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Climate change is causing plant phenological cycles to shift1, thereby altering 42 
the functioning of ecosystems, which in turn induces feedbacks to the climate 43 
system2. In northern ecosystems, warmer springs lead generally to an earlier 44 
onset of the growing season3,4 and increased ecosystem productivity early in 45 
the season5.  But in-situ6 and regional studies7-9 also provide evidence for 46 
corresponding lagged effects of spring warmth on plant productivity during 47 
subsequent summer and autumn seasons. Yet, our present understanding of 48 
such lagged effects – including their direction and geographic distribution – is 49 
still very limited. Here we analyse long-term satellite data products, flux 50 
tower and model–based data and show that there are widespread and 51 
contrasting lagged productivity responses to spring warmth across northern 52 
ecosystems. We find that 13-16% and 4-6% of a total area of about 41 million 53 
km2 show adverse and beneficial lagged effects, respectively. In contrast, 54 
current-generation terrestrial carbon cycle models show significantly lower 55 
areal fractions of adverse lagged effects (1–14%) and much higher areal 56 
expanses of beneficial lagged effects (9–54%). Furthermore, we find that 57 
elevation and seasonal precipitation patterns largely dictate the geographic 58 
pattern and direction of the lagged effects. Inadequate consideration of the 59 
effects of seasonal build-up of water stress on seasonal vegetation growth may 60 
be able to explain why current models do not adequately represent lagged 61 
effects associated with spring warming. Overall, our results suggest that for 62 
many northern ecosystems, the benefits of warmer springs on growing season 63 
ecosystem productivity are substantially reduced by the accumulation of 64 
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seasonal water deficits despite the fact that northern ecosystems are thought 65 
to be largely temperature and radiation limited10. 66 Northern land regions have experienced substantial warming since the early 1970s 67 and this has changed how ecosystems function11. One prominent example of such 68 emerging ecosystem responses is shifts in plant phenological cycles: earlier spring 69 onset and delayed autumn senescence are together lengthening the northern 70 growing season6,12.  These phenological shifts have altered ecosystem 71 productivity5,6,8,13,14 and the seasonality of important ecosystem feedbacks to the 72 atmosphere and climate system6,15. 73 Warmer and earlier springs may also influence ecosystem function later in 74 the growing season through indirect or lagged effects16,17. For example, in-situ 75 studies provide evidence for significant positive lagged effects on ecosystem 76 productivity, whereby the influence of warmer springs may be conveyed to 77 subsequent seasons through development of larger leaf area and/or increased foliar 78 nitrogen6. In contrast, warmer/earlier springs may also cause earlier autumn 79 senescence because of fixed leaf life spans18 or adversely affect plant productivity 80 later in the season through the building up of water deficits7-9,19,20. However, at 81 present a more comprehensive understanding of such lagged productivity 82 responses is still lacking.  83 Here, we exploit long-term satellite-based measures of vegetation greenness 84 (as a proxy of potential photosynthesis)21,  flux tower- and model-based estimates of 85 CO2 uptake through photosynthesis (gross primary productivity (GPP))22,23 and 86 high-resolution climate data24 to estimate the strength and geographic distribution 87 
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of lagged effects that capture the influence of spring phenological transitions on 88 plant productivity during subsequent summer and autumn seasons. Our analysis 89 framework relies on identifying correlations between spring temperatures (which 90 serve as an independent phenological indicator), and satellite greenness or 91 simulated GPP during spring and subsequent seasons to estimate concurrent 92 phenological responsiveness and linked lagged effects (see Methods).   93 Across northern lands, correlations between annual spring temperatures and 94 spring greenness show significantly positive and spatially extensive pattern 95 consistent with the notion of a tight control of spring temperature on concurrent 96 plant productivity: 80% of northern (>30°N) vegetated non-agricultural land (total 97 study area ~41 million km2) exhibit statistically significant (P < 0.05 at grid cell 98 level) positive correlations (Fig. 1a).  To assess lagged effects on plant productivity 99 associated with anomalous spring temperatures, we computed partial correlations 100 between spring temperature and subsequent summer and autumn greenness, 101 whereby covarying effects of concurrent climate on these correlations are 102 controlled for (see Supplementary Information section 1). Partial correlations 103 between annual spring temperature and subsequent summer greenness show 104 widespread positive (6%, P < 0.05) as well as negative (6%, P < 0.05) pattern (Fig. 105 1b). Areas of positive partial correlations are predominantly situated in Eurasia 106 covering vast regions north of 50°N, whereas areas displaying negative correlations 107 are more localized in western North America, Siberia and temperate eastern Asia. 108 The partial correlation pattern between spring temperature and autumn greenness 109 indicate an extension of the ‘summer’ pattern of negative correlation (11%, P < 0.05; 110 
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positive correlations cover only 2%, P < 0.05) with additional coverage seen mainly 111 in northeastern Eurasia and temperate central Asia (Fig. 1b and c). While long-term 112 trends in temperature and greenness may potentially influence these correlations, a 113 corresponding analysis on detrended data shows that the patterns are similar 114 (Supplementary Information section 1) which suggests a dominant influence of 115 interannual to quasi-decadal variability on the correlation pattern between spring 116 temperature and satellite greenness during subsequent seasons. A comparison of 117 the strength of these lagged relationships with concurrent climatic influences on 118 greenness pattern shows that at regional scales the influence of preceding spring 119 temperatures on summer and autumn greenness can be equally important or even 120 dominant (Supplementary Information section 1). 121 To further assess the robustness of the identified satellite-based lagged 122 productivity responses we also compared them to those inferred from tower-based 123 measurements of land-atmosphere CO2 flux (FLUXNET). Results show that across 124 n=16 tower sites, the strength and direction of relationships between spring 125 temperature and spring as well as summer greenness correspond well to those 126 based on FLUXNET estimates of spring temperature and spring as well as summer 127 GPP (Extended Data Fig. 1). The agreement between satellite- and tower-based 128 relationships between spring temperature and autumn greenness and GPP, 129 respectively, is however not as strong (Extended Data Fig. 1). This validation has 130 several caveats including few available tower sites and differences in spatial scales 131 for satellite (coarse) and tower (fine-scale) data, but the overall consistency in the 132 estimated lagged productivity responses suggests that the satellite-based estimates 133 
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are plausible. 134 The geographic distribution of the relationships between changes in spring 135 temperature and subsequent summer greenness (see Fig. 1B) suggests that some 136 combination of climate, elevation, and/or landcover may explain these patterns. To 137 investigate this, we conducted a random forest (RF) analysis using a set of 138 predictors that encapsulate such factors (see Supplementary Information section 2). 139 Results show that the spring temperature-summer greenness partial correlation 140 pattern can be explained with elevation and selected climate variables (e.g. summer 141 precipitation and precipitation seasonality) acting as the most important variables 142 (Extended Data Fig. 2 and Supplementary Information section 2). Across northern 143 ecosystems, we find that these partial correlations tend to become more negative 144 with higher elevation, but such well-defined directional relationships are not as 145 apparent for important precipitation metrics (Extended Data Fig. 2).  146 Grouping the lagged productivity responses based on the direction of robust 147 correlations between spring temperature and spring, summer and autumn 148 greenness, respectively, shows large clusters of regions with negative lagged effects 149 and more scattered areas with positive lagged effects (Fig. 2a). Hereby, negative 150 ‘lagged productivity response scenarios’ associated with spring warming and 151 greening coupled with summer and/or autumn greenness declines stretch over vast 152 areas in western North America, Siberia and to some extent eastern temperate Asia, 153 whereas positive lagged effects are more common in eastern Eurasia above 50°N 154 (except Siberia).  155 Carbon cycle models must be able to simulate vegetation phenology 156 
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responses and corresponding impacts on ecosystem productivity and net carbon 157 uptake realistically to credibly estimate climate-carbon feedbacks 25. We therefore 158 assessed the ability of ten current-generation models contributing to TRENDYv622,23 159 to replicate the observed lagged productivity responses in respect to spring 160 warming. Results show a substantially higher areal coverage of positive lagged 161 effects on plant productivity for the multi-model mean (and significantly lower 162 coverage of negative lagged effects) than for the satellite-based estimates (Fig. 2a 163 and b). While there are marked differences among the individual models (Extended 164 Data Fig. 3), a striking pattern in the ensemble is the near absence of any negative 165 lagged effects across Siberia and the overall abundance of positive lagged effects 166 that extend over summer and autumn seasons (Fig. 2a and b). Satellite greenness 167 has been used extensively as a proxy for vegetation productivity3,26 but direct 168 comparisons between greenness- and GPP-based pattern may be limited (see 169 Methods). However, a similar analysis with two satellite-constrained GPP datasets 170 (based on upscaled FLUXNET data and a light use efficiency model; see Methods) 171 shows nearly identical lagged productivity pattern to those based on satellite 172 greenness (Extended Data Fig. 4).  173 Grouping these ‘lagged productivity response scenarios’ more broadly in 174 positive and negative lagged effects yields an areal extent of regions showing 175 positive lags of 36% for the TRENDYv6 ensemble (spanning 9–54% for the ten 176 individual TRENDYv6 models) and 4–6% for the satellite-based estimates (Fig. 2c).  177 The areal coverage of negative lagged effects based on the TRENDYv6 ensemble is 178 only 2% (spanning 1–14% for the ten models) compared to the satellite-based 179 
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estimates of 13-16%.  180 Why can present terrestrial carbon cycle models not adequately replicate the 181 spatial pattern of observed lagged productivity responses in respect to warmer 182 springs? One key factor may be how seasonal vegetation growth is represented in 183 the models. To assess this, we performed a similar seasonal correlation analyses 184 with satellite-based and modelled leaf area index (LAI) data (see Methods). These 185 results show an even larger discrepancy in the areal proportions of positive and 186 negative lagged LAI responses to spring warming between observation-based and 187 modelling approaches compared to the results based on productivity metrics (Fig. 2c 188 and d, Extended Data Fig. 4). The substantial overestimation of growing season LAI in 189 the models in response to spring warmth may cause too much new carbon to be 190 allocated in plant tissue, which then serves to enhance GPP.  191 Water availability may cause adverse lagged effects in response to spring 192 warmth and could help to reconcile the differences in observations and models. To 193 further investigate this we performed a regional analysis for the Western US and Siberia 194 where observation-based and simulated lagged productivity responses show more 195 converging and diverging pattern (see Fig. 2). For the Western US, we find that 196 seasonal trajectories in aggregated satellite-based and modelled LAI and 197 evapotranspiration (ET) both display positive anomalies during spring in years with 198 warmer springs and corresponding negative anomalies later in the growing season 199 (suggestive of negative lagged effects associated with a buildup of water stress) (Fig. 200 3a and b). For Siberia, however, the seasonal trajectories in observation-based and 201 modelled LAI for warm spring years start to diverge substantially during summer 202 



 9

and autumn with the observations displaying more negative anomalies during 203 summer and autumn (again suggestive of water stress) and the opposite pattern for 204 the models (Fig. 3c). Seasonal trajectories of observation-based and modeled ET for 205 years with anomalous spring temperatures are more in agreement, although there is 206 some indication that the models tend to underestimate water stress in summer in 207 warm spring years (Fig. 3d). The consistent response in observed and modelled LAI 208 and ET in respect to spring warmth over Western US, a region which is known for its 209 vulnerability to drought in respect to spring warmth27-29, suggests that the model’s 210 hydrology and phenology schemes are generally fit for purpose. The strong 211 divergence between observation-based and modelled seasonal vegetation growth 212 responses to spring warmth over Siberia (which is dominated by needleleaf 213 deciduous forests) may be due to underestimating the effects of water stress on 214 seasonal canopy development and omission of fixed leaf life spans in the models 215 (Extended Data Table 1 and Supporting Information section 3). We estimate that 216 due this observation-model mismatch across Siberia annual GPP for a warm spring 217 year (relative to mean conditions) may be up to 4 times higher in the TRENDYv6 218 ensemble (1.7 PgC/yr) compared to an observation-constrained estimate based on 219 upscaled FLUXNET data (0.4 PgC/yr) (Extended Data Fig. 5).   220 Our analysis based on satellite vegetation records over multiple decades 221 provides first evidence for widespread positive and negative lagged plant 222 productivity responses across northern ecosystems in association with warmer 223 springs. The spatially extensive pattern of negative lagged effects identified here 224 also implies substantially reduced benefits for ecosystem productivity and carbon 225 
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sequestration from longer northern growing seasons under climate change. We also 226 show that current terrestrial carbon cycle models substantially underestimate 227 (overestimate) negative (positive) lagged effects associated with spring warming. 228 This is possibly because of inadequately capturing the effects of seasonal buildup of 229 water stress on seasonal vegetation growth. Continued monitoring of emerging 230 ecosystem responses and improved modelling capabilities will thus be crucial to 231 improve understanding of the complex interactions of a changing climate, shifts in 232 phenological cycles and impacts on energy, water and carbon cycles.  233 
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Figure Captions 339 
Figure 1 | Spatial pattern of concurrent and lagged productivity responses to 340 
spring warming based on satellite greenness observations. Panel (a) shows grid 341 cell correlations between yearly spring temperatures and spring satellite vegetation 342 greenness (expressed through the NDVI, normalized difference vegetation index), 343 for our study period 1982-2011. Also shown are partial correlations between 344 annual spring temperatures and subsequent (b) summer NDVI as well (c) autumn 345 NDVI over this period. In these partial correlations, the covarying influences of 346 summer temperatures and precipitation (panel b) and autumn temperature and 347 precipitation (panel c) on the lagged spring temperature – summer/autumn NDVI 348 correlations have been removed. Seasons are defined through a local adaptive 349 procedure (see Methods). Absolute r-value categories correspond to significance 350 levels P = 0.3 (r = 0.20), P = 0.2 (r = 0.24), P = 0.05 (r = 0.36) and P = 0.01 (r = 0.46), 351 respectively. For each map frequency histograms showing areal coverage of 352 corresponding positive and negative correlations, estimated as fraction of total 353 study area, are also provided (see insets). Areas cultivated or managed32 (light grey) 354 are not included in the analysis.  355  356 
Figure 2 | Spatial pattern of lagged productivity response scenarios based on 357 
satellite greenness observations and modelling approaches. The two maps 358 summarize direction of robust (P < 0.05) grid cell correlations between annual 359 spring temperature and spring, summer and autumn (a) satellite NDVI as well as (b) 360 simulated GPP from the TRENDYv6 multi-model mean. For example, the ‘lagged 361 
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productivity response scenario’ denoted as ‘+++’ captures positive correlations 362 between spring temperature and spring, summer and autumn NDVI (GPP), 363 respectively. Here, the relationships between spring temperature and subsequent 364 summer and autumn NDVI (GPP) are estimated through partial correlations 365 whereby effects of covarying concurrent climate influences have been controlled for 366 (see Fig. 1 and Methods). Corresponding pattern for individual models are shown in 367 Extended Data Fig. 3. Areas with no robust link between spring temperature and 368 spring NDVI or GPP (dark grey) and areas cultivated or managed (light grey) are 369 outlined. The two focal regions (Western US and Siberia) in this study are also 370 delineated (black-dashed rectangles). Panel (c) shows extent of areas with either no, 371 positive or negative lagged effects (see definition in panel a) within the study region 372 for satellite NDVI and GPP based on TRENDYv6. In addition, corresponding results 373 from a similar analysis for two satellite-constrained GPP datasets, based on 374 upscaled FLUXNET data (FluxNetG) and a light use efficiency model (LUE-FPAR3g; 375 see Methods), are also shown (see also Extended Data Fig. 4). Panel (d) shows the 376 results from a complementary analysis for satellite-based and modelled LAI (see 377 Methods). Heavy shaded columns represent satellite-constrained estimates and 378 those based on the TRENDYv6 multi-model mean and light shaded columns 379 represent estimates for the individual TRENDYv6 models. Results from the same 380 analysis for detrended data show that the differences in satellite- and model-based 381 estimates of areal proportions of positive and negative lagged effects are similar 382 (Supplementary Information section 1). 383  384 
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Figure 3 | Seasonal trajectories of regionally averaged LAI and ET anomalies 385 
based on observation-constrained and modeling approaches for warm and 386 
cold spring years. The panels depict anomalies in spatially averaged and 387 composited LAI and ET based on satellite-constrained estimates (LAI3g and ET-388 GLEAM) and model simulations (TRENDYv6 multi-model mean) for (a, b) Western 389 US and (c, d) Siberia. Western US encompasses the non-agricultural regions from 390 120°W to 105°W and 40°N to 50°N, whereas Siberia is defined from 80°E to 125°E 391 and 60°N to 70°N (see also Fig. 2). Anomalies are relative to the study period 1982-392 2011. The monthly maximum composites are based on the mean LAI (ET) of the 393 seven warmest and coldest spring years within the study period. Start and end of 394 climatological spring, summer and autumn season are also outlined (vertical grey 395 dashed lines). Uncertainty bounds (shaded area) reflect the spread in the monthly 396 LAI (ET) anomalies within the compositing period  (± 1 s.d., n=7). 397 
 398 399 
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Methods 400 
Data sources. For satellite vegetation data, we used the GIMMS-NDVI version 3g 401 (NDVI3g)21 and the LAI3g30 products both available at 8-km spatial and 15 days 402 temporal resolution covering our study period 1982–2011. The NDVI3g data stem 403 from optical surface reflectance measurements from a series of NOAA-AVHRR 404 satellites, and in its generation effects of orbital drifts, inter-sensor calibration and 405 stratospheric aerosols from volcanic eruption have been corrected for making it 406 presently the most consistent long-term satellite vegetation data21. The LAI3g fields 407 are derived from the NDVI3g data using an artificial neural network model30. 408 Gridded monthly climate data were obtained from the Climatic Research Unit (CRU 409 TS3.23) at 0.5° spatial resolution24 for our study period (1982-2011). As an estimate 410 for observation-constrained ET, we included the Global Land Evaporation 411 Amsterdam Model (GLEAM) data set, which has a 0.25° spatial resolution at daily 412 time steps31. While the GLEAM approach is based on an empirical model, it is heavily 413 constrained by observations through assimilating satellite microwave vegetation 414 optical depth data as a proxy for water stress31. In addition, land cover data used in 415 this study are based on the GLC2000 land cover classification32. For complementary 416 analyses, we also used two observation-constrained monthly GPP data sets: 1) We 417 used GPP data (0.5° spatial resolution and available for 1982-2008) derived from 418 upscaled carbon observations based on the global FLUXNET tower network (termed 419 FluxNetG in this study)33. Note, FluxNetG is different from the previously published 420 version (FluxNet-MTE)33 since it has been produced with inputs from only a single 421 satellite vegetation data set (NDVIg; a predecessor of NDVI3g) to reduce artefacts 422 
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from usage of multiple satellite data (the FLuxNetG data set was also used in ref. 8). 423 2) We used GPP data (0.5° spatial resolution and available for 1982-2011) derived 424 using the light use efficiency (LUE) MODIS GPP algorithm driven by bi-monthly 425 GIMMS FPAR3g (termed LUE-FPAR3g in this study)34. Additional meteorological 426 driver data required as input into the MODIS GPP algorithm were derived from 427 NCEP-DOE Reanalysis II (http://www.esrl.noaa.gov). For more information on the 428 GIMMS3g GPP dataset, see Smith et al. (2016)34. 429  430 
TRENDYv6 models. We also analyzed monthly GPP, LAI and ET simulation outputs 431 for 1982 to 2011 from ten terrestrial carbon cycle models that were part of a recent 432 model intercomparison project: TRENDYv622,23. The models included in the analysis 433 here are the LPX-Bern, LPJ-GUESS, ISAM, CABLE, VISIT, CLM4.5, DLEM, JSBACH, 434 ORCHIDEE-MICT and JULES. In TRENDYv6, the models were forced with 435 CRUNCEPv6 climate data, which is based on a merged product of the monthly CRU 436 climate data and to be consistent with the TRENDYv6 ensemble we also used this 437 climate dataset in this study. In addition, a set of factorial simulations22 were 438 performed and we analyzed outputs from a simulation in which only atmospheric 439 CO2 and climate were varied (land use change held fixed; experiment ‘S2’) since our 440 study focus was on non-agricultural ecosystems. For an overview of the processes 441 included in the models with relevance for this study see Extended Data Table 1. For 442 a more general overview of the models see Table 4a and Table 5 in Le Quéré et al.23. 443  444 
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Analysis framework. The satellite-based bi-monthly GIMMS NDVI3g and LAI3g 445 vegetation data were averaged to a monthly temporal resolution (to be consistent 446 with the TRENDYv6 model outputs). Then the fine-scale satellite vegetation and 447 coarse-scale CRU temperature fields were (dis)aggregated to a common 0.25° 448 spatial grid on which all correlation analyses were performed. The motivation for 449 this spatial aggregation step is two-fold: (i) it retains a certain level of spatial 450 information inherent in the satellite products and (ii) aligns more closely with the 451 coarser spatial resolutions of the TRENDY carbon cycle models. Model outputs from 452 TRENDYv6 were either analyzed at their native model resolutions spanning grid cell 453 dimensions from 0.5° to 1.9°22 or resampled to a common 0.5° grid through nearest 454 neighbors (e.g. for estimation of multi-model means of GPP, LAI and ET at grid-cell 455 levels). 456 To estimate lagged vegetation growth and productivity responses we first 457 divided the mean seasonal cycle of NDVI or simulated GPP (based on the 30 year 458 study period) into spring, summer and autumn periods for each grid cell. Hereby, 459 the start of spring and end of autumn periods are defined by the month in which 460 corresponding temperatures are closest to 0°C, whereas the start and end of the 461 summer periods are defined by the month in which the NDVI (GPP) is closest to 462 95% (85%) of the annual maximum NDVI (GPP), respectively. Alternative 463 approaches for characterizing phenological cycles involving start- and end-dates of 464 the growing season are more ambiguous if it is based solely on optical vegetation 465 indices35,36 or when the underlying data have relatively low temporal resolutions as 466 in this study12.  467 
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 In a next step, we (building on the conceptual model of Richardson et al.16) 468 classified ‘lagged productivity response scenarios’ for each grid cell as follows:  First, 469 as a minimum requirement for phenological responsiveness to spring warming, we 470 require the springtime temperature and the response variable of interest (NDVI, LAI 471 or GPP) to be significantly (P < 0.05) and positively correlated.  Second, we then 472 define a lagged productivity (NDVI, GPP) or phenology (LAI) response scenario on 473 the basis of the direction of robust (P < 0.05) partial correlations between annual 474 spring temperatures (as independent phenological indicator) and subsequent 475 summer as well as autumn seasonal means of the response variable of interest; for 476 example if at a given locality annual spring temperature is positively correlated with 477 spring NDVI but negatively correlated with subsequent summer NDVI and not 478 robustly correlated with autumn NDVI the assigned scenario label would be  ‘+–0’ 479 where the type and sequence of symbols denotes the direction of correlations 480 between spring-spring, spring-summer and spring-autumn relationships, 481 respectively (see Figure 2). Partial correlations are used to control for covarying 482 effects of climate over seasonal time scales, which can confound the correlations 483 between annual spring temperatures and subsequent summer and autumn 484 response variables (see Supplementary Information section 1).  485 As indicated, the long-term satellite vegetation data (NDVI3g, LAI3g) exploited 486 here stem from a series of satellites and while this record has been carefully 487 assembled and also validated to some extent30 remaining non-vegetation artefacts 488 in the data cannot be ruled out37. Further, satellite greenness (or NDVI) captures the 489 amount of light absorbed by chlorophyll in green leaves38 and has been exploited 490 
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extensively as a proxy for spatially-resolved vegetation productivity at continental 491 and multi-decadal scales3,26. However, to overcome the limited comparability of 492 directly observed NDVI-based and simulated GPP-based pattern we also analysed 493 observation-constrained GPP data and corresponding results show good agreement 494 in lagged productivity pattern at both site level (using GPP flux tower data) and 495 across northern ecosystems (using gridded GPP data from upscaled FLUXNET and a 496 LUE model) providing further support for the robustness of our results (see 497 Extended Data Fig. 4). Finally, we also use satellite-based and modelled LAI data to 498 probe the mismatch between lagged greenness and modelled (TRENDYv6) GPP 499 responses to spring warmth.  500 
 501 
Data availability. The satellite NDVI3g data that support the findings of this study 502 were downloaded from http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0/. The 503 satellite LAI3g data that support the findings from this study are available from 504 Ranga B. Myneni (rmyneni@bu.edu) upon request. The ‘LUE-FPAR3g’ GPP data that 505 support the findings of this study can be requested from W.K.S. 506 (wksmith@email.arizona.edu), whereas the ‘FluxNetG’ GPP data can be obtained 507 from Martin Jung (mjung@bgc-jena.mpg.de). The TRENDYv6 data that support the 508 findings of this study are available from S.S.S. (s.a.sitch@exeter.ac.uk) upon 509 reasonable request.  510  511 30. Zhu, Z. et al. Global data sets of vegetation Leaf Area Index (LAI) 3g and Fraction 512 Of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory 513 
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Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation 514 Index (NDVI3g) for the period 1981 to 2011. Rem. Sens. 5, 927–948, (2013). 515 31. Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil 516 moisture. Geosci. Model Dev. 10, 1903–1925 (2017). 517 32. Bartholome, E., & Belward, A. S. GLC2000: A new approach to global land cover 518 mapping from Earth observation data. Int. J. Rem. Sens. 26, 1959–1977 (2005). 519 33. Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, 520 latent heat, and sensible heat derived from eddy covariance, satellite, and 521 meteorological observations. J. Geophys. Res. Biogeosci. 116, G00J07 (2011). 522 34. Smith,W. K. et al. Large divergence of satellite and Earth system model 523 estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 524 (2016). 525 35. Walter, S. et al. Satellite chlorophyll fluorescence measurements reveal large-526 scale decoupling of photosynthesis and greenness dynamics in boreal evergreen 527 forests. Glob. Change Biol. 22, 2979–2996 (2016). 528 36. Wu, C. et al. Land surface phenology derived from normalized difference 529 vegetation index (NDVI) at global FLUXNET sites. Agr. For. Met. 233, 171-182 530 (2017). 531 37. Jiang, C. et al. Inconsistencies of interannual variability and trends in long-term 532 satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017). 533 38.  Myneni, R. B. et al. The interpretation of spectral vegetation indexes. IEEE 534 
Trans. Geosci. Rem. Sens. 33, 481–486 (1995). 535  536 537 



 24

Extended Data 538 
Extended Data Table Captions 539 
Extended Data Table 1 | Comparison of specific process representation in the 540 
TRENDYv6 carbon cycle models with relevance to this study 541  542 
Extended Data Figure Captions 543 
Extended Data Figure 1 | Comparison of lagged productivity responses based 544 
on satellite greenness observations and in-situ estimates of carbon fluxes 545 
across selected FLUXNET sites. Panels (a-c), show site-specific correlations 546 between spring temperature (T) and spring, summer and autumn satellite NDVI  547 (x-axis) plotted over the corresponding site-specific correlations between spring T 548 and spring, summer and autumn in-situ based GPP (y-axis). In panels (b) and (c), 549 relationships shown are based on partial correlations (pr) between spring T and 550 subsequent summer as well as autumn NDVI/GPP, whereby covarying effects of 551 summer T and precipitation (panel b) and autumn T and precipitation (panel c) 552 have been removed. For this comparison, satellite NDVI time series at 8 km (native) 553 spatial resolution have been extracted for the 16 included FluxNet tower sites with 554 at least 10 year data records (Panel d). (Partial) correlations are shown for two 555 estimates of GPP: GPP-N (based on nighttime partitioning) and GPP-D (daytime 556 partitioning). In the maps (panel e), approximate location and name of FLUXNET 557 tower sites are shown, along with forest type (ENF: Evergeen Needleleaf Forest, 558 DBF: Deciduous Broadleaf Forest, MF: Mixed Forest) and record length (in 559 brackets). FLUXNET data are from the FLUXNET2015 Dataset (Tier 1).  560 
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 561 
Extended Data Figure 2 | Random forest analysis to explain the partial 562 
correlation pattern between annual spring temperature and summer satellite 563 
greenness for hemispheric and regional scales. Panel (a) shows ranked 564 importance of a set of explanatory variables in a random forest (RF) model for the 565 whole northern ecosystem study region encompassing all northern vegetated non-566 agricultural land north of 30°N (see Supplementary Information section 2 for details 567 on explanatory variables used). Ranking is based on the highest increment in mean 568 squared error (IncMSE) between the observed and RF-predicted correlation after 569 permuting this explanatory variable. Panels (b-f) show individual conditional 570 expectation (ICE) lines of the RF-predicted partial correlation between spring T and 571 summer NDVI. They encapsulate response curves for the five most important 572 explanatory variables based on the RF analysis. Lines and shaded bands reflect the 573 mean (i.e. regional average response) and the percentile range (5% to 95%, i.e. grid 574 cell level responses to environmental predictors) of ICE curves for the entire 575 northern hemisphere study region (red), and for the focus regions Siberia (blue) 576 and Western US (green), respectively (see Supplementary Information section 2).  577  578 
Extended Data Figure 3 | Spatial pattern of lagged productivity response 579 
scenarios based on the individual carbon cycle models included in TRENDYv6. 580 All pattern are based on monthly GPP over the period 1982-2011 using outputs 581 from the ten TRENDYv6 models included in the analysis. The maps summarize 582 direction of statistically significant (P < 0.05) correlation between annual spring 583 
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temperature and spring, summer and autumn GPP, respectively. For details on 584 classification scenarios and contour labels see Figure 2 in main text. Areas with no 585 robust link between spring temperature and spring GPP (dark grey) and areas 586 cultivated or managed (light grey) are also outlined. 587  588 
Extended Data Figure 4 | Spatial pattern of lagged productivity and vegetation 589 
growth response scenarios based on satellite-constrained and modelling 590 
approaches. The six maps summarize direction of robust (P < 0.05) correlations 591 between annual spring temperature and spring, summer and autumn (a) satellite 592 NDVI, (b) satellite LAI, (c) satellite-constrained upscaled GPP (FluxNetG),  593 (d) satellite-driven LUE-modelled GPP (LUE-FPAR3g) as well as multi-model mean 594 (e) GPP and (f) LAI based on the ten TRENDYv6 models. For details on scenario 595 classifications and contour labels see Figure 2 in main text.   596  597 
Extended Data Figure 5 | Changes in regional climate, satellite greenness and 598 
plant carbon fluxes from observation-constrained and modelling approaches 599 
for years with warm and cold spring temperatures. The panels depict anomalies 600 in regionally-averaged composited climate, NDVI and GPP for the focus regions (a-c) 601 Western US and (d-f) Siberia relative to the study period 1982-2011. The anomalies 602 are based on maximum composites of monthly means of the seven warmest and 603 coldest spring years within the study period. The observation-constrained GPP 604 anomalies shown here (panels c and f) stem from an upscaled FLUXNET product 605 (FluxNetG), which combined GPP estimates from flux towers with climate and 606 
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satellite greenness in a machine learning framework (see Methods). Shown are also 607 the respective (a, d) climate and (b, e) NDVI anomalies for warm and cold spring 608 years. Start/end of climatological spring,  summer and autumn seasons are 609 indicated (vertical grey dashed lines). Uncertainty bounds (shaded area) reflect the 610 spread in the respective monthly anomalies within the compositing period  (± 1 s.d., 611 n=7). On the basis of these anomalies, we estimate for a warm spring year (relative 612 to mean conditions) in Siberia (2.5 Mill km2) annual GPP increases of 0.4 PgC and 613 1.7 PgC for FluxNetG and the TRENDYv6 ensemble (see Panel F), respectively, which 614 suggests a roughly 4 times higher plant carbon uptake in the TRENDYv6 ensemble. 615 This is to a large part (~64%) because of the overestimation of positive lagged 616 effects in the TRENDYv6 models , but another significant factor (36%) is also the 617 higher sensitivity of concurrent carbon uptake to spring warming in the TRENDYv6 618 models (compared to FluxNetG).  619  620 
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