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Climate change is causing plant phenological cycles to shiftl, thereby altering
the functioning of ecosystems, which in turn induces feedbacks to the climate
system?Z. In northern ecosystems, warmer springs lead generally to an earlier
onset of the growing season3+ and increased ecosystem productivity early in
the season5. But in-situ® and regional studies’-? also provide evidence for
corresponding lagged effects of spring warmth on plant productivity during
subsequent summer and autumn seasons. Yet, our present understanding of
such lagged effects - including their direction and geographic distribution - is
still very limited. Here we analyse long-term satellite data products, flux
tower and model-based data and show that there are widespread and
contrasting lagged productivity responses to spring warmth across northern
ecosystems. We find that 13-16% and 4-6% of a total area of about 41 million
km? show adverse and beneficial lagged effects, respectively. In contrast,
current-generation terrestrial carbon cycle models show significantly lower
areal fractions of adverse lagged effects (1-14%) and much higher areal
expanses of beneficial lagged effects (9-54%). Furthermore, we find that
elevation and seasonal precipitation patterns largely dictate the geographic
pattern and direction of the lagged effects. Inadequate consideration of the
effects of seasonal build-up of water stress on seasonal vegetation growth may
be able to explain why current models do not adequately represent lagged
effects associated with spring warming. Overall, our results suggest that for
many northern ecosystems, the benefits of warmer springs on growing season

ecosystem productivity are substantially reduced by the accumulation of
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seasonal water deficits despite the fact that northern ecosystems are thought
to be largely temperature and radiation limited19,

Northern land regions have experienced substantial warming since the early 1970s
and this has changed how ecosystems function!!. One prominent example of such
emerging ecosystem responses is shifts in plant phenological cycles: earlier spring
onset and delayed autumn senescence are together lengthening the northern
growing season®12. These phenological shifts have altered ecosystem
productivity>681314 and the seasonality of important ecosystem feedbacks to the
atmosphere and climate system®15,

Warmer and earlier springs may also influence ecosystem function later in
the growing season through indirect or lagged effects1617. For example, in-situ
studies provide evidence for significant positive lagged effects on ecosystem
productivity, whereby the influence of warmer springs may be conveyed to
subsequent seasons through development of larger leaf area and/or increased foliar
nitrogen®. In contrast, warmer/earlier springs may also cause earlier autumn
senescence because of fixed leaf life spans!® or adversely affect plant productivity
later in the season through the building up of water deficits7-219.20. However, at
present a more comprehensive understanding of such lagged productivity
responses is still lacking.

Here, we exploit long-term satellite-based measures of vegetation greenness
(as a proxy of potential photosynthesis)?1, flux tower- and model-based estimates of
CO2 uptake through photosynthesis (gross primary productivity (GPP))2223 and

high-resolution climate data?4 to estimate the strength and geographic distribution
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of lagged effects that capture the influence of spring phenological transitions on
plant productivity during subsequent summer and autumn seasons. Our analysis
framework relies on identifying correlations between spring temperatures (which
serve as an independent phenological indicator), and satellite greenness or
simulated GPP during spring and subsequent seasons to estimate concurrent
phenological responsiveness and linked lagged effects (see Methods).

Across northern lands, correlations between annual spring temperatures and
spring greenness show significantly positive and spatially extensive pattern
consistent with the notion of a tight control of spring temperature on concurrent
plant productivity: 80% of northern (>30°N) vegetated non-agricultural land (total
study area ~41 million km?) exhibit statistically significant (P < 0.05 at grid cell
level) positive correlations (Fig. 1a). To assess lagged effects on plant productivity
associated with anomalous spring temperatures, we computed partial correlations
between spring temperature and subsequent summer and autumn greenness,
whereby covarying effects of concurrent climate on these correlations are
controlled for (see Supplementary Information section 1). Partial correlations
between annual spring temperature and subsequent summer greenness show
widespread positive (6%, P < 0.05) as well as negative (6%, P < 0.05) pattern (Fig.
1b). Areas of positive partial correlations are predominantly situated in Eurasia
covering vast regions north of 50°N, whereas areas displaying negative correlations
are more localized in western North America, Siberia and temperate eastern Asia.
The partial correlation pattern between spring temperature and autumn greenness

indicate an extension of the ‘summer’ pattern of negative correlation (11%, P < 0.05;
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positive correlations cover only 2%, P < 0.05) with additional coverage seen mainly
in northeastern Eurasia and temperate central Asia (Fig. 1b and c). While long-term
trends in temperature and greenness may potentially influence these correlations, a
corresponding analysis on detrended data shows that the patterns are similar
(Supplementary Information section 1) which suggests a dominant influence of
interannual to quasi-decadal variability on the correlation pattern between spring
temperature and satellite greenness during subsequent seasons. A comparison of
the strength of these lagged relationships with concurrent climatic influences on
greenness pattern shows that at regional scales the influence of preceding spring
temperatures on summer and autumn greenness can be equally important or even
dominant (Supplementary Information section 1).

To further assess the robustness of the identified satellite-based lagged
productivity responses we also compared them to those inferred from tower-based
measurements of land-atmosphere CO; flux (FLUXNET). Results show that across
n=16 tower sites, the strength and direction of relationships between spring
temperature and spring as well as summer greenness correspond well to those
based on FLUXNET estimates of spring temperature and spring as well as summer
GPP (Extended Data Fig. 1). The agreement between satellite- and tower-based
relationships between spring temperature and autumn greenness and GPP,
respectively, is however not as strong (Extended Data Fig. 1). This validation has
several caveats including few available tower sites and differences in spatial scales
for satellite (coarse) and tower (fine-scale) data, but the overall consistency in the

estimated lagged productivity responses suggests that the satellite-based estimates
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are plausible.

The geographic distribution of the relationships between changes in spring
temperature and subsequent summer greenness (see Fig. 1B) suggests that some
combination of climate, elevation, and/or landcover may explain these patterns. To
investigate this, we conducted a random forest (RF) analysis using a set of
predictors that encapsulate such factors (see Supplementary Information section 2).
Results show that the spring temperature-summer greenness partial correlation
pattern can be explained with elevation and selected climate variables (e.g. summer
precipitation and precipitation seasonality) acting as the most important variables
(Extended Data Fig. 2 and Supplementary Information section 2). Across northern
ecosystems, we find that these partial correlations tend to become more negative
with higher elevation, but such well-defined directional relationships are not as
apparent for important precipitation metrics (Extended Data Fig. 2).

Grouping the lagged productivity responses based on the direction of robust
correlations between spring temperature and spring, summer and autumn
greenness, respectively, shows large clusters of regions with negative lagged effects
and more scattered areas with positive lagged effects (Fig. 2a). Hereby, negative
‘lagged productivity response scenarios’ associated with spring warming and
greening coupled with summer and/or autumn greenness declines stretch over vast
areas in western North America, Siberia and to some extent eastern temperate Asia,
whereas positive lagged effects are more common in eastern Eurasia above 50°N
(except Siberia).

Carbon cycle models must be able to simulate vegetation phenology



157 responses and corresponding impacts on ecosystem productivity and net carbon
158  uptake realistically to credibly estimate climate-carbon feedbacks 25. We therefore
159  assessed the ability of ten current-generation models contributing to TRENDYv622.23
160  toreplicate the observed lagged productivity responses in respect to spring

161  warming. Results show a substantially higher areal coverage of positive lagged

162  effects on plant productivity for the multi-model mean (and significantly lower
163  coverage of negative lagged effects) than for the satellite-based estimates (Fig. 2a
164  and b). While there are marked differences among the individual models (Extended
165  Data Fig. 3), a striking pattern in the ensemble is the near absence of any negative
166 lagged effects across Siberia and the overall abundance of positive lagged effects
167  that extend over summer and autumn seasons (Fig. 2a and b). Satellite greenness
168 has been used extensively as a proxy for vegetation productivity326 but direct

169 comparisons between greenness- and GPP-based pattern may be limited (see

170  Methods). However, a similar analysis with two satellite-constrained GPP datasets
171  (based on upscaled FLUXNET data and a light use efficiency model; see Methods)
172 shows nearly identical lagged productivity pattern to those based on satellite

173  greenness (Extended Data Fig. 4).

174 Grouping these ‘lagged productivity response scenarios’ more broadly in
175  positive and negative lagged effects yields an areal extent of regions showing

176  positive lags of 36% for the TRENDYv6 ensemble (spanning 9-54% for the ten

177  individual TRENDYv6 models) and 4-6% for the satellite-based estimates (Fig. 2c).
178 The areal coverage of negative lagged effects based on the TRENDYv6 ensemble is

179  only 2% (spanning 1-14% for the ten models) compared to the satellite-based



180  estimates of 13-16%.

181 Why can present terrestrial carbon cycle models not adequately replicate the
182  spatial pattern of observed lagged productivity responses in respect to warmer

183  springs? One key factor may be how seasonal vegetation growth is represented in
184  the models. To assess this, we performed a similar seasonal correlation analyses
185  with satellite-based and modelled leaf area index (LAI) data (see Methods). These
186  results show an even larger discrepancy in the areal proportions of positive and

187  negative lagged LAl responses to spring warming between observation-based and

188  modelling approaches compared to the results based on productivity metrics (Fig. 2¢
189 and d, Extended Data Fig. 4). The substantial overestimation of growing season LAI in
190 the models in response to spring warmth may cause too much new carbon to be

191  allocated in plant tissue, which then serves to enhance GPP.

192 Water availability may cause adverse lagged effects in response to spring

193  warmth and could help to reconcile the differences in observations and models. To

194  further investigate this we performed a regional analysis for the Western US and Siberia
195  where observation-based and simulated lagged productivity responses show more

196  converging and diverging pattern (see Fig. 2). For the Western US, we find that

197  seasonal trajectories in aggregated satellite-based and modelled LAI and

198 evapotranspiration (ET) both display positive anomalies during spring in years with
199  warmer springs and corresponding negative anomalies later in the growing season
200  (suggestive of negative lagged effects associated with a buildup of water stress) (Fig.
201  3aand b). For Siberia, however, the seasonal trajectories in observation-based and

202  modelled LAI for warm spring years start to diverge substantially during summer
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and autumn with the observations displaying more negative anomalies during
summer and autumn (again suggestive of water stress) and the opposite pattern for
the models (Fig. 3c). Seasonal trajectories of observation-based and modeled ET for
years with anomalous spring temperatures are more in agreement, although there is
some indication that the models tend to underestimate water stress in summer in
warm spring years (Fig. 3d). The consistent response in observed and modelled LAI
and ET in respect to spring warmth over Western US, a region which is known for its
vulnerability to drought in respect to spring warmth?27-29, suggests that the model’s
hydrology and phenology schemes are generally fit for purpose. The strong
divergence between observation-based and modelled seasonal vegetation growth
responses to spring warmth over Siberia (which is dominated by needleleaf
deciduous forests) may be due to underestimating the effects of water stress on
seasonal canopy development and omission of fixed leaf life spans in the models
(Extended Data Table 1 and Supporting Information section 3). We estimate that
due this observation-model mismatch across Siberia annual GPP for a warm spring
year (relative to mean conditions) may be up to 4 times higher in the TRENDYv6
ensemble (1.7 PgC/yr) compared to an observation-constrained estimate based on
upscaled FLUXNET data (0.4 PgC/yr) (Extended Data Fig. 5).

Our analysis based on satellite vegetation records over multiple decades
provides first evidence for widespread positive and negative lagged plant
productivity responses across northern ecosystems in association with warmer
springs. The spatially extensive pattern of negative lagged effects identified here

also implies substantially reduced benefits for ecosystem productivity and carbon
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sequestration from longer northern growing seasons under climate change. We also
show that current terrestrial carbon cycle models substantially underestimate
(overestimate) negative (positive) lagged effects associated with spring warming.
This is possibly because of inadequately capturing the effects of seasonal buildup of
water stress on seasonal vegetation growth. Continued monitoring of emerging
ecosystem responses and improved modelling capabilities will thus be crucial to
improve understanding of the complex interactions of a changing climate, shifts in

phenological cycles and impacts on energy, water and carbon cycles.
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Figure Captions

Figure 1 | Spatial pattern of concurrent and lagged productivity responses to
spring warming based on satellite greenness observations. Panel (a) shows grid
cell correlations between yearly spring temperatures and spring satellite vegetation
greenness (expressed through the NDVI, normalized difference vegetation index),
for our study period 1982-2011. Also shown are partial correlations between
annual spring temperatures and subsequent (b) summer NDVI as well (c) autumn
NDVI over this period. In these partial correlations, the covarying influences of
summer temperatures and precipitation (panel b) and autumn temperature and
precipitation (panel c) on the lagged spring temperature - summer/autumn NDVI
correlations have been removed. Seasons are defined through a local adaptive
procedure (see Methods). Absolute r-value categories correspond to significance
levels P=0.3 (r=0.20),P=0.2 (r=0.24), P=0.05 (r=0.36) and P = 0.01 (r = 0.46),
respectively. For each map frequency histograms showing areal coverage of
corresponding positive and negative correlations, estimated as fraction of total
study area, are also provided (see insets). Areas cultivated or managed32 (light grey)

are not included in the analysis.

Figure 2 | Spatial pattern of lagged productivity response scenarios based on
satellite greenness observations and modelling approaches. The two maps
summarize direction of robust (P < 0.05) grid cell correlations between annual
spring temperature and spring, summer and autumn (a) satellite NDVI as well as (b)

simulated GPP from the TRENDYv6 multi-model mean. For example, the ‘lagged

15
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productivity response scenario’ denoted as ‘+++’ captures positive correlations
between spring temperature and spring, summer and autumn NDVI (GPP),
respectively. Here, the relationships between spring temperature and subsequent
summer and autumn NDVI (GPP) are estimated through partial correlations
whereby effects of covarying concurrent climate influences have been controlled for
(see Fig. 1 and Methods). Corresponding pattern for individual models are shown in
Extended Data Fig. 3. Areas with no robust link between spring temperature and
spring NDVI or GPP (dark grey) and areas cultivated or managed (light grey) are
outlined. The two focal regions (Western US and Siberia) in this study are also
delineated (black-dashed rectangles). Panel (c) shows extent of areas with either no,
positive or negative lagged effects (see definition in panel a) within the study region
for satellite NDVI and GPP based on TRENDYv®6. In addition, corresponding results
from a similar analysis for two satellite-constrained GPP datasets, based on
upscaled FLUXNET data (FluxNetG) and a light use efficiency model (LUE-FPAR3g;
see Methods), are also shown (see also Extended Data Fig. 4). Panel (d) shows the
results from a complementary analysis for satellite-based and modelled LAI (see
Methods). Heavy shaded columns represent satellite-constrained estimates and
those based on the TRENDYv6 multi-model mean and light shaded columns
represent estimates for the individual TRENDYv6 models. Results from the same
analysis for detrended data show that the differences in satellite- and model-based
estimates of areal proportions of positive and negative lagged effects are similar

(Supplementary Information section 1).
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Figure 3 | Seasonal trajectories of regionally averaged LAI and ET anomalies
based on observation-constrained and modeling approaches for warm and
cold spring years. The panels depict anomalies in spatially averaged and
composited LAl and ET based on satellite-constrained estimates (LAI3g and ET-
GLEAM) and model simulations (TRENDYv6 multi-model mean) for (a, b) Western
US and (c, d) Siberia. Western US encompasses the non-agricultural regions from
120°W to 105°W and 40°N to 50°N, whereas Siberia is defined from 80°E to 125°E
and 60°N to 70°N (see also Fig. 2). Anomalies are relative to the study period 1982-
2011. The monthly maximum composites are based on the mean LAI (ET) of the
seven warmest and coldest spring years within the study period. Start and end of
climatological spring, summer and autumn season are also outlined (vertical grey
dashed lines). Uncertainty bounds (shaded area) reflect the spread in the monthly

LAI (ET) anomalies within the compositing period (* 1 s.d.,, n=7).
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Methods

Data sources. For satellite vegetation data, we used the GIMMS-NDVI version 3g
(NDVI3g)?1 and the LAI3g3? products both available at 8-km spatial and 15 days
temporal resolution covering our study period 1982-2011. The NDVI3g data stem
from optical surface reflectance measurements from a series of NOAA-AVHRR
satellites, and in its generation effects of orbital drifts, inter-sensor calibration and
stratospheric aerosols from volcanic eruption have been corrected for making it
presently the most consistent long-term satellite vegetation data2l. The LAI3g fields
are derived from the NDVI3g data using an artificial neural network model3°.
Gridded monthly climate data were obtained from the Climatic Research Unit (CRU
TS3.23) at 0.5° spatial resolution2# for our study period (1982-2011). As an estimate
for observation-constrained ET, we included the Global Land Evaporation
Amsterdam Model (GLEAM) data set, which has a 0.25° spatial resolution at daily
time steps31l. While the GLEAM approach is based on an empirical model, it is heavily
constrained by observations through assimilating satellite microwave vegetation
optical depth data as a proxy for water stress31. In addition, land cover data used in
this study are based on the GLC2000 land cover classification32. For complementary
analyses, we also used two observation-constrained monthly GPP data sets: 1) We
used GPP data (0.5° spatial resolution and available for 1982-2008) derived from
upscaled carbon observations based on the global FLUXNET tower network (termed
FluxNetG in this study)33. Note, FluxNetG is different from the previously published
version (FluxNet-MTE)33 since it has been produced with inputs from only a single

satellite vegetation data set (NDVIg; a predecessor of NDVI3g) to reduce artefacts
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from usage of multiple satellite data (the FLuxNetG data set was also used in ref. 8).
2) We used GPP data (0.5° spatial resolution and available for 1982-2011) derived
using the light use efficiency (LUE) MODIS GPP algorithm driven by bi-monthly
GIMMS FPAR3g (termed LUE-FPAR3g in this study)3+. Additional meteorological
driver data required as input into the MODIS GPP algorithm were derived from

NCEP-DOE Reanalysis II (http://www.esrl.noaa.gov). For more information on the

GIMMS3g GPP dataset, see Smith et al. (2016)34.

TRENDYv6 models. We also analyzed monthly GPP, LAl and ET simulation outputs
for 1982 to 2011 from ten terrestrial carbon cycle models that were part of a recent
model intercomparison project: TRENDYv62223, The models included in the analysis
here are the LPX-Bern, LPJ-GUESS, ISAM, CABLE, VISIT, CLM4.5, DLEM, JSBACH,
ORCHIDEE-MICT and JULES. In TRENDYvV6, the models were forced with
CRUNCEPv6 climate data, which is based on a merged product of the monthly CRU
climate data and to be consistent with the TRENDYv6 ensemble we also used this
climate dataset in this study. In addition, a set of factorial simulations22 were
performed and we analyzed outputs from a simulation in which only atmospheric
CO2 and climate were varied (land use change held fixed; experiment ‘S2’) since our
study focus was on non-agricultural ecosystems. For an overview of the processes
included in the models with relevance for this study see Extended Data Table 1. For

a more general overview of the models see Table 4a and Table 5 in Le Quéré et al.23.
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Analysis framework. The satellite-based bi-monthly GIMMS NDVI3g and LAI3g
vegetation data were averaged to a monthly temporal resolution (to be consistent
with the TRENDYv6 model outputs). Then the fine-scale satellite vegetation and
coarse-scale CRU temperature fields were (dis)aggregated to a common 0.25°
spatial grid on which all correlation analyses were performed. The motivation for
this spatial aggregation step is two-fold: (i) it retains a certain level of spatial
information inherent in the satellite products and (ii) aligns more closely with the
coarser spatial resolutions of the TRENDY carbon cycle models. Model outputs from
TRENDYv6 were either analyzed at their native model resolutions spanning grid cell
dimensions from 0.5° to 1.9°22 or resampled to a common 0.5° grid through nearest
neighbors (e.g. for estimation of multi-model means of GPP, LAl and ET at grid-cell
levels).

To estimate lagged vegetation growth and productivity responses we first
divided the mean seasonal cycle of NDVI or simulated GPP (based on the 30 year
study period) into spring, summer and autumn periods for each grid cell. Hereby,
the start of spring and end of autumn periods are defined by the month in which
corresponding temperatures are closest to 0°C, whereas the start and end of the
summer periods are defined by the month in which the NDVI (GPP) is closest to
95% (85%) of the annual maximum NDVI (GPP), respectively. Alternative
approaches for characterizing phenological cycles involving start- and end-dates of
the growing season are more ambiguous if it is based solely on optical vegetation
indices3>3¢ or when the underlying data have relatively low temporal resolutions as

in this study!2,
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In a next step, we (building on the conceptual model of Richardson et al.1¢)
classified ‘lagged productivity response scenarios’ for each grid cell as follows: First,
as a minimum requirement for phenological responsiveness to spring warming, we
require the springtime temperature and the response variable of interest (NDVI, LAI
or GPP) to be significantly (P < 0.05) and positively correlated. Second, we then
define a lagged productivity (NDVI, GPP) or phenology (LAI) response scenario on
the basis of the direction of robust (P < 0.05) partial correlations between annual
spring temperatures (as independent phenological indicator) and subsequent
summer as well as autumn seasonal means of the response variable of interest; for
example if at a given locality annual spring temperature is positively correlated with
spring NDVI but negatively correlated with subsequent summer NDVI and not
robustly correlated with autumn NDVI the assigned scenario label would be ‘+-0’
where the type and sequence of symbols denotes the direction of correlations
between spring-spring, spring-summer and spring-autumn relationships,
respectively (see Figure 2). Partial correlations are used to control for covarying
effects of climate over seasonal time scales, which can confound the correlations
between annual spring temperatures and subsequent summer and autumn
response variables (see Supplementary Information section 1).

As indicated, the long-term satellite vegetation data (NDVI3g, LAI3g) exploited
here stem from a series of satellites and while this record has been carefully
assembled and also validated to some extent30 remaining non-vegetation artefacts
in the data cannot be ruled out3?. Further, satellite greenness (or NDVI) captures the

amount of light absorbed by chlorophyll in green leaves3? and has been exploited
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extensively as a proxy for spatially-resolved vegetation productivity at continental
and multi-decadal scales32¢, However, to overcome the limited comparability of
directly observed NDVI-based and simulated GPP-based pattern we also analysed
observation-constrained GPP data and corresponding results show good agreement
in lagged productivity pattern at both site level (using GPP flux tower data) and
across northern ecosystems (using gridded GPP data from upscaled FLUXNET and a
LUE model) providing further support for the robustness of our results (see
Extended Data Fig. 4). Finally, we also use satellite-based and modelled LAI data to
probe the mismatch between lagged greenness and modelled (TRENDYv6) GPP

responses to spring warmth.

Data availability. The satellite NDVI3g data that support the findings of this study

were downloaded from http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/. The

satellite LAI3g data that support the findings from this study are available from
Ranga B. Myneni (rmyneni@bu.edu) upon request. The ‘LUE-FPAR3g’ GPP data that
support the findings of this study can be requested from W.K.S.
(wksmith@email.arizona.edu), whereas the ‘FluxNetG’ GPP data can be obtained
from Martin Jung (mjung@bgc-jena.mpg.de). The TRENDYv6 data that support the
findings of this study are available from S.S.S. (s.a.sitch@exeter.ac.uk) upon

reasonable request.

30. Zhu, Z. et al. Global data sets of vegetation Leaf Area Index (LAI) 3g and Fraction

Of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory
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Extended Data
Extended Data Table Captions
Extended Data Table 1 | Comparison of specific process representation in the

TRENDYv6 carbon cycle models with relevance to this study

Extended Data Figure Captions

Extended Data Figure 1 | Comparison of lagged productivity responses based
on satellite greenness observations and in-situ estimates of carbon fluxes
across selected FLUXNET sites. Panels (a-c), show site-specific correlations
between spring temperature (T) and spring, summer and autumn satellite NDVI
(x-axis) plotted over the corresponding site-specific correlations between spring T
and spring, summer and autumn in-situ based GPP (y-axis). In panels (b) and (c),
relationships shown are based on partial correlations (pr) between spring T and
subsequent summer as well as autumn NDVI/GPP, whereby covarying effects of
summer T and precipitation (panel b) and autumn T and precipitation (panel c)
have been removed. For this comparison, satellite NDVI time series at 8 km (native)
spatial resolution have been extracted for the 16 included FluxNet tower sites with
at least 10 year data records (Panel d). (Partial) correlations are shown for two
estimates of GPP: GPP-N (based on nighttime partitioning) and GPP-D (daytime
partitioning). In the maps (panel e), approximate location and name of FLUXNET
tower sites are shown, along with forest type (ENF: Evergeen Needleleaf Forest,
DBF: Deciduous Broadleaf Forest, MF: Mixed Forest) and record length (in

brackets). FLUXNET data are from the FLUXNET2015 Dataset (Tier 1).
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Extended Data Figure 2 | Random forest analysis to explain the partial
correlation pattern between annual spring temperature and summer satellite
greenness for hemispheric and regional scales. Panel (a) shows ranked
importance of a set of explanatory variables in a random forest (RF) model for the
whole northern ecosystem study region encompassing all northern vegetated non-
agricultural land north of 30°N (see Supplementary Information section 2 for details
on explanatory variables used). Ranking is based on the highest increment in mean
squared error (IncMSE) between the observed and RF-predicted correlation after
permuting this explanatory variable. Panels (b-f) show individual conditional
expectation (ICE) lines of the RF-predicted partial correlation between spring T and
summer NDVI. They encapsulate response curves for the five most important
explanatory variables based on the RF analysis. Lines and shaded bands reflect the
mean (i.e. regional average response) and the percentile range (5% to 95%, i.e. grid
cell level responses to environmental predictors) of ICE curves for the entire
northern hemisphere study region (red), and for the focus regions Siberia (blue)

and Western US (green), respectively (see Supplementary Information section 2).

Extended Data Figure 3 | Spatial pattern of lagged productivity response
scenarios based on the individual carbon cycle models included in TRENDYV®6.
All pattern are based on monthly GPP over the period 1982-2011 using outputs
from the ten TRENDYvV6 models included in the analysis. The maps summarize

direction of statistically significant (P < 0.05) correlation between annual spring
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temperature and spring, summer and autumn GPP, respectively. For details on
classification scenarios and contour labels see Figure 2 in main text. Areas with no
robust link between spring temperature and spring GPP (dark grey) and areas

cultivated or managed (light grey) are also outlined.

Extended Data Figure 4 | Spatial pattern of lagged productivity and vegetation
growth response scenarios based on satellite-constrained and modelling
approaches. The six maps summarize direction of robust (P < 0.05) correlations
between annual spring temperature and spring, summer and autumn (a) satellite
NDVI, (b) satellite LAI, (c) satellite-constrained upscaled GPP (FluxNetG),

(d) satellite-driven LUE-modelled GPP (LUE-FPAR3g) as well as multi-model mean
(e) GPP and (f) LAI based on the ten TRENDYv6 models. For details on scenario

classifications and contour labels see Figure 2 in main text.

Extended Data Figure 5 | Changes in regional climate, satellite greenness and
plant carbon fluxes from observation-constrained and modelling approaches
for years with warm and cold spring temperatures. The panels depict anomalies
in regionally-averaged composited climate, NDVI and GPP for the focus regions (a-c)
Western US and (d-f) Siberia relative to the study period 1982-2011. The anomalies
are based on maximum composites of monthly means of the seven warmest and
coldest spring years within the study period. The observation-constrained GPP
anomalies shown here (panels c and f) stem from an upscaled FLUXNET product

(FluxNetG), which combined GPP estimates from flux towers with climate and
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satellite greenness in a machine learning framework (see Methods). Shown are also
the respective (a, d) climate and (b, e) NDVI anomalies for warm and cold spring
years. Start/end of climatological spring, summer and autumn seasons are
indicated (vertical grey dashed lines). Uncertainty bounds (shaded area) reflect the
spread in the respective monthly anomalies within the compositing period (+ 1 s.d,,
n=7). On the basis of these anomalies, we estimate for a warm spring year (relative
to mean conditions) in Siberia (2.5 Mill km?) annual GPP increases of 0.4 PgC and
1.7 PgC for FluxNetG and the TRENDYv6 ensemble (see Panel F), respectively, which
suggests a roughly 4 times higher plant carbon uptake in the TRENDYv6 ensemble.
This is to a large part (~64%) because of the overestimation of positive lagged
effects in the TRENDYv6 models, but another significant factor (36%) is also the
higher sensitivity of concurrent carbon uptake to spring warming in the TRENDYv6

models (compared to FluxNetG).
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