare no competing financial interests.

338

339 **Figure Captions**

340 **Figure 1 | Spatial pattern of concurrent and lagged productivity responses to**
341 **spring warming based on satellite greenness observations.** Panel (a) shows grid
342 cell correlations between yearly spring temperatures and spring satellite vegetation
343 greenness (expressed through the NDVI, normalized difference vegetation index),
344 for our study period 1982-2011. Also shown are partial correlations between
345 annual spring temperatures and subsequent (b) summer NDVI as well (c) autumn
346 NDVI over this period. In these partial correlations, the covarying influences of
347 summer temperatures and precipitation (panel b) and autumn temperature and
348 precipitation (panel c) on the lagged spring temperature – summer/autumn NDVI
349 correlations have been removed. Seasons are defined through a local adaptive
350 procedure (see Methods). Absolute r-value categories correspond to significance
351 levels $P = 0.3$ ($r = 0.20$), $P = 0.2$ ($r = 0.24$), $P = 0.05$ ($r = 0.36$) and $P = 0.01$ ($r = 0.46$),
352 respectively. For each map frequency histograms showing areal coverage of
353 corresponding positive and negative correlations, estimated as fraction of total
354 study area, are also provided (see insets). Areas cultivated or managed³² (light grey)
355 are not included in the analysis.

356

357 **Figure 2 | Spatial pattern of lagged productivity response scenarios based on**
358 **satellite greenness observations and modelling approaches.** The two maps
359 summarize direction of robust ($P < 0.05$) grid cell correlations between annual
360 spring temperature and spring, summer and autumn (a) satellite NDVI as well as (b)
361 simulated GPP from the TRENDYv6 multi-model mean. For example, the 'lagged

362 productivity response scenario' denoted as '+++' captures positive correlations
363 between spring temperature and spring, summer and autumn NDVI (GPP),
364 respectively. Here, the relationships between spring temperature and subsequent
365 summer and autumn NDVI (GPP) are estimated through partial correlations
366 whereby effects of covarying concurrent climate influences have been controlled for
367 (see Fig. 1 and Methods). Corresponding pattern for individual models are shown in
368 Extended Data Fig. 3. Areas with no robust link between spring temperature and
369 spring NDVI or GPP (dark grey) and areas cultivated or managed (light grey) are
370 outlined. The two focal regions (Western US and Siberia) in this study are also
371 delineated (black-dashed rectangles). Panel (c) shows extent of areas with either no,
372 positive or negative lagged effects (see definition in panel a) within the study region
373 for satellite NDVI and GPP based on TRENDYv6. In addition, corresponding results
374 from a similar analysis for two satellite-constrained GPP datasets, based on
375 upscaled FLUXNET data (FluxNetG) and a light use efficiency model (LUE-FPAR3g;
376 see Methods), are also shown (see also Extended Data Fig. 4). Panel (d) shows the
377 results from a complementary analysis for satellite-based and modelled LAI (see
378 Methods). Heavy shaded columns represent satellite-constrained estimates and
379 those based on the TRENDYv6 multi-model mean and light shaded columns
380 represent estimates for the individual TRENDYv6 models. Results from the same
381 analysis for detrended data show that the differences in satellite- and model-based
382 estimates of areal proportions of positive and negative lagged effects are similar
383 (Supplementary Information section 1).
384

385 **Figure 3 | Seasonal trajectories of regionally averaged LAI and ET anomalies**
386 **based on observation-constrained and modeling approaches for warm and**
387 **cold spring years.** The panels depict anomalies in spatially averaged and
388 composited LAI and ET based on satellite-constrained estimates (LAI3g and ET-
389 GLEAM) and model simulations (TRENDYv6 multi-model mean) for (a, b) Western
390 US and (c, d) Siberia. Western US encompasses the non-agricultural regions from
391 120°W to 105°W and 40°N to 50°N, whereas Siberia is defined from 80°E to 125°E
392 and 60°N to 70°N (see also Fig. 2). Anomalies are relative to the study period 1982-
393 2011. The monthly maximum composites are based on the mean LAI (ET) of the
394 seven warmest and coldest spring years within the study period. Start and end of
395 climatological spring, summer and autumn season are also outlined (vertical grey
396 dashed lines). Uncertainty bounds (shaded area) reflect the spread in the monthly
397 LAI (ET) anomalies within the compositing period (± 1 s.d., n=7).

398

399

400 **Methods**

401 **Data sources.** For satellite vegetation data, we used the GIMMS-NDVI version 3g
402 (NDVI3g)²¹ and the LAI3g³⁰ products both available at 8-km spatial and 15 days
403 temporal resolution covering our study period 1982–2011. The NDVI3g data stem
404 from optical surface reflectance measurements from a series of NOAA-AVHRR
405 satellites, and in its generation effects of orbital drifts, inter-sensor calibration and
406 stratospheric aerosols from volcanic eruption have been corrected for making it
407 presently the most consistent long-term satellite vegetation data²¹. The LAI3g fields
408 are derived from the NDVI3g data using an artificial neural network model³⁰.
409 Gridded monthly climate data were obtained from the Climatic Research Unit (CRU
410 TS3.23) at 0.5° spatial resolution²⁴ for our study period (1982-2011). As an estimate
411 for observation-constrained ET, we included the Global Land Evaporation
412 Amsterdam Model (GLEAM) data set, which has a 0.25° spatial resolution at daily
413 time steps³¹. While the GLEAM approach is based on an empirical model, it is heavily
414 constrained by observations through assimilating satellite microwave vegetation
415 optical depth data as a proxy for water stress³¹. In addition, land cover data used in
416 this study are based on the GLC2000 land cover classification³². For complementary
417 analyses, we also used two observation-constrained monthly GPP data sets: 1) We
418 used GPP data (0.5° spatial resolution and available for 1982-2008) derived from
419 upscaled carbon observations based on the global FLUXNET tower network (termed
420 FluxNetG in this study)³³. Note, FluxNetG is different from the previously published
421 version (FluxNet-MTE)³³ since it has been produced with inputs from only a single
422 satellite vegetation data set (NDVIg; a predecessor of NDVI3g) to reduce artefacts

423 from usage of multiple satellite data (the FLuxNetG data set was also used in ref. 8).
424 2) We used GPP data (0.5° spatial resolution and available for 1982-2011) derived
425 using the light use efficiency (LUE) MODIS GPP algorithm driven by bi-monthly
426 GIMMS FPAR3g (termed LUE-FPAR3g in this study)³⁴. Additional meteorological
427 driver data required as input into the MODIS GPP algorithm were derived from
428 NCEP-DOE Reanalysis II (<http://www.esrl.noaa.gov>). For more information on the
429 GIMMS3g GPP dataset, see Smith et al. (2016)³⁴.

430

431 **TRENDYv6 models.** We also analyzed monthly GPP, LAI and ET simulation outputs
432 for 1982 to 2011 from ten terrestrial carbon cycle models that were part of a recent
433 model intercomparison project: TRENDYv6^{22,23}. The models included in the analysis
434 here are the LPX-Bern, LPJ-GUESS, ISAM, CABLE, VISIT, CLM4.5, DLEM, JSBACH,
435 ORCHIDEE-MICT and JULES. In TRENDYv6, the models were forced with
436 CRUNCEPv6 climate data, which is based on a merged product of the monthly CRU
437 climate data and to be consistent with the TRENDYv6 ensemble we also used this
438 climate dataset in this study. In addition, a set of factorial simulations²² were
439 performed and we analyzed outputs from a simulation in which only atmospheric
440 CO₂ and climate were varied (land use change held fixed; experiment 'S2') since our
441 study focus was on non-agricultural ecosystems. For an overview of the processes
442 included in the models with relevance for this study see Extended Data Table 1. For
443 a more general overview of the models see Table 4a and Table 5 in Le Quéré et al.²³.

444

445 **Analysis framework.** The satellite-based bi-monthly GIMMS NDVI3g and LAI3g
446 vegetation data were averaged to a monthly temporal resolution (to be consistent
447 with the TRENDYv6 model outputs). Then the fine-scale satellite vegetation and
448 coarse-scale CRU temperature fields were (dis)aggregated to a common 0.25°
449 spatial grid on which all correlation analyses were performed. The motivation for
450 this spatial aggregation step is two-fold: (i) it retains a certain level of spatial
451 information inherent in the satellite products and (ii) aligns more closely with the
452 coarser spatial resolutions of the TRENDY carbon cycle models. Model outputs from
453 TRENDYv6 were either analyzed at their native model resolutions spanning grid cell
454 dimensions from 0.5° to 1.9° ²² or resampled to a common 0.5° grid through nearest
455 neighbors (e.g. for estimation of multi-model means of GPP, LAI and ET at grid-cell
456 levels).

457 To estimate lagged vegetation growth and productivity responses we first
458 divided the mean seasonal cycle of NDVI or simulated GPP (based on the 30 year
459 study period) into spring, summer and autumn periods for each grid cell. Hereby,
460 the start of spring and end of autumn periods are defined by the month in which
461 corresponding temperatures are closest to 0°C , whereas the start and end of the
462 summer periods are defined by the month in which the NDVI (GPP) is closest to
463 95% (85%) of the annual maximum NDVI (GPP), respectively. Alternative
464 approaches for characterizing phenological cycles involving start- and end-dates of
465 the growing season are more ambiguous if it is based solely on optical vegetation
466 indices^{35,36} or when the underlying data have relatively low temporal resolutions as
467 in this study¹².

468 In a next step, we (building on the conceptual model of Richardson *et al.*¹⁶)
469 classified 'lagged productivity response scenarios' for each grid cell as follows: First,
470 as a minimum requirement for phenological responsiveness to spring warming, we
471 require the springtime temperature and the response variable of interest (NDVI, LAI
472 or GPP) to be significantly ($P < 0.05$) and positively correlated. Second, we then
473 define a lagged productivity (NDVI, GPP) or phenology (LAI) response scenario on
474 the basis of the direction of robust ($P < 0.05$) partial correlations between annual
475 spring temperatures (as independent phenological indicator) and subsequent
476 summer as well as autumn seasonal means of the response variable of interest; for
477 example if at a given locality annual spring temperature is positively correlated with
478 spring NDVI but negatively correlated with subsequent summer NDVI and not
479 robustly correlated with autumn NDVI the assigned scenario label would be '+-0'
480 where the type and sequence of symbols denotes the direction of correlations
481 between spring-spring, spring-summer and spring-autumn relationships,
482 respectively (see Figure 2). Partial correlations are used to control for covarying
483 effects of climate over seasonal time scales, which can confound the correlations
484 between annual spring temperatures and subsequent summer and autumn
485 response variables (see Supplementary Information section 1).

486 As indicated, the long-term satellite vegetation data (NDVI3g, LAI3g) exploited
487 here stem from a series of satellites and while this record has been carefully
488 assembled and also validated to some extent³⁰ remaining non-vegetation artefacts
489 in the data cannot be ruled out³⁷. Further, satellite greenness (or NDVI) captures the
490 amount of light absorbed by chlorophyll in green leaves³⁸ and has been exploited

491 extensively as a proxy for spatially-resolved vegetation productivity at continental
492 and multi-decadal scales^{3,26}. However, to overcome the limited comparability of
493 directly observed NDVI-based and simulated GPP-based pattern we also analysed
494 observation-constrained GPP data and corresponding results show good agreement
495 in lagged productivity pattern at both site level (using GPP flux tower data) and
496 across northern ecosystems (using gridded GPP data from upscaled FLUXNET and a
497 LUE model) providing further support for the robustness of our results (see
498 Extended Data Fig. 4). Finally, we also use satellite-based and modelled LAI data to
499 probe the mismatch between lagged greenness and modelled (TRENDYv6) GPP
500 responses to spring warmth.

501

502 **Data availability.** The satellite NDVI3g data that support the findings of this study
503 were downloaded from <http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/>. The
504 satellite LAI3g data that support the findings from this study are available from
505 Ranga B. Myneni (rmyneni@bu.edu) upon request. The 'LUE-FPAR3g' GPP data that
506 support the findings of this study can be requested from W.K.S.
507 (wksmith@email.arizona.edu), whereas the 'FluxNetG' GPP data can be obtained
508 from Martin Jung (mjung@bge-jena.mpg.de). The TRENDYv6 data that support the
509 findings of this study are available from S.S.S. (s.a.sitch@exeter.ac.uk) upon
510 reasonable request.

511

512 30. Zhu, Z. *et al.* Global data sets of vegetation Leaf Area Index (LAI) 3g and Fraction
513 Of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory

514 Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation
515 Index (NDVI3g) for the period 1981 to 2011. *Rem. Sens.* **5**, 927–948, (2013).

516 31. Martens, B. *et al.* GLEAM v3: satellite-based land evaporation and root-zone soil
517 moisture. *Geosci. Model Dev.* **10**, 1903–1925 (2017).

518 32. Bartholome, E., & Belward, A. S. GLC2000: A new approach to global land cover
519 mapping from Earth observation data. *Int. J. Rem. Sens.* **26**, 1959–1977 (2005).

520 33. Jung, M. *et al.* Global patterns of land-atmosphere fluxes of carbon dioxide,
521 latent heat, and sensible heat derived from eddy covariance, satellite, and
522 meteorological observations. *J. Geophys. Res. Biogeosci.* **116**, G00J07 (2011).

523 34. Smith, W. K. *et al.* Large divergence of satellite and Earth system model
524 estimates of global terrestrial CO₂ fertilization. *Nat. Clim. Change* **6**, 306–310
525 (2016).

526 35. Walter, S. *et al.* Satellite chlorophyll fluorescence measurements reveal large-
527 scale decoupling of photosynthesis and greenness dynamics in boreal evergreen
528 forests. *Glob. Change Biol.* **22**, 2979–2996 (2016).

529 36. Wu, C. *et al.* Land surface phenology derived from normalized difference
530 vegetation index (NDVI) at global FLUXNET sites. *Agr. For. Met.* **233**, 171–182
531 (2017).

532 37. Jiang, C. *et al.* Inconsistencies of interannual variability and trends in long-term
533 satellite leaf area index products. *Glob. Change Biol.* **23**, 4133–4146 (2017).

534 38. Myneni, R. B. *et al.* The interpretation of spectral vegetation indexes. *IEEE
535 Trans. Geosci. Rem. Sens.* **33**, 481–486 (1995).

536

537

538 **Extended Data**

539 **Extended Data Table Captions**

540 **Extended Data Table 1 | Comparison of specific process representation in the**

541 **TRENDYv6 carbon cycle models with relevance to this study**

542

543 **Extended Data Figure Captions**

544 **Extended Data Figure 1 | Comparison of lagged productivity responses based**

545 **on satellite greenness observations and in-situ estimates of carbon fluxes**

546 **across selected FLUXNET sites.** Panels (a-c), show site-specific correlations

547 between spring temperature (T) and spring, summer and autumn satellite NDVI

548 (x-axis) plotted over the corresponding site-specific correlations between spring T

549 and spring, summer and autumn in-situ based GPP (y-axis). In panels (b) and (c),

550 relationships shown are based on partial correlations (pr) between spring T and

551 subsequent summer as well as autumn NDVI/GPP, whereby covarying effects of

552 summer T and precipitation (panel b) and autumn T and precipitation (panel c)

553 have been removed. For this comparison, satellite NDVI time series at 8 km (native)

554 spatial resolution have been extracted for the 16 included FluxNet tower sites with

555 at least 10 year data records (Panel d). (Partial) correlations are shown for two

556 estimates of GPP: GPP-N (based on nighttime partitioning) and GPP-D (daytime

557 partitioning). In the maps (panel e), approximate location and name of FLUXNET

558 tower sites are shown, along with forest type (ENF: Evergreen Needleleaf Forest,

559 DBF: Deciduous Broadleaf Forest, MF: Mixed Forest) and record length (in

560 brackets). FLUXNET data are from the FLUXNET2015 Dataset (Tier 1).

561

562 **Extended Data Figure 2 | Random forest analysis to explain the partial**
563 **correlation pattern between annual spring temperature and summer satellite**
564 **greenness for hemispheric and regional scales.** Panel (a) shows ranked
565 importance of a set of explanatory variables in a random forest (RF) model for the
566 whole northern ecosystem study region encompassing all northern vegetated non-
567 agricultural land north of 30°N (see Supplementary Information section 2 for details
568 on explanatory variables used). Ranking is based on the highest increment in mean
569 squared error (IncMSE) between the observed and RF-predicted correlation after
570 permuting this explanatory variable. Panels (b-f) show individual conditional
571 expectation (ICE) lines of the RF-predicted partial correlation between spring T and
572 summer NDVI. They encapsulate response curves for the five most important
573 explanatory variables based on the RF analysis. Lines and shaded bands reflect the
574 mean (i.e. regional average response) and the percentile range (5% to 95%, i.e. grid
575 cell level responses to environmental predictors) of ICE curves for the entire
576 northern hemisphere study region (red), and for the focus regions Siberia (blue)
577 and Western US (green), respectively (see Supplementary Information section 2).

578

579 **Extended Data Figure 3 | Spatial pattern of lagged productivity response**
580 **scenarios based on the individual carbon cycle models included in TRENDYv6.**
581 All pattern are based on monthly GPP over the period 1982-2011 using outputs
582 from the ten TRENDYv6 models included in the analysis. The maps summarize
583 direction of statistically significant ($P < 0.05$) correlation between annual spring

584 temperature and spring, summer and autumn GPP, respectively. For details on
585 classification scenarios and contour labels see Figure 2 in main text. Areas with no
586 robust link between spring temperature and spring GPP (dark grey) and areas
587 cultivated or managed (light grey) are also outlined.

588

589 **Extended Data Figure 4 | Spatial pattern of lagged productivity and vegetation**
590 **growth response scenarios based on satellite-constrained and modelling**
591 **approaches.** The six maps summarize direction of robust ($P < 0.05$) correlations
592 between annual spring temperature and spring, summer and autumn (a) satellite
593 NDVI, (b) satellite LAI, (c) satellite-constrained upscaled GPP (FluxNetG),
594 (d) satellite-driven LUE-modelled GPP (LUE-FPAR3g) as well as multi-model mean
595 (e) GPP and (f) LAI based on the ten TRENDYv6 models. For details on scenario
596 classifications and contour labels see Figure 2 in main text.

597

598 **Extended Data Figure 5 | Changes in regional climate, satellite greenness and**
599 **plant carbon fluxes from observation-constrained and modelling approaches**
600 **for years with warm and cold spring temperatures.** The panels depict anomalies
601 in regionally-averaged composited climate, NDVI and GPP for the focus regions (a-c)
602 Western US and (d-f) Siberia relative to the study period 1982-2011. The anomalies
603 are based on maximum composites of monthly means of the seven warmest and
604 coldest spring years within the study period. The observation-constrained GPP
605 anomalies shown here (panels c and f) stem from an upscaled FLUXNET product
606 (FluxNetG), which combined GPP estimates from flux towers with climate and

607 satellite greenness in a machine learning framework (see Methods). Shown are also
608 the respective (a, d) climate and (b, e) NDVI anomalies for warm and cold spring
609 years. Start/end of climatological spring, summer and autumn seasons are
610 indicated (vertical grey dashed lines). Uncertainty bounds (shaded area) reflect the
611 spread in the respective monthly anomalies within the compositing period (± 1 s.d.,
612 $n=7$). On the basis of these anomalies, we estimate for a warm spring year (relative
613 to mean conditions) in Siberia (2.5 Mill km²) annual GPP increases of 0.4 PgC and
614 1.7 PgC for FluxNetG and the TRENDYv6 ensemble (see Panel F), respectively, which
615 suggests a roughly 4 times higher plant carbon uptake in the TRENDYv6 ensemble.
616 This is to a large part (~64%) because of the overestimation of positive lagged
617 effects in the TRENDYv6 models , but another significant factor (36%) is also the
618 higher sensitivity of concurrent carbon uptake to spring warming in the TRENDYv6
619 models (compared to FluxNetG).

620

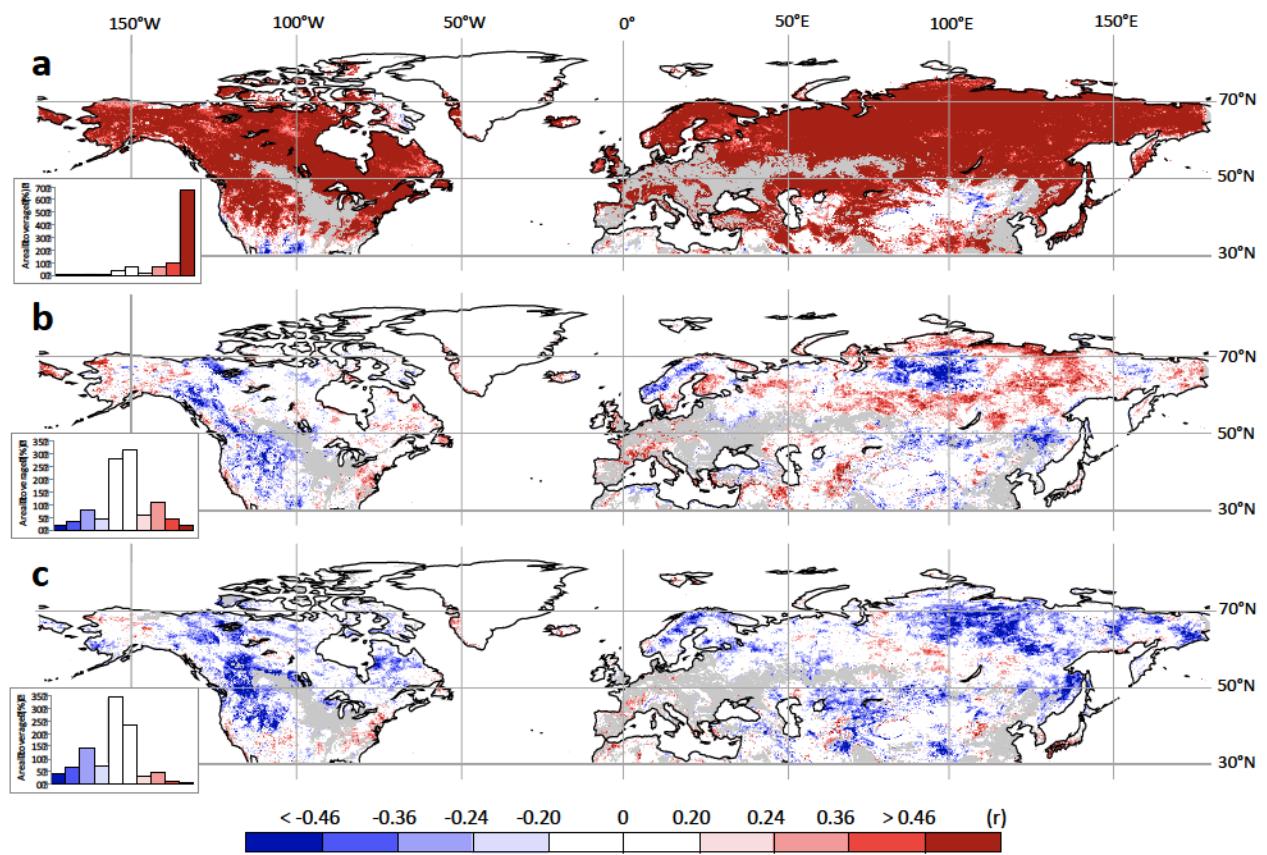


Figure 1

